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Abstract

Background: Acute pain after surgery is common and often leads to chronic post-surgical pain, but neither treatment nor

prevention is currently sufficient. We hypothesised that specific protein networks (protein-protein interactions) are

relevant for pain after surgery in humans and mice.

Methods: Standardised surgical incisions were performed in male human volunteers and male mice. Quantitative and

qualitative sensory phenotyping were combined with unbiased quantitative mass spectrometry-based proteomics and

protein network theory. The primary outcomes were skin protein signature changes in humans and phenotype-specific

protein-protein interaction analysis 24 h after incision. Secondary outcomes were interspecies comparison of protein

regulation as well as protein-protein interactions after incision and validation of selected proteins in human skin by

immunofluorescence.

Results: Skin biopsies in 21 human volunteers revealed 119/1569 regulated proteins 24 h after incision. Protein-protein

interaction analysis delineated remarkable differences between subjects with small (low responders, n¼12) and large

incision-related hyperalgesic areas (high responders, n¼7), a phenotype most predictive of developing chronic post-

surgical pain. Whereas low responders predominantly showed an anti-inflammatory protein signature, high responders

exhibited signatures associated with a distinct proteolytic environment and persistent inflammation. Compared to

humans, skin biopsies in mice habored even more regulated proteins (435/1871) 24 h after incision with limited overlap

between species as assessed by proteome dynamics and PPI. Immunohistochemistry confirmed the expression of high

priority candidates in human skin biopsies.

Conclusions: Proteome profiling of human skin after incision revealed protein-protein interactions correlated with pain

and hyperalgesia, which may be of potential significance for preventing chronic post-surgical pain. Importantly, protein-

protein interactions were differentially modulated in mice compared to humans opening new avenues for successful

translational research.
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Editor’s key points

� The treatment and prevention of acute and chronic

post-surgical pain are often inadequate, and the

development of mechanism-based novel analgesics

is crucially needed.

� For this purpose, rodent models and human surro-

gate models of skin incision are highly relevant.

� In this translational research study based on sensory

phenotyping combined with quantitative proteomics

in male rodent and human models of skin incision,

the authors identified specific skin protein signatures

that correlated to pain phenotypes.

� These results contribute to identifying candidate

proteins to target in therapies to prevent pain

chronification after surgery.
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Worldwide, more than 300 million people undergo surgery

each year. Most of them experience acute pain, and treat-

ment remains inadequate in a very high number of pa-

tients.1 Severe post-surgical pain leads to significant

suffering of patients; it hampers recovery by impairing

mobilisation and physiotherapy and delays discharge.2 Even

more challenging are long-term consequences, including

complications, opioid intake, and chronic post-surgical pain

(CPSP),1e7 affecting patients’ quality of life and putting a

tremendous burden on patients and the community.

Recently, the World Health Organization (WHO) (together

with the International Association for the Study of Pain,

IASP) released their new International Classification of Dis-

eases 11th Revision (ICD-11) classification codes; this now

contains codes for several primary and secondary pain dis-

eases, including CPSP and posttraumatic pain. In fact, they

classified CPSP as being of high relevance and the prime

candidate for preventive measurements.7

Currently, the treatment of acute pain and the prevention

of CPSP is inadequate. For acute post-surgical pain, opioids

and regional anaesthesia techniques are the most effective.

However, both are limited by side-effects, including long-term

opioid intake.4,8,9 Also, thus far, CPSP cannot be prevented by

pharmaceutical strategies.10 Consequently, there is an urgent

need for novel, effective, and safe analgesics to treat acute

pain and prevent CPSP.

A prerequisite for the development of new treatment

options is the discovery of mechanisms underlying different

pain aetiologies, such as post-surgical pain. Therefore, ro-

dent models of post-surgical pain have been developed and

are increasingly used.11 These surgical incision models are

highly relevant as they provide tremendous insights into the

unique pathophysiology of post-surgical pain.12 However,

inherent problems in rodent preclinical pain studies are

species-specific differences limiting the translational po-

tential.13 Human surrogate models could offer a missing link

that mimics tissue injury and aspects of pathological pain

usually seen in patients.14 In fact, a human model of skin

incision has been established that shows signs and symp-

toms similar to those of surgical patients, including acute

pain and hyperalgesia surrounding the injured tissue.15 The

latter has been shown to serve as a clinically relevant pain
phenotype associated with the development of CPSP after

different types of surgical procedures.16,17 However, neither

the pathophysiology underlying mechanical hyperalgesia

early after surgical incision nor the mechanisms leading to

differential development of hyperalgesia across patients (i.e.

mechanisms that may serve as risk factors for CPSP), have

been investigated thus far.

Here, we hypothesised that sensory phenotyping combined

with quantitative proteomics could reveal unprecedented in-

sights into species-specific and phenotype-related peripheral

processes relevant to acute pain, hyperalgesia, and CPSP

development. This study aims at identifying regulated pro-

teins, phenotype-specific skin protein signatures for post-

surgical pain, and interspecies similarities and differences to

optimise translational research in this field.
Methods

A detailed description of the methodology is provided in

Supplementary Material.
Ethics approval/registration

All human experiments were approved by the local Ethics

Committee of the Medical Faculty Muenster (registration

number 2018-081-b-S), registered in German Clinical Trials

Registry (DRKS-ID: DRKS00016641), and in accordance with the

latest version of the Declaration of Helsinki. The animal ex-

periments were reviewed and approved in accordance with

the recommendations of the ARRIVE guidelines 2.0.18
Human volunteers

Enrolled male volunteers (n¼26, Fig 1) passed our inclusion

criteria (Supplementary Material), were informed about the

procedure before the study and provided written informed

consent. All volunteers completed a set of psychological

questionnaires and a self-rating instrument for assessing pain

sensitivity19e22 (Supplementary Material).
Quantitative sensory testing in human volunteers

Before incision, a comprehensive battery of quantitative sen-

sory testing (QST) was applied to each volar forearm aspect to

assess the perception of non-painful and painful stimuli of

differentmodalities (thermal, mechanical, pressure, vibration)

established by the German Research Network in Neuropathic

Pain.23 QST parameters were measured in their physical

dimension and were weighted by transformation to the stan-

dard normal distribution (Z-transformation). Z-scores indicate

a gain (above ‘0’) or a loss (below ‘0’) of function.
Incision injury model in human volunteers

The experimental incision proceeded in the volar forearm as

previously described.15 Test and control sides were rando-

mised beforehand. Briefly, for skin incision, the skin was dis-

infected (ethanol 70%) and incised 4 mmwide and 7mm deep,

perforating the skin and muscular fascia using a scalpel.
Ongoing pain in humans

Using the numeric rating scale (0e100), the volunteers were

asked to rate the intensity of ongoing pain before the incision
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Fig 1. Study design. The study contains four major parts: (1) psycho-physics characterisation of human volunteers (blue) and behaviour

tests in mice (green), (2) experimental pain model induction and skin sampling, (3) proteome profiling of incised skin from humans and

mice, and (4) immunohistochemistry of high priority candidates in human skin post incision. In total, 30 human male volunteers (26 right-

handed) with a mean age of 23.9 yr were included. Mouse experiments were performed with 12 incision- (INC) and 12 sham-treated C57Bl/

6J male mice (10 weeks old). Experiments were performed at three different time points: 1 day before incision (baseline, BL), at incision

(INC) day, and 24 h after incision. Skin biopsies (ipsilateral and contralateral), including epidermis and fascia, were analysed by quanti-

tative mass spectrometry. Protein-protein interaction network analysis was performed across both species and phenotypic groups (i.e.

high or low responder types) in humans. Expression of priority candidates was investigated in skin samples 24 h after incision.
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(baseline), during, and after incision for 1 h (first, every minute

for10min, thenevery5min)andat4hand24hafter the incision.
Mechanical hyperalgesia andmechanical hyperalgesic
area

For mechanical pinprick hyperalgesia around the incision, me-

chanicalpainsensitivityandpainthresholdswereassessedwith

a radius of 5mmaround the incision (primaryhyperalgesia) and

15 mm around the incision (secondary hyperalgesia). Further-

more, the area of punctate hyperalgesia was determined using

anoctagram, the vertices ofwhichweredeterminedbyausually

non-painful punctatemechanical stimulus (von Frey filaments,

116 mN). The octagon’s area represents the area of punctate

mechanical hyperalgesia. Testing was performed in random

order at the incision and the contralateral site before incision, 1

h, and 24 h after incision.
Plantar incision in mice

Adult male C57Bl/6J mice (n¼24 mice, 10 weeks, weight 25.4

[standard deviation 1.8] g were kept in a 12/12 h day/night

cycle under standardised specific pathogen-free conditions.

An incision was performed in 12 mice under general iso-

flurane anaesthesia under sterile conditions on the plantar

aspect of the right hindpaw.24 The skin incision was closed

with one mattress suture of 6e0 prolene. Sham (control)

mice (n¼12) were anaesthetised for the same duration, but

no incisions and sutures were performed.
Non-evoked pain behaviour in mice

The unbalanced weight-bearing caused by guarding the

incised hindpaw was used to assess non-evoked pain

behaviour.25 Briefly, the green illuminated hindpaw area

was determined, and the ratio between the contralateral

(control) and the incised site was calculated from 10 images

over 10 min. All mice were included for proteomic analysis.
Biopsies and sample preparation

The incised skin (or control skin) was removed by 4 mm skin

punch biopsies. In humans, both incision (ipsilateral) and

contralateral skin samples were obtained after local anaes-

thesia 24 h after incision. One skin biopsy was performed on

each mouse after euthanisia with CO2. The biopsies contained

epidermis and dermis compartments.

Biopsies were homogenised and solubilised as described.26

Samples from three mice were pooled to obtain four biological

replicates. Human biopsies were treated individually. Protein

concentrations were determined, and the digestion protocol

was based on the paramagnetic bead-based approach. Three

volunteers were excluded as a result of the high lipid content

in the sample.
Mass spectrometry

Peptideswere separated and directly injected into a Q-Exactive

HF-X Orbitrap mass spectrometer (Thermo Fisher Scientific,

Waltham, MA, USA). Raw data were acquired in data-
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independent acquisition (DIA) mode. A detailed description of

the methodology is provided in Supplementary Material. Poor

mass spectrometry (MS) chromatograms caused the exclusion

of two human biological replicates and two pooled mice

samples.
DIA-MS data analysis

The DIA raw files were analysed, and spectra were searched

against human or mouse Uniprot FASTA databases. A strict

quantification filter was applied to assess differential protein

abundances between samples. A detailed description of the

methodology is provided in Supplementary Material. Mean

log2 ratios were calculated, and pairwise t-tests were per-

formed. Obtained P-values were adjusted using the

BenjaminieHochberg procedure for multiple testing. Signifi-

cantly regulated proteins were defined as having a Benjami-

nieHochberg-adjusted q-value of <0.05. All data have been

deposited to the ProteomeXchange Consortium27 with the

dataset identifier PXD030828.
DIA-MS dataset after analysis

For all proteome comparisons, we used the following cut-off:

proteins that exhibited q<0.05 and |log2 FC| >0.38 when

comparing human biopsy Bipsi with Bcon or BincMouse (M) with

BshamM. Proteome comparisons were made with respective

gene names. If two or more gene names are reported for a

single protein, we used the first gene name.

Comparisons:

(i) Human Binc vs Bcon for responder types within the hyper-

algesic area, 24 h after incision, and time course. Proteins

that were exclusively regulated in only one responder type

were defined as being up- or downregulated in one

responder type and not being regulated at all (q>0.05) in the

other responder type.

(ii) Human Binc vs Bcon across all volunteers compared with

mouse BincM vs BshamM.
Immunohistochemistry staining in human skin

In incisional wounds, immunohistochemical staining visual-

ized matrix metalloproteinases 9 (MMP9) and neutrophil

elastase (ELANE). Z-stacks were combined to produce a

maximum z-projection. The intensity settings of individual

channels were adjusted to meet the average minimum/

maximum value across all biological replicates within each

technical procedure.
Primary and secondary outcomes

The primary outcome was to identify a cutaneous proteome

signature, associated functional pathways, and protein-

protein interaction (PPI) networks after incision injury in hu-

man volunteers and their specific pain phenotypes (e.g. the

area of mechanical hyperalgesia). We identified functional

protein pathways using gene ontology (GO) pathway and

Reactome analysis via the web-based interface STRING

(https://string-db.org/).

Term-term interaction, PPI networks, and network topology

analysis were performed by ClueGO (v2.5.8, cytoscape.org28) as

functional clusters (AutoAnnonate 1.3, cytoscape.org28).
StringAPP in Cytoscape (3.8.2, cytoscape.org28) was used to

identify species and pain phenotype-specific protein networks.

Functional grouping was performed with AutoAnnonate 1.3.

Significantly (P-values �0.05) enriched GO terms were seen in a

functionally grouped network that reflects the terms’

relationships.

The secondary outcomes were the interspecies comparison

of protein regulation and PPI after incision and immunofluo-

rescence validation of selected proteins in human skin. For

species comparison, we first identified functional protein

pathways in mice after incision and performed the outlined

analysis. Then, we compared mice data with human data. For

immunofluorescence validation, the cellular localisation of

proteins that play a central role in incision-induced networks

in humans was analysed by immunohistochemistry of human

skin sections.
Statistical analyses

Corresponding statistical tests are indicated in the respective

figure legends and are two-sided. For proteome data analysis,

we used the BenjaminieHochberg-adjusted P-value (i.e. q-

value <0.05) (please see Methods and Supplementary Material

for details). All data are represented as mean (standard devi-

ation) unless indicated otherwise.
Sample size estimation

Sample sizes were not determined a priori; however, they are

in line with standards in the field. All replicates were

biological.
Results

Volunteer characteristics

Baseline characterisation was performed to ensure that in-

clusion criteria were fulfilled and that previous psychiatric

diseases or limitations of sensory perception were absent

(schematically outlined in Fig 1, Supplementary Material); no

volunteer needed to be excluded based on these criteria.
Skin protein signature in humans after incision injury

Proteomic analysis of 21/26 human skin biopsies (B) from

‘within’ the incision (Binc) and in the corresponding area of the

contralateral site (Bcon) resulted in a highly reproducible list of

1569 proteins 24 h after incision (Supplementary Material).

Unsupervised hierarchical clustering and principal compo-

nent analysis (PCA) showed the expected proteome signature

segregation (Fig 2a and b). Specifically, 119/1569 quantified

proteins were significantly and robustly regulated after inci-

sion (Fig. 2c); 73 proteins were up- and 46 downregulated and

predicted to be localised in diverse cellular components

(Supplementary Material).

Regulated proteins were associated with distinct GO terms

for molecular function (MF) and immune system processes

(ISP) (Fig 2d). Accordingly, hub-related GO enrichment analysis

(Fig 2e and f) highlighted eight major clusters. Among them,

the cluster immune response regulationwasmost prominent and

included the GO_MF terms regulation of lymphocyte proliferation,

oxidoreductase, and antimicrobial humoral response (Fig. 2def).
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Fig 2. Unbiased protein profiling in human skin upon incision injury. (a) Unsupervised hierarchical clustering of log2 protein intensities
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[Binc]). The legend colour bar indicates the range of log2 intensity within rows. (b) Principal component analysis separated the proteome
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black-coloured) were altered upon incision. Proteins were considered as being significantly regulated if they exhibited q<0.05 (q-value rep-

resents the corrected P-value; horizontal dotted line) with log2FC>|0.38| (pink vertical dotted line). (d) Gene ontology (GO) pathway
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Pain-related phenotyping reveals human responder
types with distinct protein-protein interaction
signatures

We aimed to determine whether incision-related phenotypes

at given time points after incision could be correlated with

obtained snapshots of incision-induced protein signature al-

terations (Fig 2). We categorised volunteers according to the

size of the hyperalgesic area, both 1 h and 24 h after incision

(hyperalgesic area time course, HATC, Fig 3a), and, separately,
24 h after incision (HA24) (Supplementary Material). High and

low responder categorisation was based on pain phenotype

data from this volunteer population; we used the mean and

95% confidence interval as the cut-off. Consequently, volun-

teers above and below the 95% confidence interval were cat-

egorised as high responders and low responders, respectively.

We then performed phenotype-dependent proteomic data

analysis to identify distinct protein regulations in each

responder type. Responder type comparison revealed over-

lapping proteins (e.g. 51 for HATC, Figs 3b and 54 for HA24,
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score¼0.3) was used to define functional groups. TTI represents edges between nodes and dots. The size of nodes reflects the significant

enrichment of each term. ELANE, neutrophil elastase; MMP9, matrix metalloproteinase 9.
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Supplementary Material) and, interestingly, proteins uniquely

regulated either in high or low responders. Focusing on HATC

data (Fig 3), GO analysis identified terms only present in high

responders, such as oxidoreductase and serine-type endopeptidase

activity (Fig 3d) and predicted 10 biological clusters with their

associated proteins (Fig 3d). Cluster-associated proteins regu-

lated in high responders, such as ELANE, MMP9, CYBB, and

ITGAM, exhibited high cluster-cluster or cluster-protein

interactions.

Responder-type PPI architecture was then analysed by to-

pology features and protein attributes (Fig 4 and Supplemen-

tary Material). High responder networks contained seven

highly connected (degree >8) nodes compared with only one

such node in low responder networks (Fig 4a). The higher de-

gree of connectivity was accompanied by high network den-

sity, edge number and, in some cases, high betweenness

centrality, especially for the two hub proteins (i.e. MMP9 and

ITGAM) (Fig 4b).

Based on our data (Fig 4), MMP9 and ELANE appear to play a

central role in high responders after incision. Immunostaining

revealed that MMP9 and ELANE were colocalised with CD66bþ
cells (neutrophil granulocytes) within the incision in human

skin (Fig 4c and d). In addition, MMP9þ cells were present in

the epidermis (likely keratinocytes) and the dermis (likely

endothelial cells and mast cells) on ipsi- and contralateral

sides. ELANE was colocalised with neutrophil granulocytes

within the incision but absent in the epidermal layer

(Supplementary Material).
Skin protein signature in mice after incision and
comparison with humans

Unsupervised hierarchical clustering and PCA (Fig 5a and b)

revealed proteomic signatures of 1871 proteins in mice 24 h

after incision. A total of 435/1897 proteins had significant and

robust abundance changes compared with sham, with 175

being upregulated and 260 being downregulated (Fig 5c,

Supplementary Material). Functionally distinct GO_MF and

GO_ISP were observed among regulated proteins (Fig 5d).

Hub-related GO enrichment analysis revealed 22 clusters,

among which complement activation was highly prominent

and contained mainly upregulated hubs (Fig 5e and f). Next,

we aimed to assess interspecies similarities and differences

in protein signatures and their incision-induced dynamics

(Fig 6). In total, the overlap between species encompasses

1159 proteins. However, 712/1897 mouse proteins were not

reliably detected in all humans and vice versa for 410/1569

human proteins (Fig 6a). However, this does not mean that

respective proteins are missing in a species. Instead, they

might not have reached our highly stringent detection and

quantification criteria (Supplementary Material for details).

After incision, 50 regulated proteins were shared among

species (Fig 6a and b). Notably, the direction of the regulation

was highly conserved (Fig 6b) with few exceptions (Fig 6c).

Human skin exhibited noticeable changes in proteins anno-

tated to extracellular matrix organisation, a relatively under-

represented pathway in mice (Fig 6d). In contrast, post-

translational protein modification andmetabolism of proteinswere

significantly more enriched inmice. In terms of PPI networks,

platelet aggregation, inflammatory activity, and actin polymeri-

sation represented prominently altered clusters in both spe-

cies (Fig 6e). Annotated upregulated proteins, such as FN1,

FERMT3, and LCP1, exhibited a high connectivity degree and

betweenness centrality (Fig 6e).
Discussion

An unbiased quantitative proteomics approach was applied to

elucidate (i) incision-induced PPI networks in humans, (ii)

phenotype-specific PPI networks, and (iii) conserved inter-

species (human vs mouse) overlaps. Pain phenotyping paired

with quantitative proteomics deciphered unique insights into

cutaneous PPI modulated within 24 h of an incision. These

may mechanistically govern incision-related symptoms, such

as mechanical hyperalgesia, known to be relevant for chron-

ification of post-surgical pain in patients.

Previously, single candidate molecules associated with

incision-induced nociceptor activation and sensitisation

causing pain and hyperalgesia have been identified predom-

inantly using rodent incision models.11,12,29 Yet the

complexity of incision-induced proteome dynamics underly-

ing hyperalgesia is unknown, and translation from animals to

humans is challenged by interspecies differences in skin layer

thickness, immune cells, and wound healing strategies (see

limitations below). However, despite these differences and

the fact that different skin types (i.e. hairy skin [human] vs

glabrous skin [mice]) are injured, it is all the more remarkable

that we found interspecies similarities in inflammatory ac-

tivity on network and protein levels (e.g. FERMT3, FN1, and

LCP1) in line with sensory phenomena such as mechanical

hypersensitivity upon incision.11,15 These similarities may

indicate an evolutionarily conserved interplay between in-

flammatory mediators and activation/sensitisation of noci-

ceptive terminals, which requires further exploration.

However, our present data also highlight substantial species

differences after incision and may explain the low success of

translating findings from rodents to humans. Only a few re-

ports compared rodent and human tissue in a parallel and

unbiased manner in the context of pain.30,31 Previous tran-

scriptomic studies of peripheral nerves30 and dorsal root

ganglia31 indicated interspecies similarities and differences.

However, none of these reports assessed proteome signa-

tures, and we still lack insights into incision-induced plas-

ticity at the protein and, importantly, the PPI network level.

Our study fills this gap. Overall, the presented incision-

induced PPI signatures highlight both interspecies similar-

ities and differencesda prerequisite for successful forward

and reverse translational research.

Sensory profiling data were harnessed to stratify volun-

teers, thus strongly suggesting the functional relevance of a

suite of proteins and PPI networks. Post-incisional mechanical

hyperalgesia is critical because it is correlated with chron-

ification of post-surgical pain.32,33 In addition, it is a general

phenomenon inherent to many human pain models and pain

patients, but clinically relevant biomarkers are still lacking.14

Our results provide unprecedented mechanistic insights into

incision injury and, importantly, serve as a stepping stone for

phenotype-specific sub-grouping of pain-related symptoms

via protein signatures. In particular, we predict a proteolytic

environment with a hypercatabolic state, resulting in a pro-

longed immune response in patients developing more hyper-

algesia than others (high responder). Proteases (e.g. MMP9 and

ELANE) in central network positions represent the proteolytic

environment, potentially causing an extracellular matrix

deposition and degradation imbalance. This may trigger

increased immune cell migration and overactivation of the

inflammatory response, which may prolong sensitisation of

peripheral nociceptors, resulting in a hyperalgesic phenotype

in high responders. In turn, the nociceptor sensitisation may
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facilitate central sensitisation processes causing large hyper-

algesic areas and chronification processes, including CPSP.34

Our study shows a similar disbalance in proteases and resi-

dent immune activation as observed in chronic, unhealed, and

painful wounds.35 In low responders, an opposing picture was

evident. Here, anti-inflammatory processes predominated,

likely indicating a decrease in inflammation and transition to

the remodelling phase.
Our phenotype-specific analysis revealed potential PPI

networks that might be suitable targets for future therapeutic

and diagnostic interventions, such as the prevention of CPSP.

Of note, modulation of central hub proteins (such as MMP9)

within such a protein network that affects essential physio-

logical aspects (e.g. wound healing) may not be suitable

because this could compromise the integrity of the whole

network.36 In contrast, more peripheral network members
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may represent preferred targets. Topological properties, ec-

centricity, and modularity should be used to select potential

drug target proteins as a proxy for their ability to (i) interfere

with network-relevant proteins or (ii) functionally affect

related proteins within the network.37

Specific aspects and limitations need to be considered

when interpreting our results. Given budget constraints, only

skin biopsies from male volunteers and male mice were used

in this work. This might be a limitation given known sex
differences in pain,13 including incisional pain.15 Whether

there are also gender-specific differences in the skin’s prote-

ome after an incision will need to be addressed in future

studies. Second, samples were obtained from hairy skin

(humans) and glabrous skin (mice) within the incision site and

contained proteins of several cell types. The comparison be-

tween these different skin types in humans and rodents paired

with different wound healing strategies38 is a limitation of this

study and similar studies in the field. Pain models in humans
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andmice have been established at these different sites mainly

because of practical and ethical issues. Nonetheless, and

despite cell-based differences in skin anatomy, incision injury

shows a significant interspecies overlap of incision-related

phenotypes, such as mechanical hyperalgesia, highlighting

the translational potential of our study regardless of skin type.

Previous work has extensively characterised mouse skin cell

types using transcriptomics.39 Our work considerably extends

these efforts by providing interspecies proteome profiles,

altered interspecies protein signatures, and their correlation

with pain-associated phenotypes in humans. This is of high

significance, as the correspondence of the transcriptome with

the proteome is known to be limited, causing significant
challenges in predicting functional alterations on the mRNA

level.40

In summary, we identified, for the first time, human

phenotype-specific protein-protein interaction networks upon

skin incision, potentially highlighting new targets for acute

and chronic post-surgical pain. Our results may provide a

stepping stone to identify and modulate (multiple) candidate

proteins within PPI networks that could be harnessed to

ameliorate post-surgical consequences and, consequently,

prevent pain chronification. We uncovered species-specific

differences and similarities in incision-induced skin protein

signatures, alerting the community to the challenges of bidi-

rectional translational approaches. Finally, we pinpoint
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hitherto unknown molecular aspects of back-translation into

the mouse, which need to be considered in future

investigations.
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