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Robust evidence points to mnemonic deficits in older adults related to dedifferentiated, i.e. less distinct, neural responses during
memory encoding. However, less is known about retrieval-related dedifferentiation and its role in age-related memory decline. In this
study, younger and older adults were scanned both while incidentally learning face and house stimuli and while completing a surprise
recognition memory test. Using pattern similarity searchlight analyses, we looked for indicators of neural dedifferentiation during
encoding, retrieval, and encoding–retrieval reinstatement. Our findings revealed age-related reductions in neural distinctiveness during
all memory phases in visual processing regions. Interindividual differences in retrieval- and reinstatement-related distinctiveness
were strongly associated with distinctiveness during memory encoding. Both item- and category-level distinctiveness predicted trial-
wise mnemonic outcomes. We further demonstrated that the degree of neural distinctiveness during encoding tracked interindividual
variability in memory performance better than both retrieval- and reinstatement-related distinctiveness. All in all, we contribute to
meager existing evidence for age-related neural dedifferentiation during memory retrieval. We show that neural distinctiveness during
retrieval is likely tied to recapitulation of encoding-related perceptual and mnemonic processes.
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Introduction
Cognitive decline in neurologically healthy aging is frequently
associated with a phenomenon called age-related neural
dedifferentiation, the finding that neural distinctiveness is
reduced in older adults compared with younger adults (for
reviews, see Koen and Rugg 2019; Koen et al. 2020; Sommer
and Sander 2022). In functional magnetic resonance imaging
(fMRI) studies, neural distinctiveness is often operationalized
by contrasting content-related neural activity between different
visual categories (e.g. faces and houses) either using mean blood-
oxygen-level-dependent (BOLD) signal (e.g. Park et al. 2004) or
using multivoxel activity patterns (e.g. Hill et al. 2021). Recently,
the impact of age-related neural dedifferentiation on episodic
memory performance has received particular interest due to the
significance of highly distinct neural representations for encoding
and retrieving unique events. Several studies have established a
relationship between low representational distinctiveness during
memory encoding and poor memory performance in older adults
(Zheng et al. 2018; Koen et al, 2019; Srokova et al. 2020), suggesting
that the formation of well-defined, non-overlapping memory
traces is important for memory performance.

Only a few studies have examined neural dedifferentiation
during later stages of memory processing, with most of them
assessing age differences in cortical reinstatement. The cortical
reinstatement hypothesis suggests that cortical representations of
information during memory encoding are recapitulated during

memory retrieval as facilitated by the hippocampus (Norman
and O’Reilly 2003; Johnson and Rugg 2007; for review, see Danker
and Anderson 2010). Age-related declines in the precision of
cortical reinstatement have been reported at both the item
(St-Laurent et al. 2014; Bowman et al. 2019; Folville et al. 2020;
Hill et al. 2021) and category (McDonough et al. 2014; Johnson
et al. 2015; Abdulrahman et al. 2017; Bowman et al. 2019; Deng
et al. 2021; Hill et al. 2021; Katsumi et al. 2021) representational
levels (but, see Wang et al. 2016; Thakral et al. 2017; Thakral
et al. 2019, for absent age effects, and Deng et al. 2021, for age-
related hyperdifferentiation). A couple of studies have found
that age differences in cortical reinstatement may be attributed
to age differences in neural distinctiveness during encoding
(Johnson et al. 2015; Hill et al. 2021). However, Trelle et al. (2020)
demonstrated that reinstatement declined with age in a sample
of older adults even after controlling for encoding-related dis-
tinctiveness. While there is substantial evidence suggesting that
distinctive cortical reinstatement benefits memory performance
(Ritchey et al. 2013; St-Laurent et al. 2014; Abdulrahman et al.
2017; Bowman et al. 2019; Hill et al. 2021), some studies have
shown that cortical reinstatement can also occur even when
individuals are unable to retrieve a particular memory (Thakral
et al. 2017; Elward et al. 2021). Accordingly, cortical reinstatement
alone may not be sufficient to facilitate successful memory
retrieval, but functions in concert with other neural mechanisms,
including retrieval-related hippocampal activity. Although early
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neurobiological models posit that, during retrieval, the hippocam-
pus facilitates cortical reinstatement via pattern completion
(Marr 1971; McClelland et al. 1995), implying that hippocampal
activity and cortical reinstatement might explain similar sources
of variance in memory outcomes, recent evidence has suggested
that these 2 mechanisms predict memory performance (at least
partially) independently from one another (Ritchey et al. 2013;
Trelle et al. 2020; Hill et al. 2021).

Beyond reinstatement, which, per definition, is a process
closely tied to encoding, recent evidence has suggested that
neural representations supporting memory retrieval can also
differ from those initially formed during memory encoding due
to spatial transformations (for review, see Favila et al. 2020).
Several studies have shown that neural patterns of retrieved
information were spatially distinct from the neural patterns
representing the same information during encoding (Xiao et al.
2017; Favila et al. 2018; Srokova et al. 2022). These findings support
the long-standing idea that memory retrieval is not simply a
reproductive process, but rather more of a constructive process
(Schacter et al. 1998) that draws on cognitive processes (and
neural correlates) unique to retrieval, such as retrieval mode,
effort, and orientation (see Rugg and Wilding 2000). So far, the
literature on neural dedifferentiation has largely ignored the
possibility that neurally distinctive patterns support memory
retrieval, may be susceptible to age-related decline, and may not
only reflect reinstated encoding patterns. First evidence comes
from a study by Srokova et al. (2022), who demonstrated that
both younger and older adults exhibited a systematic shift in
the locus of neural distinctiveness, in which the peak of neural
distinctiveness was observed more anteriorly during memory
retrieval as compared with memory encoding. Importantly, the
magnitude of this so-called anterior shift was greater in older
adults, suggesting that age may amplify spatial transformations
between encoding and retrieval.

Thus, investigations of age-related neural dedifferentiation
during memory retrieval may be more comprehensive when
considering memory retrieval also independently of reinstate-
ment effects. To date, few studies have examined this (Dulas
and Duarte 2012; St-Laurent et al. 2014; Johnson et al. 2015;
St-Laurent and Buchsbaum 2019; Hill et al. 2021). All studies found
evidence for an age-related decline in neural distinctiveness
during retrieval. However, results were mixed with regard to the
role of age differences during encoding for the observed effects.
Whereas St-Laurent et al. (2014) reported that age differences in
neural distinctiveness during retrieval could not be attributed
to age differences during encoding, Johnson et al. (2015) showed
that age differences in neural distinctiveness during retrieval
were eliminated when controlling for age differences during
encoding. In a follow-up analysis, St-Laurent and Buchsbaum
(2019) further found that retrieval-related distinctiveness likely
reflected precise reinstatement in younger adults, but not
in older adults, suggesting that older adults’ retrieval-based
representations are less tied to their corresponding encoding
representations.

Altogether, a comprehensive assessment of age differences in
neural distinctiveness across different stages of memory process-
ing, with a focus on the relation between neural distinctiveness
and performance, is currently missing. Here, we collected fMRI
data while a group of younger and older adults learned images
of faces and houses and subsequently performed an old/new
recognition memory test. Using exploratory pattern similarity
searchlight analyses, we looked for regions expressing high neural
distinctiveness (operationally termed specificity throughout the

Methods and Results) during memory encoding and retrieval as
well as in encoding–retrieval reinstatement (both at the category
and individual item levels). We were particularly interested in
whether we would find evidence of age-related neural dediffer-
entiation across different memory phases and whether neural
distinctiveness would be associated with memory performance.
We expected older adults to demonstrate reduced distinctive-
ness during all memory phases, particularly in visual process-
ing regions. We additionally examined whether age differences
in retrieval- and reinstatement-related distinctiveness could be
explained by age differences in encoding-related distinctiveness.
We looked at whether neural distinctiveness was associated with
memory performance both across individuals and within per-
sons, expecting to find significant relationships at both levels of
analysis. Finally, we examined how item-level reinstatement and
hippocampal activity related to memory outcomes (hit or miss) at
the individual trial level.

Materials and methods
Encoding and retrieval data from this project were previously
reported in 2 papers (Kobelt et al. 2021; Pauley et al. 2022) that
were later retracted by the authors due to a preprocessing error.
For the retracted manuscripts as well as comparison reports
with the corrected findings, please see https://osf.io/t8dpv/ and
https://osf.io/7n3mz/.

Participants
Data were collected from a total of 76 healthy adults. Participants
were recruited within 2 age groups: younger adults (18–27 years,
N = 39) and older adults (64–76 years, N = 37). Two participants
were excluded due to too much motion in the scanner (1 younger
adult and 1 older adult), 3 were excluded due to memory perfor-
mance below chance level (2 younger adults and 1 older adult),
and 1 younger adult was excluded due to poor MRI data quality.
The final sample consisted of 35 younger adults (M (SD) age = 22.3
(2.7) years, 16 females, 19 males) and 35 older adults (M (SD)
age = 70.6 (2.4) years, 19 females, 16 males). Participants were
screened via telephone for mental and physical illness, metal
implants, and current medications. Additionally, all older adults
were screened using the Mini-Mental State Examination (Folstein
et al. 1975) and all exceeded the threshold of 26 points. The
study was approved by the ethics committee of the German
Society for Psychological Research (DGPs) and written informed
consent was obtained from each participant at the time of the
study.

Stimuli
Stimuli were comprised of 300 grayscale images belonging to 3
different categories: 120 neutral faces (adapted from the FACES
database; Ebner et al. 2010), 120 houses (some adapted from
DC Park et al. 2004, and some obtained online), and 60 phase-
scrambled images (30 faces and 30 houses, constructed from
randomly selected face and house images) serving as control
stimuli. An additional image from each category was selected to
serve as target stimuli for the encoding target-detection task. All
nontarget face and house images were randomly divided into 2
sets of 120 images (60 faces and 60 houses). One stimulus set was
presented during both encoding and recognition (old images) and
the other set was presented only during recognition (new images).
The same stimulus sets were used for all participants.
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Fig. 1. Face-house task design. This fMRI paradigm comprised an incidental encoding phase (top) and a surprise recognition test (bottom). During
encoding, 2 identical runs of face, house, and phase-scrambled images (not assessed here) were presented in a block design with 9 stimulus blocks each
(3 alternating blocks from each stimulus category). Each block had 21 trials (20 exemplars of the respective category and 1 pre-learned target stimulus).
Participants were instructed to press a button when a target stimulus appeared. During the recognition test, 6 alternating face and house blocks were
presented with 40 trials each (20 old trials from encoding and 20 new trials). Participants indicated via button press whether each image was old or new.

Paradigm
The following paradigm was part of a larger study spanning 2
days of data collection. This study focuses only on the face-
house task, which comprised an incidental encoding phase and
a surprise recognition test (in line with many prior aging studies;
see Fraundorf et al. 2019, for a meta-analysis), both conducted
inside the fMRI scanner on the same day with a delay of approx-
imately 30 min. (see Fig. 1). The encoding phase consisted of 2
identical runs each with 9 stimulus blocks. In order to ensure
the participants were paying attention to the stimuli, they were
asked to perform a target-detection task in which they pressed
a button when 1 of 3 pre-learned target images was presented.
Stimuli were randomly distributed into the blocks such that each
block contained 20 images of a single category (faces, houses, or
phase-scrambled) as well as a category-matched target image.
The block order was alternating and counterbalanced across par-
ticipants, always starting with either a face or house block. The
stimulus order within each block was pseudo-randomized with
the condition that the target image was not presented in either
the first 4 or last 4 trials of a block. Due to a technical problem,
the same stimulus order was used for all participants who started
with a face block and for 36 of the participants starting with a
house block. Prior to the encoding phase, participants completed
5 practice trials of each stimulus category, including each of the
target stimuli, to verify that they understood the target-detection
task. The nontarget training stimuli were excluded from the main
experiment. Since the 2 encoding runs were identical, partici-
pants were exposed to each stimulus twice during the encoding
phase. Phase-scrambled images were not used in any subsequent
analyses in this project. Stimuli were presented for 1200 ms and
separated by a fixation cross with a jittered duration between 500
and 8000 ms. In total, the encoding phase lasted approximately
22 min.

Following encoding, participants remained in the scanner
briefly while structural scans were collected (see below). Then,
they had a short break outside the scanner while they received
instructions for the recognition test. They then returned to the

scanner to complete the recognition test. The recognition test
consisted of 6 blocks in total, alternating between 3 face and
3 house blocks and was divided into 2 runs of 3 blocks each.
Each block contained 20 old images (seen during encoding) and
20 new images of the same stimulus category. For each trial,
participants were asked whether the image was old or new, which
they indicated via button press. The stimulus order was pseudo-
randomized such that no more than 3 old or new images were
presented consecutively. Due to a technical problem, the same
stimulus order was used for 13 participants who started with a
face block and 14 participants who started with a house block.
Stimuli were presented for 1200 ms and followed by a gray screen
for 3000 ms in which participants could give their response.
Fixation crosses separated the trials with jittered durations
between 500 and 8000 ms. In total, the recognition task lasted
approximately 26 min.

fMRI data acquisition and preprocessing
Brain imaging was acquired with a Siemens Magnetom TrioTim
3T MRI scanner with a 32-channel head-coil. Functional images
were collected using an echo planar imaging sequence during
both the encoding and recognition phases in 2 runs each. Each
encoding run consisted of 270 volumes and each recognition
run consisted of 372 volumes (voxel size = 3 × 3 × 3 mm3;
slice gap = 0.3 mm; TR = 2 s; TE = 30 ms). The first 3 volumes
of each run were dummy volumes and were excluded prior
to preprocessing. Following the encoding phase, a T1-weighted
(T1w) magnetization prepared rapid acquisition gradient echo
(MPRAGE) pulse sequence image was acquired (voxel size = 1 × 1
× 1 mm3; TR = 2.5 ms; TE = 4.77 ms; flip angle = 7◦; TI = 1.1 ms).
Additionally, turbo spin-echo proton density images, diffusion
tensor images, and fluid attenuation inversion recovery images
were collected, but not included in the following analyses.
Experimental stimuli, which participants viewed via a mirror
mounted on the head-coil, were projected using the Psych-
toolbox (Psychophysics Toolbox) for MATLAB (Mathworks Inc.,
Natick, MA).
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MRI data were organized according to the Brain Imaging Data
Structure (BIDS) specification (Gorgolewski et al. 2016) and pre-
processed using fMRIPrep (version 1.4.0; Esteban et al. 2019) with
the default settings. The T1w image was corrected for intensity
nonuniformity, skull-stripped, and spatially normalized to the
ICBM 152 Nonlinear Asymmetrical template version 2009c through
nonlinear registration. Functional images were motion-corrected,
slice-time corrected, and co-registered to the normalized T1w
reference image. As mentioned in Section 2.1, 2 participants
were excluded due to excessive motion in the scanner. Excessive
motion was defined as having multiple motion artifacts within a
given scanner run resulting in framewise displacements greater
than the size of the voxel (3 mm; see Power et al. 2012). Finally,
functional images were resampled to 2 mm isotropic voxels in
order to enhance the signal-to-noise ratio (Dimsdale-Zucker and
Ranganath 2018).

Behavioral data analyses
Behavioral analyses were performed using custom MATLAB
scripts. Recognition memory performance (Pr) was measured
as the difference between the hit rate (proportion of correctly
identified old stimuli) and the false alarm rate (proportion of
new stimuli incorrectly identified as old stimuli; Snodgrass and
Corwin 1988). Participants with Pr less than zero, indicating a
higher probability of responding “old” to new stimuli as opposed
to old stimuli, were excluded from further analyses (see also
Section 2.1). Dependent-samples t-tests were used to determine
whether memory performance exceeded chance level. A 2-
way mixed factorial analysis of variance (ANOVA) was used
to assess recognition memory performance for age differences
and differences related to stimulus type (face vs. house). Age
differences in response bias were assessed with independent-
samples t-tests comparing the hit rates and false alarm rates
across age groups.

Pattern similarity searchlight analyses
In order to perform pattern similarity analyses, a general linear
model was performed for each trial in both encoding and recogni-
tion, including 1 trial-specific regressor, 1 regressor for all other
trials within the same run, and 6 motion regressors (Mumford
et al. 2012). Trial regressors were modeled as 1.2 s duration boxcar
functions convolved with a canonical hemodynamic response
function. Pattern similarity analyses were based on the resulting
β weights for each trial. Pattern similarity was only assessed
between trials from different runs to control for time-dependent
correlations in the hemodynamic responses (Dimsdale-Zucker
and Ranganath 2018) and was measured as Fisher z-transformed
Pearson correlations. Searchlight similarity analyses were con-
ducted using modified scripts from the MATLAB toolbox for rep-
resentational similarity analysis (Nili et al. 2014) and with 8-mm-
radius spherical searchlights (analyses were replicated using 4-
mm- and 12-mm-radius searchlights).

Several searchlight similarity measures were computed (see
Fig. 2). For all measures, we first ran searchlights looking for the
measures of interest across all participants, followed by post-hoc
searchlights for age differences and correlation to memory per-
formance within the regions in which we identified a main effect.
First searching for our measures of interest across all participants
was necessary in order to establish neural regions demonstrating
the baseline effects of interest. We ran this initial analysis on the
whole sample as opposed to only within younger adults in order to
have an age-fair comparison and avoid introducing bias into our
subsequent search for age differences (see Supplements showing

comparable results when performing the main analyses within
each age group independently).

First, in order to identify brain regions demonstrating high
category specificity across all participants during memory encoding
and memory recognition, we compared within-category similarity to
between-category similarity for both faces and houses separately.
For each stimulus, within-category similarity was calculated as
the averaged across-voxel correlation of the activity pattern in
response to the stimulus to the activity patterns in response to all
other stimuli from the same category (e.g. mean similarity of the
activity in response to a face stimulus to that of all non-identical
face stimuli). For each participant, within-category similarity was
then averaged across all stimuli within each category. Between-
category similarity was calculated as the averaged across-voxel
correlation of the stimulus’ activity pattern to the activity pat-
terns of all stimuli from the other category (e.g. mean similarity
of the activity in response to a face stimulus to that of all house
stimuli). Between-category similarity was then averaged across
all stimuli for each participant. Within- and between-category
similarity were assessed in a searchlight centered on each voxel in
the brain and the difference was calculated, resulting in a whole-
brain map of category specificity for faces and a whole-brain map
of category specificity for houses in each participant and for each
memory phase.

Next, we were interested in searching for brain regions exhibit-
ing encoding–retrieval reinstatement both at the category level and
at the individual stimulus level. In order to assess category-
level reinstatement, we compared within-category reinstatement
to between-category reinstatement. Within-category reinstate-
ment was calculated as the mean pattern similarity of all stim-
uli from a given category during encoding to all stimuli from
the same category during recognition. Within-item reinstatement
correlations (i.e. the similarity of a given stimulus’ activity pat-
tern during encoding to the activity pattern of the same stim-
ulus during recognition) were excluded from the measure of
within-category reinstatement. Between-category reinstatement
was similarly calculated as the mean pattern similarity of all
stimuli from a given category during encoding to all stimuli
from the other category during recognition. Within- and between-
category reinstatement were then averaged across all stimuli in
each searchlight and the difference in each voxel was computed,
resulting in a whole-brain map of category-level reinstatement for
each participant. A whole-brain map of item-level reinstatement
was created for each participant by calculating the voxel-wise dif-
ference between within-item reinstatement and within-category
reinstatement. For both category- and item-level reinstatement,
similarity values were calculated between recognition and each
encoding run individually, then the reinstatement similarity val-
ues were averaged across encoding run.

For each searchlight similarity measure, nonparametric,
cluster-based, random permutation analyses adapted from
the FieldTrip toolbox (Oostenveld et al. 2011) were used to
identify brain regions demonstrating significant effects across
all participants (e.g. for the high category specificity measures,
regions demonstrating greater within-category similarity than
between-category similarity). First, dependent-samples t-tests
were conducted within each voxel. Adjacent voxels with signifi-
cance values lower than a threshold of p < 0.005 were grouped into
clusters. The sum of all t statistics of the voxels included in each
cluster was defined as the cluster test statistic. The Monte Carlo
method was used to determine whether a cluster was significant
by comparing the cluster test statistic to a reference distribution
of t statistics across 1000 permutations. Each t statistic in the
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Fig. 2. Illustration of searchlight similarity measures calculated during encoding–retrieval reinstatement (A—left) and during recognition (A—right). Note
that the measure of category specificity during encoding mirrors the measure during recognition. Flow-diagram demonstrating the analysis pipeline
and corresponding results sections (B).

reference distribution was created by randomly reallocating the
2 conditions and calculating the cluster test statistic based on
this random reallocation. Clusters were considered significant
under a threshold of p < 0.05 and if they contained at least
10 voxels.

Assessing age differences in searchlight
similarity analyses
We were also interested in searching for brain regions demon-
strating age differences in each of our searchlight similarity mea-
sures. For our age comparison analyses, we limited the search
space to the regions identified during the whole-group analyses
(i.e. age differences were only assessed in regions demonstrating
an effect across all participants). Since some of the clusters iden-
tified during the whole-group analyses were fairly large (>8000
voxels), we again used nonparametric, cluster-based, random per-
mutation analyses to search these clusters for regions exhibit-
ing age differences. First, independent-samples t tests were con-
ducted within each voxel comparing younger and older adults on
each searchlight similarity measure described previously. Adja-
cent voxels with significance values lower than a threshold of
p < 0.005 were grouped into clusters and the sum of all t statis-
tics of the voxels included in each cluster was defined as the
cluster test statistic. The Monte Carlo method was again used
to determine whether a cluster was significant. In this case, the
reference distribution was created by removing the younger and
older adult labels and randomly assigning participants to each age
group across 1000 permutations.

In order to determine whether age differences in recogni-
tion category specificity or category-level reinstatement could be
attributed to age-related variability during initial encoding, we
additionally ran 2 model comparisons, one predicting recogni-
tion category specificity and one predicting category-level rein-
statement. For each model comparison, one variable block was
computed using age group as a single predictor and the other
block used both age group and encoding category specificity as
predictors. The models were compared using the anova() function
in R.

Relating searchlight similarity measures to
memory performance
We further assessed the relationship between our searchlight sim-
ilarity measures and interindividual differences in memory per-
formance. Therefore, permutation testing was performed again
for each cluster identified during the whole-group analyses. For
this, regressions were conducted predicting memory performance

from the searchlight similarity measure in each voxel (i.e. recogni-
tion category specificity, category-level reinstatement, item-level
reinstatement). As described previously, adjacent voxels below the
threshold of p < 0.005 were grouped into clusters, the cluster test
statistic was calculated, and the Monte Carlo method determined
the significance of each cluster across 1000 permutations. In order
to derive the correlation coefficient for significant clusters to
better understand the relationships, we averaged the respective
searchlight similarity measure across all voxels within the cluster
for each participant and correlated this with Pr across partici-
pants using Pearson correlations across all participants, within
younger adults, and within older adults (these can be found in
Table 3). Clusters identified during face analyses were correlated
with Pr for faces and clusters identified during house analyses
were correlated with Pr for houses. Age differences in correlation
coefficients between younger and older adults were assessed
using z tests.

Additionally, we were interested in whether recognition
category specificity or category-level reinstatement was better
at tracking interindividual variability in memory performance.
To this end, we computed 2 linear model comparisons pre-
dicting Pr. For the first model comparison, one variable block
was computed using age and recognition category speci-
ficity (i.e. Pr ∼ Age∗RecSpec) and the other block added the
interaction between age and category-level reinstatement (i.e.
Pr ∼ Age∗RecSpec + Age∗ReinSpec). The second model compari-
son included age and category-level reinstatement as predictors
in one block and additionally the interaction between age and
recognition category specificity in the other block. In this way, we
were able to determine whether recognition category specificity
or category-level reinstatement better explained memory-related
variance.

In a final step, we wanted to know whether encoding
category specificity explained any additional memory-related
variance on top of both recognition category specificity and
category-level reinstatement. Therefore, we computed a linear
model comparison in which the first block predicted memory
performance from recognition category specificity and category-
level reinstatement (i.e. Pr ∼ Age∗RecSpec + Age∗ReinSpec) and
the second block added encoding category specificity to the
model (i.e. Pr ∼ Age∗RecSpec + Age∗ReinSpec + Age∗EncSpec).
We further asked whether recognition category specificity or
category-level reinstatement explained any variance in memory
performance not already accounted for by encoding category
specificity. Thus, we computed 2 additional model comparisons
in the same manner as described in the previous paragraph, in
which the first block included only encoding category specificity
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and the second block added either recognition category specificity
or category-level reinstatement.

Trial-wise mixed effects analyses
In order to relate our findings of category specificity to mem-
ory performance at the within-person level, we additionally per-
formed a series of generalized linear mixed-effects models pre-
dicting memory outcomes from trial-wise category specificity
within each of the clusters identified by the searchlight similarity
analyses (as defined in Section 2.6). For each model, binary recog-
nition memory outcomes (hit or miss) were used as the dependent
variable and age, response bias, and category specificity (opera-
tionalized as the difference between the similarity of the given
item to all other items of the same stimulus category and the
similarity between that item and all items of the other stimulus
category) were used as independent variables. The interaction
between age and category specificity was also included in the
models. The models were analyzed using the R function glmer
from the lme4 package with the following formula: Memory ∼
Age∗CatSpec + RespBias + (1 + CatSpec | Subject).

Recent work has pointed to the significance of both rein-
statement and hippocampal activity in predicting within-person
variability in memory performance in both younger and older
adults (Trelle et al. 2020; Hill et al. 2021). In order to investigate
this further, we performed generalized linear mixed-effects mod-
els to determine whether item- or category-level reinstatement
specificity or trial-wise hippocampal activity were successful pre-
dictors of intraindividual differences in memory performance. To
measure trial-wise hippocampal activity, we used a bilateral hip-
pocampal mask defined by the automatic anatomic labeling atlas.
For each participant, we averaged across all beta weights within
the hippocampal mask for every trial and z-transformed across
trials within each participant. We performed a separate model for
each cluster resulting from our item-level reinstatement search-
light similarity analyses. For each model, binary recognition mem-
ory outcomes (hit or miss) were used as the dependent variable
and age, response bias, hippocampal activity, item-level reinstate-
ment (operationalized as the difference between the similarity
of an item to itself across encoding and recognition and the
mean similarity of the same item to all other items within the
same stimulus category), and category-level reinstatement were
used as independent variables. The interactions between age and
hippocampal activity as well as age and item- and category-level
reinstatement were included in the models. The following formula
was used for each model: Memory ∼ Age∗Hipp + Age∗ItemRein
+ Age∗CatRein + RespBias + (1 + Hipp + ItemRein + CatRein |
Subject).

Results
Behavioral results
We first checked for age differences in memory performance (i.e.
Pr = hit rate—false alarm rate). Memory performance exceeded
chance level in both younger (t(34) = 11.88, p < 0.001) and
older adults (t(34) = 9.25, p < 0.001). A mixed factorial ANOVA
revealed no interaction between age group and stimulus type
on memory performance (F(1,68) = 0.09, p = 0.77). Additionally,
memory performance in terms of Pr did not differ between age
groups (Myounger = 0.24, SDyounger = 0.12, Molder = 0.19, SDolder = 0.12,
F(1,68) = 3.20, p = 0.08) or between face and house stimuli
(F(1,68) = 2.83, p = 0.10). However, older adults responded “old”
more often than younger adults to both old stimuli (i.e.
hits; Myounger = 0.50, SDyounger = 0.14, Molder = 0.60, SDolder = 0.13,

t(68) = −3.27, p = 0.002) and new stimuli (i.e. false alarms;
Myounger = 0.26, SDyounger = 0.11, Molder = 0.42, SDolder = 0.13, t(68) =
−5.42, p < 0.001).

Category specificity during encoding, retrieval
and reinstatement in occipital and ventral visual
regions
We first searched for regions exhibiting greater within-category
similarity than between-category similarity in the whole sample
of participants for both faces and houses during encoding. We
identified 4 clusters demonstrating category specificity for faces
in ventral visual, frontal, and medial temporal regions (ps < 0.01;
see Table 1 and Fig. 3) and 2 clusters demonstrating category
specificity for houses in ventral visual and occipital regions
(ps < 0.05).

During recognition, our searchlight similarity analysis revealed
4 clusters demonstrating category specificity for faces in ventral
visual, temporal, and frontal regions (ps < 0.05). We additionally
identified one large cluster demonstrating category specificity for
houses in ventral visual and occipital regions (p < 0.001).

Next, we searched for regions demonstrating encoding–
retrieval reinstatement at the category level for faces and houses.
We found 2 clusters demonstrating category-level reinstatement
for faces in temporal and occipital regions (ps < 0.001) and 2
clusters demonstrating category-level reinstatement for houses
in occipital regions (p < 0.04).

We also searched for regions demonstrating encoding–retrieval
similarity at the item level for both faces and houses. These item-
level reinstatement searchlight similarity analyses yielded 2 clus-
ters in occipital regions for houses (ps < 0.02), but no significant
clusters for faces (ps > 0.08).

Age differences in category specificity
Previous findings reveal clear age deficits in encoding-related
specificity (Zheng et al. 2018; Koen et al, 2019; Srokova et al.
2020), and reinstatement specificity (St-Laurent et al. 2014;
Abdulrahman et al. 2017; Bowman et al. 2019; Trelle et al. 2020;
Hill et al. 2021), particularly in occipital and temporal regions,
but age deficits in retrieval-related specificity are relatively
less documented (St-Laurent et al. 2014; Johnson et al. 2015).
Accordingly, we used cluster permutation analyses to test for age
differences in category specificity, limiting the search space to
regions identified by the whole-group analyses. During encoding
of faces, younger adults exhibited greater category specificity
than older adults in 3 clusters within bilateral ventral visual
cortices (ps < 0.01; see Table 2 and Fig. 4). No age differences were
identified in category specificity for faces during either recogni-
tion or reinstatement (all clusters were smaller than 10 voxels). In
the analyses for age differences in category specificity for houses,
2 clusters were identified during encoding (ps < 0.01), 2 clusters
during recognition (ps < 0.001), and 3 clusters in category-level
reinstatement for houses (ps < 0.05) in bilateral ventral visual
cortices. No age differences were identified in item-level house
reinstatement.

Age-related variance in recognition category
specificity and category-level reinstatement
attributed to encoding-related specificity
We additionally investigated whether encoding category speci-
ficity predicted interindividual differences in either recognition
category specificity or category-level reinstatement using 2 linear
model comparisons. The first model comparison revealed that
adding encoding category specificity as a predictor improved the
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Table 1. Clusters identified by searchlight similarity analyses revealing high category specificity during encoding, retrieval, and
reinstatement.

Peak MNI

Searchlight Regions H X Y Z Peak t k

Face Encoding Middle temporal gyrus, fusiform gyrus, precuneus B 45 −49 −19 11.04 5003
(Category) Medial orbitofrontal gyrus, rectus B 6 57 −13 5.05 255

Hippocampus, putamen, amygdala, pallidum, fusiform gyrus L −22 −10 −6 5.20 247
Amygdala, hippocampus, putamen, pallidum R 18 −7 −9 5.29 166

Face Retrieval
(Category)

Middle temporal gyrus, superior temporal gyrus, fusiform gyrus,
inferior occipital gyrus, inferior temporal gyrus

R 42 −43 −19 7.85 566

Fusiform gyrus, inferior temporal gyrus, inferior occipital gyrus L −46 −58 −16 7.93 233
Rectus, medial orbitofrontal gyrus B −1 54 −16 5.84 76
Middle temporal gyrus, superior temporal gyrus L −55 −52 14 4.85 64

Face Reinstatement
(Category)

Middle temporal gyrus, fusiform gyrus, inferior temporal gyrus,
inferior occipital gyrus, superior temporal gyrus

R 42 −52 −16 9.85 659

Fusiform gyrus, inferior occipital gyrus, inferior temporal gyrus L −46 −58 −16 9.39 388

House Encoding Middle occipital gyrus, precuneus B 21 −46 −13 13.40 11,148
(Category) Caudate R 3 −1 7 4.41 75

House Retrieval
(Category)

Middle occipital gyrus, precuneus, parahippocampal gyrus B 27 −40 −9 13.37 8018

House Reinstatement
(Category)

Middle occipital gyrus, lingual gyrus, precuneus, parahippocampal
gyrus

B 27 −40 −9 13.68 8630

Middle cingulate cortex B −1 −19 27 4.51 81

House Reinstatement Calcarine cortex, cuneus, lingual gyrus, inferior occipital cortex B 6 −88 −3 5.92 196
(Item) Fusiform gyrus, inferior occipital cortex, lingual gyrus, middle

occipital gyrus, calcarine cortex, superior occipital gyrus
L −31 −76 −9 5.00 83

H = hemisphere; k = cluster size in voxels.

Table 2. Clusters revealing greater category specificity in younger adults than in older adults.

Peak MNI

Searchlight Regions H X Y Z Peak t k

Face Encoding Fusiform gyrus, lingual gyrus, parahippocampal gyrus L −25 −49 −3 5.02 174
(Category) Fusiform gyrus, parahippocampal gyrus, hippocampus R 33 −40 −9 4.28 122

Superior occipital gyrus, precuneus, cuneus R 27 −67 24 4.15 52

House Encoding Fusiform gyrus, lingual gyrus, parahippocampal gyrus, cerebellum L −34 −52 −9 3.83 131
(Category) Fusiform gyrus, lingual gyrus, parahippocampal gyrus, cerebellum R 27 −37 −16 3.78 109

House Retrieval Middle occipital gyrus, fusiform gyrus, lingual gyrus, cerebellum L −31 −58 −9 6.76 1034
(Category) Fusiform gyrus, lingual gyrus, middle occipital gyrus, cerebellum,

superior occipital gyrus, parahippocampal gyrus, precuneus
R 21 −43 −13 6.75 1029

House Reinstatement Middle occipital gyrus, fusiform gyrus, lingual gyrus, cerebellum L −24 −58 −16 6.62 867
(Category) Fusiform gyrus, cerebellum, lingual gyrus, parahippocampal gyrus,

calcarine cortex, superior occipital gyrus, hippocampus
R 24 −34 −6 6.50 708

Fusiform gyrus, lingual gyrus, cerebellum R 24 −73 −9 3.88 39

H = hemisphere; k = cluster size in voxels.

model fit on recognition-related specificity (R2 = 0.43) as compared
with age group alone (R2 = 0.17; F(66) = 16.07, p < 0.001). The second
model comparison also revealed that adding encoding-related
specificity significantly improved the model fit on category-
level reinstatement (R2 = 0.77) as compared with age group alone
(R2 = 0.19; F(66) = 84.53, p < 0.001). After adding encoding category
specificity, age group was no longer a significant predictor
in either model (ps > 0.56). These findings suggest that age
differences in both recognition category specificity and category-
level reinstatement are largely attributable to age differences in
encoding category specificity.

Category specificity predicts interindividual
differences in memory performance
Here, we asked whether category specificity in the regions iden-
tified by the whole-group analyses was linked to memory per-
formance. In temporal cortices, we identified 7 clusters demon-
strating a positive relationship between memory performance for
faces during encoding (ps < 0.05; see Table 3 and Fig. 5) and an
additional 2 clusters in category-level reinstatement (ps < 0.001).
However, we did not identify any regions demonstrating a rela-
tionship between memory performance and face specificity dur-
ing recognition (all clusters had fewer than 10 voxels). In occipital
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Fig. 3. Regions demonstrating category specificity during encoding,
retrieval, and reinstatement for both faces (A, B, C) and houses (D, E, F).
Regions demonstrating item-level reinstatement specificity for houses
(G).

and ventral visual regions, we also found a cluster revealing a
positive relationship between memory performance and category
specificity during encoding for houses (p < 0.001), one cluster in
category-level reinstatement (p < 0.001), and 2 clusters during

recognition (ps < 0.001). We did not identify any clusters reveal-
ing a relationship between memory performance and item-level
reinstatement specificity for houses.

Category-level reinstatement tracks
interindividual variability in memory
performance better than recognition category
specificity
We additionally investigated whether either recognition category
specificity or category-level reinstatement was better at explain-
ing interindividual differences in memory performance using 2
linear model comparisons. The first model comparison revealed
that adding reinstatement as a predictor improved the model fit
on memory performance (R2 = 0.41) as compared with recognition
specificity (R2 = 0.24; F(64) = 9.64, p < 0.001). However, the second
model comparison revealed that adding recognition specificity did
not improve the model fit on Pr (R2 = 0.41) as compared with rein-
statement (R2 = 0.39; F(64) = 1.21, p = 0.31). These findings suggest
that between-participant variability in memory performance is
best explained by category-level reinstatement as compared with
recognition category specificity.

Encoding-related category specificity explains
interindividual variability in memory
performance better than both recognition
category specificity and category-level
reinstatement
Here, we asked whether encoding category specificity was more
functionally relevant for memory performance compared with
recognition category specificity and category-level reinstatement
using a series of model comparisons. First, we found that
adding encoding category specificity as a predictor of memory
performance improved the model fit (R2 = 0.48) as compared with
recognition category specificity and category-level reinstatement
(R2 = 0.41; F(62) = 5.56, p = 0.006). Next, we found that adding either
recognition category specificity or category-level reinstatement
did not improve the model fit on memory performance (respec-
tively, R2 = 0.46 and R2 = 0.48) compared with encoding category
specificity alone (R2 = 0.46; F(64) = 0.73, p = 0.48 and F(64) = 2.22,
p = 0.12, respectively). In sum, encoding category specificity
tracked individual differences in memory performance better
than both recognition category specificity and category-level
reinstatement.

Intraindividual variability in memory
performance covaries with trial-wise category
specificity
In the following text, we examined whether trial-wise category
specificity predicted memory outcomes for each cluster identified
during the searchlight similarity analyses across the whole
sample. Using generalized linear mixed models, we predicted
memory outcome (hit or miss) from age, category specificity,
response bias, and the interaction between age and category
specificity. A main effect of response bias was identified in
every model (p < 0.001; see Table 4 for complete results). During
encoding, a main effect of category specificity for faces was
identified in the middle temporal and fusiform gyri cluster,
as well as in the left hippocampus, indicating that higher
category specificity was predictive of hits. These 2 clusters also
revealed an interaction between age and category specificity, such
that older adults revealed an attenuated relationship between
category specificity and memory outcome (middle temporal
gyrus: Mhits = 0.014, Mmisses = 0.011; left hippocampus: Mhits = 0.004,
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Fig. 4. Age differences in category specificity. Younger adults demonstrated greater category specificity (within-category similarity > between-category
similarity) than older adults during encoding for both faces (A) and houses (B) as well as during recognition (C) and reinstatement (D) for house stimuli.

Mmisses = 0.004) compared with younger adults (middle temporal
gyrus: Mhits = 0.020, Mmisses = 0.011; left hippocampus: Mhits = 0.004,
Mmisses = 0.000). A main effect of category-level reinstatement
for faces was also found in the fusiform and inferior occipi-
totemporal gyri cluster, with higher category specificity more
likely resulting in a hit outcome. Finally, a main effect was
found for both retrieval-related specificity and reinstatement
for houses in the middle occipital and parahippocampal gyri
clusters, again revealing that higher specificity was associated
with a higher probability of hit. The models also revealed
an age-related interaction in these clusters, such that the
relationship between specificity and memory was attenuated in

older adults (retrieval: Mhits = 0.024, Mmisses = 0.024; reinstatement:
Mhits = 0.013, Mmisses = 0.015) compared with younger adults
(retrieval: Mhits = 0.037, Mmisses = 0.028; reinstatement: Mhits = 0.025,
Mmisses = 0.020). No other main effects or interactions reached
significance.

Intraindividual variability in memory
performance covaries with item-level
reinstatement in calcarine cortex
In the final step, we were interested in whether the ability
to reinstate item- or category-level encoding information or
hippocampal activity during retrieval were associated with
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Table 3. Clusters in which category specificity correlates with memory performance.

Peak MNI

Searchlight Regions H X Y Z k r (All) r (YA) r (OA) z

Face Encoding Calcarine cortex, lingual gyrus, precuneus, cuneus B 21 −31 −13 470 0.63∗ 0.69∗ 0.56∗ 0.85
(Category) Middle temporal gyrus, inferior occipital gyrus,

middle occipital gyrus, fusiform gyrus, cerebellum
L −49 −67 11 265 0.58∗ 0.66∗ 0.46∗ 1.18

Middle temporal gyrus R 54 −61 14 261 0.61∗ 0.68∗ 0.52∗ 0.99
Fusiform gyrus, inferior occipital gyrus, cerebellum R 39 −49 −29 198 0.56∗ 0.59∗ 0.55∗ 0.23
Hippocampus, amygdala, putamen, pallidum L −22 −7 −22 125 0.56∗ 0.75∗ 0.48∗ 1.76
Amygdala, hippocampus, pallidum R 24 −7 −13 90 0.51∗ 0.48∗ 0.55∗ −0.37
Fusiform gyrus, inferior temporal gyrus L −40 −40 −16 57 0.47∗ 0.53∗ 0.39∗ 0.72

Face Middle temporal gyrus R 54 −61 14 34 0.44∗ 0.59∗ 0.23 1.77
Reinstatement
(Category)

Inferior temporal gyrus L −46 −40 −16 14 0.44∗ 0.52∗ 0.33∗ 0.94

House Encoding
(Category)

Middle occipital gyrus, precuneus, lingual gyrus,
superior parietal gyrus

B 9 −58 24 3480 0.66∗ 0.83∗ 0.42∗ 3.02∗

House Retrieval Calcarine cortex, lingual gyrus, precuneus L −22 −58 1 228 0.47∗ 0.54∗ 0.44∗ 0.56
(Category) Precuneus, lingual gyrus, calcarine cortex R 9 −58 17 126 0.42∗ 0.57∗ 0.13 2.09∗

House
Reinstatement
(Category)

Precuneus, lingual gyrus, calcarine cortex,
fusiform gyrus

B 9 −55 21 2424 0.61∗ 0.82∗ 0.24 3.65∗

H = hemisphere; k = cluster size in voxels; r = Pearson correlation coefficient across all participants (All), younger adults only (YA), and older adults only (OA);
∗p < 0.05; z = z value difference between r for YA and OA.

Table 4. Results of generalized linear mixed effects models predicting trial-wise recognition memory accuracy from category specificity.

z-values

Searchlight Regions Age RespBias CatSpec Age∗CatSpec

Face Encoding Middle temporal gyrus, fusiform gyrus, precuneus −0.40 9.30∗ 4.09∗ −2.54∗

(Category) Medial orbitofrontal gyrus, rectus −0.91 8.61∗ 1.27 −1.30
Hippocampus, putamen, amygdala, pallidum, fusiform gyrus −0.98 8.76∗ 2.12∗ −2.16∗

Amygdala, hippocampus, putamen, pallidum −0.96 8.63∗ 1.68 −0.48

Face Retrieval
(Category)

Middle temporal gyrus, superior temporal gyrus, fusiform gyrus,
inferior occipital gyrus, inferior temporal gyrus

−1.12 8.38∗ −0.77 0.84

Fusiform gyrus, inferior temporal gyrus, inferior occipital gyrus −0.99 8.41∗ −0.82 1.13
Rectus, medial orbitofrontal gyrus −0.94 8.39∗ 1.35 −0.86
Middle temporal gyrus, superior temporal gyrus −0.98 8.36∗ −0.11 0.47

Face Reinstatement
(Category)

Middle temporal gyrus, fusiform gyrus, inferior temporal gyrus,
inferior occipital gyrus, superior temporal gyrus

−0.98 9.42∗ 1.09 −0.35

Fusiform gyrus, inferior occipital gyrus, inferior temporal gyrus −0.84 8.91∗ 3.20∗ −1.26

House Encoding Middle occipital gyrus, precuneus −1.00 9.56∗ 1.77 −0.42
(Category) Caudate −1.08 9.31∗ 0.07 −0.86

House Retrieval
(Category)

Middle occipital gyrus, precuneus, parahippocampal gyrus −0.09 9.13∗ 2.69∗ −3.02∗

House Reinstatement
(Category)

Middle occipital gyrus, lingual gyrus, precuneus,
parahippocampal gyrus

0.69 9.16∗ 3.41∗ −2.66∗

Middle cingulate cortex −1.20 9.46∗ 0.90 −1.50

∗
p < 0.05.

within-person memory outcomes. Our item-level reinstatement
searchlight similarity analysis for houses revealed 2 significant
clusters: one primarily located in the calcarine cortex and the
other located in and around the fusiform cortex. For each cluster,
we performed a generalized linear mixed effects model in order
to test whether binary memory response outcome (hit or miss)
could be predicted by response bias, trial-wise item reinstatement,
category reinstatement (within the item reinstatement clusters),

or retrieval-related hippocampal activity. We found that trial-wise
item reinstatement predicted memory outcome in the calcarine
cluster (log odds = 2.40, 95% CI [1.29–4.43]), but not in the fusiform
cluster (log odds = 1.71, 95% CI [0.87–3.36]). We additionally found
that response bias predicted memory outcome in both models
(calcarine cluster: log odds = 73.49, 95% CI [33.58–160.85]; fusiform
cluster: log odds = 75.35, 95% CI [35.55–159.74]). No other fixed
effects or interactions reached significance (see Table 5).
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Fig. 5. Regions indicating a relationship between category-level specificity and memory performance for faces during encoding (A), reinstated faces (B),
houses during encoding (C), reinstated houses (D), and houses during recognition (E).

Discussion
This study implemented exploratory multivariate pattern simi-
larity searchlight analyses in order to investigate the influence of
age-related neural dedifferentiation on category-sensitive neural

representations during memory encoding, retrieval, and encod-
ing–retrieval reinstatement and the relationships to memory per-
formance. We used data from a memory paradigm completed in
the fMRI scanner in which younger and older adults incidentally
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Table 5. Results of generalized linear mixed effects models predicting trial-wise recognition memory accuracy from item-level
reinstatement and hippocampal activity.

Cluster Fixed effects predictors Log odds z p 95% CI lower 95% CI upper

Calcarine (k = 196) Age 0.91 −0.90 0.37 0.73 1.12
Response Bias 73.49 10.75 <0.001 33.58 160.85
Hippocampal activity 1.00 −0.06 0.95 0.90 1.10
Item reinstatement 2.40 2.77 0.006 1.29 4.43
Category reinstatement 3.83 0.92 0.36 0.22 67.61
Age ∗ hippocampal activity 1.00 0.00 1.00 0.87 1.16
Age ∗ item reinstatement 0.42 −1.74 0.08 0.16 1.12
Age ∗ category reinstatement 0.18 −0.79 0.43 0.00 12.28

Fusiform (k = 83) Age 0.87 −1.35 0.18 0.71 1.07
Response Bias 75.35 11.28 <0.001 35.55 159.74
Hippocampal activity 1.00 −0.03 0.98 0.90 1.10
Item reinstatement 1.71 1.57 0.12 0.87 3.36
Category reinstatement 1.26 0.21 0.84 0.14 11.25
Age ∗ hippocampal activity 1.00 −0.07 0.95 0.86 1.15
Age ∗ item reinstatement 0.74 −0.59 0.56 0.26 2.05
Age ∗ category reinstatement 0.80 −0.12 0.90 0.02 28.42

CI = confidence interval; significant effects are shown in bold.

learned face and house stimuli and subsequently completed a
surprise old/new recognition test. In line with the literature on age
differences in memory performance using recognition paradigms
(e.g. Craik and McDowd 1987), corrected recognition scores did not
differ between age groups. However, age differences were evident
in both hit rate and false alarm rate, with older adults respond-
ing “old” more often both to old and new stimuli, suggesting
that older adults had reduced memory specificity compared with
younger adults (Jacoby and Rhodes 2006; Fandakova et al. 2018).
On the neural level, distinctiveness, as reflected in less similar
neural representations of items between different stimulus cate-
gories compared with items within the same stimulus category,
was observed during all memory phases (encoding, reinstate-
ment, and retrieval) for both face and house stimuli. Importantly,
younger adults demonstrated more distinctive representations
than older adults, in line with the age-related neural dedifferen-
tiation hypothesis (Li et al. 2001; for review, see Koen and Rugg
2019). Interindividual differences in neural distinctiveness dur-
ing retrieval and reinstatement were associated with encoding-
related variability in distinctiveness. Finally, the distinctiveness of
categorical representations was linked to better memory perfor-
mance both on a within-person level as well as across individuals.
In sum, our results contribute to understanding how age-related
neural dedifferentiation presents across multiple memory phases
as well as how neural distinctiveness relates to memory perfor-
mance.

First and foremost, this study adds to the scant literature
on age-related neural dedifferentiation during memory retrieval.
While many studies have highlighted the importance of repre-
sentational distinctiveness during encoding (Zheng et al. 2018;
Koen et al, 2019; Srokova et al. 2020; Hill et al. 2021), and encod-
ing–retrieval reinstatement (St-Laurent et al. 2014; Hill et al.
2021), the question of how age impacts neural distinctiveness
during memory retrieval has been less discussed. Studies provid-
ing evidence of representational transformation between encod-
ing and retrieval (Favila et al. 2020) led us to hypothesize that
neural distinctiveness may decline differentially between these
2 memory phases. Additionally, in a recent review (Sander et al.
2021), we argued that lower representational distinctiveness dur-
ing encoding might increase the demands on retrieval monitoring

processes, which have also been shown to be affected by aging
(Fandakova et al. 2013), suggesting that age differences might
accumulate across memory phases. Here, we found age differ-
ences in neural distinctiveness across all memory phases, which
were primarily located in ventral visual cortices (see also Koen
and Rugg 2019). In line with prior studies (Johnson et al. 2015; Hill
et al. 2021), age differences in both retrieval- and reinstatement-
related distinctiveness could be mostly explained by age dif-
ferences already evident during encoding. These findings sug-
gest that the observed age differences in distinctiveness during
retrieval likely reflect a recapitulation of the (poorly) encoded
representations or poor perceptual (re-)processing rather than an
accumulation of processing deficiencies across memory phases.

Theories of cognitive aging (S-C Li and Lindenberger 1999;
S-C Li et al. 2001; for reviews, see S-C Li and Rieckmann 2014;
Koen and Rugg 2019) hypothesize that neural dedifferentiation
impairs memory performance. Several studies have recently
demonstrated a positive relationship between neural distinc-
tiveness during encoding and memory performance (Zheng
et al. 2018; Koen et al, 2019; Srokova et al. 2020) and between
reinstatement and memory performance (St-Laurent et al. 2014;
Abdulrahman et al. 2017; Bowman et al. 2019; Hill et al. 2021).
We sought to perform a comprehensive analysis by relating
interindividual differences in memory performance to neural
distinctiveness across multiple memory phases. Crucially, higher
neural distinctiveness during retrieval was associated with better
memory performance across individuals. However, compared
with retrieval, reinstatement-related distinctiveness was far
better at predicting memory performance. This aligns with several
previous aging studies also reporting the beneficial impact of
precise reinstatement on memory performance (St-Laurent et al.
2014; Abdulrahman et al. 2017; Bowman et al. 2019; Hill et al. 2021;
but see Wang et al. 2016). Finally, encoding-related distinctiveness
explained variability in memory performance to an even greater
extent than both retrieval- and reinstatement-related distinctive-
ness, underlining the importance of representing information
distinctively during the initial experience. Together, these
results provide clear evidence that interindividual differences
in memory performance are related to differences in neural
distinctiveness.
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In addition to interindividual relationships, trial-by-trial vari-
ations in representational distinctiveness have been suggested
to further influence recognition success. This hypothesis was
supported by our trial-wise analyses. Specifically, we found that
higher neural distinctiveness of a given face or house trial resulted
in a higher probability of a hit outcome. For example, category-
level encoding- and reinstatement-related distinctiveness were
predictive of memory outcome for faces, and retrieval- and
reinstatement-related distinctiveness for houses (see Kuhl et al.
2012; Gordon et al. 2014; Trelle et al. 2020; Hill et al. 2021 for
similar findings). Interestingly, we observed age differences in
several of these relationships, with younger adults demonstrating
a stronger relationship between distinctiveness and memory
than older adults. This outcome resembles findings reported by
Hill et al. (2021), who also showed an analogous age-moderated
relationship between trial-wise category-level reinstatement and
source memory performance for scene stimuli. Thus, trial-to-
trial distinctiveness may not track memory outcomes as readily
in older adults compared with younger adults. One caveat to
this conclusion is that older adults tended to respond “old” more
often than younger adults regardless of whether the stimulus was
actually old or new, indicating that their hits are a combination of
genuinely recollected trials and correctly guessed trials. Although
we tried to control for this by including the response bias in our
models, this confound may nevertheless impact the accuracy of
our models for older adults.

While we found age differences in neural distinctiveness only
on the category level, age-related neural dedifferentiation has
also been reported in terms of a decrease in the distinctiveness
of item-specific reinstatement (Folville et al. 2020; Hill et al.
2021). Although we observed occipital regions demonstrating an
effect of strong item-level distinctiveness during reinstatement
for houses, we found neither age differences in this effect nor
a relationship to interindividual differences in memory perfor-
mance. The absence of age differences in item-level reinstatement
is surprising and appears to contradict previous evidence for
an age deficit at this representational level. However, while Hill
et al. (2021) demonstrated an age-related decrease in item-level
pattern similarity, their measure did not control for potential
age deficits at the category level. Therefore, the observed age
differences at the item level may not have reflected more than
a general categorical deficit. Nevertheless, our finding proves
difficult to interpret in the context of the current literature—
more studies will be needed to understand how age differences
in neural distinctiveness vary across different representational
levels.

The use of a recognition-based retrieval paradigm (as opposed
to source memory or cued recall paradigm) may have some
impact on the findings of this study. First of all, active per-
ceptual input during retrieval makes it difficult to definitively
disentangle whether neural dedifferentiation during retrieval is
related to poorly reinstated encoding patterns or poor perceptual
representations of the to-be-recognized item or some combi-
nation of both. (However, our observation that trial-wise vari-
ations in neural distinctiveness related to memory outcomes
indicates that these retrieval-related patterns have at least some
mnemonic relevance.) Second, the absence of age differences in
item-level reinstatement could indicate that the active perceptual
input during retrieval supported representational distinctiveness
in older adults in lieu of poorly reinstated encoding represen-
tations (see Folville et al. 2020; Hill et al. 2021 for age differ-
ences in item-specific reinstatement). Finally, in contrast to prior
studies (Trelle et al. 2020; Hill et al. 2021), we did not find that

retrieval-related hippocampal activity predicted memory success,
possibly suggesting this retrieval paradigm did not recruit the hip-
pocampus to the same extent as other retrieval paradigms might
(but, see Ritchey et al. 2013 for evidence of hippocampal recruit-
ment during a recognition task). In sum, further work is needed to
understand how retrieval tasks might modulate manifestations of
age-related neural dedifferentiation and hippocampal activation
during retrieval.

Together, our findings reveal evidence for age-related neu-
ral dedifferentiation during memory encoding, retrieval, and
encoding–retrieval reinstatement and provide support for a link
between neural distinctiveness and memory performance both on
an individual trial level and across individuals. Importantly, the
observed age deficits in neural distinctiveness during retrieval
and reinstatement were closely tied to the age deficit during
encoding. Higher neural distinctiveness across all memory phases
was associated with better memory performance with encoding-
related distinctiveness explaining the most interindividual
variability in memory compared with retrieval and reinstatement.
Together, our results highlight the importance of processing
information distinctively upon initial perception and throughout
all memory stages.
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