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Drop impact on viscous liquid films
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When a liquid drop falls on a solid substrate, the air layer between them delays the
occurrence of liquid–solid contact. For impacts on smooth substrates, the air film can
even prevent wetting, allowing the drop to bounce off with dynamics identical to that
observed for impacts on superamphiphobic materials. In this paper, we investigate similar
bouncing phenomena, occurring on viscous liquid films, that mimic atomically smooth
substrates, with the goal to probe their effective repellency. We elucidate the mechanisms
associated with the bouncing to non-bouncing (floating) transition using experiments,
simulations, and a minimal model that predicts the main characteristics of drop impact,
the contact time and the coefficient of restitution. In the case of highly viscous or very
thin films, the impact dynamics is not affected by the presence of the viscous film. Within
this substrate-independent limit, bouncing is suppressed once the drop viscosity exceeds a
critical value, as on superamphiphobic substrates. For thicker or less viscous films, both the
drop and film properties influence the rebound dynamics and conspire to inhibit bouncing
above a critical film thickness. This substrate-dependent regime also admits a limit, for
low-viscosity drops, in which the film properties alone determine the limits of repellency.

Key words: drops, thin films

1. Introduction

Liquid drop impact on solids and liquids abound in nature (Yarin, Roisman & Tropea 2017)
and are essential for several industrial applications, such as inkjet printing (Lohse 2022)
and criminal forensics (Smith, Nicloux & Brutin 2018). Consequently, drop impact has
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garnered extensive attention (Rein 1993; Weiss & Yarin 1999; Yarin 2006; Thoroddsen,
Etoh & Takehara 2008; Josserand & Thoroddsen 2016) ever since the seminal work of
Worthington (1877, 1908). Impacts can result in either contact or levitation outcomes,
depending on whether the air layer trapped between the drop and the substrate drains
completely during impact.

For low-impact velocities, the buildup of the lubrication pressure in the draining
air layer prevents the drop from contacting the underlying surface, leading to drop
bouncing/floating on this layer (Reynolds 1881; Davis, Schonberg & Rallison 1989;
Yiantsios & Davis 1990, 1991; Smith, Li & Wu 2003; van der Veen et al. 2012). Drops that
bounce/float in such a scenario are realized in several configurations, for example on solid
surfaces (Kolinski, Mahadevan & Rubinstein 2014; de Ruiter et al. 2015), liquid films (Pan
& Law 2007; Hao et al. 2015; Tang et al. 2018, 2019), stationary liquid pools (Rodriguez
& Mesler 1985; Klyuzhin et al. 2010; Wu et al. 2020) or vibrating liquid pools (Couder
et al. 2005a,b), or even soap films (Gilet & Bush 2009). Interfacial processes such as
Marangoni flow (Geri et al. 2017) or the generation of vapour below a drop deposited on a
superheated substrate (the Leidenfrost effect, where the liquid levitates on a cushion of its
own vapour; Leidenfrost 1756; Quéré 2013; Chantelot & Lohse 2021) can further stabilize
the sandwiched air/vapour layer to facilitate levitation, even for the dynamic case of drop
impact (Chandra & Avedisian 1991; Tran et al. 2012; Shirota et al. 2016). Drops can also
defy gravity and levitate thanks to the so-called inverse Leidenfrost effect (Adda-Bedia
et al. 2016; Gauthier et al. 2019) or electromagnetic forces (Pal et al. 2017; Singh, Das &
Das 2018).

At higher impact velocities, the air layer ruptures, leading to contact. The rupture occurs
due to a strong attractive van der Waals force between the droplet and the solid or liquid
substrate, which comes into play as the thickness of the air layer reduces to the order of
10–100 nm (see Appendix A, and Charles & Mason 1960; Chubynsky et al. 2020; Zhang
et al. 2021b). Additionally, surface asperities that are of the order of the minimum gas
layer thickness can also cause rupture, binding the drop to the surface (Thoroddsen, Etoh
& Takehara 2003; Kolinski et al. 2014; Li, Vakarelski & Thoroddsen 2015).

In this work, we focus on levitation outcomes that can be classified as either repellent
(bouncing drops) or non-repellent (non-bouncing/floating) behaviours. We note that
non-repellent scenarios lead ultimately to coalescence, a phenomenon that we do not
investigate here and that occurs on a time scale much larger than that of impact (Lo,
Liu & Xu 2017; Duchemin & Josserand 2020). We perform experiments and direct
numerical simulations (DNS) to investigate drop rebound on viscous liquid films. In the
limit of thin-enough viscous coatings, the substrate mimics an atomically smooth solid and
displays a superamphiphobic-like repellent behaviour (Hao et al. 2015; Lo et al. 2017).
This substrate-independent bouncing (Gilet & Bush 2012; Pack et al. 2017; Lakshman
et al. 2021) can be compared with that observed on superhydrophobic substrates, where
the apparent contact time is given by the oscillation time of a drop (Rayleigh 1879), owing
to the drop impact–oscillation analogy (Richard, Clanet & Quéré 2002). As a result,
such an impacting drop can be modelled using a quasi-ideal spring, whose stiffness is
given by the surface tension coefficient (Okumura et al. 2003). Unlike ideal Rayleigh
oscillations, the collisions are partially inelastic due to viscous dissipation (Prosperetti
1977). When the drop viscosity increases and viscous dissipation becomes significant, this
spring couples with a linear damper whose strength is proportional to the drop’s viscosity
(see Appendix B, and Jha et al. 2020). The adoption of such a spring–mass–damper
system has led to several successful predictions of the drop impact dynamics in a variety
of configurations such as viscous bouncing (Moláček & Bush 2012; Jha et al. 2020),
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spontaneous levitation (Schutzius et al. 2015), fast bouncing (Chantelot et al. 2018) and
walking drops (Terwagne et al. 2013).

In the opposing limit of thick liquid films (pools), drops can also bounce/float (Reynolds
1881; Jayaratne & Mason 1964). However, unlike solids and very thin films, these pools
deform on impact and can absorb a part of the impact kinetic energy in the form of
(i) surface energy owing to interfacial deformation, (ii) internal kinetic energy, and (iii)
viscous dissipation (Galeano-Rios et al. 2021). Consequently, the impact outcomes also
include a substrate-dependent regime that culminates in the transition from bouncing to
non-bouncing (floating). In the latter case, the drop cannot take off, resulting in the liquid
surface losing its repellent property. Hao et al. (2015) studied this transition from the
substrate-independent to substrate-dependent bouncing for water drops, and reported that
the critical film thickness marking this transition depends on the film viscosity and the
impact velocity of the drops.

In the present work, we elucidate how the thickness and viscosity of liquid coatings
influence the rebound characteristics of an impacting drop, culminating in the loss of
repellency: the transition from bouncing to non-bouncing (floating). We disentangle how
the initial kinetic energy of an impacting drop can be absorbed through dissipation and
energy transfers in the drop and the liquid film.

The paper is organized as follows. Section 2 describes the experimental and numerical
methods. In § 3, we discuss the phenomenology of the drop impact dynamics on
viscous liquid films. Guided by our experimental and numerical observations, we
develop a phenomenological model in § 4, extending the spring–mass–damper analogy
by considering the liquid coating as an additional source of dissipation. In § 5, we test the
validity and applicability of this model by comparing the predicted values of the coefficient
of restitution with our observations when both the drop and film properties are varied.
We also delineate the various regimes observed in this work by measuring the critical
film thicknesses at which the substrate-independent to substrate-dependent and bouncing
to non-bouncing (floating) transitions occur, and compare their observed values with the
model predictions. Further, § 6 investigates the cases where our phenomenological model
fails to predict the observed dynamics, and gives alternate explanations. The paper ends
with a conclusion and an outlook in § 7.

2. Methods

2.1. Experimental details
Our experiments, whose set-up is sketched in figure 1, consist of silicone oil droplets with
radius R, density ρd and viscosity ηd, impacting on silicone oil films with thickness hf ,
density ρf and viscosity ηf . We choose silicone oil as a working fluid as its viscosity can
be varied over a wide range, here from 0.8 mPa s to 96 mPa s, while keeping its density
and surface tension coefficient γ nearly constant, as evidenced in table 1. Droplets with
radius R = 1.0 ± 0.1 mm are released from a calibrated needle whose height can be varied
to adjust the impact velocity V from 0.1 m s−1 to 0.5 m s−1. The rupture of the air layer,
that mediates the interaction between the drop and the film, determines the upper bound
of the bouncing regime. This rupture sets the critical impact velocity, expressed as the
Weber number (i.e. the ratio of inertial to capillary stresses) Wed ≡ ρdRV2/γ � O(10),
above which coalescence between the miscible drop and film occurs (see Appendix A
and Chubynsky et al. 2020; Sharma & Dixit 2021). We further fix the impact velocity at
V = 0.3 ± 0.03 m s−1, corresponding to Wed = 4 ± 1, and focus on the influence of the
material properties of the drop and the film on the impact process (see § 2.2). Indeed, this
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Figure 1. (a) Schematic (not to scale) of the experimental set-up. (b) Side-view visualization of the drop
impact process as viewed using the high-speed camera. The inset also shows the axisymmetric domain used in
the DNS, and defines the symbols used. The domain boundaries are chosen to be far enough not to influence
the drop impact process. Furthermore, we ensure that the waves formed on the film are not reflected back from
these boundaries. Consequently, for Ohf < 0.1, Lmax � 8R. On the other hand, if Ohf > 0.1 and waves on the
film are damped, then we choose Lmax = 8R.

Silicone oil ρ η γ

(kg m−3) (mPa s) (mN m−1)

SE 1 818 0.8 17
AK 5 920 4.6 19
AK 10 930 9.3 20
AK 20 950 19 21
AK 35 960 34 21
AK 50 960 48 21
AK 100 960 96 21

Table 1. Properties of the liquids used in the experiments, where ρ and η are the density and viscosity of the
liquid, and γ denotes the liquid–air surface tension coefficient. Throughout the paper, the subscripts d, f and
s represent drop, film and surrounding, respectively. The silicone oil manufacturers are Shin Etsu (SE) and
Wacker Chemie AG (AK).

process is fairly independent of Wed in the narrow range of Wed in which bouncing occurs
without air layer rupture (see Appendices A and C).

Films of controlled thickness, varying from 0.01 mm to 1 mm, are prepared by
spincoating the liquid for hf < 0.03 mm, or by depositing a known volume of silicone oil
on a glass slide and allowing it to spread when hf > 0.03 mm. We measure the thickness
of spincoated films using reflectometry (Reizman 1965), with uncertainty ±0.1 μm, while
the thicker films obtained from the deposition method are characterized from side-view
imaging, using a procedure detailed in Appendix D, with uncertainty ±30 μm. We record
the impact dynamics using high-speed side-view imaging at 10 000 frames per second
(Photron UX100).

2.2. Governing equations and numerical framework
This subsection describes the DNS framework used to study the drop impact process
with the free software program Basilisk C (Popinet & Collaborators 2013–2022a), using
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the volume of fluid (VoF) method (see (2.1)) for tracking the interface (Tryggvason,
Scardovelli & Zaleski 2011). In this work, we have three fluids, namely, the drop, the
film and air, denoted by d, f and a subscripts, respectively (figure 1). In order to track the
three fluids and enforce non-coalescence between the drop and the film, we use two VoF
tracer fields, Ψ1, Ψ2 (Ramírez-Soto et al. 2020):

(
∂

∂t
+ v · ∇

)
{Ψ1, Ψ2} = 0, (2.1)

where v is the velocity field. The use of two VoF fields, followed by interface
reconstruction and implicit tagging of the ambient medium (air tracer, Ψa = 1 − Ψ1 −
Ψ2), ensures that the two tracers never overlap (Ramírez-Soto et al. 2020; Naru 2021). As a
result, there is always a thin air layer between the drop and the film. Our continuum-based
simulations are thus not sufficient to predict the coalescence of interfaces (Chubynsky
et al. 2020), and we obtain the bounds of the non-coalescence regime, which sets the
maximal Weber number probed in our simulations, from experiments (see Appendix A for
details).

We use adaptive mesh refinement to resolve the length scales pertinent to capture the
bouncing process, i.e. the flow inside the drop and the liquid coating. The adaption is
based on minimizing the error estimated using the wavelet algorithm (Popinet 2015) in
the VoF tracers, interfacial curvatures, velocity field, vorticity field and rate of viscous
dissipation with tolerances 10−3, 10−4, 10−2, 10−2 and 10−3, respectively (Sanjay 2022).
We ensure that at least 15–20 grid cells are present across the minimum liquid film
thickness (Γ = hf /R = 0.01) studied in this work to resolve the velocity gradients in the
film (Josserand, Ray & Zaleski 2016; Ling et al. 2017). The minimum thickness of the
air layer is of the order of the minimum grid size Δ = R/2048. We further note that the
thickness can be larger than this minimum owing to flow characteristics. For example, the
shear stress balance across an interface with a high viscosity ratio delays the drainage of
the air layer (Zhang, Ni & Magnaudet 2021a).

For an incompressible flow, the mass conservation requires the velocity field to be
divergence-free:

∇ · v = 0. (2.2)

Furthermore, the momentum conservation reads (where tildes denote dimensionless
quantities)

(
∂

∂ t̃
+ ṽ · ∇̃

)
ṽ = 1

ρ̃

(
−∇̃p + ∇̃ · (2 Oh D̃)

)
− Bo êZ + f̃ γ , (2.3)

where the coordinate dimensions, velocity field v and pressure p are normalized using
the drop radius R, inertio-capillary velocity scale vγ = √

γ /ρdR, and capillary pressure
pγ = γ /R, respectively. The bracketed term on the left-hand side of (2.3) is the material
derivative. On the right-hand side, êZ is a unit vector in the vertically upward direction
(see figure 1b), and the deformation tensor D̃ is the symmetric part of the velocity
gradient tensor (D̃ = (∇̃ṽ + (∇̃ṽ)T)/2). Further, we employ the one-fluid approximation
(Tryggvason et al. 2011) to solve these equations, whereby the material properties (such
as dimensionless density ρ̃ = ρ/ρd and dimensionless viscosity Oh) change depending on
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which fluid is present at a given spatial location:

ρ̃ = Ψ1 + Ψ2
ρf

ρd
+ (1 − Ψ1 − Ψ2)

ρa

ρd
, (2.4)

Oh = Ψ1 Ohd + Ψ2 Ohf + (1 − Ψ1 − Ψ2) Oha, (2.5)

where the Ohnesorge number Oh is the ratio between the inertio-capillary and
visco-capillary time scales. It is defined for all three phases, namely, the drop, the film
and the air (ambient):

Ohd = ηd√
ρdγ R

, (2.6)

Ohf = ηf√
ρdγ R

(2.7)

and

Oha = ηa√
ρdγ R

, (2.8)

respectively. Here, ηd, ηf and ηa are the viscosity of the drop, film and air (ambient),
respectively. Furthermore, ρf /ρd and ρa/ρd are the film–drop and air–drop density ratios.
For simplification, we use ρf /ρd = 1 (see also table 1). In order to keep the surrounding
medium as air, ρa/ρd and Oha are fixed at 10−3 and 10−5, respectively. We also fix the
Bond number (ratio of the gravitational to the capillary pressure), given by

Bod = ρdgR2

γ
, (2.9)

at 0.5 during this study. The initial condition (figure 1b) is given by the normalized impact
velocity Ṽ = √

Wed.
Finally, a singular body force f̃ γ is applied at the interfaces to respect the dynamic

boundary condition across them. The approximate forms of these forces follow from
Brackbill, Kothe & Zemach (1992), Prosperetti & Tryggvason (2009) and Tryggvason
et al. (2011) as

f̃ γ ≈ κ̃1 ∇̃Ψ1 + κ̃2 ∇̃Ψ2. (2.10)

Here, κ1 and κ2 are the curvatures associated with Ψ1 and Ψ2, respectively, calculated using
the height function method. During the simulations, the maximum time step needs to be
set less than the oscillation period of the smallest wavelength capillary wave as the surface
tension scheme is explicit in time (Popinet 2009; Popinet & Collaborators 2013–2022b).

Figure 1(b) represents the axisymmetric computational domain. A tangential stress-free
and non-penetrable boundary condition is applied on each of the domain boundaries.
The pressure gradient is also set to zero at these boundaries. Furthermore, the domain
boundaries are chosen to be far enough not to influence the drop impact process. When
Ohf > 0.1 and waves on the film are damped, we choose Lmax = 8R. The cases with low
Ohf require extra attention due to the train of surface waves formed post-impact, as these
waves can reflect back from the side-walls (here, we choose Lmax � 8R).
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3. Phenomenology of the impact events

In figure 2, we compare the behaviour of a typical silicone oil drop (R = 1.0 mm,
V = 0.35 m s−1 and ηd = 4.6 mPa s, i.e. (Wed, Ohd, Bod) = (4, 0.034, 0.5)) impacting
on films with fixed viscosity ηf = 96 mPa s (Ohf = 0.67) but contrasting thicknesses:
hf = 0.01, 0.35 and 0.85 mm (i.e. Γ = 0.01, 0.35 and 0.85, respectively). We show
a one-to-one comparison between experimental and DNS snapshots, and display three
key pieces of information: the position of the liquid–air interfaces (green lines) that can
be compared directly with experiments, the rate of viscous dissipation per unit volume
(left-hand part of each numerical snapshot), and the magnitude of the velocity field
(right-hand part of each numerical snapshot).

For the thinnest film (hf = 0.01 mm, figure 2(a) and supplementary movie 1), the
drop deforms as it comes into apparent contact with the film mediated by the air layer,
an instant that we choose as the origin of time t = 0. The drop spreads until it reaches
its maximal lateral extent, recoils, and rebounds in an elongated shape after a time
tc = 15.6 ± 0.1 ms, called the contact time. Throughout the impact process, viscous
stresses inside the drop dissipate energy (see times t = 1.5 and 7.5 ms). Consequently, after
take-off, the drop reaches a maximal centre of mass height H = 2.0 ± 0.1 mm relative to
the undisturbed film surface, from which we deduce the restitution coefficient defined
as ε = √

2g(H − R)/V; here, ε = 0.48 ± 0.05. The liquid–air interface profiles obtained
from experiments and numerics are in excellent agreement, and we measure the same
values of the contact time and restitution coefficient in simulations, using the method
described in Appendix E. This behaviour is in quantitative agreement with that reported
for the impact of a viscous drop on a superhydrophobic surface by Jha et al. (2020),
suggesting that the presence of both the air and liquid film has a negligible influence on the
macroscopic dynamics of the rebound, and that viscous dissipation in the drop determines
the rebound height.

For hf = 0.35 mm (figure 2(b) and supplementary movie 2), despite the noticeable
deformation of the liquid film, the qualitative features of the bounce are similar. We further
observe that as the drop takes off, the film free surface has not yet recovered its undisturbed
position. We measure an increase of the contact time to tc = 17 ± 0.1 ms, and a decrease
in the rebound elasticity, with H = 1.6 ± 0.1 mm implying ε = 0.37 ± 0.04. The DNS
snapshots show that in this case, viscous dissipation occurs in both the drop and the
underlying liquid. Qualitatively, the instantaneous rate of viscous dissipation in the drop
is similar for hf = 0.01 mm and hf = 0.35 mm, suggesting that the decrease in rebound
elasticity is linked primarily to the increased film dissipation.

Finally, for hf = 0.85 mm (figure 2(c) and supplementary movie 3), the film deformation
increases and the substrate loses its repellent ability. The drop centre of mass does not take
off above H = R; the drop floats on top of the liquid film, a situation that corresponds to
the inhibition of bouncing for which ε ≈ 0, and the contact time diverges. In this case,
we notice that the experimental and numerical interface profiles differ at t = 0 ms. This
initial discrepancy, caused by drop oscillations upon detachment from the needle, does not
affect the subsequent impact dynamics and the impact outcome, as evidenced by the good
agreement of the interface profiles at later instants.

We now vary systematically the film thickness hf while keeping the drop and film
viscosities constant (ηd = 4.6 mPa s and ηf = 96 mPas), and plot in figures 3(a) and 3(b)
the contact time tc and the coefficient of restitution ε extracted from experiments (circles)
and DNS (hexagrams). Experiments and simulations are in excellent agreement when
varying the film thickness by two orders of magnitude, hf = 0.01–1 mm. The existence
of two regimes is readily apparent.
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(a) hf = 0.01 mm

(b) hf = 0.35 mm

(c) hf = 0.85 mm

t = 0 ms

1 mm

1 mm

t = 1.5 ms t = 7.5 ms t = 15.6 ms t = 20 ms

t = 0 ms t = 1.5 ms t = 7.5 ms t = 17 ms t = 20 ms

1 mm

t = 0 ms

–3 1 0 2

t = 1.5 ms t = 7.5 ms t = 17.5 ms t = 25 ms

||ṽ||log10 (ξ̃η)

Figure 2. Effect of the film thickness on the drop impact process: comparison of the experimental and DNS
snapshots of the impact process on films with differing hf values (a) 0.01 mm, (b) 0.35 mm, and (c) 0.85 mm.
In each panel, the top row contains the experimental images with (green) interface outline from DNS, and
the bottom row contains numerical snapshots showing the dimensionless rate of viscous dissipation per unit
volume (ξ̃η = 2 Oh (D̃ : D̃)) on the left and the magnitude of the dimensionless velocity field (ṽ) on the right.
We show ξ̃η on a log10 scale to identify regions of maximum dissipation (marked with black for ξ̃η � 10).
For all cases in this figure, R = 1 mm, V = 0.3 m s−1, ηd = 4.6 mPa s and ηf = 96 mPa s, corresponding
to (Wed, Ohd, Ohf ) = (4, 0.034, 0.67). Supplementary movies 1–3 are available at https://doi.org/10.1017/jfm.
2023.13.

First, for hf � 0.1 mm, both tc and ε are independent of hf . The value of the
contact time in this regime, tc = 15.6 ± 0.5 ms, corresponds to that expected from
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Figure 3. Effect of the film thickness on the rebound characteristics for R = 1 mm, V = 0.3 m s−1,
ηd = 4.6 mPa s and ηf = 96 mPa s, i.e. (Wed, Ohd, Ohf ) = (4, 0.034, 0.67): (a) contact time tc, and
(b) restitution coefficient ε, as a function of film thickness hf . Circles and hexagrams represent experiments
and DNS, respectively. In (a,b), the horizontal black dashed lines represent the substrate-independent limits
of contact time and restitution coefficient, respectively, while the solid black lines show the results from
the phenomenological model (see § 4) with parameters ck = 2, cd = 5.6 and cf = 0.46. The vertical grey
dashed line marks the transition from the bouncing to the non-bouncing (floating) regime. The inset of (b)
illustrates the variation of the restitution coefficient normalized by its substrate-independent value ε∗ as a
function of the film thickness. Here, the horizontal grey line represents ε = 0.9ε∗, marking the transition
from substrate-independent to substrate-dependent bouncing at hf = hf ,1. (c) Schematic diagram of the
phenomenological model that describes the drop impact process on a liquid film. The parameters ρdR3, ηdR
and γ are associated with the drop properties, and ηf Γ

−3R is associated with the film properties.

the inertio-capillary scaling (Wachters & Westerling 1966; Richard et al. 2002).
The contact time is proportional to τγ =

√
ρdR3/γ , with a prefactor 2.2 ± 0.1, in good

agreement with that calculated by Rayleigh (1879) for the fundamental mode of drop
oscillation π/

√
2. Similarly, the plateau value of the coefficient of restitution ε = 0.47 ±

0.04 is in reasonable agreement with that reported for the impact of water drops on
superhydrophobic substrates for a similar drop Ohnesorge number Ohd and impact Weber
number Wed (Jha et al. 2020). We therefore refer to this regime as substrate-independent
rebound (see also Appendix B).

Second, for hf � 0.1 mm, the contact time and coefficient of restitution are influenced
by the film thickness. We observe that tc increases (figure 3a) and ε decreases (figure 3b)
with increasing hf until tc diverges and bouncing ceases (ε = 0) for hf ≈ 0.75 mm. This
critical thickness marks the threshold of the rebound behaviour and the transition to the
non-bouncing (floating) regime. Here, the rebound characteristics vary significantly with
hf and we therefore refer to this regime as substrate-dependent.

Finally, we characterize the transition from the substrate-independent to the
substrate-dependent regime by introducing the thickness hf ,1 (in dimensionless form
Γ1 = hf ,1/R) that marks the decrease of ε to 0.9 times its plateau value ε∗. Similarly,
we define the critical thickness hf ,2 (respectively, Γ2 = hf ,2/R) associated with the
transition from the substrate-dependent to the non-bouncing (floating) regime as the
smallest film thickness that results in ε = 0. The impact dynamics can be categorized
into three distinct regimes: a substrate-independent regime for Γ = hf /R � Γ1, a
substrate-dependent regime for Γ1 < Γ < Γ2, and a non-bouncing (floating) regime
for Γ � Γ2.
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4. Phenomenological model

We now seek to rationalize the dependence of the rebound time and elasticity with
the substrate and drop properties by constructing a minimal model, guided by our
experimental and numerical observations. We build on the classical description of a drop
as a liquid spring that reflects the balance of inertia and capillarity during a rebound
(Richard et al. 2002; Okumura et al. 2003). Here, we consider viscous drops and further
add a damping term to the liquid spring, an approach that has been shown to capture
successfully the variation of contact time and coefficient of restitution across over two
orders of magnitude variation in liquid viscosities (Jha et al. 2020). Similarly, we interpret
the film behaviour through the liquid spring analogy. The film motion contrasts with that
of the drop: while the latter displays a full cycle of oscillation during a rebound, the former
never returns to its undisturbed position (see figure 2 and supplementary movies 1–3). This
observation leads us to consider that the damping component dominates the behaviour of
the liquid film, and to neglect the contributions of inertia and surface tension. We further
discuss this assumption and its validity in § 6.

In figure 3(c), we present a sketch of the model, where we assume that the droplet
and the film are connected in series during apparent contact, and show the scaling forms
of the drop and film components. The scaling relations for the drop mass, stiffness and
damping are taken from the work of Jha et al. (2020) as proportional to ρdR3, γ and
ηdR, respectively, with corresponding prefactors 1, ck and cd. We determine the values of
ck and cd from results in the substrate-independent bouncing regime (see Appendix B).
The scaling form of the film damping term is chosen as proportional to ηf Γ

−3R, where
Γ = hf /R, with corresponding prefactor of cf (figure 3c). This is built on two key
assumptions. First, we assume that the viscous lubrication approximation holds in the
film as, for sufficiently high film Ohnesorge numbers (Ohf � 0.1), the slopes associated
with the film deformations are small (Γ � 1, Ohf ∼ O(1); see § 6 for limitations). And
second, we choose to consider the drop as an impacting disk rather than a sphere, owing
to the rapid drop spreading upon impact (Eggers et al. 2010; Wildeman et al. 2016), which
results in a damping term proportional to Γ −3 instead of Γ −1 (Leal 2007). Finally, we fit
the prefactor cf to our experiments and simulations.

With these assumptions, the equations of motion for the model system (figure 3c) read

ρdR3ÿ = −ckγ (y − x) − cdηdR (ẏ − ẋ) , (4.1)

0 = +ckγ (y − x) + cdηdR (ẏ − ẋ) − cf ηf Γ
−3Rẋ, (4.2)

where y and x are the displacements of the drop and the film relative to their initial
positions in the reference frame of the laboratory, and the dots denote time derivatives.
We point out that by setting ẋ = x = 0, we recover the model proposed by Jha et al.
(2020), which extends the analogy between the drop impact process and a spring–mass
system (Okumura et al. 2003) by adding a damper to account for viscous dissipation in the
drop. Here, additionally, we consider viscous dissipation in the liquid coating and model
the film as a damper without inertia. We make this modelling assumption, guided by the
overdamped dynamics of the film (figure 2), to keep the number of free parameters to
as few as possible (namely ck, cd and cf ). We stress here that ck and cd are fixed in this
study, and that their values are in quantitative agreement with the corresponding prefactors
derived by Jha et al. (2020).

Similarly as for the governing equations in DNS, we make (4.1) and (4.2) dimensionless
using the length scale R and the time scale τγ , and use tildes to identify dimensionless
variables. Next, we obtain an equation of motion for the drop deformation z̃ = ỹ − x̃,
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Drop impact on viscous liquid films

namely(
1 + cd Ohd

cf Ohf Γ −3

)
¨̃z + cd Ohd

(
1 + ck

cd Ohd × cf Ohf Γ −3

)
˙̃z + ckz̃ = 0, (4.3)

which admits oscillatory solutions (i.e. drop rebound) under the condition

ω2 = 4ck −
(

cd Ohd − ck

cf Ohf Γ −3

)2

> 0. (4.4)

We note that ω2 decreases with increasing Γ for fixed Ohd and Ohf , in qualitative
agreement with the existence of a critical film height above which bouncing stops
(figure 3b). Equation (4.4) allows us to determine the bounds of the bouncing regime
in terms of a critical drop Ohnesorge number Ohd,c and film thickness Γ2. Discarding the
two roots of the equation ω2 = 0 that yield unphysical negative values of Ohd,c and Γ2,
we obtain

Ohd,c = 1
cd

(
2
√

ck + ck

cf

(
Γ2/Oh1/3

f

)3
)

(4.5)

and

Γ2/Oh1/3
f =

(
cf

ck

(
cd Ohd + 2

√
ck

))1/3

. (4.6)

Equations (4.4)–(4.6) evidence that the role of the film viscosity and height are intertwined
as we find the combination Γ/Oh1/3

f that can be inferred as the effective film thickness or
mobility. Furthermore, the substrate-independent bouncing threshold is recovered when
this film mobility, Γ/Oh1/3

f , tends to 0, that is, for very thin and/or very viscous films.
Indeed, (4.5) and (4.6) become

Ohd,c = 2
√

ck

cd
(4.7)

and

Γ2/Oh1/3
f =

(
2

cf√
ck

)1/3

, (4.8)

for the limiting cases of substrate-independent (Γ/Oh1/3
f → 0), and inviscid drop (Ohd →

0) asymptotes, respectively.
To go further, we solve (4.3) with the initial conditions z̃ = 0 and ˙̃z = √

Wed at t̃ = 0,
yielding

z̃(t̃) = 2
√

Wed

Ω
exp

(
−φ t̃

2

)
sin

(
Ω t̃
2

)
, (4.9)

where

φ = ck + cd Ohd cf Ohf Γ −3

cd Ohd + cf Ohf Γ −3 (4.10)

and

Ω = ω

(
1 + cd Ohd

cf Ohf Γ −3

)−1

(4.11)

can be interpreted as an effective damper and angular frequency, respectively, by
comparing the above expression (4.9) to the one obtained by Jha et al. (2020) for
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Γ/Oh1/3
f → 0. We can deduce the expressions for both the contact time and the coefficient

of restitution using these pieces of information. The contact time is taken as the instant at
which the drop deformation z̃ comes back to zero, which occurs at Ω t̃ = 2π, giving

tc
τγ

= 2π

ω

(
cd Ohd

cf Ohf Γ −3 + 1
)

. (4.12)

Equation (4.12) is then used to compute the coefficient of restitution ε as the ratio of
the rebound velocity ˙̃z(t̃c) to the impact velocity

√
Wed. We notice immediately that

this definition yields an expression for ε that does not depend on Wed, in contrast
with the experimentally observed decrease of ε with Wed. We account for the Weber
number dependence of ε, which is not captured by spring–mass models (Jha et al.
2020), by scaling the coefficient of restitution by ε0(Wed), its Wed-dependent value in
the substrate-independent limit for inviscid drops:

ε(Wed, Ohd, Ohf , Γ ) = ε0(Wed) exp
(

−π

ω

(
cd Ohd + ck

cf Ohf Γ −3

))
, (4.13)

where the prefactor ε0(Wed) is not a model prediction. We obtain the other prefactors, ck
and cd, by fitting the substrate-independent experiments following Jha et al. (2020). This
simplification allows us to recover the expressions for tc and ε for viscous drop impact on
non-wetting substrates (Jha et al. 2020), and thus to determine ck = 2 and cd = 5.6, which
we keep fixed during this study. For details of this simplification and on the determination
of the prefactors, see Appendix B.

We test the model predictions for the contact time and rebound elasticity in the
substrate-dependent regime by comparing the data (symbols) presented in figures 3(a)
and 3(b) to least squares fits of (4.12) and (4.13), with cf as a free parameter (solid lines),
and taking ε0 = 0.58 (see Appendix B). We find that the model predicts accurately the
variation of tc and ε with Γ for cf = 0.46 ± 0.1. For the rest of this work, we fix cf = 0.46
and assess the predictive ability of the simplified model.

5. Influence of drop and film parameters

We now test the model predictions and limits by varying experimentally and numerically
the drop and film Ohnesorge numbers. We give particular attention to the value of the
coefficient cf (fixed at 0.46) necessary to fit the model to these data, and to the two
asymptotes predicted by the model that bound the bouncing domain (4.7)–(4.8).

5.1. Influence of the film Ohnesorge number Ohf

We first vary the film Ohnesorge number Ohf while keeping the drop and impact properties
constant. In figure 4(a), we show the evolution of the coefficient of restitution ε for drops
with Ohd = 0.034 as a function of the dimensionless film thickness Γ , while exploring
two decades in film viscosity, Ohf = 0.01–2.0. On the one hand, as expected, the values
of the coefficient of restitution are not affected in the substrate-independent limit. On
the other hand, the substrate-dependent behaviour shows the influence of Ohf , and we
identify two regimes. For Ohf < 0.1, the evolution of ε with Γ does not depend on Ohf , as
illustrated by the data collapse in figure 4(a). However, for Ohf > 0.1, increasing the film
viscosity leads to a larger extent of the substrate-independent plateau and to an increase
of the critical film thickness at which bouncing stops. This change in the Ohf dependence
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Figure 4. Influence of the film parameters on the impact characteristics: variation of the coefficient of
restitution ε as a function of (a) the film thickness Γ , and (b) the film mobility Γ/Oh1/3

f . In (a,b), the circles
and hexagrams correspond to the results from experiments and simulations, respectively. The coloured dashed
lines in (a) and the solid black line in (b) illustrate the results from the phenomenological model (4.13) with
parameters ck = 2, cd = 5.6 and cf = 0.46. Black dashed lines in (a,b) mark the substrate-independent limit
of the restitution coefficient ε∗. For all cases in this figure, Ohd = 0.034 and Wed = 4.

can be characterized by the two dimensionless critical film thicknesses Γ1 = hf ,1/R and
Γ2 = hf ,2/R, which increase from 0.17 to 0.33, and from 0.58 to 1.1, respectively, when
Ohf is increased from 0.1 to 2.0.

We interpret the two types of behaviour in the substrate-dependent regime in the light of
our minimal model, which predicts that the film mobility Γ/Oh1/3

f controls the dissipation
in the substrate. In figure 4(b), we plot the coefficient of restitution data presented in
figure 4(a) after rescaling the horizontal axis by Oh−1/3

f . The data now collapse for Ohf >

0.1, indicating that the proposed approximations capture the large viscosity limit but break
down for lower film Ohnesorge numbers. We further evidence the validity and failure of
the minimal model by plotting the predictions of (4.13) with cf = 0.46 (dashed coloured
lines in figure 4(a) and solid black line in figure 4(b)). The minimal model predicts the
restitution coefficient accurately for Ohf > 0.1, suggesting that our modelling assumptions
are valid in this regime: the liquid film dynamics is dominated by viscous dissipation, and
the flow can be modelled successfully in the lubrication approximation by assimilating the
impacting drop to a cylinder.

5.2. Influence of the drop Ohnesorge number Ohd

In this subsection, we focus on the influence of the drop Ohnesorge number on the
rebound elasticity. In figure 5(a), we plot the coefficient of restitution as a function
of the dimensionless film thickness for a fixed Ohf = 0.667 and for varying Ohd
spanning the range 0.01–0.133. Increasing Ohd affects ε across all film thicknesses. In
the substrate-independent region, the coefficient of restitution decreases with increasing
drop Ohnesorge number. In Appendix B, we show that the plateau values reported
in figure 5(a) decay exponentially with increasing Ohd as predicted by Jha et al.
(2020). To better illustrate the influence of Ohd in the substrate-dependent regime, we
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Figure 5. Influence of the drop parameters on the rebound elasticity: variation of (a) the coefficient of
restitution ε, and (b) the coefficient of restitution normalized with its substrate-independent value ε/ε∗, as
a function of the normalized film thickness Γ . The circles and hexagrams correspond to the results from the
experiments and simulations, respectively. In (a), the dashed lines denote the plateau values of the restitution
coefficient ε∗(Ohd). In (a,b), the solid lines represent the results from the phenomenological model (4.13) with
parameters ck = 2, cd = 5.6 and cf = 0.46. For all cases in this figure, Ohf = 0.667 and Wed = 4.

normalize the coefficient of restitution ε by its substrate-independent value ε∗ (figure 5b).
With this normalization, we expect the data to follow the prediction of (4.13) (solid line).
The data collapse only for small Γ , indicating that the phenomenological model predicts
the influence of Ohd only in the substrate-independent limit. This suggests that the model
fails to account for the interplay between the drop and the film properties that affects
dissipation in both liquids, and ultimately the coefficient of restitution. Here as well, we
monitor the Ohd dependence of the coefficient of restitution, and its deviation from the
prediction of (4.13), through the evolution of Γ1 and Γ2, that both decrease with increasing
Ohnesorge number.

5.3. Influence of Ohf and Ohd on the critical film thicknesses
We now quantify the influence of the drop and film Ohnesorge numbers by reporting
their effects on the critical thicknesses for substrate-independent to substrate-dependent
(Γ1) and bouncing to non-bouncing (floating) (Γ2) transitions. Indeed, we have shown
above that these two critical thicknesses are good proxies to characterize the continuous
transition from substrate-independent bouncing to rebound inhibition. In figures 6(a,b),
we show Γ1 and Γ2 as functions of the film Ohnesorge number for Ohd in the range
0.01–0.133. This representation reflects the existence of the two distinct regimes reported
in figure 4.

First, when Ohf < 0.1, Γ1 and Γ2 are independent of Ohf . We write Γ1 = α1(Ohd)
and Γ2 = α2(Ohd), and report the values of α1(Ohd) and α2(Ohd) in figures 6(c,d). This
observation is in contradiction with the expectations from our minimal model, which
predicts that Ohf influences the values of Γ1 and Γ2. Surprisingly, this Ohf independence
of the critical thicknesses and the collapse observed in figure 4(a) suggest that the energy
transfer to the film (in the form of kinetic and surface energies) and the film viscous
dissipation are independent of film viscosity for Ohf < 0.1. We will elaborate further on
this regime in § 6.

958 A25-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

13
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.13


Drop impact on viscous liquid films

(a) (b)

(c) (d )

10–1

101

1.0

2.0

0.2

0.4

0.8

0.6

10–2 10–1 100 101 10–2 10–1 100 101

10–1

10–1

100

10–2 10–1 100 10–2 10–1 100

Experiments

Simulations

Γ1 = β1Ohf 
1/3

Γ1 Γ2

Γ2 = β2Ohf 
1/3

1/3 1/3

Γ1 = α1

β2

α2

β1

α1

Γ2 = α2

Ohd = 0.034

Ohd Ohd

Ohf Ohf

Ohd = 0.067

Ohd = 0.133

Ohd = 0.01

Ohd = 0.034

Ohd = 0.067

Ohd = 0.133

α
2
,β

2

α
1
,β

1

Figure 6. Critical film thickness marking the transition from (a) substrate-independent to substrate-dependent
bouncing Γ1, and (b) bouncing to non-bouncing (floating) Γ2 as a function of Ohf at different Ohd . Prefactors
(c) α1 and β1, and (d) α2 and β2, as a function of Ohd . The solid black line in (c) represents the model prediction
for β1, (5.1). The solid black lines in (d) represent the model predictions for β2 using (4.5) and (4.6), and the
black dashed lines show the two asymptotes, (4.7) and (4.8).

Second, for larger film Ohnesorge numbers, the dissipation in the film is captured by the
lubrication approximation ansatz. As a result, both critical thicknesses follow the relations
Γ1 = β1(Ohd)Oh1/3

f and Γ2 = β2(Ohd)Oh1/3
f , as predicted by the model. Beyond this

scaling relation, the accuracy of the minimal model is tied to its ability to predict the
prefactors β1 and β2 when Ohf � 0.1. In figures 6(c,d), we plot β1 and β2 as functions
of the drop Ohnesorge number. Both prefactors show a plateau for Ohd � 0.03 before
decreasing monotonically with the drop Ohnesorge number. We compare the measured
prefactors to the model predictions, which we plot as solid lines in figures 6(c,d). Here, β1
is obtained by solving ε = 0.9ε∗, yielding

β1 = c1/3
f

⎡
⎣−cd Ohd (1 − r2) + 2r

√
ck(1 + r2) − c2

d Oh2
d

ck(1 + r2)

⎤
⎦

1/3

, (5.1)

where

r = cd Ohd√
4ck − c2

d Oh2
d

− ln(0.9)

π
, (5.2)

958 A25-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

13
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.13


V. Sanjay, S. Lakshman, P. Chantelot, J.H. Snoeijer and D. Lohse

and β2 is given by (4.6). The model fails to capture the decrease of both β1 and β2
with Ohd. Yet we can interpret the evolution of these two prefactors along the inviscid
and viscous drop limiting cases. Indeed, for inviscid drops (i.e. small Ohd), the model
predictions for β1 and β2 show a plateau whose value is in good agreement with that
reported in experiments. Conversely, for viscous drops (i.e. large Ohd), β2 decreases with
Ohd to match the asymptote associated with the substrate-independent bouncing inhibition
occurring at Ohd,c ≈ 0.5 (see (4.5) and dashed line in figure 6d).

We stress that the model predictions shown in figures 6(c,d) consider a unique value
cf = 0.46 ± 0.1, determined from a least squares fit in § 4. We attribute the failure of the
model to predict the dependence on Ohd away from the two asymptotes to its simplified
representation of the drop–film interactions. While remarkably, these oscillator-based
models predict the global outcome of a rebound – that is, for example, the contact time,
coefficient of restitution and bounds of bouncing – they fail to represent accurately the
interactions, such as the drop or film deformations (4.9), and their dynamics. For example,
the force associated with drop impact is maximal at early times, when the drop shape is
spherical, while the force exerted by a spring is proportional to deformation.

Our phenomenological model captures successfully the behaviour of the liquid film for
Ohf � 0.1, giving support to the modelling assumptions. Within this regime, the model
allows for a quantitative prediction of the contact time and coefficient of restitution for
both inviscid (i.e. low Ohd) and viscous (i.e. large Ohd) drops, for a fixed set of constants
ck, cd and cf . In between these two limits, the model fails to predict the Ohd dependence,
a fact that we attribute to the simplicity of the representation of drop–film interactions.
More intriguingly, the minimal model also breaks down for Ohf � 0.1, where we observe
that the coefficient of restitution does not depend on the film Ohnesorge number. We will
demystify this behaviour in the next section.

6. Bouncing inhibition on low Ohnesorge number films

We now investigate the independence of the rebound elasticity with the film Ohnesorge
number, illustrated by the data collapse of figure 4(a), for Ohf < 0.1. Figure 7(a) shows
two typical impact scenarios in this regime, with Ohf = 0.01 (figure 7a-i) and Ohf = 0.1
(figure 7a-ii), where bouncing is inhibited by the presence of the liquid film. Although
these two representative cases differ by an order of magnitude in Ohf , qualitatively, the
drop shape and flow anatomy remain similar (figure 7(a), t/τγ = 0.2, 1), suggesting an
equal loading on the film. Nonetheless, the film response varies. We observe surface waves
post-impact on the film–air interface for Ohf = 0.01, which vanish for Ohf = 0.1 owing
to increased bulk viscous attenuation (figure 7(a), t/τγ = 0.2, 2.65).

To further elucidate the drop–film interaction, we compute the energy budgets
associated with the two representative cases with Ohf = 0.01 (figure 7b-i) and Ohf = 0.1
(figure 7b-ii). The overall energy budget reads

E0 =
(

Ed
k + �Ed

γ + �Ed
g

)
+ Ed

η +
(

E f
k + �E f

γ + �E f
g

)
+ E f

η + Ea
t , (6.1)

where E0 is the energy at impact (i.e. the sum of the drop’s kinetic and gravitational
potential energies). The subscripts g, k, γ and η denote gravitational potential, kinetic,
surface and viscous dissipation energies, respectively. Moreover, the superscripts d, f and
a represent drop, film and air, respectively. Finally, reference values to calculate �Eg and
�Eγ are at minimum Eg and Eγ at t = 0, respectively. Note that the contribution of the
total energy associated with air (Ea

t = Ea
k + Ea

η) is negligible compared to other energies
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Figure 7. Ohf independent inhibition of bouncing. (a) Typical drop impact dynamics on low-viscosity films.
The snapshots show the dimensionless rate of viscous dissipation per unit volume on the left and the magnitude
of dimensionless velocity field on the right. (b) Energy budgets for the two representative cases shown in
(a), normalized by the available energy at the instant of impact. Here, the subscripts g, k, γ and η denote
gravitational potential, kinetic, surface and viscous dissipation energies, respectively. The superscripts d, f and
a represent drop, film and air, respectively. The grey dashed line in each plot marks the instant when the normal
reaction force between the drop and the film is minimum, and represents the last time instant when the drop
could have bounced off the film. For all cases, (Wed, Ohd, Γ ) = (4, 0.034, 1).

(Ea
t (t/τγ = 4) ≈ 0.01E0). Readers are referred to Landau & Lifshitz (1987), Wildeman

et al. (2016), Ramírez-Soto et al. (2020) and Sanjay et al. (2022) for details of energy
budget calculations.

In both cases highlighted in figure 7, the magnitudes of the drop energy (the sum of
the drop’s kinetic, gravitational potential and surface energies) at the end of the rebound
cycle – that is, for t = 3.25τγ when Ohf = 0.01, and t = 2.65τγ when Ohf = 0.1 (vertical
grey dashed lines in figure 7) – are similar, as expected from the independence of ε with
Ohf . Note that the end of the cycle has been determined from the instant at which the
reaction force between the drop and the film is minimum (see Appendix E and Zhang
et al. 2022). Moreover, the energy budget evidences that the viscous dissipation in the
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Figure 8. Dimensionless film deflection δ̃f = δf /R measured from the initial film free surface (see the inset
in a) as a function of (a) the film thickness Γ , and (b) the film mobility Γ/Oh1/3

f in the DNS. The solid black

lines represent δf /R = Γ and δf /R = Γ/Oh1/3
f in (a,b), respectively. For all cases in this figure, Ohd = 0.034

and Wed = 4.

drop during the rebound is similar, indicating that the magnitude of the energy transferred
from the impacting drop to the film (the sum of the film’s kinetic, gravitational potential
and surface energies, and viscous dissipation) is not affected by the one order of magnitude
change in Ohf . Yet the distribution of the film energy is dramatically different in the two
cases that we consider. For Ohf = 0.1, the energy transferred to the film is mostly lost to
viscous dissipation, while for Ohf = 0.01, the energy stored in the film’s kinetic, surface
and potential components dominates. We stress here that the Ohf -independent behaviour
does not imply that dissipation is negligible. Indeed, the viscous dissipation in the film
accounts for approximately 40 % and 85 % of the total energy transferred to the film for
Ohf = 0.01 and 0.1, respectively. This difference in the film energy distribution hints at the
failure of our assumptions to neglect the film’s inertia and surface tension. The minimal
model is relevant only when the energy transferred to the liquid film is lost predominantly
to viscous dissipation.

Guided by the energy budget analysis in the above two extreme cases, we now evidence
the minimal model breakdown as the film mobility Γ/Oh1/3

f fails to describe the film
deflection δf . In figure 8, we report the normalized maximum film deflection δ̃f = δf /R
as a function of Γ (figure 8a) for Ohf in the range 0.01–2 while keeping Ohd constant.
For Ohf > 0.1, the deflection decreases with increasing Ohf , and the data collapses once
the horizontal axis is rescaled by Oh−1/3

f (figure 8b), confirming the relevance of the film
mobility. However, for lower film Ohnesorge number δ̃f scales with Γ independent of
Ohf , illustrating the limits of our hypotheses. Here, one might be tempted to replace
empirically the effective control parameter in our model ∝ Ohf Γ −3 with ∝ Γ , in light
of the δ̃f collapse with ∼Γ in the low Ohf regime. However, such a replacement still fails
to account appropriately for the kinetic and surface energies of the film. Indeed, low Ohf
films are associated with surface waves, and the maximum deflection δf might not be the
correct length scale to mimic their behaviour in a simplified model. As future work, it
would be interesting to couple a linearized quasi-potential fluid model (Lee & Kim 2008;
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Figure 9. Regime map in terms of the drop Ohnesorge number Ohd and dimensionless film thickness Γ for
Ohf < 0.1, showing the transitions between the different regimes identified in this work. Here, Γ1 (green
symbols) marks the transition from substrate-independent bouncing to substrate-dependent bouncing, whereas
Γ2 (red symbols) marks the transition from bouncing to non-bouncing (floating). The black dashed line
represents the substrate-independent asymptote for the bouncing to non-bouncing (floating) transition (4.7),
and the grey dashed line, depicting the inviscid drop asymptote for the bouncing to non-bouncing (floating)
transition, is drawn as a guide to the eye.

Galeano-Rios, Milewski & Vanden-Broeck 2017; Galeano-Rios et al. 2021) for the liquid
pool/film with a spring–mass–damper system for the liquid drop to investigate this regime
further.

7. Conclusions and outlook

In this work, we perform experiments and direct numerical simulations of the rebound of
an oil drop impacting on a deformable oil film. We elucidate the role of the drop and film
properties – the Ohnesorge numbers of the drop (Ohd) and the film (Ohf ), and the film
thickness (Γ ) – on the impact process.

For films with a low Ohnesorge number (i.e. Ohf < 0.1), figure 9 summarizes
the different regimes identified in this work. For small film thicknesses, we recover
the substrate-independent limit where bouncing is inhibited by the high viscous
dissipation in the drop (Ohd,c ∼ O(1); Jha et al. 2020). Increasing the film thickness
reduces the drop Ohnesorge number marking the bouncing to non-bouncing (floating)
transition as additional energy is transferred to the film, and similarly influences
the substrate-independent to substrate-dependent transition. In the inviscid drop limit,
bouncing stops once a critical film thickness (Γ2 ∼ O(1)) is reached, independent of Ohf .
Here, the invariance of the energy transfer from the drop to the film with Ohf remains to
be explained and deserves further study.

For high-Ohnesorge-number films (i.e. Ohf > 0.1), figure 10 summarizes the different
regimes identified in this work. Similar to the low Ohf case, increasing Ohd and Γ inhibits
bouncing. In contrast with the previous case, in the inviscid drop limit, the bouncing to
non-bouncing (floating) transition occurs at critical film thicknesses that depend on the
Ohnesorge number of the film (Γ2 ∼ Oh1/3

f ). We propose a minimal phenomenological
model describing the key aspects of this process. The background colours in figures 10(a)
and 10(b) illustrate the predicted values of the restitution coefficient ε (see (4.13))
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Figure 10. Regime map in terms of the drop Ohnesorge number Ohd and film mobility Γ/Oh1/3
f for

Ohf � 0.1, showing the transitions between the different regimes identified in this work. Here, Γ1 (green
symbols) marks the transition from substrate-independent to substrate-dependent bouncing, whereas Γ2 (orange
symbols) marks the transition from bouncing to non-bouncing (floating). The background contour illustrates
the theoretical values of the coefficient of restitution ε (see (4.13)) normalized with its (a) substrate-independent
limit ε∗ = ε(Γ/Oh1/3

f → 0) (see (B2)), and (b) inviscid drop and substrate-independent limit
ε0 = ε∗(Ohd → 0). The black solid lines shows the predicted bouncing to non-bouncing (floating)
transition using the phenomenological model (4.5)–(4.6), and the black dashed lines show the two asymptotes
(4.7) and (4.8) of bouncing to non-bouncing (floating) regimes. Finally, in (a), the grey solid line shows the
prediction for Γ1.

normalized with its substrate-independent (ε∗ = ε(Γ/Oh1/3
f → 0), see (B2)) and inviscid

drop and substrate-independent (ε0 = ε∗(Ohd → 0)) values, respectively. The model
predicts accurately the substrate-independent and inviscid drop asymptotes corresponding
to the bouncing to non-bouncing (floating) transition, i.e. Γ2. In the latter limit, the
model also captures the substrate-independent to substrate-dependent transition (i.e. Γ1).
Away from these asymptotes, the minimal model fails to predict Γ1 and Γ2. We attribute
this shortcoming to the simplified representation of the drop–film interactions in the
model. Nonetheless, notice that the predicted values of the restitution coefficient are very
close to zero beyond the bouncing to non-bouncing (floating) transition observed in the
simulations. We hypothesize that the model breakdown might be caused by the neglect
of gravity, which is known to inhibit bouncing (Biance et al. 2006) and may prevent the
take-off of drops with small upward velocities. We refer the reader to Sanjay, Chantelot
& Lohse (2023) for a detailed study of the role of gravity in inhibiting the bouncing of
viscous drops.

Finally, we stress that this study does not present an exhaustive exploration of all
bouncing regimes. For example, Lee & Kim (2008) and Galeano-Rios et al. (2021) have
shown that spherical hydrophobic solid spheres can bounce off deep low-viscosity pools.
Consequently, we hypothesize that the bouncing regime could resurrect at high Ohd, Γ

and low Ohf , evidencing non-monotonic energy transfer. It will be interesting to probe
such a regime in future work.
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Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.13. The
codes used in the present article are permanently available on GitHub (Sanjay 2022).
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Appendix A. Air layer rupture

We investigate drop bouncing off viscous liquid films that mimic atomically smooth
substrates. The occurrence of such rebounds is tied to the existence of a stable air layer,
enabling drop levitation. It is thus important to determine the conditions leading to air
film rupture in terms of our control parameters. Figure 11(a) illustrates the air layer break
up at large Weber numbers. The air film fails during drop spreading as the intervening
air layer drains below a critical thickness of the order of 10–100 nm, characteristic of the
range of van der Waals forces (Charles & Mason 1960; Chubynsky et al. 2020; Zhang
et al. 2021b). Figure 11(b) evidences the influence of the drop Ohnesorge number Ohd
on the coalescence transition. At low Ohd, the convergence of capillary waves at the drop
apex, during the retraction phase, can create an upward Worthington jet and an associated
downward jet due to momentum conservation (Bartolo, Josserand & Bonn 2006; Lee
et al. 2020; Zhang et al. 2022). This downward jet can puncture the air film and lead to
coalescence during the drop retraction. Finally, the air layer can also break due to surface
waves on low Ohf films (see figure 11c).

In summary, figure 11 shows that the critical Weber number beyond which the air layer
between the drop and the film ruptures is sensitive to the Ohnesorge numbers of both the
drop and the film (Tang et al. 2016, 2018), and that the bouncing to coalescence transition
can arrest the superamphiphobic-type rebounds discussed in this work. For completeness,
we also mention that a second coalescence transition occurs in our experiments, at times
at least one order of magnitude larger than that associated with drop rebound, when the air
film trapped below a floating drop drains (Lo et al. 2017; Duchemin & Josserand 2020).
The analysis of both these transitions is beyond the scope of the present study, and we
refer the reader to Lohse & Villermaux (2020) and Chubynsky et al. (2020) for further
discussion and review on this topic.
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Figure 11. Rupture of the air layer and subsequent coalescence of impacting drops with the liquid coating.
Rupture can occur due to: (a) impact as Wed increases; (b) downward jetting as Ohd decreases; and (c) film
distortions due to surface waves as Ohf decreases. For (a,c), Γ = 0.03, and for (b), Γ = 0.01 (dry-substrate
limit).

Appendix B. Substrate-independent bouncing

As the film thickness decreases or the film viscosity increases, the impact process becomes
independent of the film properties. In this limit, Γ/Oh1/3

f → 0, the phenomenological
model predictions for the contact time and restitution coefficient, (4.12) and (4.13), become

t∗c (Ohd) = tc(Ohd, Γ /Oh1/3
f → 0) = τγ

⎛
⎝ 2π√

4ck − c2
d Oh2

d

⎞
⎠ , (B1)

ε∗(Ohd, Wed) = ε(Ohd, Wed, Γ /Oh1/3
f → 0) = ε0(Wed) exp

⎛
⎝ −πcd Ohd√

4ck − c2
d Oh2

d

⎞
⎠ ,

(B2)

which are identical to the predictions obtained by Jha et al. (2020) for the impact of viscous
drops on a superhydrophobic surface.

Reducing (B1) to the case of low-viscosity drops (Ohd → 0), we get t0/τγ = π/
√

ck,
as expected from the water–spring analogy (Richard et al. 2002; Okumura et al. 2003).
We thus determine the prefactor ck by fitting the inviscid limit of our data, t0 = 2.2τγ

(figure 12a), yielding ck = (πτγ /t0)2 ≈ 2.
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Figure 12. Substrate-independent bouncing: variation of (a) the contact time t∗c normalized with the
inertio-capillary time scale τγ , and (b) the coefficient of restitution ε∗ with the drop Ohnesorge number Ohd .
The solid black lines represent (B1)–(B2). These predictions are consistent with those of Jha et al. (2020), and
set the prefactors ck and cd to 2.0 ± 0.1 and 5.6 ± 0.1, respectively. Here, Wed = 4 and Bo = 0.5.

Furthermore, applying a least squares fit to our experimental and numerical data for
the coefficient of restitution, which decay exponentially with increasing Ohd (figure 12b),
allows us to fix cd = 5.6 ± 0.1. Finally, the model predicts the existence of a critical
Ohnesorge number Ohd,c = 2

√
ck/cd ≈ 0.5 above which the drops do not bounce. This

asymptote is in quantitative agreement with our data (see the dashed grey lines in
figure 12).

Finally, we compare the above value of cd to that obtained by Jha et al.
(2020). To do so, we note that Jha et al. (2020) further reduced (B2) to
ε∗(Wed, Ohd) ≈ ε0(Wed) exp(−α Ohd), where α = 2.5 ± 0.5 fits their experimental data,
independent of the impact Weber number. The equivalent fitting parameter in our case is
α = (π/2)cd/

√
ck ≈ 6. This discrepancy can be attributed to the different values of the

critical Ohnesorge number Ohd,c that could stem from the Bond number variation between
the two cases: (Ohd,c, Bo) ≈ (0.8, 0.2) in Jha et al. (2020), and (0.5, 0.5) in this work.
Exploring the influence of Bo is beyond the scope of this work, and we refer the reader to
Sanjay et al. (2023) for detailed discussions.

Appendix C. Influence of the impact Weber number

Figure 13 describes the influence of the Weber number Wed on the drop impact process
for a representative case with Ohd = 0.034 and Ohf = 0.67. Both the contact time
(figure 13a) and the coefficient of restitution (figure 13b) are fairly independent of the
Weber number for Wed � 4. Furthermore, normalizing ε with its Wed-dependent value in
the dry-substrate limit ε∗(Ohd, Wed), at fixed Ohd (= 0.034 in figure 13), we observe a
collapse for Wed = 2–8, similar to that obtained by Jha et al. (2020). Readers are referred
to Sanjay et al. (2023) for detailed discussions on the mechanisms of the influence of the
Weber number on the coefficient of restitution.
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Figure 13. Influence of the impact Weber number on the rebound: variation of (a) the contact time tc
normalized with the inertio-capillary time scale τγ , (b) the restitution coefficient, and (c) the restitution
coefficient normalized with its dry-substrate value as a function of the dimensionless film thickness Γ .
Here, (Ohd, Ohf ) = (0.034, 0.67). In each panel, the solid black line represents the model prediction for
(ck, cd, cf ) = (2, 5.6, 0.46), and the vertical dashed grey line indicates Γ2, above which drops do not bounce. In
(a,b), black dashed lines show the Wed-dependent values in the dry-substrate limit at fixed Ohd , i.e. ε∗(Ohd =
0.034, Wed). Finally, in (c), the horizontal dashed grey line denotes the 0.9ε∗ criterion used to determine the
substrate-independent to substrate-dependent transition for bouncing drops.
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Figure 14. Experimental side-view snapshots at the instant of impact, t = 0. Each snapshot shows the wall
location denoted by a green horizontal line and the film free interface denoted by a red horizontal line. The film
thickness is estimated from the vertical difference between the two lines, which results in dimensionless film
thickness Γ = hf /R values (a) 0.05, (b) 0.11, (c) 0.23, and (d) 0.48.

Appendix D. Measuring the film thickness

Silicone oil films with thicknesses hf < 30 μm, are prepared using spincoating and
measured using reflectometry (Reizman 1965). Thicker films (hf > 30 μm) are prepared
by depositing a controlled volume of silicone oil on a glass slide. The film thickness is then
measured using side-view imaging by locating the vertical positions of the glass slide wall
(green line in figure 14) and the film free surface (red line in figure 14). The uncertainty in
the film thickness measurement using this method is about ±30 μm, which corresponds
to an uncertainty of about 3 pixels.

Appendix E. Measuring the restitution coefficient

In this appendix, we describe the procedure used to determine the restitution coefficient.
In experiments, we measure the drop’s maximum centre of mass height relative to the
undisturbed film surface to get the restitution coefficient as ε = √

2g(H − R)/V , where V
is the impact velocity. In simulations, we measure the coefficient of restitution as the ratio
of the take-off velocity vcm(tc) to the impact velocity V:

ε = vcm(tc)
V

, (E1)
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where tc denotes the contact time. The latter definition requires us to evaluate precisely
the contact time tc. This is difficult as a thin film of air is always present between the
drop and the film surface; we assume ideal non-coalescence between the drop and the
film. In simulations, we automate the detection of the end of apparent contact by taking tc
as the instant when the normal reaction force F(t) between the film and the drop is zero
(for details on the force calculation, see Zhang et al. 2022). If the centre of mass velocity
vcm(tc) is not in the upward direction (i.e. it is zero or negative), then we categorize the
case as non-bouncing.
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