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Abstract. We study a class of derived representations of a Lie algebroid. The dg-

category of these representations enhances the classical category of representations

in the sense that the cohomology objects of a derived representation are classical

representations. The adjoint complex is canonically an object of our category of

representations. Our main contribution is the construction of an extension of the

functor of de Rham- Lie cochains to this category, referred to as Crainic-Moerdijk -

cochains. We show that, when applied to the adjoint representation, we obtain the

Deformation Complex of Crainic and Moerdijk.

1. introduction

The adjoint representation of a Lie algebra g is of central importance in the deforma-

tion theory of g. Indeed, the differential graded Lie algebra controlling deformations

of g is equivalent to C∗Lie(g, g
ad). Lie algebroids can be viewed as globalisations of

Lie algebras, indeed a k-Lie algebroid over spec(k) is nothing but a Lie algebra. It is

desirable then to have a similar cohomological computation of the DGLA controlling

deformations of a Lie algebroid over R, or more generally over a smooth k-scheme

X. An elegant, if somewhat ad-hoc, solution to the computation of the deformations

of L is given in work of Crainic and Moerdijk, [3], in terms of their Deformation

Complex, Defk(L). We note however that it does not fit the general framework of

computing deformations as a special case of Lie (algebroid) cohomology, applied to a

suitable representation. Indeed, if one attempts this, a problem arises - the classical

definition of representation of L does not provide us with a suitable candidate for

an adjoint representation. In their work, [1], Abad and Crainic define the notion

of representation up to homotopy. These objects generalise classical representations

of L, and their cohomology objects are representations of L in the classical sense.
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Further, when L is equipped with the additional structure of a connection ∇, they

can define an adjoint representation and prove that it has the desired properties. We

view the additional choice of a connection ∇ as slightly unsatisfactory. In specifically

algebro-geometric contexts it is very unsatisfactory as the requisite connection need

not exist, indeed the Atiyah class of L provides an obstruction to existence. It is the

goal of this note to propose studying instead a different definition (appearing in the

paper [2] where it is also referred to as a representation up to homotopy), also weak-

ening the classical definition of a representation of L. Further, we define a suitable

cohomological complex attached to such an object, and show that in the special case

of the adjoint complex (which now exists canonically) we recover Defk(L). The basic

idea, present already in [2] and [1], is to impose a certain relation only homotopically.

This homotopy is part of the data of a derived representation in our sense. Crucially,

this extra data allows us to deform the notion of R-linear de Rham-Lie cochains,

providing us with a definition of cochains with values in a derived representation.

We stress here that one of our goals is to ensure that our constuctions are suited to

the algebro-geometric context.

2. Derived Representations

2.1. Basic Properties and Definitions. k will denote a field of characteristic 0

throughout and R will denote a finite type k-algebra, assumed smooth for simplic-

ity. We let L denote a Lie algebroid for (R, k), with anchor map ρ : L → ΘR :=

Derk(R,R). We will assume throughout that the L is projective as an R-module.

We will write LLie for the underlying Liek-algebra of L. Let us recall the notion of

representation of L.

Definition 2.1. We say that V is a pre-representation of L if it admits both an

R-module structure (written multiplicatively), and an LLie-module structure, written

[l,−], so that the relation

[l, rv] = r[l, v] + ρ(l)(r)v

holds identically. If in addition it holds identically that [rl, v] = r[l, v], then we say

that V is a representation of L. There are evident categories of representations and

pre-representations. We denote the category of representations Repk(L).
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Remark. We note here that we can sheafify the above definition to make sense of Lie

algebroids over a smooth k-scheme X, so that the above definition is the special case

of X = spec(R). All results proven in this note hold in this more general context,

although we will often work locally and assume that X is affine.

Remark. •
⊗

R endows the category of pre-representations with a symmetric

monoidal product.

• The R-linear dual of a pre-representation is naturally a pre-representation.

• The two term complex, ρ, naturally admits the structure of a (complex of)

pre-representations. It will be called the adjoint pre-representation and de-

noted ρad.

Definition 2.2. Let (V, ∂) be a cohomologically graded finite length complex of pre-

representations of L. We note that the remarks above imply that V [−1]⊗RΘR⊗RL∨

is naturally a pre-representation. A morphism of pre-representations,

ΓV : V → V [−1]⊗R ΘR ⊗R L∨,

is called a contraction map if the following relation holds identically:

[∂,ΓV ](v)(r, l) = [rl, v]− r[l, v].

Finally, we define a derived representation of L to be a tuple (V, ∂,ΓV ) as above.

There is an evident notion of morphism of derived representations and will denote

the category of derived representations as dRepk(ρ).

Remark. It is perhaps more natural to encode the contraction map as a morphism

Ω1
R ⊗R L −→ EndR(V, V )[−1],

with the property that [∂,Γ(df ⊗ l)] = [fl,−] − f [l,−]. The formulation of Defini-

tion 3.2 is however more convenient from the point of view of Γ-symbols, which we

introduce below.

Remark. We list here some properties of the category dRepk(ρ), all of these properties

can be verified immediately from the definitions.

• There is an embedding Ch(Repk(L))→ dRepk(ρ) defined by demanding the

contraction map Γ vanish.
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• There are natural functors H i(−) : dRepk(ρ)→ Repk(L). Indeed, Γ witnesses

the relation [rl,−] = r[l,−] homotopically.

• Defining ΓV⊗RW := ΓV ⊗R idW + idV ⊗R ΓW endows dRepk(ρ) with the

structure of a symmetric monoidal category.

• The adjoint complex, ρ, naturally admits the structure of a pre-representation.

The contraction Γρ, is defined to be the natural map

Γρ := idΘR
⊗ coevL : ΘR → ΘR ⊗R L ⊗R L∨ ∼= L ⊗R ΘR ⊗R L∨,

where coevL is dual to the pairing between L and the dual L∨.

We state now the main theorem of this note, the proof and relevant definitions will

be given further below.

Theorem 2.1. The functor of dR-Lie cochains admits a natural extension to

a functor ( Crainic-Moerdijk-cochains)

C∗CM(ρ,−) : dRepk(ρ)→ Ch(k).

This functor preserves quasi-isomorphisms and thus induces a functor on the

corresponding (∞, 1)-localised categories. Moreover, there is an isomorphism

C∗CM(ρ, ρad) ∼= Defk(L).

2.2. De Rham-Lie Cochains for Derived Representations. In this subsection,

which forms the technical heart of this note, we will show how to extend the functor

of de Rham-Lie cochains (see Definition 3.4 below),

C∗dR,Lie(L,−) : Ch(Repk(L))→ Ch(k),

to a functor,

C∗CM(ρ,−) : dRepk(ρ)→ Ch(k).

The subtle point is that we can no longer naively take alternating R-multilinear

maps from L into V as our cochains. This is because the Lie-cohomology differential

will not preseve the R-multilinearity property, as the equation [rl,−] = r[l,−] now

only holds in the homotopical sense. The solution to this problem involves defining
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the notion of Γ-symbol for a k-multilinear map D ∈ Homk(∧nkL, V ). This is heavily

inspired by the Deformation Complex of Crainic-Moerdijk.

Definition 2.3. Let V and W be two R-modules, equipped with a map

Γ : W → V ⊗R ΘR ⊗R L∨,

and let D ∈ Homk(∧nkL, V ) and E ∈ HomR(∧n−1
k L,W ). We say that E is a Γ-

symbol for D, and write E ∈ SymbΓ(D), if the following equation holds identically

for all r ∈ R, li ∈ L;

D(rl1 ∧ l2 ∧ ... ∧ ln) = rD(l1 ∧ ... ∧ ln) + Γ(E(l2 ∧ ... ∧ ln))(r, l1).

Remark. We think of the E as measuring the difference, relative to Γ, between D and

an R-multilinear function. In particular, note that for Γ = 0, the relation ensures

that D is R-multilinear.

Of course, our choice of notation here is meant to be suggestive - the contraction

map, ΓV , attached to a an object V ∈ dRepk(ρ), gives us a means by which to require

that LLie-cochains valued in V be almost R-multilinear. For convenience we recall

here the definition, for a Lie-algebra g (resp. Lie algebroid L), of the cohomology

with coefficients in a cohomologically graded complex of representations. See [3] for

a more detailed reference, and in particular one taking more care with signs.

Definition 2.4. Let (V, ∂V ) be a complex of g-representations. Then the n-th space

of g-cochains with coefficients in V is⊕
i+j=n

Homk(∧ikg, V j).

The differential is δtot = δLie + ∂V , where we define

δLieD(x1 ∧ ... ∧ xn+1) =
∑
i

(−1)i[xi, D(x1 ∧ ... ∧ x̂i ∧ ... ∧ xn+1)]

+
∑
i,j

(−1)i+jD([xi, xj] ∧ ... ∧ x̂i ∧ ... ∧ x̂j ∧ ... ∧ xn+1).

The resulting complex is denoted C∗Lie(g, V ).
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If L is a Lie algebroid over R and V a representation of L, then the sub-space of

C∗Lie(LLie, V ) consisting of R-linear cochains is preserved by the differential. We

denote the resulting complex C∗dR,Lie(L, V ).

We now define the spaces of n-cochains for the functor C∗CM(ρ,−).

Definition 2.5. Let V ∈ dRepk(ρ) be a derived representation with contraction map

ΓV . We define Cn
Γ,Lie(LLie, V ) to be the subspace of Cn

Lie(LLie, V ) consisting of those

tuples

{(Di,j) ∈
⊕
i+j=n

Homk(∧ikLLie, V j)|Di−1,j+1 ∈ SymbΓVj+1 (Di,j)}.

We come now to the main technical result of this note, namely that the Lie-cohomology

differential preserves the Γ-symbol condition. In order to simplify notation we will

now write simply SymbΓ, where this is to be understood as SymbΓVj for the appro-

priate index j.

Lemma 2.2. The differential δtot maps Cn
Γ,Lie(LLie, V ) to Cn+1

Γ,Lie(LLie, V ). Explicitly,

if (Di,j) ∈ Cn
Γ,Lie(LLie, V ), then

δLie(Di−1,j+1) + ∂V (Di,j) ∈ SymbΓ(δLie(Di,j) + ∂V (Di+1,j−1)).

Proof. We ignore signs, and begin by grouping the terms arising in

(δLieD)(rl1 ∧ l2 ∧ ... ∧ ln+1)

into four different types.

(1) Terms of the form

D([li, lj] ∧ rl1 ∧ ... ∧ l̂i ∧ ... ∧ l̂j ∧ ... ∧ ln+1)

for 1 different from i and j,

(2) those of the form

[li, D(rl1 ∧ ... ∧ l̂i ∧ ... ∧ ln+1)]

for i not equal to 1,

(3) those of the form D([rl1, li] ∧ ... ∧ ln+1)
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(4) and finally the remaining term

[rl1, D(l2 ∧ ... ∧ ln+1)].

Recall that by assumption Di−1,j+1 is a Γ-symbol for Di,j. Terms of type (1) pose

no problem, the defect of R-linearity is exactly given by the symbol in such cases.

Already for types (2) and (3) we obtain extra terms not accounted for in the Γ-

symbol relation. The point is that such cancel out. Indeed, simplifying the notation

somewhat liberally as we go, we expand type (2) terms using the definition of a

Γ-symbol as

[li, rDi,j(l1 ∧ ...) + Γ(Di−1,j+1)(l2 ∧ ... ∧ ln+1)(r, l1)] =

r[li, D] + ρ(li)(r)D + [li,Γ(D)].

We refer to these three subtypes of terms as of types (2.1), (2.2) and (2.3) respectively.

Similarly we further expand the summands of type (3) to obtain

D(ρ(li)(r)l1 ∧ ...) +D(r[l1, li] ∧ ...) =

ρ(li)(r)D + Γ(D)(ρ(li(r), li) + rD([l1, li] ∧ ...) + Γ(D)(r, [l1, li]),

which subtypes of summands we refer to as of type (3.1),...(3.4). Summands of types

(2.1) and (3.3) are easily disposed of. Summands of type (2.2) cancel with those of

type (3.1). This leaves those of type (2.3), (3.2) and (3.4). At this point we pause

to record a relation between Γ and ρ, which is an immediate consequence of the

assumption that

ΓV : V → V [−1]⊗R ΘR ⊗R L∨

is a map of pre-representations. Explicitly, for all tuples (v, r, l1, l2), we have a relation

[l1,Γ(v)(r, l2)] = Γ([l1, v])(r, l2) + Γ(v)(ρ(l1)(r), l2) + Γ(v)(r, [l1, l2]).

Applying this relation to the sum of terms of types (2.3), (3.2) and (3.4) we see that

they cancel leaving only terms of the form Γ([li, Di−1,j+1])(r, l1) which accounts for

the remaining summands of δLieDi−1,j+1. To prove the lemma, we must now account

for summand (4), as well as for ∂Di+1,j−1 and ∂Di,j. The contraction relation for Γ

immediately implies the desired result and thus we are done. �
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Remark. We note now that we can functorially equip the functor C∗CM(ρ,−) with

an increasing filtration (finite when restricted to derived representations of finite

cohomological amplitude) called the Hodge filtration, and denoted Fhdg. Namely,

FnhdgC∗CM consists of those cochains given by tuples (Di,j)i,j so that for all i < n we

have Di,j = 0.

We record now an obvious lemma, which makes precise the idea that our cochain

complex consists of k-linear cycles which are almost R-linear.

Lemma 2.3. We have an isomorphism of complexes of k-modules,

GrjFhdg
C∗CM(ρ, V ) ∼= MapR(∧jRL, V ).

Proof. The only thing to note is that the lowest, with respect to the Hodge filtration,

non-zero term must be R-linear by the Γ-symbol condition. �

Theorem 2.4. The functor of de Rham- Lie cochains admits a canonical extension

to the category of derived representations,

C∗CM(ρ,−) : dRepk(ρ)→ Ch(k).

Moreover, this functor takes quasi-isomorphisms to quasi-isomorphims.

Proof. We set C∗CM(ρ, (V, ∂,Γ)) := C∗Γ,Lie(LLie, V ) with the differential constructed

above. It remains to be checked that in the case of a complex of classical represen-

tations of L we recover the usual definition. Recall that in this case we have Γ = 0,

and so the Γ-symbol relation says that each Di,j is in fact R-multilinear, and so we

recover the classic definition. Finally, one checks that exact triangles of complexes

of R-modules are sent to exact triangles of complexes of vector spaces by noting

that this is true upon taking the associated graded with respect to the filtation Fhdg,
which in turn is true because L is projective. This implies that quasi-isomorphisms

map to quasi-isomorphisms immediately. �

Corollary 2.1. Let V be a derived representation and recall that all the cohomol-

ogy objects H i(V ) are classical representations. Then we have a convergent spectral

sequence

H i
dR,Lie(ρ,H

j(V )) =⇒ H i+j
CM(ρ, V ).
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Proof. One considers the canonical filtration on V , with associated graded given by

H i(V )[−i] in degree i and takes the associated spectral sequence. �

We record now a simple lemma, which will be of use in what follows;

Lemma 2.5. The functor C∗CM(ρad,−) of cochains is symmetric monoidal, that is

to say there is a natural morphism

C∗CM(ρad, V1)⊗ C∗CM(ρad, V2)→ C∗CM(ρad, V1 ⊗ V2).

Proof. The functor of cochains for the underlying Lie algebra LLie is symmetric

monoidal and one can easily check that the Γ-symbol condition is preserved. �

Theorem 2.6. We have an isomorphism of complexes (in fact of differential graded

Lie algebras),

C∗CM(ρ, ρad) ∼= Defk(L),

between the dR-Lie cochains with coefficients in the adjoint derived representation

and the Deformation Complex of Crainic-Moerdijk ([3]).

Proof. This can be confirmed very easily. We note that the DGLA structure exists as

ρad is a Lie algebra object in dRepk(ρ) and C∗CM(ρad,−) is symmetric-monoidal. �

Remark. As mentioned in the introduction, the DGLA Defk(L) is known, by work

of Crainic-Moerdijk ([3]), to control deformations of the Lie algebroid L and so the

above is a generalisation of the well known cohomological description of deformations

of a Lie algebra.

Corollary 2.2. If V is a representation of L, then the DGLA Defk(L) acts on

cochains with values in L

Proof. We note that this result is proposition 6 in subsection 4.8 of [3]. In our

language a strengthening holds, the Lie algebra object ρad in dRepk(ρ) acts as a Lie

algebra on any module. The result follows from taking cochains. �
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3. Comparisons With Other Constructions In The Literature

We should say something about how the notion of module studied in this paper

compares with some other homotopical weakenings of Lie algebroid representations.

We will focus mostly on the case of Vaintrob’s construction from [7], as it is the

most suited to the algebraic context. Indeed, as mentioned in the introduction, the

definition of [1] does not produce an adjoint module in the algebraic context. We

stress again that this is not merely an issue of non-canonicity, a connection on L need

not exist. For example, one cannot define the adjoint module for the Lie algebroid

corresponding to a Poisson structure on a smooth projective surface of general type,

which does not admit a connection on its canonical bundle (whence the sheaf of

forms certainly cannot admit a connection.)

There is also a definition given in the paper [4], which again relies on some construc-

tions which need not exist algebraically - for example see the notion of horizontal lift

in definition 2.10 of loc. cit, again there are algebro-geometric obstructions to the

existence of such.

3.1. Vaintrob’s Lie Algebroid Modules. In the paper [7] a notion of module,

studied further in work of Mehta, [6], is given. In spirit it is essentially an instance

of Koszul duality, and in the special case of the tangent Lie algebroid it goes back

to Kapranov in [5]

Definition 3.1. A weak module in the sense of [Vai] is defined to be a module over

the differential graded algebra A := C∗dR,Lie(L, R). The category of such will simply

be denoted A−modk.

Remark. In [6] these are referred to as Lie algebroid modules.

We note that

• a weak moduleM has an associated cohomology, which is just the cohomology

of the underlying differential graded vector space M ,

• there is a good notion of adjoint module, given by the differential graded Lie

algebra, Der(A), of derivations of the differential graded algebra (DGA) A,
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• the resulting cohomology is isomorphic to the deformation cohomology of L,

• there is a functor Repk(L) → A obtained by taking cochains with values in

M .

With an eye to comapring the two approaches, let us note that the construction of

cochains in this note can be seen as a functor from dRepk(ρ) to the category A−modk
of weak modules.

Lemma 3.1. The functor C∗CM(ρ,−) is naturally valued in A−modk. It preserves

cohomology and takes the adjoint module in dRepk(ρ) to the adjoint module in A−
modk.

Proof. Recall that dRepk(ρ) is symmetric monoidal with unit object the unit rep-

resentation of L. The lemma now follows from the fact that C∗CM is symmetric-

monoidal and that it returns A upon application to the unit L-module. That coho-

mology is preserved is essentially tautological and that the respective adjoint modules

match up can be found in [3] (subsection 2.5 corollary 1.) �

So we have seen that the obvious innovation associated to these two notions of module

(i.e. the canonical construction of an adjoint module) match up functorially. A

notable difference between the two notions arises when one considers the appropriate

notion of quasi-isomorphism in the respective categories. In dRepk(L) we simply

take as our quasi-isomorphisms those maps of derived representations which are

quasi-isomorphisms of the underlying complexes of vector spaces. Now this is very

simple, and one would perhaps like to take it as the definition of quasi-isomorphism

in A−modk. However, if one does this the natural map Repk(L)→ A−modk will

lose a lot of information, whence the appropriate notion of quasi-isomorphism must

be more complicated than that in dRepk(L). Indeed the natural functor

C∗dR,Lie(L,−) : Repk(L)→ A−modk,

will send some non-zero objects to zero. For a simple example one could take the

TC∗-module corresponding to the line bundle O with flat connection ∂z − λ
z
, where λ

is non-integral.
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4. example computations

Let us compute deformation cohomology in some extreme cases, using the fact that

is is cohomology with coefficients in the derived representation ρad, in the sense

described in this paper.

• Let us take L := TX , the tangent Lie algebroid to a smooth scheme X. Then

the anchor map is the identity, ρad is contractible, and thus cohomology

vanishes by Theorem 3.4. Note that this is corollary 2 in subsection 4.2 of

[3].

• Let F ⊂ TX be a foliation, then ρad is quasi-isomorphic to ν[−1], a shift of the

Bott representation, whence we obtain a shift of cohomology with coefficients

in ν. Note this is also proposition 4 in section 4.5 of [3].

• Let L be the Lie algebroid associated to a constant rank infinitesimal action of

a Lie algebra g on a scheme X. Then Theorem 3 of subsection 4.7 of [3] gives a

long exact sequence relating deformation cohomology of L with cohomologies

in the isotropy Lie algebra and the normal bundle to the induced foliation.

This is immediate from the spectral sequence of corollary 3.1. Indeed the

relevant complex has a length two filtration, so really we are dealing with a

long exact sequence.

• Let L be a line bundle on a smooth scheme X, and consider the Atiyah Lie

algebroid AtX(L), i.e. the differential operators on L with order at most

1. Then the anchor map AtX(L) → TX is the (surjective) symbol map.

The adjoint complex is thus isomorphic to OX [0], whence we obtain coho-

mology with coefficients in the structure sheaf, H∗(X,OX). Recalling that

H1(X,OX) controls first order deformations of any line bundle, we deduce

that all first order deformations of AtX(L) are induced from those of L. A

similar result holds for the Atiyah algebroid of a higher rank vector bundle

E, we obtain cohomology H∗(X,EndX(E)) as deformation cohomology and

again we see that all deformations of the algebroid are induced from those of

the bundle.
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Let us further say something about CM-cochains in the case of a derived module of

length greater 2, unforturnately we are not able to prove the following so we state

it as a conjecture. In fact that there should be a theory of derived representations

and their cochains resulting in an isomorphism as claimed was the initial inspiration

for this note. We write H∗CM for the cohomology of C∗CM and refer to it as CM-

cohomology.

Conjecture 4.1. There is an isomorphism H∗CM(ρ, Sym(ρad)) ∼= HH∗(UR(L)) be-

tween CM-cohomology with coefficients in the symmetric algebra of the adjoint module

and Hochschild cohomology of the universal enveloping algebra of L.

Remark. • If R = k, so that L is just a Lie algebra g, this is a well known

corrollary of the PBW theorem and a computation of Chevalley-Eilenberg.

• More generally if the anchor map ρ vanishes, so that L is an R-Lie algebra,

one can check that this amounts to a combination of the Hochschild-Kostant-

Rosenberg isomorphism and the corresponding result for Lie algebras.

• If L is the tangent Lie algebroid then ρad vanishes, so Sym(ρad) is the unit

L module and the universal enveloping algebra is the algebra of differential

operators on X = spec(R). In this case it is well known that one obtains de

Rham cohomology of X for both spaces.
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