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"The role of the infinitely small in nature is infinitely great."
Louis Pasteur
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Summary
All animals and plants are colonized by microorganisms, whereby different host
species contain different microbial populations. These microbial communities form
long-term relationships with their hosts. Understanding the genomic basis underlying
these relationships provides insight into the possible coevolution between hosts and
their microbiota. This thesis aims to contribute to a deeper understanding of the
forces shaping the microbiome. 
In Chapter 1, we identify host genomic regions influencing bacterial traits in mice.
We implement a unique panel of hybrids of two house mouse subspecies, the Eastern
Mus musculus musculus, and the Western Mus musculus domesticus. This panel
enables us to simultaneously investigate within- and between-species host genetic
effects with high resolution due to many generations of natural recombination. We
genotyped 320 second generation hybrid intercrossed mice and preformed 16S rRNA
profiling at the DNA and RNA level, which represent the standing and the active
communities, respectively. We identify a high number of mucosa-associated bacterial
taxa with significant heritability estimates, particularly for 16S rRNA transcript-based
traits. Interestingly, heritability estimates also positively correlate with cospeciation
rate estimates. By using a genome-wide association study (GWAS) with bacterial
abundances as traits, we were able to identify 443 loci contributing to variation in 123
taxa and identify promising candidate genes and pathways. Moreover, we show
significant overlap with previous gut microbiome QTL studies performed in
reconstituted lab mice. Taken together, these results indicate a unique genetic
architecture for cospeciating taxa, a clear enrichment for several classes of human
disease, and identify important functional categories including innate immunity and
G-protein-coupled receptors, whose role in host-microbe interactions diverge as new
species form. 
In Chapter 2, we embark on functionally characterizing the association between
ASV35 (Bacteroides acidifaciens/uniformis) and a candidate gene, Sirtuin 5 (Sirt5).
Sirt5 belongs to a family of NAD+-dependent deacylases and is involved in numerous
metabolic pathways, with its most characterized role in urea cycle activation. B.
acidifaciens is a species known to oscillate depending on feeding time and it belongs
to the phylum Bacteroidetes, which is linked with host metabolism. We characterized
the gene's role in association with bacteria in a circadian context in two model
organisms, Mus musculus (house mouse) and Drosophila species (fruit fly). By
combining the results of both model organisms, we provide evidence for a conserved
role of sirtuins in regulation of bacterial abundance, possibly through metabolic
(nitrogen) homeostasis, whereby SIRT5 acts as a metabolic sensor in a circadian
NAD+-dependent manner. 
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Chapter 3 explores the possibility of using shotgun metagenome sequencing on
cecum tissue samples by comparing the efficiency of three commercially available
microbial DNA enrichment kits (LOOXSTER, NEBNext, and Molzym). The
relative lack of bias, combined with the possibility to determine the functional
capabilities as well as the taxonomic composition make shotgun metagenome
sequencing an effective tool for characterizing the microbiome. As the microbial
community associated with the cecum tissue has proven to be more stable and more
heritable, cecum tissue samples would be ideal for quantitative studies, such as
microbiome GWAS. However, the high amount of host DNA in tissue samples
makes it unfeasible to achieve enough coverage in a cost effective manner. Thus, the
host DNA must be removed prior to shotgun sequencing. Overall, we found that
the enrichment kits did not sufficiently remove host DNA in order to reach
adequate sequencing depth. Moreover, the kits introduce a bias on the microbial
community composition, making them not suitable for use in quantitative studies. 
In sum, these results suggest a strong impact of host-genetics on murine gut
microbiome variation. We showed that host genes can influence the bacterial
abundances through possible metabolic (i.e., nitrogen) homeostasis and that this
interaction is conserved across species. However, the exact functional mechanism
remains unresolved. These results may lead to further in-depth investigation of host
loci associated with specific bacterial taxa in order to determine underlying functional
pathways. 
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Zusammenfassung
Alle Tiere und Pflanzen werden von Mikroorganismen besiedelt, wobei verschiedene
Wirtsarten jewils unterschiedliche Mikrobenpopulationen beherbergen. Diese
Gemeinschaften aus Mirkoorganismen stehen in einer langfristigen Beziehung zu
ihren Wirten. Die Betrachtung dieser Interaktionen auf Ebene des Genoms gibt
Aufschl$sse $ber die m%gliche Koevolution zwischen Mikrobiom und
Wirtsorganismus. Ziel dieser Arbeit ist es, zu einem tieferen Verst&ndnis der Einfl$sse
auf das Mikrobiom beizutragen.
Kapitel 1 behandelt die Indentifizierung von Regionen im Wirtgenom, welche die
Zusammensetzung des Mikrobioms bei M&usen beeinflussen. Wir verwendeten eine
spezifische Auswahl von Hybriden zweier Hausmaus-Unterarten, der im %stlichen
Europa verbreiteten Mus musculus musculus und zum anderen der im Westen
dominaten Mus musculus domesticus, welche es uns aufgrund
generations$bergreifender nat$rlicher Rekombination erm%glichte genetische Effekte
innerhalb und zwischen den Wirtsarten zu beobachten. Wir genotypisierten 320
gekreuzte Hybridm&use der zweiten Generation und erstellten ein 16S rRNA-Profil
auf DNA- und RNA-Ebene der residenten und aktiven mikrobiellen
Gemeinschaften. Wir konnten eine gro'e Anzahl von Schleimhaut-assoziierten
Bakterientaxa mit signifikanten Heritabilit&tssch&tzungen identifizieren, insbesondere
f$r 16S rRNA-Transkript-basierte Merkmale. Erw&hnenswert ist, dass die gesch&tzte
Heritabilit&t positiv mit der gesch&tzten Kospeziationsrate korrelierte. Durch eine
genomweiten Assoziationsstudie (GWAS) mit bakteriellen Abundanzen als Merkmal
konnten wir 443 Loci identifizieren, die zu Variation in 123 Taxa beitragen, und
vielversprechende Kandidatengene und Signalwege bestimmen. Dar$ber hinaus
ergaben sich erhebliche (berschneidungen mit fr$heren QTL-Studien zum
Darmmikrobiom, die an rekonstituierten Laborm&usen durchgef$hrt wurden. Im
Endeffekt deuten diese Ergebnisse auf eine einzigartige Genarchitektur f$r
kospeziierende Taxa hin, auf eine deutliche H&ufung mehrerer menschlicher
Erkrankungen und auf wichtige funktionelle Bereiche wie die angeborene Immunit&t
und G-Protein-gekoppelte Rezeptoren, deren Funktionen bei der Interaktion
zwischen Wirt und Mikrobe mit der Entstehung neuer Arten diversifiziert wurden.
Darmmikrobiom, die an rekonstituierten Laborm&usen durchgef$hrt wurden.
Insgesamt weisen diese Ergebnisse auf eine einzigartige genetische Architektur f$r
kospeziierende Taxa hin, auf eine deutliche Anreicherung f$r mehrere Klassen
menschlicher Krankheiten und auf wichtige funktionelle Kategorien wie die
angeborene Immunit&t und G-Protein-gekoppelte Rezeptoren, deren Rolle bei den
Interaktionen zwischen Wirt und Mikrobe mit der Entstehung neuer Arten
divergiert.
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In Kapitel 2 befassen wir uns mit der funktionellen Charakterisierung der
Verbindung zwischen ASV35 (Bacteroides acidifaciens/uniformis) und einem
Kandidaten-Gen, Sirtuin 5 (Sirt5). Sirt5 geh%rt zu einer Familie von NAD+-
abh&ngigen Deacylasen und ist an zahlreichen Stoffwechselwegen beteiligt, wobei
seine charakteristischste Rolle die Aktivierung des Harnstoffzyklus ist. B. acidifaciens
ist eine Spezies, von der bekannt ist, dass sie in Abh&ngigkeit von der
Nahrungsaufnahme oszilliert, und sie geh%rt zum Stamm der Bacteroidetes, der mit
dem Wirtsmetabolismus verkn$pft zu sein scheint. Wir charakterisierten die Rolle
des Gens in Assoziation mit Bakterien in einem zirkadianen Kontext in zwei
Modellorganismen, Mus musculus (Hausmaus) und Drosophila (Fruchtfliege). Durch
die Kombination der Ergebnisse beider Modellorganismen belegen wir eine
konservierte Funktion der Sirtuine bei der Regulierung der Bakterienzahl,
m%glicherweise durch metabolische (Stickstoff-) Hom%ostase, wobei SIRT5 als
metabolischer Signalgeber in einer zirkadianen, NAD+-abh&ngigen Weise wirkt. 
In Kapitel 3 wird die Verwendung der Shotgun-Metagenom-Sequenzierung an
Z%kum-Gewebeproben durch den Vergleich der Effizienz von drei kommerziell
erh&ltlichen Kits zur Anreicherung mikrobieller DNA (LOOXSTER, NEBNext
und Molzym) untersucht. Die relative Fehlerfreiheit in Verbindung mit der
M%glichkeit, sowohl die funktionellen F&higkeiten als auch die taxonomische
Zusammensetzung zu bestimmen, machen die Shotgun-Metagenom-Sequenzierung
zu einem effektiven Instrument zur Charakterisierung des Mikrobioms. Da sich die
mikrobielle Gemeinschaft, die mit dem Z%kumgewebe assoziiert ist, als deutlich
stabiler und heritabler erwiesen hat, w&ren Z%kumgewebeproben ideal f$r
quantitative Studien, wie z. B. Mikrobiom-GWAS. Aufgrund des hohen Anteils an
Wirts-DNA in den Gewebeproben ist es jedoch nicht m%glich, eine ausreichende
Abgrenzung auf kosteneffiziente Weise zu erreichen. Daher musste die Wirts-DNA
vor der Shotgun-Sequenzierung entfernt werden. Insgesamt stellten wir fest, dass die
Anreicherungskits die Wirts-DNA nicht ausreichend reduzieren, um eine
ausreichende Sequenzierungsg$te zu erreichen. Au'erdem stellten die Kits die
Komposition der mikrobiellen Gemeinschaft vezerrt dar, so dass sie sich nicht f$r
quantitative Studien eignen. 
Zusammenfassend deuten diese Ergebnisse auf einen starken Einfluss der
Wirtsgenetik auf die Variabilit&t des Darmmikrobioms der Maus hin. Wir konnten
zeigen, dass Wirtsgene die Abundanzen von Bakterien durch eine m%gliche
Stoffwechselhom%ostase (z. B. Stickstoff) beeinflussen k%nnen und dass diese
Interaktion arten$bergreifend konserviert ist. Der genaue Funktionsmechanismus ist
jedoch noch nicht gekl&rt. Diese Resultate k%nnten zu einer genaueren
Untersuchung von Wirtsloci in Verbindung mit bestimmten Bakterientaxa f$hren,
um die darunter liegenden Funktionsmechanismen zu kl&ren. 
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General introduction

Animals evolved in a bacterial world, with bacterial cells predating animals by * 3
billion years (Fig. 1) (Knoll, 2003; McFall-Ngai et al., 2013). Therefore, it is not
surprising that every animal harbors a complex community of microorganisms and
that they are likely shaped by interactions with them throughout their evolution.
(Margulis, 1991; Zilber-Rosenberg and Rosenberg, 2008; McFall-Ngai et al., 2013).
However, these exact interactions remain largely unknown. 

Figure 1: Timeline of the evolutionary history of 
life. The timeline illustrates the major events in 
the evolution of life starting with the formation of 
the earth until the emergence of mice (5.5 Mya) 
and modern humans (0.3 Mya). Figure adapted 
from Doms et al., 2018. 

In this thesis, I first investigate the genetic basis underlying the host-microbiota
relationships to provide insight into possible coevolution between hosts and their
microbiota. Then, I perform fine-scale characterization of a candidate gene associated
with bacterial abundance in two model organisms. Finally, I explore the possibility of
using shotgun metagenome sequencing on mouse tissue samples to provide an
alternative to feces samples, as the tissue-associated bacterial community is more stable
and heritable. 
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1. On the origin of microbiome research
The word 'microbiome' was first mentioned by Whipps and colleagues in 1988 and
who defined it as "a characteristic microbial community occupying a reasonably well-
defined habitat which has distinct physio-chemical properties and not only refers to
the microorganisms involved, but also encompasses their theaters of activity" (Fig. 2)
(Whipps et al., 1988). Other definitions have surfaced and popularized the term, such
as by Nobel laureate Joshua Lederberg in 2001, who describes microbiomes within an
ecological context as "a community of commensal, symbiotic, and pathogenic
microorganisms within a body space or other environment" (Lederberg and McCray,
2001), or by Marchesi and Ravel, who defined it as "the entire habitat, including the
microorganisms (bacteria, archaea, lower and higher eukaryotes, and viruses), their
genomes (i.e., genes), and the surrounding environmental conditions" (Marchesi and
Ravel, 2015). However, the original definition by Whipps et al. is still the most
comprehensive and captures the complexity of the microbiome and the diverse facets
of its ecology and evolutionary biology (Fig. 2; Berg et al., 2020). 

Figure 2: A diagram illustrating the makeup of the word microbiome, which includes both the micro-
biota (community of bacteria) and their “theatre of activity” (structural components, metabolites/signal
molecules, and ambient circumstances). Figure from "Microbiome definition re-visited: old concepts
and new challenges" by Berg G. et al., 2020, Microbiome (8), https://doi.org/10.1186/
s40168-020-00875-0. Article is licensed under a Creative Commons Attribution 4.0 International Li-
cense (http://creativecommons.org/licenses/by/4.0/). 
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The term 'microbiota' can be traced back to as early as the 1800s (Lockyer, 1869) and
has been in common use in the last 50 years. We define 'microbiota' here as the
collection of microorganisms in a given environment. While the terminologies are
relatively novel to our scientific language, the fundamental principles and significance
of microbiome research date back to the early days of microbial ecology and to Sergei
Winogradsky in the 1800s (Dworkin, 2012). While piecing together the microbial
involvement in the nitrogen fixation cycle, Winogradsky realized the
interconnectedness of microorganisms, where microbes occupy niches created by their
neighbors activities and use the products of one metabolic pathways as substrates for
another. He advocated for the need to study microbes in their natural environment
(Winogradsky, 1949), essentially founding microbial ecology as an avenue of research.
Microbiome research has skyrocketed during the last decade. These advancements
have been largely driven by the substantial cost reduction of high-throughput
sequencing and the expansion of computational power, which has resulted in a mass
of data that can be effectively handled on commonly available equipment. Our
understanding of animal and environmental microbiomes has grown tremendously as a
result of this data, and new discoveries are being produced on a daily basis.

2. Cospeciation and coevolution of the metaorganism
Essentially all animals and plants are colonized by microorganisms, with different host
species having different microbial populations. These microbial communities form
long-term relationships with their hosts and can have beneficial effect on the host's
fitness, for example by providing nutrients (Rowland et al., 2018) or protection
against pathogen invasion and colonization (Pickard et al., 2017). The bacteria, on the
other hand, rely on the host to provide nutrients and maintain a stable environment
(Rowland et al., 2018). These close interactions have often been used as evidence for
coevolution between the host and their gut bacteria. However, coevolution occurs
when two or more species reciprocally affect each other's evolution through the
process of natural selection (Futuyma, 1983; Thompson, 1994; Page, 2003). A typical
example of coevolution is seen in a predator-prey relationship, where prey develops
adaptations to avoid predators and predators acquire additional adaptation in return.
Cospeciation (or codiversification) is a form of coevolution in which one species'
speciation dictates the speciation of another (Page, 2006). This is commonly studied in
host-parasite relationships, when two hosts of the same species speciate, the parasite is
no longer able to swi+h between those two hosts and thus, prevents the parasite
populations from interacting and mating, and will ultimately lead to speciation within
the parasite. In 1913, Heinrich Fahrenholz argued that when cospeciation occurs, the
phylogenies of the host and parasite will eventually become congruent, or mirror
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each other (Robert C. King, 2007). Host swi+hing, extinction, independent
speciation, and other ecological processes, on the other hand, can change host-parasite
phylogenies, making cospeciation more difficult to identify (Fig. 3). These co-
phylogenetic patterns are also seen at the level of hosts and their entire community
of microbes (microbiota) (Moeller et al., 2016; Brooks et al., 2016; Groussin et al.,
2017; Gaulke et al., 2018; Youngblut et al., 2019) and is discussed under the term
'phylosymbiosis', where the similarity of the intestinal microbiota composition is
positively associated with phylogenetic relatedness between hosts (Lim and
Bordenstein, 2020). This can be the result of vertical inheritance, where ancestral
linked microorganisms diversify in sync with the host throughout their evolutionary
lineages, i.e. they codiversify. This is potentially, but not necessarily, due to their
functioning as reciprocal selective pressures on one another, i.e. coevolving. However,
other possible explanations exist to interpret congruent phylogenies. One is
"ecological fitting", which was already proposed in 1985 by Daniel Janzen to oppose
Fahrenholz's rule (Janzen, 1985; Agosta and Klemens, 2008). Janzen argues here that
more closely related parasites will share similar traits that pertain to surviving on a
particular host. This leans closely to Moran & Sloan's alternative explanation for
phylosymbiosis, where more closely related host species simply are colonized by
similar sets of microbial species from the environment ("ecological filtering") and also
have greater likelihood to exchange microbes (Moran and Sloan, 2015). However,
Mazel et al. showed that internal compartments of hosts, such as the gut, often
display stronger phylosymbiosis than expected from a purely ecological filtering
process, suggesting that other mechanisms, such as cospeciation and coevolution, are
also involved (Mazel et al., 2018). 
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Figure 3: Cospeciation and host-parasite associations. From
top to bottom: cospeciation: host and parasite speciate si-
multaneously; host swi+hing: parasite swi+hes hosts and
evolves in reproductive isolation resulting in speciation; in-
dependent speciation: parasite speciates on same host due
to reasons unrelated to host; extinction: parasite goes ext-
inct on host; missing the boat: host speciates, but parasite
does not end up reproductively isolated. Figure (and cap-
tion) copyright to Andrew Z. Colvin, CC BY-SA 4.0
<https://creativecommons.org/licenses/by-sa/4.0>, via
Wikimedia Commons.

2.1. The hologenome concept of evolution

In 2008, Zilber-Rosenberg and Rosenberg introduced the hologenome theory of
evolution as a holistic view on coevolution between the host and its associated
microbiota (Zilber-Rosenberg and Rosenberg, 2008). They propose that the holobiont
(the host and its associated microbiota)(Meyer,Abich, 1943; Margulis, 1991) with its
hologenome (the sum of the genetic information of the host and its microbiota),
operating in consortium, should be considered a unit of selection in evolution, and
that relatively rapid variation in the diverse microbiota can play a key role in the
adaptation and evolution of the holobiont (Zilber-Rosenberg and Rosenberg, 2008).
For natural selection to act upon the holobiont, it needs to fulfill the key conditions
required by Darwin's Theory of Evolution via Natural Selection: (1) phenotypic
variation occurs among individuals, (2) the phenotype is (at least partially) heritable
and (3) is associated with the probability of survival and/or fertility between
individuals. Translated to the holobiont, this implies that if there is (1) inter-individual
variation in microbial composition, which is heritable (2), and that this variation is
associated with a change in the host's fitness (3), then natural selection can act upon
the holobiont (Hurst, 2017). 
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2.1.a. Inter-individual variation and the effect on host fitness

Many studies have demonstrated that individuals of the same host species show
variation in their microbiome (condition 1) and that this variation is associated with a
change in host fitness (condition 3), for example in a recent study, Zeevi et al.
showed that structural variation in the gut microbiome was associated with host
health (Zeevi et al., 2019). 

Figure 4: The hologenome is
inherited in a Neo-Lamarck-
ian manner. Microbe species
in the intestinal flora can in-
crease or decrease, be added
to or removed. These alter-
ations can have a hereditary
impact, similar to Lamarck-
ism rather than Mendelian
genetics. Figure copyright
to Ian Alexander, CC BY-
SA 4.0 <https://creativecom-
mons.org/licenses/by-sa/4.0>,
via Wikimedia Commons.

2.1.b. Transmission of the microbiome

The hologenome concept incorporates Lamarckian aspects within a Darwinian
framework (Fig. 4). The nuclear genome is inherited mainly in a Mendelian process,
while the microbiome is originally acquired from the environment, but may become
inherited (Bordenstein and Theis, 2015). The gut microbiome can be inherited from
parent to offspring in two ways. The first form is direct or vertical transmission of the
microbe. Here, the microbe in the offspring is a direct descendant of the microbe in
the parent. Transmission can also be indirect or horizontal, where the microbe is
acquired from the environment instead of the parent. Vertical transmission can be
brought about in several ways. Many plants and some animals are able to reproduce
vegetatively, e.g. budding and fragmentation, causing the microbiota to be vertically
transmitted (Adiyodi and Adiyodi, 1983; Hart, 2002; Vaughn, 2010). Endosymbionts,
such as Wolbachia in numerous insects and Buchnera in aphids, are vertically
transmitted via oocytes (Baumann et al., 1995; Veneti et al., 2004). Several animals
perform coprophaghy, where the offspring consumes the mother's feces, in order to
be capable of digesting complex nutrients after weaning. Due to contact of feces
with the environment, this transmission method can also be considered partly
horizontal. In humans, we consider the fetus sterile until birth (Lauder et al., 2016),
after which it gets inoculated depending on the manner of birth with maternal
vaginal or skin microbiota (vertical transmission). Moreover, human milk contains
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thousands of bacteria which will be (vertically) transmitted to the child during
breastfeeding (Mueller et al., 2015). Examples of horizontally transmitted microbes are
nitrogen-fixing rhizobia in legumes (Remigi et al., 2016) and the bioluminescent
bacterium Vibrio fischeri colonizing the light organ in bobtail squids (McFall-Ngai,
2014). In most situations however, inheritance is not strictly vertical or horizontal,
but a combination of both. Both transmission methods each have their advantages.
Vertical transmission allows for precise transfer of the microbiome and therefore,
promotes the maintenance of reciprocal metabolic processes within the holobiont,
while horizontal transmission improves the chances of the holobiont in acquiring new
genetic material from the environment (Rosenberg and Zilber-Rosenberg, 2018). 

2.1.c. The holobiont in speciation

Another important point recognized by Darwin is that the formation of new species
is associated with reproductive isolation (Kottler, 1978). Brucker and Bordenstein
showed that the gut microbiome of closely related species of Nasonia form species-
specific associations that cause lethality in interspecific hybrids, which could be
undone with antibiotic treatment (Brucker and Bordenstein, 2013). From this they
concluded that the hologenome breaks down during hybridization, originating from a
misma+h between host genome and microbiome, promoting hybrid lethality and
assisting speciation. A study analyzing the gut microbiota of two house mouse
subspecies, Mus musculus musculus and Mus musculus domesticus, showed that
hybrids display a variety of transgressive bacterial phenotypes combined with
abnormal immune gene expression and increased intestinal pathology (Wang et al.,
2015). Together, both studies suggest that microbiomes could contribute to
reproductive isolation of the host, resulting in the formation of new species. 

2.1.d. Controversy

The hologenome concept's usefulness, definition, and consequences have been a
source of debate (Moran and Sloan, 2015; Bordenstein and Theis, 2015; Theis et al.,
2016; Douglas and Werren, 2016). Both Moran and Sloan, and Douglas and Werren
argue that the hologenome is most likely not the primary unit of selection, as here
perfect agreement of selective interests among the microbiota and between
microbiome and host is necessary (Moran and Sloan, 2015; Douglas and Werren,
2016). This is often not the case, even vertically transmitted microbes such as
Wolbachia, result in fitness conflicts between the nuclear and maternally inherited
genomes. Wolbachia, for example, is known to alter the sex ratio in favor of female
offspring as they carry Wolbachia (Werren et al., 2008). Another argument opposing
the hologenome concept of evolution is the lack of partner fidelity as this restricts
the scope of the hologenome. As only a fraction of the microbiome is heritable (Org
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et al., 2015; van Opstal and Bordenstein, 2015;; Chen et al., 2018; Xu et al., 2020;
Ishida et al., 2020) and thus, satisfies the necessary criteria, it is challenging to
envision how the complete microbiome should be regarded as part of a 'hologenome'
alongside its host (Douglas and Werren, 2016). However, a recent study in baboons
showed that the gut microbiome heritability is nearly universal when using deep
longitudinal sampling methods (Grieneisen et al., 2021). In conclusion, the
hologenome concept of evolution is an interesting view on the evolution of host-
microbe interactions, but whether this is an important unit of selection may be case-
dependent. 

3. Methods for studying the microbiome

3.1. The 16S rRNA gene as a phylogenetic marker

To date, bacterial 16S rRNA gene profiles have accounted for the lion's share of data
obtained for the microbial component of holobionts. 16S ribosomal RNA (16S
rRNA) is the RNA component of the 30S small subunit of a prokaryotic ribosome.
Woese and Fox pioneered in using the 16S rRNA gene as a means for taxonomic
classification to define the primary phylogenetic structure of the prokaryotic domain
in 1977 (Woese and Fox, 1977). The *1500 bp long conserved gene contains nine
hypervariable regions, called V1-V9. Today's sequencing methods allow for
amplifying 250 to 300bp long sequences, which makes the V1-V2 and the V3-V4
the most popular regions as a phylogenetic marker. However, PCR-based methods are
sensitive to biases through sample preparation and amplification. Not all bacteria bind
with the same efficiency to each of the primer sets for the different regions of the
16S rRNA, which results in an already biased sequences composition before
sequencing (Johnson et al., 2019). Moreover, not all hypervariable regions are as
variable for all taxa, which will result in a better discrimination in certain taxa for the
V1-V2 region, while other taxa are better classified using the V3-V4 region (Rausch
et al., 2019). Additionally, taxonomic classification is usually limited to the genus level
depending on the database and classifiers used (Mizrahi-Man et al., 2013). Two
common approaches are used to process the raw reads into an abundance table. The
first one involves clustering sequences with 97% sequence similarity or more together
into operational taxonomic units (OTUs), as pragmatic proxies for 'species' (Blaxter
et al., 2005). In a second and more recent approach, erroneous sequences generated
through PCR and sequencing are removed based on a error-learning algorithm and
exact amplicon sequence variants (ASVs) are identified (Eren et al., 2013; Eren et al.,
2015; Edgar and Flyvbjerg, 2015). This results in a higher resolution, where variation
by single nucleotide change can be distinguished. This method has the additional
advantage that ASVs inferred from different dataset can be validly compared, as ASVs

19



are consistent labels representing a biological reality existing outside the data being
analyzed (Callahan et al., 2017), making this approach into the current method of
choice. Using the 16S rRNA gene sequencing will not provide any direct functional
information, although this can be imputed with PICRUSt (Douglas et al., 2018). 

3.2. Shotgun metagenome sequencing

Shotgun metagenomic sequencing involves the sequencing of all available DNA in
the sample, instead of a particular marker gene. This limits the choice of samples to
only samples with a low content of host DNA. Shotgun metagenome sequencing
can offer species- and strain-level classification of bacteria (Li et al., 2020). It has the
advantage of its relative lack of bias and allows the examination of the functional
content of the microbiota (Heintz-Buschart and Wilmes, 2018). Furthermore, not yet
classified bacteria can also be discovered through de novo genome binning if the
sequencing coverage is high enough. Shotgun sequencing comes however with a
relatively high cost and demands more computational power for analysis. 

3.3. Quantitative trait locus analysis and genome-wide association 
studies

In quantitative trait locus (QTL) analysis and genome-wide association studies
(GWAS), two types of data are associated (phenotypic data or traits, and genotypic
data) in order to explain the genetic basis of variation in complex traits (Falconer,
1996; Lynch and Walsh, 1998; Walsh and Lynch, 2018). The term QTL mapping is
frequently used when performing association studies in biparental populations, while
GWAS is applied on unrelated or multi-parental individuals. Microbial QTL in inbred
mice and GWAS in mice and humans have been successful in determining
quantitative trait loci (QTLs) associated with quantitative measures of the
microbiome. In mice, Benson et al. performed QTL mapping on a large murine
advanced intercross population (Benson et al., 2010). They identified 18 host QTLs
that showed significant or suggestive genome-wide associations with relative
abundances of specific microbial taxa and thus providing strong evidence of the
importance of host genetic regulation in shaping the composition of the mammalian
microbiome. McKnite et al. and Org et al. both discovered a significant association of
a bacterial taxon with a locus containing the Irak4 gene using inbred mice strains
(McKnite et al., 2012; Org et al., 2015). In humans, the first microbial GWAS was
performed in a small sample set of 93 individuals from the Human Microbiome
Project (Blekhman et al., 2015). Here, they found 83 associations between genetic
variation in host coding sequence and abundance of specific microbial taxa, among
them was a significant correlation between SNPs in the LCT gene and the
abundance of Bifidobacterium in the gastrointestinal tract. This association was later
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confirmed in other studies (Bonder et al., 2016; Wang et al., 2016; Kato et al., 2018;
Kurilshikov et al., 2020; Hughes et al., 2020; R$hlemann et al., 2021). Together, these
studies show a clear genetic basis for microbial phenotypes, although results are very
population-dependent making replication of results arduous. 

3.4. From identification to function

Microbial GWAS and QTL studies are very helpful in identifying regions associated
with bacterial abundances, however these are only correlations and not causal
relationships. This calls for follow-up studies to determine the underlying functional
basis and the mechanisms through which these variants act. As many of the GWAS
loci are in regulatory regions, gene expression data can be used to scan for expression
quantitive trait loci (eQTL) and identify genetic variants linked to changes in
transcript abundance across individuals (Majewski and Pastinen, 2011). Colocalisation
of GWAS loci with eQTL is one statistical method used to detect signals mediated
by the same causative variations (Broekema et al., 2020). However, to advance from
identification to function of genomic regions associated with bacterial abundances, we
have to utilize genome edited model organisms, such as a knock-out (KO) or
overexpression (OE) animal model for the gene of interest. Only using such models
can we test the influence of the gene expression on the bacterial abundances.
Moreover, we can use germ-free (GF) models to test the reciprocal effect of the
bacterial species on gene expression. 
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Results

Chapter 1: 
Identifying host genomic regions influencing 
bacterial traits
This chapter has been submitted to eLIFE and bioRxiv (doi: https://doi.org/
10.1101/2021.09.28.462095) as "Key features of the genetic architecture and evolution
of host-microbe interactions revealed by high-resolution genetic mapping of the mucosa-
associated gut microbiome in hybrid mice".

1. Introduction
The recent widespread recognition of the gut microbiome’s importance to host
health and fitness represents a critical advancement of biomedicine. Host phenotypes
affected by the gut microbiome are documented in humans (Ley et al., 2006;
Turnbaugh et al., 2009; Lynch and Pedersen, 2016), laboratory animals (Backhed et al.,
2004; Turnbaugh et al., 2008; Rolig et al., 2015; Rosshart et al., 2017; Gould et al.,
2018), and wild populations (Suzuki, 2017; Roth et al., 2019; Suzuki et al., 2020; Hua
et al., 2020), and include critical traits such as aiding digestion and energy uptake
(Rowland et al., 2018), and the development and regulation of the immune system
(Davenport, 2020). 
Despite the importance of gut microbiome, community composition varies
significantly among host species, populations, and individuals (Benson et al., 2010;
Yatsunenko et al., 2012; Brooks et al., 2016; Rehman et al., 2016; Amato et al., 2019).
While a portion of this variation is expected to be selectively neutral, alterations of
the gut microbiome are on the one hand linked to numerous human diseases
(Carding et al., 2015; Lynch and Pedersen, 2016), such as diabetes (Qin et al., 2012),
inflammatory bowel disease (IBD) (Ott et al., 2004; Gevers et al., 2014) and mental
disorders (Clapp et al., 2017). On the other hand, there is evidence that the gut
microbiome can play an important role in adaptation on both recent- (Hehemann et
al., 2010; Suzuki and Ley, 2020) and ancient evolutionary timescales (Rausch et al.,
2019). Collectively, these phenomena suggest that it would be evolutionarily
advantageous for hosts to influence their microbiome.
An intriguing observation made in comparative microbiome research in the last
decade is that the pattern of diversification among gut microbiomes appears to mirror
host phylogeny (Ochman et al., 2010). This phenomenon, coined “phylosymbiosis”

22



(Brucker and Bordenstein, 2012a; Brucker and Bordenstein, 2012b; Lim and
Bordenstein, 2020), is documented in a number of diverse host taxa (Brooks et al.,
2016) and also extends to the level of the phageome (Gogarten et al., 2021). Several
non-mutually exclusive hypotheses are proposed to explain phylosymbiosis (Moran
and Sloan, 2015). However, it is likely that vertical inheritance is important for at least
a subset of taxa, as signatures of co-speciation/-diversification are present among
numerous mammalian associated gut microbes (Moeller et al., 2016; Groussin et al.,
2017; Moeller et al., 2019), which could also set the stage for potential coevolutionary
processes. Importantly, experiments involving interspecific fecal microbiota transplants
indeed provide evidence of host adaptation to their conspecific microbial communities
(Brooks et al., 2016; Moeller et al., 2019). Further, cospeciating taxa were observed to
be significantly enriched among the bacterial species depleted in early onset IBD, an
immune-related disorder, suggesting a greater evolved dependency on such taxa (Papa
et al., 2012; Groussin et al., 2017). However, the nature of genetic changes involving
host-microbe interactions that take place as new host species diverge remains under-
explored. 
House mice are an excellent model system for evolutionary microbiome research, as
studies of both natural populations and laboratory experiments are possible (Suzuki,
2017; Suzuki et al., 2019). In particular, the house mouse species complex is
comprised of subspecies that hybridize in nature, enabling the potential early stages of
codiversification to be studied. We previously analyzed the gut microbiome across the
central European hybrid zone of Mus musculus musculus and M. m. domesticus
(Wang et al., 2015), which share a common ancestor * 0.5 million years ago (Geraldes
et al., 2008). Importantly, transgressive phenotypes (i.e. exceeding or falling short of
parental values) among gut microbial traits as well as increased intestinal
histopathology scores were common in hybrids, suggesting that the genetic basis of
host control over microbes has diverged (Wang et al., 2015). The same study
performed an F2 cross between wild-derived inbred strains of M. m. domesticus and
M. m. musculus and identified 14 quantitative trait loci (QTL) influencing 29
microbial traits. However, like classical laboratory mice, these strains had a history of
rederivation and reconstitution of their gut microbiome, thus leading to deviations
from the native microbial populations found in nature (Rosshart et al., 2017; Org and
Lusis, 2018), and the genomic intervals were too large to identify individual genes.
In this study, we employed a powerful genetic mapping approach using inbred lines
directly derived from the M. m. musculus - M. m. domesticus hybrid zone, and
further focus on the mucosa-associated microbiota due to its more direct interaction
with host cells (Fukata and Arditi, 2013; Chu and Mazmanian, 2013), distinct
functions compared to the luminal microbiota (Wang et al., 2010; Vaga et al., 2020),
and greater dependence on host genetics (Spor et al., 2011; Linnenbrink et al., 2013).
Previous mapping studies using hybrids raised in a laboratory environment showed
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that high mapping resolution is possible due to the hundreds of generations of natural
admixture between parental genomes in the hybrid zone (Turner and Harr, 2014;
Pallares et al., 2014; -krabar et al., 2018). Accordingly, we here identify 443 loci
contributing to variation in 123 taxa, whose narrow genomic intervals (median <2Mb)
enable many individual candidate genes and pathways to be pinpointed. We identify a
high proportion of bacterial taxa with significant heritability estimates, and find that
bacterial phenotyping based on 16S rRNA transcript compared to gene copy-based
profiling yields an even higher proportion. Further, these heritability estimates also
significantly positively correlate with cospeciation rate estimates, suggesting a more
extensive host genetic architecture for cospeciating taxa. Finally, we identify
numerous enriched functional pathways, whose role in host-microbe interactions may
be particularly important as new species form. 
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2. Results

2.1. Microbial community composition

To obtain microbial traits for genetic mapping in the G2 mapping population, we
sequenced the 16S rRNA gene from caecal mucosa samples of 320 hybrid male mice
based on DNA and RNA (cDNA), which reflect bacterial cell number and activity,
respectively. After applying quality filtering and subsampling 10,000 reads per sample,
we identified a total of 4684 amplicon sequence variants (ASVs). For further analyses,
we established a "core microbiome" (defined in Methods), such that analyses were
limited to those taxa common and abundant enough to reveal potential genetic
signal. The core microbiome is composed of four phyla, five classes, five orders, eleven
families, 27 genera, and 90 ASVs for RNA, and four phyla, five classes, six orders,
twelve families, 28 genera and 46 ASVs for DNA. A combined total of 98 unique
ASVs belong to the core, of which 38 were shared between DNA and RNA (Suppl.
Fig. 1). The most abundant genus in our core microbiome is Helicobacter (Suppl. Fig.
2), consistent with a previous study of the wild hybrid M. m. musculus/M. m.
domesticus mucosa-associated microbiome (Wang et al., 2015).

2.2. Correlation between host genetic relatedness and microbiome 
structure

To gain a broad sense of the contribution of genetic factors to the variability of
microbial phenotypes in our mapping population, we compared the kinship matrix
based on genotypes to an equivalent based on gut microbial composition, whereby
ASV abundances were used as equivalents of gene dosage. We found a significant
correlation between these matrices (P = .001, R2=0.03, Suppl. Fig. 3), indicating a host
genetic effect on the diversity of the gut microbiota.

2.3. SNP-based heritability

Next, we used a SNP-based approach to estimate the proportion of variance
explained (PVE) of the relative abundance of taxa, also called the narrow-sense
heritability (h2) or SNP-based heritability. Out of the 153 total core taxa, we
identified 46 taxa for DNA and 69 taxa for RNA with significant heritability
estimates (PRLRT < .05), with estimates ranging between 29 and 91% (see Fig. 5A-B
and Suppl. Table 1). An unclassified genus belonging to the phylum Bacteroidetes
followed by ASV7 (genus Paraprevotella), Paraprevotella and Paraprevotellaceae
showed the highest heritability among DNA-based traits (91.8%, 88.8%, 88.8%, and
87.1%, respectively; Fig. 5A), while ASV97 (genus Oscillibacter), followed by
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Prevotellaceae, Paraprevotella and ASV7 (Paraprevotella) had the highest heritability
among RNA-based traits (86.6%, 85.7%, 85.7%, and 85.6%, resp.; Fig. 5B). The
heritability estimates for DNA- and RNA-based measurements of the same taxa are
significantly correlated (P = 5.013 x 10-8, R2=0.58, Suppl. Fig. 4), and neither measure
appears to be systematically more heritable than another, i.e. some taxa display higher
RNA-based heritability estimates and others higher DNA-based estimates.

2.4. Heritability estimates are correlated with predicted co-
speciation rates

In an important meta-analysis of the gut microbiome across diverse mammalian taxa,
Groussin et al. (2017) estimated co-speciation rates of individual bacterial taxa by
measuring the congruence of host and bacteria phylogenetic trees relative to the
number of host-swap events. We reasoned that taxa with higher co-speciation rates
might also demonstrate higher heritability, as these more intimate evolutionary
relationships would provide a greater opportunity for genetic aspects to evolve.
Intriguingly, we observe a significant positive correlation for RNA-based traits (P=
.008, R2=.46, Fig. 5D) and a similar trend for DNA (P= 0.1; Fig. 5C). These results
support the notion that cospeciating taxa evolved a greater dependency on host
genes, and further suggest that bacterial activity may better reflect the underlying
biological interactions.
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Figure 5: (A-B) Heritability estimates for the relative abundance of bacterial taxa. Proportion of variance
explained for each taxon on DNA level (A), and RNA level (B) for all SNPs (GRM) in green, mat-
ing pair identifier in blue and residual variance in grey. Only significant heritability estimates are
shown (P < .05). The text labels on the y-axis are colored according to taxonomic level: ASV in black,
genus in purple, family in light blue, order in red, class in green, and phylum in yellow. (C-D) Rela-
tionship between the heritability estimates for the relative abundance of bacterial taxa and co-specia-
tion rate for the same genus calculated by Groussin et al. (2017). DNA level (C), and RNA level (D).
The blue line represents a linear regression fit to the data and the grey area the corresponding confi-
dence interval.
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2.5. Genetic mapping of host loci determining microbiome 
composition

Next, we performed genome-wide association mapping of the relative abundances of
core taxa, in addition to two alpha-diversity measures (Shannon and Chao1 indices),
based on 32,625 SNPs. We included both additive and dominance terms in the model
to enable the identification of under- and over-dominance (see Methods). While we
found no significant associations for alpha diversity at either the DNA or RNA level
(P > 1.53 × 10-6), a total of 1099 genome-wide significant associations were identified
for individual taxa (P < 1.53 × 10-6, Suppl. Table 2), of which 443 achieved study-wide
significance (P < 1.29 × 10-8). Apart from the X chromosome, all autosomal
chromosomes contained study-wide significant associations (Fig. 6). Out of the 153
mapped taxa, 123 had at least one significant association (Table 1). For the remainder
of our analyses, we focus on the results using the more stringent study-wide
threshold, and combined significant SNPs within 10 Mb into significant regions
(Suppl. Table 3). The median size of significant regions is 1.91 Mb, which harbor a
median of 14 protein-coding genes. On average, we observe 10 significant mouse
genomic regions per bacterial taxon.
Of the significant loci with estimated interval sizes, we find 73 intervals (16.5%) that
are smaller than one Mb (Suppl. Table 4). The smallest interval is only 231 bases and
associated with the RNA-based abundance of an unclassified genus belonging to
Deltaproteobacteria. It is situated in an intron of the C3 gene, a complement
component playing a central role in the activation of the complement system, which
modulates inflammation and contributes to antimicrobial activity (Ricklin et al., 2016).
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Figure 6: Heatmap of significant host loci from association mapping of bacterial abundances. Karotype
plot showing the number of significant loci found using a study-wide threshold, where (A) plots the
significance intervals, and (B) the significant SNP markers on the chromosomes. 

The significant genomic regions and SNPs are displayed in Figure 6A and 3B,
respectively. Individual SNPs were associated with up to 12 taxa, and significant
intervals with up to 30 taxa. The SNPs with the lowest P values were associated with
the genus Dorea and two ASVs belonging to Dorea (ASV184 and ASV293; Suppl.
Fig. 5). At the RNA level this involves two loci: mm10-chr4: 67.07 Mb, where the
peak SNP is 13 kb downstream of the closest gene Tlr4 (UNC7414459, P=2.31 ×
10-69, additive P= 4.48 × 10-118, dominance P= 1.37 × 10-111), and mm10-chr15: 94.4 Mb,
where the peak SNP is found within the Adamts20 gene (UNC26145702, P=4.51 ×
10-65, additive P= 1.87 × 10-113, dominance P= 1.56 × 10-105; Suppl. Fig. 5). Interestingly,
the Irak4 gene, whose protein product is rapidly recruited after TLR4 activation, is
also located 181 kb upstream of Adamts20. The five taxa displaying the most
associations were ASV19 (Bacteroides), Dorea, ASV36 (Oscillibacter), ASV35
(Bacteroides), and ASV98 (unclassified Lachnospiraceae) (Suppl. Fig. 6).
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Table 1: Overview of mapping statistics.

DNA RNA Total

Mapped taxa 101 142 153

Taxa with significant loci 67 96 123

Median interval size (Mb) 1.52 2.29 1.91

Total significant loci 478 791 1269

Unique significant loci 179 313 443

Significant loci total P 91 167 233

Significant loci additive P 155 260 377

Significant loci dominance P 95 166 231

Median significant loci per trait 5 6 8

Median unique significant loci per trait 3 3 4

Median unique significant SNPs per locus 2 2.5 2

Median number of genes per locus 31 52 43

Median protein coding genes per locus 11 15 14

2.6. Ancestry, dominance, and effect sizes

A total of 435 significant SNPs were ancestry informative between M. m. musculus
and M. m. domesticus (i.e. represent fixed differences between subspecies). To gain
further insight on the genetic architecture of microbial trait abundances, we
estimated the degree of dominance at each significant locus using the
d/a ratio (Falconer, 1996), where alleles with strictly recessive, additive, and dominant
effects have d/a values of -1, 0, and 1, respectively. As half of the SNPs were not
ancestry informative (Fig. 7A), it was not possible to consistently have a associated
with one parent/subspecies, hence we report d/|a| such that it can be interpreted
with respect to bacterial abundance. For the vast majority of loci (83.53%), the allele
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associated with lower abundance is dominant or partially dominant (-1.25 < d/|a|
< -0.75; Fig. 7B). On the basis of the arbitrary cutoffs we used to classify dominance,
only a small proportion of alleles are underdominant (0.22%; d/|a| < -1.25) or
overdominant (0.15%; d/|a|> 1.25). However for one-third of the significant SNPs, the
heterozygotes display transgressive phenotypes, i.e. mean abundances that are either
significantly lower (31% of SNPs)- or higher (2% of SNPs) than those of both
homozygous genotypes. Interestingly, the domesticus allele was associated with
higher bacterial abundance in two-thirds of this subset (33.2% vs 16.3% musculus allele;
Fig. 7A).
Next, we estimated phenotypic effect sizes by calculating the percentage variance
explained (PVE) by the peak SNP of each significant region. Peak SNPs explain
between 3% and 64% of the variance in bacterial abundance, with a median effect size
of 9.3% (Fig. 7C). The combined effects of all significant loci for each taxon ranged
from 4.9% to 259%, with a median of 41.8% (Fig. 7D). Note, combined effects for
many taxa (33 out of 59) exceed SNP-heritability estimates (Fig. 5). While exceeding
100% explained variance is biologically possible, as loci can have opposite phenotypic
effects, many of these are likely inflated due to the Beavis effect (Beavis, 1994).

Figure 7: Genetic architecture of significant loci. A) Source of the allele with the highest phenotypic
value. B) Histogram of dominance values d/a of significant loci reveals a majority of loci acting reces-
sive or partially recessive. C) Histogram showing the percentage of variance explained (PVE) by the
peak SNP for DNA (blue, left) and RNA (orange, right). D) Collective PVE by lead SNPs of sig-
nificant loci within a taxon. Values are calculated separately for each P value type (total, additive, and
dominance).
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2.7. Functional annotation of candidate genes

In order to reveal potential higher level biological phenomena among the identified
loci, we performed pathway analysis to identify interactions and functional categories
enriched among the genes in significant intervals. We used STRING (Szklarczyk et
al., 2019) to calculate a protein-protein interaction (PPI) network of 925 protein-
coding genes nearest to significant SNPs (upstream and downstream). A total of 768
genes were represented in the STRING database, and the maximal network is highly
significant (PPI enrichment P value: 2.15 × 10-14) displaying 668 nodes connected by
1797 edges and an average node degree of 4.68. After retaining only the edges with
the highest confidence (interaction score > 0.9), this results in one large network
with 233 nodes, 692 edges and ten smaller networks (Fig. 8).
Next, we functionally annotated clusters using STRING’s functional enrichment
plugin. The genes of the largest cluster are part of the G protein-coupled receptor
(GPCR) ligand binding pathway. GPCRs are the largest receptor superfamily and also
the largest class of drug targets (Sriram and Insel, 2018). We then calculated the top
ten hub proteins from the network based on Maximal Clique Centrality (MCC)
algorithm with CytoHubba to predict important nodes that can function as ’master
swi+hes’ (Suppl. Fig. 7). The top ten proteins contributing to the PPI network were
GNG12, MCHR1, NMUR2, PROK2, OXTR, XCR1, TACR3, CHRM3, PTGFR,
and C3, which are all involved in the GPCR signaling pathway.
Further, we performed enrichment analysis on the 925 closest genes using the
clusterprofiler R package. We found 14 KEGG pathways to be over-represented:
circadian entrainment, oxytocin signaling pathway, axon guidance, calcium signaling,
cAMP signaling, cortisol synthesis and secretion, cushing syndrome, gastric acid
secretion, glutamatergic synapse, mucin type O-glycan biosynthesis, inflammatory
mediator regulation of TRP channels, PD-L1 expression and the PD-1 checkpoint
pathway in cancer, tight junction, and the Wnt signaling pathway (Suppl. Table 5,
Suppl. Fig. 8-9). Finally, genes involved in five human diseases are enriched, among
them mental disorders (Suppl. Fig. 10).
Finally, due to the observation of a significant enrichment of cospeciating taxa among
the bacterial species depleted in early onset IBD (Groussin et al., 2017) and the
evidence that IBD is especially associated with a dysbiosis in mucosa-associated
communities (Yang et al., 2020a; Daniel et al., 2021), we specifically examined possible
over-representation of genes involved in IBD (Khan et al., 2021) among the 925
genes neighboring significant SNPs. We found 14 out of the 289 IBD genes, which
was significantly more than expected by chance (10 000 times permuted mean: 2.7,
simulated P = .0001; Suppl. Table 6). Interestingly, SNPs in five out of the 14 genes
are associated with ASVs belonging to the genus Oscillibacter, a cospeciating taxon
known to decrease during the active state of IBD (Metwaly et al., 2020).
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Figure 8: High confidence protein-protein interaction network of genes closest to significant SNPs.
Network clusters are annotated using STRING’s functional enrichment. Nodes represent proteins and
edges their respective interactions. Only edges with an interaction score higher than 0.9 are retained.
The width of the edge line expresses the interaction score calculated by STRING. The color of the
nodes describe the expression of the protein in the intestine where yellow is not expressed and purple
is highly expressed. Diamond shaped nodes are proteins coded by genes that contain a significant SNP.
Round nodes are proteins from genes closest to a significant marker.

2.8. Comparison of significant loci to published mouse gut 
microbiome studies

Next, we compiled a list of 648 unique confidence intervals of significant associations
with gut bacterial taxa from seven previous mouse QTL studies (Benson et al., 2010;
McKnite et al., 2012; Leamy et al., 2014; Wang et al., 2015; Org et al., 2015; Snijders
et al., 2016; Kemis et al., 2019) and compared this list to our significance intervals for
bacterial taxa at both the DNA and RNA level (346 unique intervals). Regions
larger than 10Mb were removed from all studies. We found 434 overlapping intervals,
which is significantly more than expected by chance (10 000 times permuted mean:
368, simulated P=.0073, see Methods). Several of our smaller significant loci
overlapped with larger loci from previous studies and removing this redundancy left
186 significant loci with a median interval size of 0.78 Mb (Fig. 9). The most
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frequently identified locus is located on chromosome 2 169-171 Mb where protein
coding genes Gm11011, Znf217, Tshz2, Bcas1, Cyp24a1, Pfdn4, 4930470P17Rik, and
Dok5 are situated.
Additionally, we collected genes within genome-wide significant regions reported in
seven human microbiome GWAS (mGWAS) (Bonder et al., 2016; Turpin et al., 2016;
Goodrich et al., 2016; Wang et al., 2016; Hughes et al., 2020; R$hlemann et al., 2021;
Kurilshikov et al., 2021). However, no significant over-representation of genes was
found within our significance intervals (P = .156), nor within our list of genes closest
to a significant SNP (P = .62).

Figure 9: Heatmap showing the significant loci in this study that were previously found in other QTL
studies of the mouse gut microbiome. The genes present in two repeatedly identified regions are
depicted in boxes. 

2.9. Proteins differentially expressed in germ-free vs conventional 
mice

To further validate our results, we compared the list of genes contained within
intervals of our study to a list of differentially expressed protein between germ-free
and conventionally raised mice (Mills et al., 2020). This comparison was made based
on the general expectation that genes associated with variation in microbial
abundances would be more likely to differ according to the colonization status of the
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host. Thus, we examined the intersection between genes identified in our study and
the proteins identified as highly associated ( |π| > 1) with the colonization state of the
colon and the small intestine (Mills et al., 2020). Out of the 373 over- or under-
expressed proteins according to colonization status, we find 198 of their coding genes
to be among our significant loci, of which 17 are the closest genes to a significant
marker (Iyd, Nln, Slc26a3, Slc3a1, Myom2, Nebl, Tent5a, Fxr1, Cbr3, Chrodc1,
Nucb2, Arhgef10l, Sucla2, Enpep, Prkcq, Aacs, and Cox7c). This is significantly more
than expected by chance (simulated P=.0156, 10 000 permutations). Further,
analyzing the protein-protein interactions with STRING results in a significant
network (P=1.73 × 10-14, and average node degree 2.4, Suppl. Fig. 11), with Cyp2c65,
Cyp2c55, Cyp2b10, Gpx2, Cth, Eif3k, Eif1, Sucla2, and Rpl17 identified as hub genes
(Suppl. Fig. 12).
Subsequently, we merged the information from Mills et al. (2020) and the seven
previous QTL mapping studies discussed above to further narrow down the most
promising candidate genes, and found 30 genes overlapping with our study. Of these
30 genes, six are the closest gene to a significant SNP. These genes are myomesine 2
(Myom2), solute carrier family 3 member 1 (Slc3a1), solute carrier family 26 member
3 (Slc26a3), nebulette (Nebl), carbonyl reductase 3 (Cbr3), and acetoacetyl-coA
synthetase (Aacs).

2.10. Candidate genes influencing bacterial abundance

Finally, all previously mentioned candidate genes were combined in one gene set of
304 genes and compiled in a highly significant PPI network (P < 1.0 × 10-16, average
node degree=4.85, see Methods 4.13). Guided by this network, we filtered out genes
situated in the same genomic region and kept the gene with the highest connectivity
and supporting information (original network see Suppl. Fig. 13). This gave a
resulting gene set of 80 candidate genes (Fig. 10 and Suppl. Table 7). The G protein,
GNG12 and the complement component 3 C3, are the proteins with the most edges
in the network (30 and 25, respectively), followed by MCHR1, CXCL12, and
NMUR2 with each 18 edges. Of these 80 highly connected genes, 66 are associated
with bacteria that are either cospeciating (cospeciation rate > 0.5; Groussin et al.,
2017) and/or have high heritability (> 0.5) suggesting a functionally important role
for these bacterial taxa (Suppl. Table 7).
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Figure 10: Network of host candidate genes influencing bacterial traits using STRING (https://string-
db.org). The nodes represent proteins and are colored according to a selection of enriched GO terms
and pathways: G protein coupled receptor (GPCR) signaling (red), regulation of the immune system
process (blue), response to nutrient levels (light green), fatty acid metabolic process (pink), glucose
homeostasis (purple), response to antibiotic (orange), regulation of feeding behavior (yellow), positive
regulation of insulin secretion (dark green), circadian entrainment (brown), and response to vitamin D
(turquoise). The color of the edges represents the interaction type: known interactions from curated
databases (turquoise) or experimentally determined (pink); predicted interactions from gene neighbor-
hood (green), gene fusions (red), gene co-occurrence (blue); other interactions from text-mining (light
green), co-expression (black), and protein homology (purple).
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3. Discussion
Understanding the forces that shape variation in host-associated bacterial communities
within host species is key to understanding the evolution and maintenance of meta-
organisms. Although numerous studies in mice and humans demonstrate that host
genetics influences gut microbiota composition (McKnite et al., 2012; Leamy et al.,
2014; Goodrich et al., 2014; Org et al., 2015; Davenport et al., 2015; Wang et al.,
2016; Bonder et al., 2016; Goodrich et al., 2016; Kemis et al., 2019; Suzuki et al., 2019;
Ishida et al., 2020; Hughes et al., 2020; R$hlemann et al., 2021), our study is unique
in a number of important ways. First, the unique genetic resource of mice collected
from a naturally occurring hybrid zone together with their native microbes yielded
extremely high mapping resolution and the possibility to uncover ongoing
evolutionary processes in nature. Second, our study is the first to perform genetic
mapping of 16S rRNA transcripts in the gut environment, which was previously
shown to be superior to DNA-based profiling in a genetic mapping study of the skin
microbiota (Belheouane et al., 2017). Third, our study is one of the only to
specifically examine the mucosa-associated community. It was previously reasoned
that the mucosal environment may better reflect host genetic variation (Spor et al.,
2011), and evidence for this hypothesis exists in nature (Linnenbrink et al., 2013).
Finally, by cross-referencing our results with previous mapping studies and recently
available proteomic data from germ-free versus conventional mice, we curated a more
reliable list of candidate genes and pathways. Taken together, these results provide
unique and unprecedented insight into the genetic basis for host-microbe interactions.
Importantly, by using wild-derived hybrid inbred strains to generate our mapping
population, we gained insight into the evolutionary association between hosts and
their microbiota at the transition from within species variation to between species
divergence. Genetic relatedness in our mapping population significantly correlates
with microbiome similarity, supporting a basis for codiversification at the early stages
of speciation. A substantial proportion of microbial taxa are heritable, and heritability
is correlated with cospeciation rates. This suggests that (i) vertical transmission could
enable greater host adaptation to bacteria and/or (ii) the greater number of host
genes associated with cospeciating taxa could indicate a greater dependency on the
host, such that survival outside a specific host is reduced, making horizontal
transmission less likely. 
By performing 16S rRNA gene profiling at both the DNA and RNA level, we
found that 30% (DNA-based) to 45% (RNA-based) of bacterial taxa are heritable,
which is consistent with or higher than estimates reported in humans (*10%,
Goodrich et al., 2016; *21%, Turpin et al., 2016) and previous mouse studies (Kovacs
et al., 2011; McKnite et al., 2012; Campbell et al., 2012; O’Connor et al., 2014;
Carmody et al., 2015; Korach-Rechtman et al., 2019;). The high proportion of
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heritable taxa, with estimates of up to 91%, is likely explained in part by several
factors of our study design. First, mice were raised in a controlled common
environment, and heritability estimates in other mammals were shown to be
contingent on the environment (Grieneisen et al., 2021). Further, bacterial
communities were sampled from cecal tissue instead of fecal content (Linnenbrink et
al., 2013), and genetic variation was higher than in a typical mapping study due to
subspecies differences. For the RNA-based traits, heritability estimates were
significantly correlated with previously reported cospeciation rates in mammals
(Groussin et al., 2017). This pattern, as well as the higher proportion of heritable taxa
in RNA-based traits, suggest that host genetic effects are more strongly reflected by
bacterial activity than cell number.
Accordingly, we found a total of 179 and 313 unique significant loci for DNA-based
and RNA-based bacterial abundance, respectively, passing the conservative study-wide
significance threshold. Taxa had a median of eight significant loci, suggesting a
complex and polygenic genetic architecture affecting bacterial abundances. We
identify a higher number of loci in comparison to previous QTL and GWAS studies
in mice (Benson et al., 2010; McKnite et al., 2012; Leamy et al., 2014; Wang et al.,
2015; Org et al., 2015; Snijders et al., 2016; Kemis et al., 2019), which may be due to
a number of factors. The parental strains of our study were never subjected to
rederivation and subsequent reconstitution of their microbiota, and natural mouse gut
microbiota are more variable than the artificial microbiota of laboratory strains (Kohl
and Dearing, 2014; Weldon et al., 2015; Suzuki, 2017; Rosshart et al., 2017;).
Furthermore, as noted above, our mapping population harbors both within- and
between-subspecies genetic variation. We crossed incipient species sharing a common
ancestor * 0.5 million years ago, hence we may also capture the effects of mutations
that fixed rapidly between subspecies due to strong selection, which are typically not
variable within species (Walsh, 1998; Barton and Keightley, 2002).
Importantly, our results also help to describe general features of the genetic
architecture of bacterial taxon activity. For the majority of loci, the allele associated
with lower relative abundance of the bacterial taxon was (partially) dominant. This
suggests there is strong purifying selection against a high abundance of any particular
taxon, which may help ensure high alpha diversity. The heterozygotes of one-third of
significant SNPs displayed transgressive phenotypes. This is consistent with previous
studies of hybrids (Turner et al., 2012; Turner and Harr, 2014; Wang et al., 2015;), for
example, wild-caught hybrids showed broadly transgressive gut microbiome
phenotypes. This pattern can be explained by over- or underdominance, or by
epistasis (Rieseberg et al., 1999).
Notably, many loci significantly associated with bacterial abundance in this study
were implicated in previous studies (Fig. 9). For example, chromosome 2 169-171 Mb
is associated with ASV23 (Eisenbergiella), Eisenbergiella and ASV32 (unclassified
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Lachnospiraceae) in this study, and overlaps with significant loci from three previous
studies (Leamy et al., 2014; Snijders et al., 2016; Kemis et al., 2019). This region
contains eight protein-coding genes: Gm11011, Znf217, Tshz2, Bcas1, Cyp24a1, Pfdn4,
4930470P17Rik, and Dok5. Another hotspot is on chromosome 5 101-103 Mb. This
locus is significantly associated with four taxa in this study (Prevotellaceae,
Paraprevotella, ASV7 genus Paraprevotella and Acetatifactor) and overlaps with
associations for Clostridiales, Clostridiaceae, Lachnospiraceae, and Deferribacteriaceae
(Snijders et al., 2016). Protein-coding genes in this region are: Nkx6-1, Cds1, Wdfy3,
Arhgap24, and Mapk10. As previous studies were based on rederived mouse strains,
identifying significant overlap in the identification of host loci suggests that some of
the same genes and/or mechanisms influencing major members of gut microbial
communities are conserved even in the face of community ’reset’ in the context of
re-derivation. The identity of the taxa is however not always the same, which
suggests that functional redundancy may contribute to these observations, if e.g.
several bacterial taxa fulfill the same function within the gut microbiome (Moya and
Ferrer, 2016; Tian et al., 2020). Additionally, there is significant overlap of genes
within loci identified in the current study and proteins differentially expressed in the
intestine of germ-free mice compared to conventionally raised mice (Mills et al.,
2020). Finally, by analyzing the functions of the genes closest to significant SNPs, we
found that 12 of the 14 significantly enriched KEGG pathways were shown to be
related to interactions with bacteria (Fonken et al., 2010; Thaiss et al., 2014;
Neumann et al., 2014; Thaiss et al., 2015a; Thaiss et al., 2015b; Castoldi et al., 2015;
Erdman and Poutahidis, 2016; Thaiss et al., 2016; Deaver et al., 2018; Wu et al., 2018;
Peng et al., 2020; Nagpal et al., 2020; Hollander and Kaunitz, 2020; Suppl. Table 5).
To improve the robustness of our results, we combined multiple lines of evidence to
prioritize candidates, resulting in a network of 80 genes (Suppl. Table 7). At the
center of this network is a set of 22 proteins involved in G-protein coupled receptor
signaling (Fig. 10, red nodes). MCHR1, NMUR2, and TACR3 (Fig. 10, yellow) are
known to regulate feeding behavior (Saito et al., 1999; Cardoso et al., 2012; Smith et
al., 2019), and CHRM3 to control digestion (Gautam et al., 2006; Tanahashi et al.,
2009). Gut microbes can produce GPCR agonists to elicit host cellular responses
(Cohen et al., 2017; Colosimo et al., 2019; Chen et al., 2019; Pandey et al., 2019).
Thus, GPCRs may be key modulators of communication between the gut microbiota
and host. Another interesting group of genes are those responding to nutrient levels
(Bmp7, Cd40, Aacs, Gclc, Nmur2, Cyp24a1, Adcyap1, Serpinc1, and Wnt11) (Sethi
and Vidal-Puig, 2008; Peier et al., 2009; Townsend et al., 2012; Yi and Bishop, 2015;
Shi and Tu, 2015; Toderici et al., 2016; Yasuda et al., 2021; Gastelum et al., 2021;), as
gut microbiota affect host nutrient uptake (Chung et al., 2018). In addition,
CYP24A1, BMP7 and CD40 respond to vitamin D. Previous studies identified
vitamin D/the vitamin D receptor to play a role in modulating the gut microbiota
(Wang et al., 2016; Malaguarnera, 2020; Yang et al., 2020b; Singh et al., 2020), and
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CD40 is known to induce a vitamin D dependent antimicrobial response through
IFN-γ activation (Klug-Micu et al., 2013). 
Another important category of candidate genes are those involved in immunity. Our
most significant SNP was situated downstream of the Tlr4 gene and was associated
with the genus Dorea and several Dorea species. Dorea is a known short chain fatty
acid producer (Taras et al., 2002; Reichardt et al., 2018) and interacts with tight
junction proteins Claudin-2 and Occludin (Alhasson et al., 2017). Tlr4 is a member of
the Toll-like receptor family, and has been linked with obesity, inflammation, and
changes in the gut microbiota (Velloso et al., 2015). These combined results reflect an
important role for Dorea in fatty acid harvesting and intestinal barrier integrity, both
of which could act systemically to activate TLR4 and to promote metabolic
inflammation (Cani et al., 2008; Delzenne et al., 2011; Nicholson et al., 2012).
Moreover, the SNP with the second lowest P value was associated with the same
taxa and situated 181 kb upstream of Irak4. IRAK4 is rapidly recruited after TLR4
activation to enable downstream activation of the NFκB immune pathway. Irak4 has
previously been associated with a change in bacterial abundance using inbred mice
(McKnite et al., 2012; Org et al., 2015).
Finally, we identified notable links between candidate genes and five human diseases
(mental disorders, blood pressure finding, systemic arterial pressure, substance-related
disorders, and atrial septal deficits; Suppl. Fig. 10). The connection to mental disorders
is intriguing as involvement of the gut microbiota is suspected (Kelly et al., 2015;
Foster et al., 2017a; Cox and Weiner, 2018; Chen et al., 2019; Sarkar et al., 2020;
Parker et al., 2020; Flux and Lowry, 2020). Taken together with our finding of an
enriched set of GPCRs, this highlights the importance of host-microbial interplay
along the gut-brain axis. Moreover, we also identify a significant over-representation
of IBD genes (Khan et al., 2021) among the 925 genes nearest to significant SNPs
(Suppl. Table 6). Interestingly, SNPs in five out of 14 genes are associated with ASVs
belonging to the genus Oscillibacter, a highly cospeciating taxon known to decrease
during the active state of IBD (Metwaly et al., 2020). 
In summary, our study provides a number of novel insights into the importance of
host genetic variation in shaping the gut microbiome, in particular for cospeciating
bacterial taxa. These findings provide an exciting foundation for future studies of the
precise mechanisms underlying host-gut microbiota interactions in the mammalian
gut and should encourage future genetic mapping studies that extend analyses to the
functional metagenomic sequence level.
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4. Material and Methods

4.1. Intercross design

We generated a mapping population using partially inbred strains derived from mice
mice captured in the M. m. musculus - M. m. domesticus hybrid zone around Freising
in 2008 (Turner et al., 2012). Originally, four breeding stocks were derived from 8-9
ancestors captured from one (FS, HA, TU) or two sampling sites (HO), and
maintained with four breeding pairs per generation using the HAN-rotation out-
breeding scheme (Rapp, 1972). Eight inbred lines (two per breeding stock) were
generated by brother/sister mating of the 8th generation lab-bred mice. We set up
the cross when lines were at the 5th-9th generation of brother-sister meeting, with
inbreeding coefficients of > 82%.
We first set up eight G1 crosses, each with one predominantly domesticus line (FS,
HO - hybrid index <50%; see below) and one predominantly musculus line (HA, TU
- hybrid index >50%); each line was represented as a dam in one cross and sire in
another (Fig. 11). One line, FS5, had a higher hybrid index than expected,
suggesting there was a misidentification during breeding (see genotyping below).
Next, we set up G2 crosses in eight combinations (subcrosses), such that each G2
individual has one grandparent from each of the initial four breeding stocks. We
included 40 males from each subcross in the mapping population.
This study was performed according to approved animal protocols and institutional
guidelines of the Max Planck Institute. Mice were maintained and handled in
accordance with FELASA guidelines and German animal welfare law
(Tierschutzgesetz § 11, permit from Veterin&ramt Kreis Pl%n: 1401-144/PL2-004697).
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Figure 11: Overview of the intercross design. G0 mice are from eight partially inbred lines derived from
mice wild-caught in four hybrid zone sites. Hybrid index - the percentage of musculus alleles - is re-
ported as the mean for the G0 mice from each line, or mean of 40 G2s from each subcross at bottom.
We performed eight G1 crosses with one line with hybrid index <50% (purple shades) and one line
with hybrid index >50% (green shades); color on the left side of mouse diagram indicates dam line and
right side indicates sire line. Next, G1 mice were crossed in eight combinations such that each G2
mouse had one grandparent from each of the four breeding stocks, indicated by colors of mouse dia-
gram, and representative chromosomes below. Tail color indicates Y chromosome strain, and oval indi-
cates mitochondrial strain. 

4.2. Sample collection

Mice were sacrificed at 91 3 5 days by CO2 asphyxiation. We recorded body weight,
body length and tail length, and collected ear tissue for genotyping. The caecum was
removed and gently separated from its contents through bisection and immersion in
RNAlater (Thermo Fisher Scientific, Schwerte, Germany). After overnight storage
in RNAlater at 4° C, the RNAlater was removed and tissue stored at -20° C.

4.3. DNA extraction and sequencing

We simultaneously extracted DNA and RNA from caecum tissue samples using
Qiagen (Hilden, Germany) Allprep DNA/RNA 96-well kits. We followed the
manufacturer’s protocol, with the addition of an initial bead beating step using Lysing
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matrix E tubes (MP Biomedical, Eschwege) to increase cell lysis. We used caecum
tissue because host genetics has a greater influence on the microbiota at this mucosal
site than on the lumen contents (Linnenbrink et al., 2013). We performed reverse
transcription of RNA with High-Capacity cDNA Transcription Kits from Applied
Biosystems (Darmstadt, Germany). We amplified the V1-V2 hypervariable region of
the 16S rRNA gene using barcoded primers (27F-338R) with fused MiSeq adapters
and heterogeneity spacers following (Rausch et al., 2016) and sequenced amplicons
with 250 bp paired-reads on the Illumina MiSeq platform.

4.4. 16S rRNA gene sequence analysis

We assigned sequences to samples by exact ma+hes of MID (multiplex identifier, 10
nt) sequences and processed 16S rRNA gene sequences using the DADA2 pipeline,
implemented in the DADA2 R package, version 1.16.0 (Callahan et al., 2016;
Callahan, 2016). Briefly, raw sequences were trimmed and quality filtered with the
maximum two ‘expected errors’ allowed in a read, paired sequences were merged and
chimeras removed. For all downstream analyses, we rarefied samples to 10,000 reads
each. Due to the quality filtering, we have phenotyping data for 286 individuals on
DNA level, and 320 G2 individuals on RNA level. We classified taxonomy using the
Ribosomal Database Project (RDP) training set 16 (Cole et al., 2014). Classifications
with low confidence at the genus level (<0.8) were grouped in the arbitrary taxon
’unclassified_group’.
We used the phyloseq R package (version 1.32.0) to estimate alpha diversity using the
Shannon index and Chao1 index, and beta diversity using Bray-Curtis distance
(McMurdie and Holmes, 2013). We defined core microbiomes at the DNA- and
RNA-level, including taxa present in > 25% of the samples and with median
abundance of non-zero values > 0.2% for amplicon sequence variant (ASV) and genus;
and >0.5% for family, order, class and phylum.

4.5. Genotyping

We extracted genomic DNA from ear samples using Qiagen Blood and Tissue 96
well kits (Hilden, Germany), according to the manufacturer's protocol. We sent
DNA samples from 26 G0 mice and 320 G2 mice to GeneSeek (Neogen, Lincoln,
NE) for genotyping using the Giga Mouse Universal Genotyping Array
(GigaMUGA; Morgan et al., 2015), an Illumina Infinium II array containing 141,090
single nucleotide polymorphism (SNP) probes. We quality-filtered genotype data
using plink 1.9 (Chang et al., 2015); we removed individuals with call rates <90% and
SNPs that were: not bi-allelic, missing in >10% individuals, with minor allele
frequency <5%, or Hardy-Weinberg equilibrium exact test P values <1e-10. A total of
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64,103 SNPs and all but one G2 individual were retained. Prior to mapping, we LD-
filtered SNPs with r2 >0.9 using a window of 5 SNPs and a step size of 1 SNP. We
retain 32,625 SNPs for mapping.

4.6. Hybrid index calculation

For each G0 and G2 mouse, we estimated a hybrid index 4 defined as the percentage
of M. m. musculus ancestry. We identified ancestry-informative SNP markers by
comparing GigaMUGA data from ten individuals each from two wild-derived
outbred stocks of M. m. musculus (Kazakhstan and Czech Republic) and two of M.
m. domesticus (Germany and France) maintained at the Max Planck Institute for
Evolutionary Biology (L.M. Turner and B. Payseur, unpublished data). We classified
SNPs as ancestry informative if they had a minimum of 10 calls per subspecies, the
major allele differed between musculus and domesticus, and the allele frequency
difference between subspecies was > 0.3. A total of 48,361 quality-filtered SNPs from
the G0/G2 genotype data were informative, including 8,775 SNPs with fixed
differences between subspecies samples.

4.7. Correlation between host relatedness and microbiome structure

To investigate if host relatedness is correlated with individual variation in microbiome
composition, we computed a centered relatedness matrix using the 32,625 filtered
SNPs with GEMMA (v 0.98.1; Zhou and Stephens, 2012) and microbial composition-
based kinship matrix among individuals based on relative bacterial abundances (Chen
et al., 2018). The kinship matrix was calculated with the formula:

where X denotes the n × p matrix of genotypes (or relative abundances), xi as its ith
column representing the genotypes of ith SNP (or the relative abundance of the ith
ASV), x ̄i as the sample mean and 1n as a n × 1 vector of 1's. We used a Mantel test to
test for correlation between the host SNP-based kinship and microbial composition-
based kinship.

4.8. SNP-based heritability of microbial abundances

We calculated SNP-based heritabilities for bacterial abundances using a linear mixed
model implemented in the lme4qtl R package (Ziyatdinov et al., 2018). The SNP-
based heritability is expressed as

<latexit sha1_base64="4bhegxfzAlXRU07JGEMGqbjz+FE="></latexit>

Kinship = 1/p
pX

i=1

(xi � 1nx̄i)(xi � 1nx̄i)
T
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where σg2 is the genetic variance estimated by KSNP, σm2 variance of the mating pair
component, and σe2 the variance due to residual environmental factors. We
determined significance of the heritability estimates using exact likelihood ratio tests,
following Supplementary Note 3 in (Ziyatdinov et al., 2018), using the exactLRT()
function of the R package RLRsim (Fabian et al., 2008).

4.9. Genome-wide association mapping

Prior to mapping, we inverse logistic transformed bacterial abundances using the
inv.logit function from the R package gtools (Gregory R. Warnes, 2020).
We performed association mapping in the R package lme4qtl (Ziyatdinov et al., 2018)
with the following linear mixed model:

where yj is the phenotypic value of the jth individual; # is the mean, Xa
ij the additive

and Xd
ij the dominance genotypic index values coded as for individual j at locus i. a

and d indicate fixed additive and dominance effects, W indicates random effects
mating pair and kinship matrix, plus residual error e.
We estimated additive and dominance effects separately because we expected to
observe underdominance and overdominance in our hybrid mapping population, as
well as additive effects, and aimed to estimate their relative importance. To model the
additive effect (i.e. 1/2 distance between homozygous means), genotypes at each
locus, i, were assigned additive index values (Xa 6 1, 0, −1) for AA, AB, BB,
respectively, with A indicating the major allele and B the minor allele. To model
dominance effects (i.e. heterozygote mean - midpoint of homozygote means),
genotypes were assigned dominance index values (Xd 6 0, 1) for homozygotes and
heterozygotes, respectively.
We included mating pair as a random effect to account for maternal effects and cage
effects, as male litter mates are kept together in a cage after weaning. We included
kinship coefficient as a random effect in the model to account for population and
family structure. To avoid proximal contamination, we used a leave-one-chromosome-
out approach, that is, when testing each single SNP association we used a relatedness
matrix omitting markers from the same chromosome (Parker et al., 2014). Hence, for
testing SNPs on each chromosome, we calculated a centered relatedness matrix using
SNPs from all other chromosomes with GEMMA (v0.97; Zhou and Stephens,
2012).We calculated P values for single SNP associations by comparing the full model

yj = µ+ aiX
a
ij + diX

d
ij +Wu+ e
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to a null model excluding fixed effects. Code for performing the mapping is available
at https://github.com/sdoms/mapping_scripts. 
We evaluated significance of SNP-trait associations using two thresholds; first, we
used a genome-wide threshold for each trait, where we corrected for multiple testing
across markers using the Bonferroni method (Abdi, 2007). Second, as bacteria interact
with each other within the gut as members of a community, bacterial abundances are
non-independent, so we calculated a study-wide thresholddividing the genome-wide
threshold by the number of effective taxa included. We used matSpDlite (Nyholt,
2019; Li and Ji, 2005; Qin et al., 2020) to estimate the number of effective bacterial
taxa based on eigenvalue variance.
To estimate the genomic interval represented by each significant LD-filtered SNP, we
report significant regions defined by the most distant flanking SNPs in the full pre-
LD-filtered genotype dataset showing r2 > 0.9 with each significant SNP. We
combined significant regions less than 10 Mb apart into a single region. Genes
situated in significant regions were retrieved using biomaRt (Steffen Durinck, 2009),
and the mm10 mouse genome.

4.10. Dominance analyses

We classified dominance for SNPs with significant associations on the basis of the d/a
ratio (Falconer, 1996) where d is the dominance effect, a the additive effect. As the
expected value under purely additive effects is 0. As our mapping population is a
multi-parental-line cross, and not all SNPs were ancestry-informative with respect to
musculus/domesticus, the sign of a effects is defined by the major allele within our
mapping population, which lacks clear biological interpretation. To provide more
meaningful values, we report d/|a|, such that a value of 1 = complete dominance of
the allele associated with higher bacterial abundance, and a value of -1 = complete
dominance of the allele associated with lower bacterial abundance. Values above 1 or
below -1 indicate over/underdominance. We classified effects of significant regions
the following arbitrary d/|a| ranges to classify dominance of significant regions (Burke
et al., 2002; Miller et al., 2014) : underdominant <-1.25, high abundance allele
recessive between -1.25 and -0.75, partially recessive between -0.75 and -0.25, additive
between -0.25 and 0.25, partially dominant between 0.25 and 0.75, dominant 0.75 and
1.25, and overdominant >1.25.

4.11. Gene ontology and network analysis

The nearest genes up- and downstream of the significant SNPs were identified using
the locateVariants() function from the VariantAnnotation R package (version 1.34.0;
Valerie et al., 2014) using the default parameters. A maximum of two genes per locus
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were included (one upstream, and one downstream of a given SNP). 
To investigate functions and interactions of candidate genes, we calculated a a
protein-protein interaction (PPI) network with STRING version 11 (Szklarczyk et
al., 2019), on the basis of a list of the closest genes to all SNPs with significant trait
associations. We included network edges with an interaction score >0.9, based on
evidence from fusion, neighborhood, co-occurrence, experimental, text-mining,
database, and co-expression. We exported this network to Cytoscape v 3.8.2 (Shannon
et al., 2003) for identification of highly interconnected regions using the MCODE
Cytoscape plugin (Bader and Hogue, 2003), and functional annotation of clusters
using the stringApp Cytoscape plugin (Doncheva et al., 2019).
We identified overrepresented KEGG pathways and human diseases using the
clusterprofiler R package (version 3.16.1; Yu et al., 2012). P values were corrected for
multiple testing using the Benjamini-Hochberg method. Pathways and diseases with
an adjusted P value < .05 were considered over-represented. 

4.12. Calculating overlap with other studies

To test for significant overlap with loci identified in previous mapping studies and for
over-representation of IBD genes, we used the tool poverlap (Brent Pedersen, 2013)
to compare observed overlap to random expectations based on 10,000 permutations of
significant regions. We identified genes within overlapping regions using the
locateVariants() function from the VariantAnnotation R package (version 1.34.0;
Valerie et al., 2014).

4.13. Combination of results

Hub genes SNP network and their first neighbors, the hub genes from the
’differentially expressed in GF mice’-network and their respective first neighbors,
genes found in both Mills et al. (2020) and other mouse QTL studies, closest genes to
a SNP found in Mills et al. (2020), genes situated in the 20 smallest intervals, six
genes in the two intervals with the lowest P values, twenty genes in intervals found
in most different taxa, genes situated in the region with most overlap within our
study, and finally the genes situated in the intervals that most frequently overlapped
with other studies were combined into on gene set and analyzed with STRING.
Genes situated in the same genomic locus were curated according to the number of
edges in the STRING network.
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4.14. Data and code availability

DNA- and RNA-based 16S rRNA gene sequences are available under project
accession number PRJNA759194. Code is available at https://github.com/sdoms/
mapping_scripts. 
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5. Supplementary material
Suppl. Fig 1-14, Suppl. Table 1: Heritability estimates, Suppl. Table 2: Genome-

wide significant associations, Suppl. Table 3: Study-wide significant associations,
Suppl. Table 4: Intervals smaller than 1Mb, Suppl. Table 5: Overrepresented KEGG
pathways, Suppl. Table 6: IBD genes, and Suppl. Table 7: Candidate genes.

Suppl. Figure 1: Selection of taxa for mGWAS analysis. A scatter plot showing the association of aver-
age relative abundance of taxa with their prevalence in the G2 mapping population. Taxa retained for
analysis are colored according to the originating core. The size of each dot represents the number of
individuals that have a median abundance higher than 0.2% of the taxon. The dashed lines represent
the thresholds of the core (vertical: median abundance>0.2% and horizontal prevalence of 25 %.

Suppl. Figure 2: Relative abundances of core genera in G2 mapping population. Each vertical line repre-
sents one individual. Subcross (see figure 11) is indicated at the top. 

0.00

0.25

0.50

0.75

1.00

−6 −4 −2
Log10 relative abundance

Pr
ev

al
en

ce

GWAS core
None

DNA core

RNA core

Total core + DNA core

Total core + RNA core

Total core + DNA core + RNA core

N individuals > 0.2%
0

100

200

300

400

500

�

������� ������� ��	���� ��
���� ������� ������� ������
 ������	


��

��

�

����

���

����

����

���

����

�

�

�����������


�
��
���
�
��

��
��

��
�

�����
���������	�


�����������  ��!�"�#�$�����

����
��
������

�������
�����

���	���������

����������	�


����������� �����$"������

���	�
�����

����	
����� ����

����������� 	�"��$�������

��
��
���	����

����	����

��
��	����

�	������������

����������� 
�%��"�"�������

���	�	� ��	�


!�����
��

"
	��	�
���
��

����������� &"$#!'$"%"��������

��
��
�
��
	��

����������� 
����#$"��"�����$��

���
����	�


#�����	�
����	�


$�
��

����������� �����$"������

��	�
���������

�
��
��	����

����������� &$��"���������

(�!�$

49



Suppl. Figure 3: Host genetic relatedness calculated from SNP data (x-axis) is correlated with microbial
composition-based relatedness (y-axis) calculated from ASV abundances. The blue line represents a lin-
ear regression fit to the data.

Suppl. Figure 4: Correlation of SNP-based heritability estimates based on DNA (x-axis) or RNA (y-
axis). The blue line represents a linear regression fit to the data. Red dashed line represents the identity
line with a slope of 1. 
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Suppl. Figure 5: Manhattan plots for ASV184 (Dorea) of the complete model (A), the additive effect
(B) or the dominance effect (C). SNPs passing the study-wide significance threshold (solid line) are
shown in dark blue, while genome-wide significant SNPs (dashed line) are shown in light blue. In
panel A, the closest gene to the SNP is shown for a subset of significant SNPs. 
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Suppl. Figure 6: Number of significantly associated loci per bacterial taxon. Loci with significant addi-
tive effects (add.P), dominance effects (dom.P) or effects in full model (P) are indicated. 
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Suppl. Figure 7: Top ten hub genes of the protein-protein interaction (PPI) network with the closest
genes to the host SNPs significantly associated with bacterial abundances. The nodes are colored ac-
cording to hub gene rank from 1 (red) to 10 (yellow). Blue nodes are the first neighbors.
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Suppl. Figure 8: Genes belonging to over-represented KEGG pathways within the host genes closest to
significant SNPs from association analysis.

Suppl. Figure 9: Enriched KEGG pathways among closest genes to significant SNPs from association
analysis. Node color indicates FDR-adjusted P value of enrichment and node size indicates number of
candidate genes in pathway.
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Suppl. Figure 10: Enriched human diseases among genes closest to significant SNPs from association
analysis.

Suppl. Figure 11: STRING (Szklarczyk et al., 2019) protein-protein interaction network of proteins that
are differentially expressed in the intestine (small intestine and colon) of germ-free (GF) mice com-
pared to conventionally raised mice, found in the present study. The color of the network nodes indi-
cates whether the QTL hit was found using the DNA abundances (green), RNA abundances (purple)
or was found in both (orange). The shape represents if the gene of the protein was the closest gene to
the significant SNP (rectangle), if the gene was also found in QTLs of other studies (octagon), a com-
bination of both (diamond), or only differentially expressed in GF mice vs. conventionally raised mice.
The node size expresses the number of taxa where the gene was found in a QTL. The edges represent
protein-protein interactions, where the line thickness indicates the strength of the data support from
text mining, experiments, databases, co-expression, gene-fusion, and co-occurrence.
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Suppl. Figure 12: Visualization of the top hub genes calculated with the MCC algorithm and their first
neighbors from the protein-protein interaction (PPI) network of genes found in intervals in present
study that are also differentially expressed in germ-free versus conventionally raised mice. Edges repre-
sent the protein-protein associations. The red nodes represent genes with a high degree (= hub genes),
and the yellow nodes with a low degree, while the blue nodes represent their first neighbors. All
nodes shown are differentially expressed in GF mice. Hexagon shaped nodes are genes/proteins also
found associated with gut microbiome abundances in other mouse QTL studies, and round nodes are
’only’ differentially expressed in GF mice. The size of the node is an indication of the amount of taxa
associated with the gene.

Suppl. Figure 13: Original protein protein interaction (PPI) network of 304 candidate genes closest to
SNPs significantly associated with bacterial abundances. Generated in STRING (Szklarczyk et al.,
2019) and Cytoscape (Shannon et al., 2003).  
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Chapter 2: 
Characterizing candidate genes

1. Introduction
GWAS has proven itself very useful in identifying genetic loci contributing to many
traits (Visscher et al., 2017). However, the approach does not, by definition, identify
causal genes or genomic patterns, nor does it identify functional allelic variants that
might contribute to the phenotype. Thus, the path from GWAS to biology is not
clear-cut and follow-up studies are necessary to validate the results. 
In this chapter, we follow-up on the association between ASV35 (putatively
identified as Bacteroides acidifaciens) abundance and the host locus containing the
Sirt5 gene (peak SNP rs46570359) found in a previous version of the genome-wide
association study (GWAS) of the gut microbial abundances presented in Chapter 1. 
Evolutionary analysis provides clear evidence that all seven sirtuin families are highly-
conserved in animal evolution, hence, a clearer understanding of the function of
sirtuins may benefit from their analysis within the context of a simple biological
system. Sirtuins are a family of highly conserved NAD+-dependent protein deacylases
with regulatory roles in numerous biological processes, such as genomic stability,
metabolism and longevity (Haigis and Sinclair, 2010). Mammals have seven sirtuin
proteins residing in different cellular locations. SIRT1, SIRT6 and SIRT7 are
primarily situated in the nucleus, whereas SIRT2 dwells in the cytoplasm and SIRT3,
SIRT4, and SIRT5 are localized in different compartments of the mitochondria
(Michishita et al., 2005; Nakamura et al., 2008). The most important role of SIRT5
has been reported in the urea cycle in mitochondria. SIRT5 can deacylate, and
thereby activate, carbamoyl phosphate synthetase (CPS1), leading to ammonia
detoxification (Nakagawa et al., 2009). SIRT5 can also regulate ammonia production
by controlling glutamine metabolism (Polletta et al., 2015). A succinylome study
showed that SIRT5 desuccinylates a vast set of metabolic enzymes in the
mitochondria involved in amino acid degradation, the tricarboxylic acid (TCA) cycle,
and fatty acid metabolism (Park et al., 2013). Shortly thereafter, Nishida and
colleagues identified glycolysis to be the top SIRT5-regulated pathway (Nishida et
al., 2015). Taken together, these data suggest that SIRT5 may play an essential role in
metabolic (nitrogen) homeostasis, whereby SIRT5 acts as a metabolic sensor under
conditions of fasting, high-protein intake, or caloric restriction (CR), and that this
response occurs in a circadian NAD+-dependent manner (Mauvoisin et al., 2017; Peek
et al., 2012).
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Emerging evidence suggests that gut microbes impact host metabolism (Cardona et
al., 2016; Kuang et al., 2019; Lin and Zhang, 2017; Morowitz et al., 2011) and
regulate nitrogen homeostasis through the de novo synthesis of amino acids and
intestinal recycling of urea (Bergen and Wu, 2009; Stewart and Smith, 2005; Walpole
et al., 2018). The Sirt5-associated bacterial species belongs to the phylum
Bacteroidetes. This phylum is known to be linked with host metabolism, where it
decreases upon excess energy intake and increases under conditions of CR (Johnson
et al., 2017). Moreover, B. acidifaciens displays a cyclic diurnal oscillation that is
dependent on feeding time (Thaiss et al., 2014). A recent study by Reese and
colleagues proposes that the host can attenuate nitrogen limitation in the colon to
upregulate preferred taxa, such as Bacteroidales, who increase in abundance with
greater nitrogen supply (Reese et al., 2018). A possible interaction between B.
acidifaciens and SIRT5 may therefore be mediated through the exchange of nitrogen.
Drosophila is an attractive organism to help understand the function of mitochondrial
sirtuins and their association to the gut microbiome. The Drosophila melanogaster
genome contains five sirtuins, Sirt1, Sirt2, Sirt4, Sirt6, and Sirt7, named for their
closest mammalian orthologs. Of these, only Sirt4 contains a predicted mitochondrial
targeting sequence (Greiss and Gartner, 2009), suggesting that the Drosophila Sirt4
(hereafter referred to as dSirt4) may act as the ancestral mitochondrial sirtuin that can
perform many of the biological functions that are usually distributed across the three
mitochondrial sirtuins within the mammalian system. Notably, dSirt4 seems to also
play a key role in metabolism and nitrogen regulation in Drosophila. Wood and
colleagues found that dSirt4 knockout flies display a number of phenotypes consistent
with an inability to properly process and use energy stores (Wood et al., 2018) and
have a markedly shorter lifespan compared to their wild-type controls, while
overexpression increased the lifespan. Metabolomics results suggest that dSirt4 may be
involved in regulating both glycolysis and branched-chain amino acid oxidation.
Here, we present a follow-up case study of a gene-bacterial species association found
in the genome-wide association study presented in Chapter 1. We make use of two
different metaorganisms (house mouse and fruit fly) to determine the gene's role in
association with bacteria in a circadian context. We hypothesize that a similar
interaction between the Drosophila mitochondrial sirtuin, dSirt4, and a bacterial
species functionally similar to mouse B. acidifaciens may exist. By combining the
results of both model organisms, we provide evidence for a conserved role of sirtuins
in regulation of bacterial abundance. 
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2. Results

2.1. Identification of Sirt5 as a candidate for fine-scale 
characterization in mice

Within a preliminary run of the association mapping, we found an association
between ASV35 (Bacteroides acidifaciens/uniformis) DNA-based abundance and a
region on chromosome 13 containing two genes, Gfod1 and Sirt5 (Fig. 12). ASV35
represents an interesting candidate as it was found to be an indicator species for Mus
musculus musculus in a geographic screen of mouse microbiomes (Fig. 13; Fokt,
2021). Moreover, inheritance deviates from Mendel's law of inheritance at the peak
SNP rs46570359 with a lower number of heterozygotes compared to expected (X2 (2,
N=40)= 6.6, P = .037). 
In the final GWAS, this association is no longer identified, due to the incorporation
of the mating pair identifier as a random effect in the model which introduces
collinearity with the genotype. However, there is a significant main effect of the
genotype on the presence or absence of ASV35, F(2,297)= 28.64, P < .001, ω2= 0.23.
The Bonferroni and Tukey post hoc tests both revealed that the AA genotype had a
higher presence of ASV35 compared to both the AG (P < .001) and the GG
genotype (P < .001). Genotype GG also had a significantly higher presence of ASV35
compared to the AG (P < .001). There was a significant main effect of the genotype
on the abundance of ASV35, F(2,297)= 4.29, P= .015, ω2= 0.06 (Fig. 15A). The
Bonferroni and Tukey post hoc test revealed that the abundance of ASV35 is
significantly higher for genotype AA compared to genotype AG (PBon < .001 and
PTukey= 0.048) and shows a similar trend for genotype GG compared to AG (PBon
=0.097 and PTukey= 0.1). 
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Figure 12: Region plot of the association of
SNP rs46570359 with ASV35 (Bacteroides
acidifaciens/uniformis) relative abundance on
DNA level. 

Figure 13: Relative abundance of ASV35 (Bac-
teroides acidifaciens/uniformis) in Mus muscu-
lus musculus and Mus musculus domesticus
mice. 

Using qRT-PCR analysis on the same cecal tissue used for microbial phenotyping for
GWAS analysis, we explored whether the genotype at SNP rs46570359 is associated
with a change in Gfod1 and/or Sirt5 expression in mice. The expression of Gfod1 was
significantly higher in mice homozygous for the dom allele (GG) compared to mice
homozygous for the mus allele (AA; P = .016) or the heterozygotes (AG; P < .001;
Fig. 14). However, there was no significant difference in expression of Gfod1 between
mice homozygous for the mus allele and the heterozygotes (Fig. 14). 
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Figure 14: Gfod1 expression with respect to genotype at SNP rs46570359. Fold change was determined
by ∆-∆ Ct method relative to expression of B2m as a control gene. P values are calculated using a
Wilcoxon rank sum test. ** P < .01; *** P < .001; **** P < .0001 . 

Sirt5 expression was approximately three-fold greater in mice homozygous for the
mus allele (AA) than mice homozygous for the dom allele (GG; P < .0001), while
heterozygous animals had considerably lower expression than either homozygote (P
< .0001 AA; P < .01 GG; Fig. 15B). A detailed look at the link between ASV35
abundance and the rs46570359 genotype revealed an interesting pattern: ASV35 was
nearly completely absent in the heterozygous genotype (P < .0001 AA; P < .001
GG), but abundant in each of the homozygous parental genotypes (Fig. 15A).
Additionally, the mus allele homozygotes had a greater abundance of ASV35
compared to the dom allele homozygotes (P < .01), mimicking the Sirt5 expression
pattern. This is in the same direction as seen in a geographical screen of gut
microbiota of mus and dom mice, where M. m. musculus mice had a significantly
greater abundance of ASV35 compared to M. m. domesticus mice (P = 2.8 × 10-5; Fig.
13; Fokt, 2021). Due to the striking pattern observed between Sirt5 expression and
ASV35 abundance, we decided to focus on Sirt5 for follow-up analyses. 

Figure 15: (A) ASV35 log10 transformed abundance according to genotype at SNP rs46570359 on
chromosome 13. (B) Sirt5 expression with respect to genotype at SNP. Fold change was determined
by ∆-∆ Ct method relative to expression of B2m as a control gene. P values are calculated using a
Wilcoxon rank sum test. ** P < .01; *** P < .001; **** P < .0001 
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Next, in a collaboration with Prof. Dr. Christoph Kaleta, we determined if there is
metabolic interdependence between the host's Sirt5 gene and Bacteroides uniformis,
as this is the closest species to ASV35 with metabolic modeling data available. The
metabolic metamodel included microbiome data, as well as host gene expression data
of liver, brain and colon tissue. First, the metamodel containing all reactions found in
B. uniformis was compared to a germ-free model and all metabolic reactions whose
flow was decreased to less than 10% of their capability when B. uniformis reactions
were enabled, were considered as B. uniformis-dependent reactions and their
respective genes as B. uniformis-dependent genes. The model was initially validated
by evaluating previously reported host gene expression data from GF mice mono-
colonized with B. uniformis (Wang et al., 2019). This demonstrated a much larger
response to B. uniformis colonization among genes anticipated to be dependent on B.
uniformis products (Fig. 16A), lending credence to the model's validity.

Figure 16: (A) Average fold-change of host genes in response to monocolonization with B. 
uniformis. Those host genes predicted to be dependent on B. uniformis metabolic products display
on average a greater change in expression upon colonization. (B) Fraction of genes targeted by 
SIRT5 among B. uniformis-dependent vs. independent genes. *** P < .001, **** P < .0001. 

Subsequently, we screened for overlap between B. uniformis-dependent genes and
SIRT5 target genes, which are genes sensitive to SIRT5-mediated post-translational
modification, mostly desuccinylation. In total, 647 SIRT5 targets have been
discovered (Nakagawa and Guarente, 2009), 277 of which are engaged in metabolism.
Notably, we find a highly significant enrichment of SIRT5 targets among B.
uniformis-dependent genes (Fig. 16B), supporting the working assumption that
ASV35's correlation with mouse genome variation is mediated by interacting with
the Sirt5 gene.
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2.2. The influence of Sirt5 on the bacterial community composition in
a circadian context in mice

Within the original breeding stock from the animals used for mapping (Chapter 1),
we determined their genotype at peak SNP rs46570359. Fecal samples were collected
for ten mice per genotype (ntot=30) every six hours over a period of 48 hours. The
species richness (Chao1 Index) and evenness (Shannon Index) were significantly
different between the homozygotes, AA and GG, where GG had a significantly
higher alpha diversity (PChao1 =.04 and PShannon =.02, resp., Fig. 17A). Only time point
1pm has a significantly higher Shannon Index compared to the community of the
7pm time point, when comparing the alpha diversity measures within the genotypes
according to sampling time point (P =.03, Fig. 17B). No time point showed a
significantly different species richness using the Chao1 estimate (Fig. 17C). There is a
significant difference in community composition according to genotype (P = .001,
Fig. 18), but not according to time (P =.50), although the axes only explain about 1%
of the variation. We found 38 ASVs and ten genera significantly more abundant in
one genotype or a combination of genotypes (P < .05, Fig. 19), including ASV12,
(corresponding to ASV35 from the mapping study), ASV7 (classifying to species
level as B. acidifaciens), as well as several Lactobacillus species. 
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Figure 17: Species richness and evenness estimates according to genotype at rs46570359 on ASV level. 
(A) Chao1 and Shannon Index (left and right, resp.) according to genotype. (B) Shannon Index 
and (C) Chao1 estimate according to genotype and sampling time point. Significance is deter-
mined using the Wilcoxon Rank Sum test. Only significant comparisons are shown. * P < .05 
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Figure 18: Constrained analysis of the Bray-Curtis dissimilarities according to genotype at rs46570359 at 
the ASV level. The originating mouse line is partialled out. ** P < .01 
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 Figure 19: Indicator genera (A) and indicator ASVs (B) according to genotype or a combina-
tion of genotypes at rs46570359. The relative abundance is depicted by a color gradient. Only 
significant ASVs and genera are shown (10 000 permutations, FDR correction for multiple 
testing). 

Next, we tested if the alpha diversity values and the individual bacterial abundances
showed a circadian cycling pattern using JTK_CYCLE analysis (Hughes et al., 2010).
Alpha diversity values do not show any significant cycling. Sixteen genera and 33
ASVs show cycling in one or more of the genotypes (Suppl. Tables 1 & 2, and Suppl.
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Fig. 1 & 2). Interestingly, the heterozygote AG genotype has twice as many cycling
bacteria compared to the homozygotes. Four of the 33 ASVs belong to the genus
Bacteroides, including ASV7 and ASV12. The genus Bacteroides showed no
significant cycling (Suppl. Table 2), while ASV7 showed significant cycling in the
mice heterozygous at rs46570359 and ASV12 showed significant cycling in the
heterozygous and AA genotype (Fig. 20 and Suppl. Table 1). Altogether, these
results show that many bacterial taxa, including ASV35, exhibit a circadian pattern,
however in a genotype dependent manner suggesting an effect of Sirt5 expression on
bacterial cycling. 

Figure 20: Relative abundance of ASV7 (Bacteroides acidifaciens) (A) and ASV12 (Bacteroides sp. 
ASV35) (B) at different time points over a 48 hour period for the different genotypes at 
rs46570359. Significant differences in relative abundances between genotypes within one time 
point are shown. ANOVA: **** P<.0001, *** P < .001, ** P < .01, * P < .05  
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2.3. Characterization of dSirt4 and its relation to the gut microbiome 
and circadian rhythms in Drosophila

This section is based on joint work with Abdulgawaad Saboukh, who carried out the
experiments, and Prof. Dr. Thomas Roeder and was funded with the CRC1182 Young
Investigator 2019 Award, awarded to me.

2.3.a. Protein alignment of Sirt5 to dSirt4

Aligning the mouse Sirt5 protein sequence to the Drosophila Sirt4 (dSirt4) sequence
reveals an overall sequence similarity of 23.7 %. However, the active sites, and the
NAD+ and zinc binding sites and regions are conserved between both genes (Suppl.
Fig. 3), as well as the folding of SIRT5 compared to dSIRT4 (Fig. 21) and of all
three murine mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5) (Suppl. Fig. 4). 

Figure 21: Superimposed predicted folded proteins dSIRT4 and SIRT5. (A) Protein structures of
dSIRT4 (turquoise) and SIRT5 (ochre) bound to ligand (ball-stick structure). (B) Detail of the active
site (green) interaction with ligand. (C) Detail of interaction of metal binding sites (pink) with zinc
ion (purple ball). (D) Interpro sirtuin family domain colored in purple. (E) NAD+ binding regions are
highlighted in blue. 
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2.3.b. Circadian cycling of dSirt4

To test if dSirt4 displays a circadian pattern, we raised half of W1118 Drosophila flies
conventionally (n=10 per time point), by inoculating them with six bacterial species
(Acetobacter Thailandi, Acetobacter pomorum, Lactobacillus brevis EW, Lactobacillus
plantarum WJL, Enterococcus faecalis, and Commensalibacter intestini A911T), and the
other half were raised microbial depleted (n=7-10 per time point). We measured the
expression level of dSirt4 and two known cycling genes Period and Timeless. All
three genes showed significant cycling patterns, however the acrophase (i.e. the time
point with the highest expression) shifts depending on microbial status (Fig. 22).
Interestingly, the expression levels of all three genes is higher in microbial depleted
genes (Suppl. Fig. 5). 

Figure 22: Expression of Period (A), Timeless (B), and Sirtuin 4 (C) over a period of 24 hours within
microbial depleted (MD; orange) and conventionally raised (CON; blue) flies. Expression levels are rel-
ative to housekeeping gene Rpl32. P values on plots A-C are calculated on the difference between
CON and MD for a given time point using a Wilcoxon rank sum test. ns: P > .05; * : P < .05; ** : P
< .01; *** : P < .001; **** : P < .0001 (D) Table showing the results from JTK_CYCLE analysis. 
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2.3.c. Influence of dSirt4 expression on bacterial load and microbiome 
composition 

Next, we used four different groups of flies, dSirt4 over-expression (OE), dSirt4
knock-out (KO), dSirt4 knock-down (KD), and wild type (WT) flies, to test
whether dSirt4 expression has an influence on bacterial load and microbiome
composition. Flies were sampled every three hours over a period of 24 hours. First,
we evaluated the expression of dSirt4 in the different groups. The expression of
dSirt4 in OE is 200 times higher compared to WT, while dSirt4 in KD is on average
70 times lower expressed compared to WT. 

Figure 23: Log fold expression of dSirt4 for OE (n=2), KD (n=2), KO (n=2), and WT (n=6) flies. 
Expression of dSirt4 is relative to Rpl32 and to the expression level in KO flies. 

We measured the bacterial load in the KO, KD, OE, and WT flies and tested for
cycling using JTK_CYCLE. We find that only OE flies show significant cycling in
their bacterial load (P < .001, FDR corrected P values), however the other three
groups show a trend (P = .01, FDR corrected P values; Table 2, and Fig. 24).
Interestingly, the average expression of dSirt4 shows a negative trend to the average
bacterial load (P = .08, R2 = -1, spearman correlation test; Suppl. Fig. 6). 
Table 2: Results from JTK_CYCLE analysis on the bacterial load within the different fly groups.
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Figure 24: Bacterial load of the groups with different dSirt4 expression measured every three hours over
a period of 24 hours.

Next, we characterized the microbial composition of the different fly groups to
identify cycling taxa that potentially have a homologous role to B. acidifaciens in
mice. The relative abundances calculated from the 16S sequences were multiplied
with the measured bacterial load in the samples in order to obtain an absolute
abundance. First, we calculated the alpha diversity values, Shannon Index and Chao1
Index, to analyze species richness and evenness within bacterial communities and
found that the Shannon Index significantly cycles in KD (P = 4.91 × 10-7) and KO
flies (P = 2.36 × 10-5), while the Chao1 Index cycles in KO (P = 5.43 × 10-4) and OE
(P = 5.57 × 10-5; Table 3, Fig. 25). 
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Table 3: Cycling analysis of alpha diversity values using JTK_CYCLE. Q.values are FDR corrected P
values: . P < .01, * P < .05, ** P < .01, *** P < .001 

Figure 25: Alpha diversity measures across different time points for the different fly groups (OE, 
KO, KD and WT) using the Shannon Index (A) and Chao1 Index (B). Significant differences of
alpha diversity between the dSirt4 genotype within one time point is tested using ANOVA. ns 
P > 0.5; * P < .05; ** P < .01; *** P < .001; **** P < .0001

The flies of the different groups exhibit a distinct community composition, where
most of the variation is explained by the dSirt4 genotype, i.e. OE, KO, KD or WT
(adonis of BC dissimilarity on ASV level: R2sirt4= 0.44, R2timepoint= 0.087, Fsirt4=65.44,
Ftimepoint=5.54, P < .001 for all; Fig. 26). Notably, KO and OE flies display a more
similar community composition compared to WT and KD flies. In WT and KD
flies, we see a high abundance of the genus Wolbachia, while the communities of
KO and OE flies were consisting of mostly Acetobacter (Suppl. Fig. 7). 
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Figure 26: Constrained analysis of Bray-Curtis dissimilarity. Points are colored according to the sam-
pling time points and shaped according to dSirt4 status. *** P < .001, P values for axes are calculat-
ed using anova with 10,000 permutations. 

Out of the 13 taxa tested (five genera and eight ASVs), none showed significant
cycling in the wild type flies, while only one, annotated as Acetobacter sp., showed
significant cycling in the knock-down flies (Fig. 27A, D). Four taxa, ASV5
(Lactobacillus sp.), ASV9 (unclassified Acetobacteraceae), genus Lactobacillus, and an
unclassified genus belonging to Acetobacteraceae, showed significant cycling in the
knock-out flies (Fig. 27B, D) and nine in the over-expressed flies (ASV5
(Lactobacillus sp.), ASV15 (Lactobacillus sp.), ASV16 (Lactobacillus sp.), ASV22
(Lactobacillus sp.), ASV23 (Lactobacillus sp.), ASV24 (Lactobacillus sp.), ASV91
(unclassified Beijerinickiaceae), genus Lactobacillus, an unclassified genus belonging
to Beijerinickiaceae) (Fig. 27C, D). 
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Figure 27: Taxa showing significant cycling patterns in dSirt4 knock-down (A), knock-out (B), and
over-expression flies. Panel D shows a table with the results of the JTK_CYCLE analysis. 
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3. Discussion
Genome-wide association studies provide numerous genetic loci associated with traits.
However, the biology behind these interactions remains unknown, hence functional
characterization of the candidate genes after GWAS is necessary. Here, we have
demonstrated the use of two model organisms, Mus musculus and Drosophila, in
characterizing the influence of candidate gene Sirt5 on the bacterial composition. In
both organisms, Sirt5/dSirt4 expression had an effect on the community composition
and on cycling of bacterial taxa suggesting a conserved role for the mitochondrial
sirtuin in regulating the abundance of bacterial taxa. 
In the GWAS mapping population, we noticed a significantly lower number of
heterozygotes than expected, suggesting selection against heterozygotes for the SNP.
A study characterizing Sirt5-deficient mice also noted a non-mendelian inheritance of
Sirt5-/- mice with approximately 40% of prenatal loss of Sirt5-/- offspring (Yu et al.,
2013). We evaluated whether the expression of Sirt5 is associated with the genotype
at SNP rs46570359. This revealed a significant nearly three-fold higher expression of
Sirt5 in the mus allele (AA) compared to the dom allele (GG). The expression of
Sirt5 in the heterozygote (AG) was lower than in both homozygotes. This pattern is
consistent with previous findings in dom, mus, and hybrid mice, in which hybrid
genetic backgrounds resulted in extensive misexpression of immune-related genes
(Wang et al., 2015). Furthermore, the expression of Sirt5 mirrored the abundance of
ASV35 according to genotype, where the mus allele (AA) had a higher abundance
of ASV35 (Bacteroides acidifaciens/uniformis) compared to the dom allele (GG),
while ASV35 is absent in the heterozygote. This was also consistent with ASV35
abundance in a geographic screen of mus and dom mice, where mus mice had a
higher abundance of ASV35. We used a metamodel to evaluate whether metabolic
interdependency exists between the host and ASV35. This revealed a significant
enrichment of SIRT5 targets among B. uniformis-dependent genes. This supports the
assumption that the association between ASV35 and variation in the mouse genome
is mediated by interacting with SIRT5. Taken together, these results provide
compelling evidence of a host gene-microbe interaction involving the Sirt5 gene and
a taxon belonging to B. acidifaciens and/or B. uniformis, which has diverged since the
common ancestor of the dom and mus subspecies roughly 0.5 MYA ago.
SIRT5 is an NAD+ dependent protein deacylase playing a role in maintaining
metabolic homeostasis (Fischer et al., 2012; Chalkiadaki and Guarente, 2012; Cant: et
al., 2015; Kumar and Lombard, 2018). NAD+ is its rate-limiting compound and
nicotinamide (NAM), a product of the sirtuin reaction, inhibits SIRT5's
desuccinylase activity without affecting its deacetylase activity (Du et al., 2011;
Fischer et al., 2012; Madsen and Olsen, 2012). As NAD+ biosynthesis is tightly
controlled by the circadian clock BMAL1:CLOCK complex (Nakahata et al., 2009;
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Zhang and Sauve, 2018), we wanted to characterize the influence of the SNP
rs46570359 near Sirt5 on the bacterial community composition in mice in a circadian
context. The mus allele (AA) showed a significant lower species richness compared
to the dom allele (GG) and the whole bacterial community was significantly different
according to genotype. Numerous ASVs and genera were more abundant in one
genotype, including ASV7 (B. acidifaciens) and ASV12 (* ASV35 in mapping
population, B. acidifaciens), which were more abundant in the mus allele (AA).
Nutrient availability, such as nitrogen, due to the expression levels of Sirt5 in the
different genotypes could cause the different microbiota composition. Reese et al.
have shown that especially species belonging to the phylum Bacteroidetes increase in
abundance with more nitrogen availability in the large intestine, suggesting resource
limitation as way for hosts to control their gut communities (Reese et al., 2018). 
Sixteen genera and 33 ASVs showed significant circadian cycling within different
genotypes in the mouse model. These included B. acidifaciens sp. ASV7 (cycling in
heterozygote) and ASV12 (cycling in AA and heterozygote), and Lactobacillus sp.
ASV3 (cycling in AA and heterozygote) and ASV6 (cycling in heterozygote), all
taxa previously shown to display a cyclic diurnal oscillation that is specifically related
to feeding time, i.e. it can be shifted by forced 12 hour shifts of feeding times (Thaiss
et al., 2014). Interestingly, the heterozygote, which is the allele with the lowest Sirt5
expression, has twice as many cycling bacteria. A reduced Sirt5 expression would
result in a larger availability of ammonia, as SIRT5 activates carbamoyl phosphate
synthetase 1 (CPS1), which starts the urea cycle. Several bacteria, such as
Lactobacillus sp., have the capability to reduce ammonia (Singh et al., 2018; Wrong
and Vince, 1984; Naidu et al., 2002), while others, such as Bacteroides sp. produce
ammonia from amino acids and peptides (Vince and Burridge, 1980; Richardson et al.,
2013). The opposite cycling pattern of Lactobacillus sp. (ASV3 and ASV6) and
Bacteroides sp. (ASV7 and ASV12) suggests that bacteria could compensate for the
expression of Sirt5 by performing some of its metabolic functions and that their
interaction could go through exchange of ammonia and urea. Short-chain fatty acids
(SCFA) can be another point of interaction as SIRT5 desuccinylation regulates fatty
acid oxidation (Du et al., 2018; Goetzman et al., 2020; Rardin et al., 2013) and SCFAs
produced by bacteria induce circadian clock entrainment (Tahara et al., 2018),
whereby Bacteroides is a known SCFA producer with a preference for propionate
(Rios-Covian et al., 2017). Collectively, these result show a clear interaction of SIRT5
and several bacterial species through the exchange of nutrients. 
In Drosophila, we first showed that dSirt4 contains all active sites and binding regions
of murine Sirt5, indicating that dSirt4 might be the ancestral mitochondrial sirtuin
fulfilling a similar role as the three murine mitochondrial sirtuins (Sirt3, Sirt4, Sirt5).
dSirt4 showed significant cycling in both conventionally raised as well as microbial
depleted flies, where microbial depleted flies showed an overall higher expression of
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dSirt4. As dSirt4 is highly expressed during caloric restriction and fasting (Wood et
al., 2018), a higher expression in microbial depleted flies could be due to a missing
cue normally provided by microbes to signal food intake (Han et al., 2021). The
acrophase of dSirt4 expression shifted 4.5 hours, from noon in conventionally raised
flies to dawn in microbial depleted flies. Timeless also exhibited a 4.5 hour shift in
acrophase, while the acrophase of Period shifted 12 hours. This would suggest missing
signals from the microbiome disrupt the circadian rhythm of the flies, a phenomenon
also seen in germ-free mice (Mukherji et al., 2013; Voigt et al., 2014; Ogawa et al.,
2020). 
Next, to determine the influence of dSirt4 expression on the gut microbiome, we
used flies with dSirt4 over-expressed (OE), knocked down (KD), and knocked out
(KO). The expression level of dSirt4 showed a negative correlation with bacterial
load. This is an extension of a study by Carneiro Dutra et al., who showed that the
presence of the endosymbiont Wolbachia is associated with a decrease in dSirt4
expression (Carneiro Dutra et al., 2020). Interestingly, the influence of dSirt4 on the
bacterial load goes in both directions: flies raised without bacteria show a higher
dSirt4 expression compared to WT and flies over-expressing dSirt4 have a low
bacterial load. This implies a reciprocal interaction between dSirt4 and the bacterial
community. 
The bacterial load showed significant cycling in OE flies, while others showed a
trend. The alpha diversity displayed significant circadian patterns in OE, KO, and
KD, but not in WT flies. dSirt4 expression had an influence on the community
composition, where OE and KO showed a similar community composition, as well as
KD and WT. We found no cycling taxa in WT flies, however one taxon cycled in
KO flies, four taxa in KO, and nine taxa in OE flies, including several Lactobacillus
sp. A study by Elya et al. (2016) showed that Drosophila exhibits very low host
response to taxa-specific colonization of the gut (Elya et al., 2016). This could suggest
that bacterial load is a more important factor, as an extreme bacterial load could be a
burden for the host. 
Wolbachia, present in WT, KD, and OE, but not KO flies, is an intracellular
microbe that is known to alter host fitness and phenotypic analyses (Clark et al.,
2005) and is therefore, a confounding factor in this study. Moreover, Carneiro Dutra
et al. (2020) discovered that the presence ofWolbachia is associated with a decrease in
dSirt4 expression (Carneiro Dutra et al., 2020). Consequently, the interpretation of
our results from the different fly groups is compromised, as we cannot prove that the
effect (e.g. the higher bacterial load in KO flies) is independent of Wolbachia
infection. Further studies in Wolbachia-free dSirt4 KO, KD, OE, and WT flies are
necessary to untangle the effect of dSirt4 expression on the bacterial community
composition in a circadian context. 
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In summary, our study showed that Sirt5 and dSirt4 have an influence on the gut
microbiome composition of mice and flies, respectively. This suggest a conserved role
across animals for a mitochondrial sirtuin in influencing bacterial abundance. This
interaction most likely functions through an exchange of nutrients, as Sirt5 and dSirt4
play an important role in maintaining metabolic homeostasis (Kumar and Lombard,
2018; Wood et al., 2018). Further research into knock-out Sirt5 mice will help
elucidate the exact interaction between bacterial species and Sirt5 expression. 
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4. Material and methods

4.1. qRT-PCR analysis of Sirt5 expression

cDNA used for mapping (see section 1.4.3) was used for determining Sirt5
expression. The following primers were used: Sirt5 F 5'-
GCAGACGGGTTGTGGTCAT-3', Sirt5 R 5'-CTGGGCAGATCGGACTCCTA-3',
B2m F 5'-GGTCTTTCTGGTGTTGTCTCA-3', B2m R 5'-
GTTCGGCTTCCCATTCTCC-3'. qPCR was performed for 40 cycles using a
BioRad qPCR machine and the Applied Biosystems SYBR Green Master Mix
(Thermo Fisher Scientific, Schwerte, Germany). Log fold change expression of Sirt5
was calculated using the ∆∆Ct method relative to B2m expression levels. 

4.2. Sirt5 genotyping in mice

Ear punches were collected from mice of the original partially inbred mouse lines that
were used for the mapping cross and were extracted using DNeasy Blood & Tissue
kit (Qiagen, Hilden, Germany). The SNP situated at position 15177 of the
ENSEMBL reference Sirt5 gene was genotyped using forward primer 5'-
CTGGTTCCTGGCTTCGACAT-3' and reverse
5'-TCTGCAAGAGATGGCCACAG-3'. 

4.3. Murine feces sampling, extraction, and 16S rRNA gene 
sequencing

Ten mice of each genotype were chosen (AA, AG, GG) resulting in 30 mice in total.
Mice were kept at a 12h:12h light:dark schedule, with light from 7am to 7pm. Feces
was collected twice from the individuals at 7am, 1pm, 7pm, and 1am over several
consecutive days. Bead beating using Lysing Matrix E tubes (MP biomedical) was
used prior to extraction to ensure cell lysis. Feces samples were extracted using the 96
well DNA/RNA AllPrep kit (Qiagen, Hilden, Germany). The V1-V2 region of the
16S rRNA gene was amplified according to the conditions described (Rausch et al.,
2016) and was sequenced with 250 bp paired-reads on the Illumina MiSeq platform.
Sequences were assigned to each sample by exact ma+hes to multiplex identifier
(MID) sequences and processed with the dada2 R package (v 1.16.0) (Callahan et al.,
2016). In brief, raw sequences were trimmed and quality filtered with a maximum of
two ‘expected errors’ allowed in a read. Next, the paired sequences were merged, and
chimeras removed before assigning taxonomy using the Ribosomal Database Project
(RDP) training set 16. Samples were rarefied to a sequencing depth of 10,000 reads
for all downstream analyses. Classifications with low confidence at the genus level
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(< 0.8) were grouped in the arbitrary taxon 'unclassified\_group'. Alpha (Shannon)-
and beta (Bray-Curtis) diversity were analyzed using the phyloseq R package (v
1.32.0) (McMurdie and Holmes, 2013). The Vegan package in R (v 2.5-7) was used
for analysis of dissimilarity using a constrained analysis of principal coordinates
(‘capscale’), a hypothesis-driven ordination that restricts the separation of the
communities on the variable tested (Jari et al., 2020) for which the ‘anova.cca’
function was used to determine significance. Differentially abundant taxa between
groups were determined with the IndVal.g function of the multipatt command in
the IndicSpecies R package (Miquel and Pierre, 2009) with 10,000 permutations.
Only taxa present in 25% of the samples were used for the IndicSpecies analysis. P
values were corrected for multiple testing using FDR correction. 

4.4. dSirt4 and Sirt5 sequence alignment and protein modelling 

Protein sequences were downloaded from UniProt under the accession numbers
Q8IRR5 for dSirt4 and Q8K2C6 for Sirt5. Sequences were aligned using Geneious
alignment with default parameters. The protein models were loaded in SWISS-
MODEL, aligned and superimposed. Sequence similarity is calculated from a
normalised BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992).

4.5. Fly strains and husbandry 

Fly stocks were raised on standard cornmeal-molasses medium at 65% humidity, 25°C
and a 12h-12h light:dark cycle. Media for microbial depleted flies were kept as germ-
free, while a bacterial mixture containing Acetobacter Thailandi ICUS (OD600 =0.8) ,
Acetobacter pomorum (OD600 = 0.7), Lactobacillus brevis EW (OD600 = 8), Lactobacillus
plantarum WJL (OD600 = 6), Enterococcus faecalis (OD600 = 0.8), and Commensalibacter
intestini A911T (OD600 = 1.5), was added to the media of all conventially raised flies.
Germ-free egg shells were generated using dechorionation before transferring them
to the media. The following fly strains were used in the experiments: w1118

(Bloomington Drosophila stock center, USA) as wild type flies (WT), BDSC_8840
from Bloomington Drosophila stock as dSirt4 full knock-out flies, esg-Gal4 males
were crossed to virgin female UAS-sirt4 (Jason Wood, private supplier) or
RNAi_dSirt4:UAS (Bloomington Stock Center, USA) to generate dSirt4 over-
expression (OE) or knock-down (KD) in intestinal stem cells and enteroblasts (OE),
respectively.

4.6. Fly tissue collection and extraction

Female flies were collected at *12 days. Whole guts were collected every three hours
over a period of 48 hours. Extra care was taken during night sampling points to
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sacrifice flies under red light before exposing them to light during dissections. Five
independent biological replicates were samples per time point per condition and each
replicate consisted of 6 individual fly guts. The samples were kept in RNAmagic
(BioBudget, Krefeld, Germany) on ice before homogenization with a Bead Ruptor
24 (BioLab products, Bebensee, Germany) and stored at -80°C until extraction. RNA
was isolated using a column-based phenol-chloroform phase segregation kit
(Invitrogen™ PureLink™ RNA mini kit, Thermo Fisher Scientific, Schwerte,
Germany) and purified using isopropanol precipitation. 

4.7. qRT-PCR expression analysis of dSirt4, Period, and Timeless and 
bacterial load measurement 

Gene expression of dSirt4, Period, and Timeless genes was measured using quantitative
reverse transcriptase PCR. cDNA was generated using the SuperScript IV Reverse
Transcriptase kit (Thermo Fisher Scientific, Schwerte, Germany). Random hexamer
cDNA synthesis was performed using the High Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific, Schwerte, Germany) to measure
bacterial load and for downstream 16S rRNA gene sequencing. qPCRBio Sygreen
Mix Hi Rox (PCRBiosystems, London, UK) was used as master mix combined with
the following primers: 
Gene Forward primer Reverse primer

Sirt4 5’-CCGAAATGTTGTGGAGGTTC-3’ 5’- ATTTAGCGACGCCAGTATGC-3’
Period 5’- TACCCGCATCCTTCGCTTTT-3’ 5’- TTGTTGTACGCGGATTGGGA-3’
Timeless 5’- CCTCTGGTTCGAAGCCTCTC-3’ 5’- CATTGCTGCCATTGTCCGAG -3’
Rpl32 5’- AAGCCGTAATGTCGTTTTTG -3’ 5’- TGGGCAGTATCCATTGAGTT -3’
Bacterial
load

5′-TTACCGCGGCKGCTGGCAC-3′ 5′- AGAGTTTGATCMTGGCTCAG-3′

qPCR was performed for 40 cycles using a Thermo Fisher StepOne™ qPCR machine.
Log fold change of expression was calculated relative to housekeeping gene Rpl32
using ∆∆Ct method. 

4.8. 16S rRNA gene sequencing and processing

Random hexamer cDNA was used for 16S rRNA amplicon sequencing. Libraries and
sequencing was performed as described above, as well as processing the reads using
dada2 (Callahan, 2016; Callahan et al., 2016; Methods 2.4.3). Before analysis, reads
originating from contamination were filtered out using decontam R package (Nicole
et al., 2017) with both the frequency and the prevalence methods. Next, taxa were
filtered on abundance to protect against ASVs with a small mean and a trivially large
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coefficient of variation. Taxa with a minimum count of three in at least 20% of the
samples were kept. Reads were rarefied at 6300 reads. This removed two samples
(oeconzt9r7, w+onzt21r7). All statistical analyses were done in R v 4.0.2.
JTK_CYCLE analysis was performed using the R package Discorhytm (Matthew et
al., 2020). 
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5. Supplementary material

Suppl. Table 1: ASVs within the different genotypes showing significant cycling using JTK_CYCLE
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Suppl. Figure 1: ASVs occurring in the different genotypes showing significant cycling.
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Suppl. Table 2: Genera showing significant cycling using JTK_CYCLE. 
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Suppl. Figure 2: Genera within the genotypes showing significant cycling using JTK_CYCLE
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Suppl. Figure 3: Protein sequence alignment of mouse Sirt5 (top) to dSirt4 (bottom sequence). Ac-
tive sites and binding sites/regions are annotated as colored blocks below the sequences: proton 
acceptor sites (pink), NAD+ binding regions (brown), substrate binding sites (blue), zinc binding 
sites (red) and binding site for NAD+ via amine nitrogen (green). 

Suppl. Figure 4: Predicted 3D structure of Drosophila SIRT4 (turquoise) and murine mitochondrial
sirtuins, SIRT3 (lavender), SIRT4 (salmon pink), and SIRT5 (ochre).
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Suppl. Figure 5: Average gene expression per replicate for Period, Timeless, and Sirtuin 4 in micro-
bial depleted (MD) and conventionally raised (CON) flies. 

Suppl. Figure 6: The average bacterial load in function of the average dSirt4 expression. 
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Suppl. Figure 7: Absolute (A) and relative (B) abundances of genera over time in Drosophila differ-
entially expressing dSirt4: wild type (WT, red), knock-down (KD, dark blue), knock-out (KO, 
orange), and over-expression (OE, green). Absolute abundances are calculated by multiplying the 
bacterial load (from qPCR) with the relative abundance in percentage (from 16S). 
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Chapter 3: 
Comparison of microbial DNA enrichment kits 
for shotgun metagenome sequencing

1. Introduction
Advancements in sequencing technologies have fundamentally altered how the
scientific field designs and conceptualizes microbial ecology research in order to
understand community complexity. The affordability of shotgun sequencing on a
large-scale, coupled with advances in read length and throughput, has made it possible
to apply on metagenome samples. Shotgun metagenome sequencing can offer species-
and strain-level classification of bacteria (Li et al., 2020), with a relative lack of bias
and allows the examination of the functional content of the microbiota (Heintz-
Buschart and Wilmes, 2018). Furthermore, not yet classified bacteria can also be
discovered through de novo genome binning if the sequencing coverage is high
enough. As mucosal populations are more dependent on host genetics than luminal-
associated bacteria (Linnenbrink et al., 2013; Spor et al., 2011), using shotgun
metagenomic sequencing data as input for a genome-wide association study would
allow us to not only map the gut community structure, but also their functional
capabilities. However, a major hurdle remains. Without the ability to specifically
target microbial DNA, much of the DNA sequenced will belong to the host rather
than the microbiota. Several bioinformatic tools to remove host DNA exist (Bush et
al., 2020), but this requires a greater sequencing depth to obtain enough microbial
reads which quickly increases the sequencing cost. 
To address this problem, several commercial kits have arrived on the market to enrich
for microbial DNA in tissue and blood samples. One such kit, the Ultra-Deep
Microbiome Prep kit (Molzym GmbH, Germany) selectively breaks down eukaryotic
cells first using chaotropic reagents and degrade their DNA with DNases before
lysing the bacterial cells to extract the DNA. This approach will also remove 'dead'
microbial DNA. Two other methods, LOOXSTER® Enrichment kit (Analytik Jena,
AG, Germany) and NEBNext Microbiome DNA Enrichment kit (New England
Biolabs GmbH, Germany), take advantage of the difference in CpG methylation rates
between microbial and host DNA. The LOOXSTER Enrichment kit uses the
specific affinity of the CXXC-domain of the LOOXSTER®-protein, which is based
on the human CXXC zinc finger protein 1 (CFP1), to form a stable complex with
nonmethylated CpG-dinucleotides (Xu et al., 2011). Unbound (eukaryotic) DNA can
be removed through a stringent washing step and the bound (microbial) DNA is
released from LOOXSTER®-paramagnetic particles. The NEBNext kit uses the
MBD2-Fc protein that binds to protein A on magnetic beads through the Fc domain
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and binds specifically and tightly to CpG methylated DNA (Feehery et al., 2013).
Application of a magnetic field then pulls out the CpG-methylated (eukaryotic)
DNA, leaving the non-CpG-methylated (microbial) DNA in the supernatant. These
methods have been been tested with varying ou+omes (Hansen et al., 2009; Feehery
et al., 2013; Thoendel et al., 2016; Marotz et al., 2018; Yap et al., 2020; Heravi et al.,
2020;), however no direct comparisons between these methods have been published
using shotgun metagenome sequencing. Furthermore, these methods have not been
used on host tissue samples. 
In this study, we compared three different commercial kits designed to enhance the
proportion of microbial DNA to host DNA. We processed eight cecum tissue
samples to be processed in parallel with the three kits and then sequenced on a n
Illumina NextSeq 500 run. One untreated (raw) aliquot of each sample was also
sequenced at greater sequencing depth to act as a comparison control and five luminal
samples and a mock community DNA standard served as additional controls. 
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2. Results

2.1. Sequencing and enrichment efficiency

Extracted DNA from eight murine cecum tissue samples was sequenced on one
NextSeq run, while the DNA treated with the enrichment kits was sequenced on
another NextSeq run (Fig. 28). As an additional controls, we included five luminal
samples: four originating from the same mice as the cecal mucosa, plus one mock
community standard containing DNA from eight bacterial species and two yeast
species (ZYMOBIOMICS® microbial community DNA standard). After removal of
the host reads, sequencing data was processed with the SqueezeMeta pipeline for
functional and taxonomical classification (see Methods 3.4.3). 

Figure 28: Workflow for comparing microbial DNA enrichment kits to full metagenome shotgun
sequencing and 16S rRNA gene amplicon sequencing. Created with BioRender.com. 

With the exception of Bacillus subtilis, all ten microorganisms of the mock
community have been classified to species level; B. subtilis is classified to the genus
level (unclassified Bacillus; Suppl. Fig. 1). The average number of raw reads
sequenced ranged from 57.5 million reads (untreated DNA) to 2.26 million reads
(luminal samples; Fig. 29A), while the number of bacterial reads left after filtering
ranged from 0.8 million (untreated DNA) to 4.5 million (mock; Fig. 29B). The
percentages of microbial DNA present in the raw reads were highly variable:
untreated DNA (1.50% 3 0.32%), NEBNext enrichment (3.55% 3 1.12%),
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LOOXSTER enrichment (5.05% 3 2.03%), Molzym (8.96% 3 9.04%), lumen (96.46% 3
4.11%), and mock (99.11% 3 0.44%). There was no significant difference in microbial
enrichment efficiency between the different kits (P > .05, Wilcoxon rank sum test;
Fig. 29D). To obtain a 5X coverage of the fourth most abundant species, we
estimated we would need 1.96Gb of sequencing data. We only achieved this coverage
for two samples that were processed with the Molzym enrichment kit (Fig. 29C). 

Figure 29: Efficiency of methods for improving the percentage of microbial reads. (A) Raw num-
ber of reads sequenced. (B) Number of bacterial reads. (C) Base coverage of microbial reads. (D) 
Percentage of mouse versus microbial reads. .

2.2. Influence of microbial-enrichment methods on taxonomic 
composition

Each sample exhibited a specific pattern of microbial genera that changed upon host
depletion (Fig. 30). The untreated mucosal samples contain the most unclassified and
unmapped reads. LOOXSTER enriched samples have a significantly higher species
richness and evenness compared to all other methods (Fig. 31A). In a principal
coordinate analysis (PCoA) samples cluster by method and by individual (Fig. 31B-C).
The pairwise Bray-Curtis (BC) dissimilarity metric is smaller between individuals
within methods compared to within individuals between enrichment methods (P
< .001, Fig. 31D). This suggests that the enrichment method had a larger influence
on the microbial composition than the inter-individual variability (adonis of BC
dissimilarity R2 method= 0.566, R2individual= 0.333, Fmethod=33.54, Findividual=9.874, P < .001 for
all). We then compared the BC dissimilarities of each of the microbial-enriched
samples to the corresponding raw samples (mucosa and lumen, Fig. 31E and F, resp.).
The microbiota composition of the samples enriched with the NEBNext kit (0.11 3
0.022) were the most similar to the mucosal raw samples compared to LOOXSTER
(0.29 3 0.042), Molzym (0.31 3 0.122) and luminal raw samples (0.47 3 0.09) (Fig.
31E). Interestingly, mucosal samples enriched with Molzym (0.20 3 0.064) and
LOOXSTER (0.21 3 0.103) show more similarity to the luminal sample than the
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mucosal sample (Fig. 31F). To determine if this effect is independent of sequencing
depth, we subsampled all datasets to 100,000 reads and found similar results (adonis of
BC dissimilarity R2 method= 0.564, R2individual= 0.332, Fmethod=32.86, Findividual=9.67, P < .001
for all, Suppl. Fig. 2). Similar patterns were also found using the functional content
instead of the taxonomic composition (Suppl. Fig. 3, COG; Suppl. Fig. 4, KEGG).
Finally, we investigated which taxa were most affected by microbial enrichment
methods using the Wilcoxon rank sum test on the differences in median abundances
of the samples (Fig. 32). Molzym enriched samples miss the most taxa (944 taxa)
compared to raw samples and LOOXSTER samples the least (466 taxa) (Table 4). 

Table 4: Amount of significantly differentially abundant taxa compared to raw mucosa sample. '+' in
'In raw mucosal sample' means taxa are more abundant in the untreated sample compared to the
microbial enriched sample, '-' means taxa are less abundant in the untreated sample.
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Figure 30: Taxonomic composition of each sample ordered by individual at the genus level.
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Figure 31: Alpha and beta diversity analyses. (A) Species richness and evenness in the samples processed 
with different enrichments methods. (B) Pairwise Bray-Curtis Dissimilarity within individual between 
methods (WI_BM) and between individuals within methods (BI_WM). (C-D) PCoA of samples using Bray-
Curtis Dissimilarities colored by method (C) or by individual (D). (E-F) Pairwise Bray-Curtis dissimilarity 
to untreated mucosal sample (E) or to untreated luminal sample (F). Only significant comparisons are 
shown. * P < .05; ** P < .01; *** P < .001 
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Figure 32: Differentially abundant taxa between the raw samples (Without, green), and the microbial-en-
riched samples and luminal samples (brown). The size of the nodes shows the number of species it contains.
The color of the node represents the log2 ratio of the median relative abundances. Only significantly differ-
entially abundant taxa are shown (Wilcoxon rank sum test and FDR correction for multiple testing). 
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3. Discussion
Shotgun metagenomic sequencing is an effective tool for studying a wide range of
microbiome sites and to determine their taxonomic composition and functional
capabilities with a relative lack of bias compared to 16S rRNA gene sequencing. The
relative lack of bias is particularly important in quantitative studies, such as
microbiome QTL mapping or GWAS, which rely on biologically correct microbial
abundances. This cannot be achieved with 16S rRNA gene sequencing, as for
example, different primers preferentially amplify different sets of taxa
(Schmalenberger et al., 2001; D’Amore et al., 2016; Rausch et al., 2019). To use
shotgun metagenomic sequencing to its full potential, substantial sequencing
coverage needs to be achieved in order to refine classification to the species or strain
level and to have reliable functional information. This is, however, a problem in tissue
samples, which largely consist of host DNA. Thus, to maximize tissue sample use,
host DNA must be removed prior to sequencing. 
In this study, we evaluated the effectiveness of three different commercially available
microbial DNA enrichment kits (LOOXSTER, NEBNext, Molzym) in removing
host DNA and their influence on the taxonomic and functional composition. Results
show that enrichment with the Molzym kit resulted in the highest amount of
microbial reads, although this was not significantly different from the other methods
and the efficiency of the Molzym kit was variable between samples. Contrary to
previous studies, we find a significant effect of the microbial enrichment method on
the taxonomic and functional composition of the samples and we also find specific
taxa that are missing in the different methods (Feehery et al., 2013; Thoendel et al.,
2016; Yap et al., 2020; Hansen et al., 2009; Heravi et al., 2020; Marotz et al., 2018).
The Bray-Curtis dissimilarity to the raw untreated samples was lowest for the
NEBNext kit and the BC dissimilarity was smaller between individuals within
methods than within individuals between methods, indicating that the enrichment
methods have a larger influence on the community composition compared to the
inter-individual variability. 
In the NEBNext kit, the MBD2-Fc protein binds to CpG methylated DNA of the
host to remove it (Feehery et al., 2013) and thus, it is the only method tested that
only manipulates the host DNA. This can explain why the taxonomic composition is
the least different compared to the raw samples. The NEBNext kit however, needs
at least 15 kb long sequences for optimal performance and is limited to 1.5 <g of
input DNA. As the method relies on binding to the methylated eukaryotic DNA,
the enrichment is limited to the amount of eukaryotic DNA binding protein. Thus,
tissue samples with predominately host DNA might have such a high host:microbial
DNA ratio that there is not enough protein to bind all of the host DNA, which
could explain the low enrichment efficiency (3.6% of microbial reads) combined with
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the presence of short sequences. To conclude, the taxonomic and functional
composition of samples processed with the NEBNext kit are the closest to the
untreated samples, however the enrichment efficiency is low in samples with a high
concentration of host DNA. 
The LOOXSTER kit binds the nonmethylated CpG-dinucleotides of the microbial
DNA to remove the methylated host DNA (Xu et al., 2011). It is easier to use as it
can take up to 300 <g of input DNA to produce a maximum of 3<g enriched DNA.
Its separating power is highest for microbial DNA with high genomic GC content.
As this can be highly variable between microbes (20-80%), this could explain the
difference in taxonomic composition in comparison to the untreated samples. Samples
enriched with LOOXSTER contained on average 5% of microbial reads and had a
significantly higher alpha diversity compared to the other samples. Only 466 taxa
were differentially less abundant compared to the untreated samples. The
LOOXSTER kit was the most user friendly, but is not efficient and produces a biased
taxonomic community composition. 
Lastly, the Molzym kit relies on selective lysis of the host tissue first followed by a
DNase treatment. Thus, the condition of the samples is critical and premature lysis of
microbial cells should be prevented. Due to the selective lysis procedure, a different
piece of tissue was extracted, which makes the results not perfectly comparable to the
other methods. The Molzym kit is more labour intensive compared to the NEBNext
and the LOOXSTER kit and does not allow for simultaneous extraction of DNA
and RNA. The enrichment of microbial reads was the most efficient with the
Molzym kit (8.96% 3 9.04% microbial reads), but also was the most variable. We
believe that the variation in the efficiency of this kit relies on our use of RNAlater as
a stabilizer for the RNA and DNA, which could have interfered with the disruption
and homogenization of the tissue with an incomplete lysis of the host cells as a result.
The community composition was the least similar to the untreated mucosal samples
and was closer to the luminal samples. This is partly due to the biological variation
present between two pieces of the same tissue sample, but mostly due to the selective
lysis procedure. Some microbial cells can lyse during the host cell lysis step, the
DNase treatment step removes DNA from prematurely lysed cells (e.g. due to
freezing), and the extraction protocol does not include a bead beating step, although
this has become a standard procedure in bacterial cell extraction for lysing Gram-
positive bacteria (Vel=squez-Mej>a et al., 2018; Zhang et al., 2020). To summarize, the
Molzym kit was the most efficient method tested in microbial DNA enrichment, but
the selective lysis procedure causes a large change in taxonomic and functional
community composition. 
Even though the study used a modest number of samples, the present sample size was
adequate to identify significant differences across techniques. Our study also included
adequate controls, including untreated mucosal DNA, luminal samples and a mock
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community. However, some limitations remain. We did not quantify the
concentration of microbial or host DNA, which might give further insight into the
ratios of host to microbial DNA observed in the cecum tissue samples. More studies
are needed to investigate the influence of stabilizers such as RNAlater on the host
tissue when using the Molzym Ultra Deep Microbiome Prep kit.
Overall, this evaluation can only conclude that currently available microbial DNA
enrichment methods are not efficient enough to sufficiently remove host DNA from
tissue samples in order to reach adequate sequencing depth. Moreover, the bias of the
enrichment methods tested on the community composition makes them not suitable
for quantitative studies, such as QTL mapping or GWAS from microbiome
taxonomic/functional abundances.
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4. Material and Methods

4.1. Sample collection, extraction and enrichment

Eight mice originating from a wild derived Mus musculus musculus and Mus
musculus domesticus hybrid mouse breeding stock (11th lab generation at the sampling
time point) were sacrificed according to the German animal welfare law and
Federation of European Laboratory Animal Science Associations guidelines with CO2
followed by cervical dislocation. Cecal tissues and content were conserved in 1ml
RNAlater for 24h at 5°C after which the RNAlater was removed, and the sample
stored at -20°C until extraction. Figure 28 shows the overall workflow for comparing
the microbial DNA enrichment kits. One piece of cecum tissue (max 30 mg)
disrupted and homogenized using a bead-beating step (3 x 15 s at speed 6500 with
Precellys 24) with Lysing Matrix E tubes (MP Biomedicals) before extraction using
the DNA/RNA AllPrep kit (Qiagen) according to the manufacturer's protocol.
Extracted DNA was divided between the NEBNext (New England Biolabs) and
the LOOXSTER enrichment kits (Analytik Jena). The NEBNext kit has a
restriction of maximum 1.5 <g of input DNA. The leftover DNA was used for the
LOOXSTER enrichment kit (9.2-16.8 <g). Both methods were performed as specified
by the manufacturer. Another piece of cecum tissue (max 30 mg) was extracted
according to manufacturer's protocol using the Ultra Deep Microbiome Prep kit
(Molzym). 

4.2. Library preparation and shotgun sequencing

The library for shotgun sequencing was prepared using the NexteraXT kit (Illumina)
according to manufacturer's protocol. Sequencing was performed on two runs on an
Illumina NextSeq 500 platform via 2 X 150 bp Mid Output Kit at the sequencing
center of the Max Planck Institute for Evolutionary Biology (Pl%n, Germany). One
run was filled with 8 raw, untreated DNA samples and the other run was filled with
eight samples treated with the three different microbial DNA enrichment kits (24
samples in total). 
4.3. Processing of shotgun sequences

Reads were pre-processed with Kneaddata (v0.10.0). It integrates FastQC (v0.11.9),
Trimmomatic (v0.39) (Bolger et al., 2014) and Bowtie2 (v2.3.5.1) (Langmead and
Salzberg, 2012) to perform quality control, quality filtering, and in silico separation of
host reads from microbial reads, respectively. First, adapters and the first 10 bp were
removed from the reads. Next, reads were trimmed using a sliding window approach,
where the average base Phred quality score over four bases cannot be less than 20.
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Reads with a length less than 50 bp were discarded. After quality filtering, mouse
contaminant reads were identified with BowTie2, by mapping against the C57BL/6
reference genome in the very sensitive mode. Only the microbial reads were kept for
subsequent analyses. 
The processing of the shotgun sequences was done with SqueezeMeta (v1.3.1)
(Tamames and Puente-S=nchez, 2018). Assembly was done using Megahit (Li et al.,
2015). Short contigs (<200 bps) were removed and contig statistic calculated using
prinseq (Schmieder and Edwards, 2011). RNAs were predicted using Barrnap
(Seemann, 2014). 16S rRNA gene sequences were taxonomically classified using the
RDP classifier (Wang et al., 2007) and tRNA/tmRNA sequences were predicted
using Aragorn (Laslett and Canback, 2004). ORFs were predicted using Prodigal
(Hyatt et al., 2010). Similarity searches for GenBank (Clark et al., 2016), eggNOG
(Huerta-Cepas et al., 2016), and KEGG (Kanehisa and Goto, 2000) were conducted
using Diamond (Buchfink et al., 2015). HMM homology searches were done by
HMMER3 (Eddy, 2009) for the Pfam database (Piovesan et al., 2019). Read mapping
against contigs was performed using Bowtie2 (). Binning was done using MaxBin2
(Wu et al., 2016) and Metabat2 (Kang et al., 2019). Binning results were combined
using DAS Tool (Sieber et al., 2018) and bin statistics were computed using CheckM
(Parks et al., 2015). Pathway prediction for KEGG (Kanehisa, 2002) and MetaCyc
(Caspi et al., 2020) databases was completed using MinPath (Ye and Doak, 2009).
SqueezeMeta implements a fast LCA algorithm for taxonomic assignment of genes
that looks for the last common ancestor of the hits for each query gene using the
results of the Diamond search against Genbank nr database based on (Luo et al.,
2014). 

4.4. Analysis of shotgun sequences

All analyses were performed in R v 4.0.2. The output from SqueezeMeta was handled
with the SQMtools R package (Puente-S=nchez et al., 2020) to load into R and to
plot the taxonomic and functional compositions. Alpha and beta diversity measures
where calculated with the vegan R package (Jari Oksanen, 2020). The ape package
(Paradis and Schliep, 2019) was used for the principal coordinate analysis. Differential
abundance analysis was performed with the metacoder package (Foster et al., 2017b).
Plots were made use base R, ggplot2 (Wickham and Chang, 2016), ggsci (Nan Xiao,
2018), and ggpubr (Kassambara and Kassambara, 2020) packages. 
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5. Supplementary figures

Suppl. Figure 1: Mock community composition. (A) Theoretical composition in terms of genome copy num-
ber. The genome copy number is calculated from the theoretical genomic DNA composition using the fol-
lowing formula: genome copy number = total genomic DNA (g) X unit conversion constat (bp/g) / genome
size (bp). Bacillus subtilis is colored light blue (Unclassified Bacillus in the legend). (B) Observed community 
composition in terms of relative abundance of reads. 

Suppl. Figure 2: Alpha and beta diversity on 100,000 subsampled reads. (A) Species richness and evenness 
in the samples processed with different enrichments methods. (B-C) PCoA of samples using Bray-Curtis 
Dissimilarities colored by method (B) or by individual (C). (D) Pairwise Bray-Curtis Dissimilarity within in-
dividual between methods (WI_BM) and between individuals within methods (BI_WM). (E-F) Pairwise 
Bray-Curtis dissimilarity to untreated mucosal sample (E) or to untreated luminal sample (F). Only signifi-
cant comparisons are shown. * P < .05; ** P < .01; *** P < .001 
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Suppl. Figure 3: Alpha and beta diversity analyses on COG functions. (A) Species richness and evenness in 
the samples processed with different enrichments methods. (B-C) PCoA of samples using Bray-Curtis Dis-
similarities colored by method (B) or by individual (C). (D) Pairwise Bray-Curtis Dissimilarity within indi-
vidual between methods (WI_BM) and between individuals within methods (BI_WM). (E-F) Pairwise Bray-
Curtis dissimilarity to untreated mucosal sample (E) or to untreated luminal sample (F). Only significant 
comparisons are shown. * P < .05; ** P < .01; *** P < .001 

Suppl. Figure 4: Alpha and beta diversity analyses on KEGG functions. (A) Species richness and evenness 
in the samples processed with different enrichments methods. (B-C) PCoA of samples using Bray-Curtis 
Dissimilarities colored by method (B) or by individual (C). (D) Pairwise Bray-Curtis Dissimilarity within in-
dividual between methods (WI_BM) and between individuals within methods (BI_WM). (E-F) Pairwise 
Bray-Curtis dissimilarity to untreated mucosal sample (E) or to untreated luminal sample (F). Only signifi-
cant comparisons are shown. * P < .05; ** P < .01; *** P < .001 
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Conclusion
The present work provides a better understanding of the factors that shape diversity
in host-associated bacterial populations. We employed a genome-wide association
mapping approach to identify genomic regions influencing bacterial abundances.
Next, we pursued a candidate gene-bacteria association identified in an earlier version
of the association study in different model organisms. Finally, we explored the
possibility of employing shotgun metagenome sequencing on the same cecum tissue
samples used for mapping in Chapter 1. 
In Chapter 1, we acquired insight into the evolutionary connection between hosts
and their microbiota at the transition from within species variation to between species
divergence by utilizing wild-derived hybrid inbred strains to construct our mapping
population. Our mapping population's genetic relatedness was substantially associated
with microbiome similarity, indicating phylosymbiosis during the early phases of
speciation. Heritability estimates were associated with cospeciation rates in a
significant fraction of microbial species, suggesting that vertical transmission may
foster the evolution of greater host genetic effects for highly cospeciating taxa. We
went on to investigate general features of host loci, including candidate genes and
pathways. Taken together, these findings show that host genetics plays a crucial role
in shaping microbiome composition and pinpoint particular underlying processes.
Chapter 2 presented a follow-up study of an association between ASV35 (Bacteroides
acidifaciens/uniformis) DNA-based abundance and a region on chromosome 13
containing two genes, Gfod1 and Sirt5. ASV35 is a promising candidate since it was
identified to be an indicator species for Mus musculus musculus in a geographic
screen of mouse microbiomes (Fokt, 2021). We used two model organisms, Mus
musculus and Drosophila melanogaster, to characterize the influence of the candidate
gene Sirt5 on the bacterial composition. Sirt5/dSirt4 expression had an influence on
the community composition and cycling of bacterial taxa in both species, indicating a
conserved role for the mitochondrial sirtuin in controlling bacterial taxa abundance.
Moreover, this approach to pursue a candidate gene-bacteria association can be
adopted on the most promising associations found in the current version of the
GWAS. 
Shotgun metagenome sequencing would be useful to determine the functional
capacity of the microbiome in order that we can proceed from 'who is the singer' to
'what is their song' and to tackle the problem of functional redundancy between
bacterial species. Moreover, the hologenome concept of evolution assumes that
selection happens on the genomic content of the bacteria as part of the hologenome
instead of the taxonomic composition. In addition, as the tissue-associated bacterial
community and more heritable, we would be able to determine reliable heritability
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estimates of specific metabolic functions and pathways present in the community. In
Chapter 3, I assessed the feasibility of using cecum tissue with shotgun metagenome
sequencing. We evaluated the performance of three different commercially available
microbial DNA enrichment kits (LOOXSTER, NEBNext, Molzym) in removing
host DNA and their influence on taxonomic and functional composition. Current
microbial DNA enrichment techniques are inefficient in removing enough host
DNA from tissue samples to achieve appropriate sequencing depth. Furthermore, the
enrichment methods evaluated on community composition are biased, making them
unsuitable for quantitative investigations like QTL mapping or GWAS using
microbiome taxonomic/functional abundances. Further research is needed on
optimizing microbial DNA enrichment methods to make shotgun metagenome
sequencing possible on samples containing host DNA. 
In conclusion, these findings indicate that host genetics has a significant influence on
the variance in the mouse gut microbiota. We demonstrated that host genes may
impact bacterial abundances via metabolic (nitrogen) homeostasis, and that this
relationship is likely conserved from Drosophila to mice. The precise functioning of
the mechanism, however, remains unclear. These results may pave the path for more
in-depth research into various host loci associated with certain bacterial taxa in order
to understand the functional pathways involved. Further research on functionally
characterizing the association of bacterial species with host genomic regions will
reveal the structural mechanisms of the interactions opening the door to therapeutics
that attempt to replicate, emulate, or boost natural protective genetic diversity. 
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