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Electron correlation effects on the g factor of lithiumlike ions
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We present the systematic QED treatment of the electron correlation effects on the g factor of lithiumlike
ions for the wide range of nuclear charge number Z = 14–82. The one- and two-photon exchange corrections
are evaluated rigorously within the QED formalism. The electron-correlation contributions of the third and
higher orders are accounted for within the Breit approximation employing the recursive perturbation theory.
The calculations are performed in the framework of the extended Furry picture, i.e., with inclusion of the
effective local screening potential in the zeroth-order approximation. In comparison to the previous theoretical
calculations, the accuracy of the interelectronic-interaction contributions to the bound electron g factor in
lithiumlike ions is substantially improved.

DOI: 10.1103/PhysRevA.107.032815

I. INTRODUCTION

Over the past decades, the bound-electron g factor remains
a subject of intense theoretical and experimental studies.
Nowadays, the g factor of H-like ions is measured with a
relative accuracy of up to few parts in 1011 [1–6]. These
measurements combined with the theoretical studies [7–19]
have led to the most accurate up-to-date value of the electron
mass [5]. Present experimental techniques also allow for the
g-factor measurements in few-electron ions [20–26] with the
accuracy comparable to that for H-like ions.

High-precision measurements of the g factor of highly
charged ions provide various opportunities to probe the
nontrivial QED effects in strong electromagnetic fields, de-
termine fundamental constants and nuclear properties, and
strengthen the limits on the hypothetical physics beyond
the Standard Model [27–33]. For example, the measure-
ment of the g-factor isotope shift with lithiumlike calcium
ions [22] has opened a possibility to test the relativistic nu-
clear recoil theory in the presence of a magnetic field and
paved the way to probe bound-state QED effects beyond the
Furry picture in the strong-field regime [34–36]. The high-
precision bound-electron g-factor experiments combined with
theoretical studies are expected to provide an independent de-
termination of the fine structure constant α [37,38]. Although
the g-factor calculations are progressing further [39–45], the
accuracy of theoretical values is ultimately limited by the
finite-nuclear-size effect. To overcome this problem, it was
proposed to use the so-called specific difference of the g
factors for two charge states of one isotope [35,37,38,46–48].
It was demonstrated that the theoretical uncertainty of the
specific difference can be made several orders of magnitude
smaller than that of the individual g-factor values. Therefore,
it is very important to consider not only hydrogenlike but also
lithiumlike and boronlike ions.

The first experiments with lithiumlike ions were carried
out for silicon [20] and calcium [22] with an uncertainty of
10−9. Recently, the experimental value of the bound-electron g
factor in 28Si11+ was improved by a factor of 15 [23], and this
is currently the most accurate value for few-electron ions. The
theoretical value presented in Ref. [23] was two times more
accurate than the previous one [49,50], whereas the deviation
from the experiment was 1.7σ . Later, Yerokhin et al. under-
took an independent evaluation of screened QED diagrams
and obtained a new theoretical value for silicon [51] with
smaller uncertainty and shifted farther from the experiment:
5.2σ deviation as a result. Then, an independent evaluation of
the two-photon-exchange diagrams was carried out to provide
yet new results for lithiumlike silicon (with 3.1σ deviation)
and calcium (with 4.2σ deviation) [52]. Recently, we have
thoroughly investigated the behavior of many-electron QED
contributions with various effective screening potentials [53],
thus, confirmed the results of Ref. [23] and reassured the
agreement between theory and experiment.

In the present paper, we provide detailed investigation of
the electronic structure contributions and extend our calcula-
tions to a wide range of the nuclear charge number Z . The
leading-order interelectronic-interaction terms corresponding
to the one- and two-photon-exchange diagrams nowadays are
calculated rigorously, i.e., to all orders in αZ [20,49,52–54].
The contributions of the third and higher orders are taken into
account approximately, to the leading orders in αZ . This can
be accomplished within different methods, which can yield
slightly different results due to the incomplete treatment of the
higher orders in αZ . We use the Dirac-Coulomb-Breit (DCB)
Hamiltonian and include the contribution of the negative-
energy states [55]. In Refs. [49,55,56] the DCB equation was
solved within the configuration interaction method [57]. Later,
in Refs. [23,53] the recursive perturbation theory was applied
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and proved to yield better accuracy. Moreover, we use the
extended Furry picture, i.e., an effective local screening poten-
tial is included in the zeroth-order approximation along with
the nuclear potential. The extended Furry picture provides
a partial account for the interelectronic interaction already
in the zeroth order. As a result, there is a significant reduc-
tion of the perturbation theory terms in comparison to the
case of the Coulomb potential. In particular, this leads to
smaller uncertainty due to unknown nontrivial QED part of
the third- and higher-order contributions. The calculations
are carried out with different screening potentials, namely,
core-Hartree (CH), Kohn-Sham (KS), Dirac-Hartree (DH),
and Dirac-Slater (DS) with and without the Latter correction.
We show that the influence of this correction on the final result
is insignificant, whereas the accuracy of calculations without
it is better by an order of magnitude. In the QED calcula-
tions of the first and second orders, two different gauges of
the photon propagator, Coulomb and Feynman, are consid-
ered and the gauge invariance is demonstrated, which serves
as an additional test of the correctness of our calculations.
As a result, we substantially improve the accuracy of the
electronic-structure contribution to the g factor of lithiumlike
ions through a wide range of the nuclear charge number
Z = 14–82.

The paper is organized as follows. In Sec. II, the basic
formulas for the bound-electron g factor in few-electron ions
are given. In Sec. III, we present the rigorous theoretical
description of the interelectronic-interaction corrections of the
first (III A), second (III B), and higher orders (III C). Finally,
in Sec. IV, we report the obtained numerical results.

Relativistic units (h̄ = 1, c = 1, and me = 1) and the Heav-
iside charge unit [α = e2/(4π ), e < 0] are used throughout
the paper.

II. BASIC FORMULAS

The interaction of the bound electron with the external
magnetic-field B is represented by the operator,

Vm = −eα · A(r) = − e

2
BU, (1)

where, without loss of generality, B is assumed to be aligned
in z direction, U = [r × α]z and α is the Dirac-matrix vector.
The weak magnetic field induces the linear energy-level shift,

�E = − e

2
gmjB, (2)

where g is the electronic g factor and mj is the z projection
of the total angular momentum j. In the case of one electron
over the closed shells and a spinless nucleus, mj is determined
by the valence electron state |a〉 = | jama〉 with the angular
momentum ja and its projection ma. In the ground (1s)2 2s
state of a lithiumlike atom, this is just the 2s state.

The one-electron wave function obeys the Dirac equation,

hD|a〉 = εa|a〉, hD = −iα · ∇ + β + V (r), (3)

where the binding potential V (r) includes the nuclear poten-
tial and optionally some effective screening potential. Within
the independent-electron approximation, the energy shift �E
is found as an expectation value of Vm with |a〉, which yields

the following expression for the g factor,

g(0) = 1

ma
〈a|U |a〉. (4)

For the pure Coulomb nuclear potential, we denote the g
factor as g(0)

C . In the case of the point nucleus, g(0)
C is known

analytically (we denote it as gD) and for the 2s state given by
the Breit formula [58],

gD = 2

3
(1 +

√
2 + 2γ ) = 2 − (αZ )2

6
+ · · · , (5)

where γ =
√

1 − (αZ )2.
The total g-factor value comprises gD and various correc-

tions,

g = gD + �gint + �gQED + �gnuc. (6)

Here, �gint is the interelectronic-interaction correction which
is the main topic of this paper, �gQED is the QED cor-
rection previously investigated for lithiumlike ions, e.g., in
Refs. [15,40,49,51,53,59–64], �gnuc stands for the nuclear
size [10,12,19], nuclear recoil [13,22,34–36] and nuclear po-
larization [14,47] effects.

In the present paper we focus on the electronic-structure
contribution �gint to the ground-state g factor of lithiumlike
ions. The evaluation procedure for �gint is described in the
following section. Here, we discuss an important aspect of
this procedure—the choice of the zeroth-order approxima-
tion, which is defined by the potential V (r) in the Dirac
equation (3). In the original Furry picture it is the Coulomb
potential VC(r) generated by the nucleus. So, the interelec-
tronic interaction is completely neglected at this stage. In the
present paper we consider the extended Furry picture, which
is based on the Dirac equation in the presence of an effective
potential Veff (r),

Veff (r) = VC(r) + Vscr (r), (7)

where Vscr (r) is some local screening potential. This approach
accelerates the convergence of perturbation theory, at least,
within the several leading orders, by accounting for a part
of the interelectronic interaction already in the zeroth order.
Another advantage of the screening potential is that it lifts the
near degeneracy of the (1s)22s and (1s)22p1/2 states occurring
for the Coulomb potential. This helps to avoid the problems
with additional singularities arising from the corresponding
intermediate states, which are especially nuisance in the QED
calculations involving energy integration. In particular, a sub-
traction procedure was used in Ref. [52] in order to deal with
these singularities for the Coulomb potential.

Following our previous investigations, we employ five
binding potentials: Coulomb, core-Hartree, Dirac-Hartree,
Kohn-Sham, and Dirac-Slater. A well-known choice of Veff (r)
is the CH potential,

Veff (r) = VC(r) + α

∫ ∞

0
dr′ 1

r>

ρc(r′). (8)

Here ρc is the density of the core (closed shells) electrons,

ρc(r′) =
∑
κc,nc

(2 jc + 1)
[
G2

c (r) + F 2
c (r)

]
, (9)
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where κc and nc are the quantum numbers of the closed shells,
Gc and Fc are the corresponding radial components of the
wave function. The potential derived from the density func-
tional theory reads

Veff (r) = VC(r) + α

∫ ∞

0
dr′ 1

r>

ρt (r
′) − xα

α

r

(
81

32π2
rρt (r)

)1/3

.

(10)

Here ρt is the total electron density, including the closed shells
and the valence electron,

ρt (r) = [
G2

a(r) + F 2
a (r)

] +
∑
κc,nc

(2 jc + 1)
[
G2

c (r) + F 2
c (r)

]
.

(11)

The parameter xα varies from 0 to 1. The cases of values xα =
0, 2/3, and 1 are referred to as the DH, KS, and DS potentials,
respectively.

The density functional theory (DFT) potentials as given
by Eq. (10) possess nonphysical asymptotic behavior. The
Latter correction [65] circumvents this problem, but as a con-
sequence, the potentials cease to be smooth. The smoothing
procedure itself can be different and, therefore, the potentials
are barely reproducible. In the present paper, we compare the
total results for the potentials with and without the Latter cor-
rection and demonstrate that the corresponding shifts are well
within the scatter between potentials. This is what one would
expect for the sum of the perturbation-theory expansion. At
the same time, the values without the Latter correction have
better convergence with respect to the number of basis func-
tions due to the potential smoothness. For these reasons, we
propose to use this option once the higher-order perturbation
theory terms are taken into account.

III. MANY-ELECTRON EFFECTS

In the framework of bound-state QED perturbation theory
the interelectronic-interaction contribution �gint can be writ-
ten as

�gint = �g(0)
int + �g(1)

int + �g(2)
int + �g(3+)

int , (12)

where �g(i)
int is the ith order correction in α, namely �g(1)

int

and �g(2)
int are the corrections to the bound-electron g fac-

tor due to the one- and two-photon exchanges, respectively,
�g(3+)

int denotes the sum of the higher-order corrections. The
zeroth-order term �g(0)

int is just the difference between the
one-electron values in the extended and original Furry picture,

�g(0)
int = g(0) − g(0)

C . (13)

Below, we consider the evaluation of the first- and second-
order terms within the rigorous QED approach and of the
higher-order part within the Breit approximation.

A. First-order contribution

Within the framework of bound-state QED, each term
of the perturbation theory is represented by the correspond-
ing set of diagrams. Currently, there are several methods to

FIG. 1. Feynman diagrams representing the one-photon-
exchange correction to the g factor in the framework of the extended
Furry picture. The wavy line indicates the photon propagator. The
triple line represents the electron propagator in the effective potential
Veff . The dashed line terminated with the triangle corresponds to the
interaction with external magnetic field. The symbol ⊗ represents
the screening potential counterterm.

derive formal expressions from the first principles of QED:
the two-time Green’s function method [66], the covariant-
evolution-operator method [67], and the line profile approach
[68]. The corresponding formulas for �g(i)

int were derived in
Ref. [69] (first order) and in Ref. [54] (second order) within
the two-time Green’s function method. The leading correction
�g(1)

int to the g factor corresponds to the one-photon-exchange
diagram in the presence of the magnetic field, see Fig. 1. Also
the counterterm diagram appears in the presence of the screen-
ing potential. This diagram is also shown in Fig. 1 where
the symbol ⊗ denotes the counterterm. The corresponding
expression for the interelectronic-interaction correction reads
as

�g(1)
int = 1

ma

∑
b

∑
P,Q

(−1)P+Q

×
[

2
∑

n

′ 〈Pa Pb|I (εQa − εPa)|n Qb〉〈n|U |Qa〉
εQa − εn

−〈Pa Pb|I ′(εQa − εPa)|Qa Qb〉〈Qb|U |Qb〉
]

− 1

ma

∑
n

′ 〈a|Vscr|n〉〈n|U |a〉
εa − εn

. (14)

Here P and Q are permutation operators giving rise to the sign
(−1)P+Q according to the parity of the permutation, εn are
the one-electron energies, |b〉 stands for the 1s state, whereas
the summation over b runs over two possible projections
mb = ±1/2. The prime on the sums over the intermediate
states n denotes that the terms with vanishing denominators
are omitted.

The interelectronic-interaction operator I (ω) in the Feyn-
man gauge is given by

I (ω, r12) = α(1 − α1 · α2)
exp (iω̃r12)

r12
. (15)
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(A) (B) (C) (D)

FIG. 2. Feynman diagrams representing the three-electron part
of the two-photon-exchange correction to the g factor in the frame-
work of the extended Furry picture. Notations are the same as in
Fig. 1.

In the Coulomb gauge it is given by

I (ω, r12) = α

(
1

r12
− α1 · α2

exp (iω̃r12)

r12

−
[
α1 · ∇1,

[
α2 · ∇2,

exp (iω̃r12) − 1

ω2r12

]])
. (16)

Here, r12 = |r1 − r2|, and ω̃ = √
ω2 + i0, the branch of the

square root is fixed by the condition Im ω̃ > 0. In Eq. (14) the
notation I ′(ω) = dI (ω)/dω is used.

Assuming ω = 0 in the Coulomb gauge we obtain I in the
Breit approximation,

IB(r12) = α

(
1

r12
− α1 · α2

r12
+ 1

2
(α1 · ∇1, (α2 · ∇2, r12))

)
.

(17)

This form is used to calculate the third- and higher-order
contributions, see Sec. III C.

B. Second-order contribution

The second-order correction �g(2)
int corresponds to the two-

photon-exchange diagrams, which can be divided into two
large classes, namely, three-electron (Fig. 2) and two-electron
(Fig. 3) ones. In the extended Furry picture, the counterterm
diagrams shown in Fig. 4 appear in addition. The contri-
butions of these diagrams are divided into reducible and
irreducible parts. Reducible part is the contributions in which
the energies of the intermediate and reference states coincide,
whereas the irreducible part is the remainder. The reducible

(lad-W) (lad-S) (cr-W) (cr-S)

FIG. 3. Feynman diagrams representing the two-electron part of
the two-photon-exchange correction to the g factor in the framework
of the extended Furry picture. Notations are the same as in Fig. 1.

FIG. 4. Feynman diagrams representing the counterterm part of
the two-photon-exchange correction to the g factor in the framework
of the extended Furry picture. Notations are the same as in Fig. 1.

part is taken together with the nondiagrammatic perturbation-
theory terms of the corresponding order.

So, the second-order correction �g(2)
int to the g factor can be

written as follows:

�g(2)
int = �g(2)

3el + �g(2)
2el + �g(2)

ct + �g(2)
red. (18)

The three-electron contribution �g(2)
3el can be written as the

sum,

�g(2)
3el = �g(2)

3el,A + �g(2)
3el,B + �g(2)

3el,C + �g(2)
3el,D, (19)

where each term is the irreducible part of the corresponding
Feynman diagram in Fig. 2. The formal expressions for �g(2)

3el
can be found in the Appendix, they involve double summa-
tion over the Dirac spectrum. The two-electron contribution
�g(2)

2el, in contrast to the �g(2)
3el, comprises triple summation

and the integration over the virtual photon energy ω, thus,
making its evaluation significantly more involved, including
development of the numerical procedure. Similar to Eq. (19),
we represent it in the following form:

�g(2)
2el = �g(2)

2el,lad−W + �g(2)
2el,lad−S + �g(2)

2el,cr−W + �g(2)
2el,cr−S.

(20)

This contribution consist of ladder (“lad”) and cross (“cr”)
parts, see Fig. 3, which are named by analogy with the two-
photon-exchange diagrams without the external-field vertex
[66], the labels “W” and “S” indicate the position of this
vertex. The formal expressions for these terms can be found
in the Appendix.

The third term �g(2)
red in Eq. (18) includes the reducible

parts of all diagrams both two-electron and three-electron,
including the nondiagrammatic terms, see the Appendix. Fi-
nally, the counterterm contribution �g(2)

ct corresponds to the
diagrams in Fig. 4 which arise when the screening potential is
included in the Dirac equation.

C. Higher-order contribution

Rigorous evaluation of the higher-order term �g(3+)
int to all

orders in αZ is not feasible at the moment. In this case, one of
the currently available methods [57,70–76] can be considered.
The all-order configuration interaction CI-DFS method [57]
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was employed in Refs. [55,56] to find the contribution of
the second and higher orders. In Ref. [49] the two-photon-
exchange diagrams were evaluated within the rigorous QED
approach, and, thus, only �g(3+)

int was needed from the CI-DFS
calculations. This was a demanding task since the subtraction
of the leading orders from the total value delivered by any
all-order method requires high enough numerical accuracy. In
this paper, we use the recursive formulation of perturbation
theory [77], which provides an efficient way to accesses the
individual terms of the perturbation expansion up to any order,
in principle. Application of this method to the g factor of lithi-
umlike silicon and calcium in Refs. [23,53] has demonstrated
the ability to provide significantly better accuracy than the
CI-DFS method. Recently, nonrelativistic quantum electrody-
namics (NRQED) approach was used to solve this task with
even better accuracy [51,52]. At the same time, perturbation
theory allows one to include screening potential, which is an
important ingredient here [53], whereas the NRQED calcula-
tions were based on the Coulomb potential so far.

To formulate our approach, we start with the Dirac-
Coulomb-Breit equation,

�+(H0 + H1)�+|A〉 = EA|A〉, (21)

where �+ is the projection operator constructed as the prod-
uct of one-electron projectors on the positive energy states.
Zeroth-order Hamiltonian H0 is the sum of the one-electron
Dirac Hamiltonians,

H0 =
∑

j

hD( j), (22)

where hD is given by Eq. (3). Let us introduce the zeroth-order
eigenfunctions N (0) as

�+H0�+|N (0)〉 = E (0)
N |N (0)〉. (23)

These functions form an orthogonal basis set of many-electron
wave functions. In our case, they are constructed as the Slater
determinants of one-electron solutions of the Dirac equation.
In particular, for the reference state |A〉 in the zeroth approxi-
mation we have

�+H0�+|A(0)〉 = E (0)
A |A(0)〉. (24)

The perturbation H1 in (21) reads as

H1 =
∑
j<k

IB( j, k) −
∑

j

Vscr ( j), (25)

and represents the interelectronic interaction in the Breit ap-
proximation with the screening potential subtracted.

We use the perturbation theory with respect to H1, which
yields the following expansions for the energy EA and the
wave-function |A〉,

EA =
∞∑

k=0

E (k)
A , (26)

|A〉 =
∞∑

k=0

|A(k)〉 =
∞∑

k=0

∑
N

|N (0)〉〈N (0)|A(k)〉. (27)

In Ref. [77] the recursive scheme to evaluate E (k)
A and

〈N (0)|A(k)〉 order by order was presented. We emphasize that

instead of the widely used normalization 〈A(0)|A〉 = 1, we
impose the condition 〈A|A〉 = 1. Below we consider how to
use this method to find the interelectronic-interaction contri-
butions �g(k)

int .
For the many-electron state |A〉 the g factor is found as

g = 1

ma
〈A|

∑
i

U (i)|A〉, (28)

and in the zeroth approximation with |A(0)〉, this expression
reduces to Eq. (4). Substituting the expansion (27) we find the
term of the order k � 1 as

�g(k)
int [+] = 1

ma

k∑
j=0

〈A( j)|
∑

i

U (i)|A(k− j)〉

= 1

ma

k∑
j=0

∑
M,N

〈A( j)|M (0)〉〈M (0)|
∑

i

U (i)|N (0)〉〈N (0)|A(k− j)〉.

(29)

In fact, Eq. (29) yields the contribution of the positive-energy
states only since only positive-energy excitation are included
in the expansion (27). For this reason, we label the result
with the “[+]” sign. However, the negative-energy spectrum
is equally important, see, e.g., Refs. [55,78]. Its contribution
is given by the following expression:

�gint[−] = 2

ma

∑
p,n

〈p|U |n〉
εp − εn

〈â+
n âpA|H1|A〉. (30)

Here |p〉 and |n〉 are the positive- and negative-energy one-
electron states, respectively, â+ and â are the corresponding
creation and annihilation operators. The term of the order k
reads

�g(k)
int [−] = 2

ma

k−1∑
j=0

∑
M,N

〈A( j)|M (0)〉

×
⎡
⎣∑

p,n

〈p|U |n〉〈â+
n âpM (0)|H1|N (0)〉
εp − εn

⎤
⎦

× 〈N (0)|A(k− j−1)〉. (31)

Equations (29) and (31) provide the interelectronic-interaction
contributions within the Breit approximation,

�g(k)
int,L = �g(k)

int [+] + �g(k)
int [−]. (32)

The complete k-order terms can be presented in the following
form:

�g(k)
int = �g(k)

int,L + �g(k)
int,H, (33)

where �g(k)
int,H is the presently unknown higher-order part,

which has to be estimated somehow to ascribe the uncer-
tainty to �g(k)

int . In the present paper, �g(3+)
int,H is estimated as

±2�g(2)
int,H/Z as proposed in our previous work [53].
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TABLE I. Individual contributions to the two-photon-exchange correction for the ground-state g factor of 28Si11+ and 208Pb79+ obtained for
the core-Hartree potential in the Feynman and Coulomb gauges.

28Si11+ 208Pb79+

Contribution Feynman Coulomb Feynman Coulomb

3el, A −35.5174 −32.1510 −47.5059 −57.4179
3el, B 39.5459 36.1787 50.7785 60.6392
3el, C 19540.5865 19537.1073 625.5797 621.2035
3el, D −96.6335 −96.2590 −120.4084 −122.3388
2el, lad-W −13638.4718 −13663.2943 −3016.6610 −3054.2046
2el, cr-W −83.2577 −60.5589 −2679.1832 −2648.0997
2el, lad-S 20478.7090 20571.8104 606.4759 614.7309
2el, cr-S 22.9387 −0.4702 12.8076 −1.0717
red, E −19546.8105 −19543.7536 −627.3047 −622.8958
red, F 234.1531 234.2034 296.3070 298.5116
red, G 0.9138 −0.0331 0.7037 −1.6609
red, 2el −6923.7189 −6990.3424 4889.2411 4903.4344
ct-1 18.6909 18.6909 20.0834 20.0834
ct-2 −10.9920 −10.9920 −11.0497 −11.0497
Total 0.1362(1) 0.1362(1) −0.1361(1) −0.1361(1)

IV. RESULTS AND DISCUSSIONS

In this section we discuss the numerical evaluation of
all the considered contributions to �gint and present the re-
sults for lithiumlike ions. All calculations are based on the
dual-kinetically balanced finite-basis-set method [79] for the
Dirac equation with the basis functions constructed from B
splines [80]. First, the Dirac equation (3) is solved with
one of the considered potentials. Zeroth-order contribution
�g(0)

int is then found according to Eq. (13). Evaluation of
�g(1)

int was first accomplished in Ref. [46] and, then, became
a routine procedure [23,49,50,53,55,64]. In this paper, we
calculate it according to Eq. (14) with the chosen screening
potentials to a required accuracy, using the comparison be-
tween the Feynman and the Coulomb gauges as an additional
cross-check.

The second-order correction �g(2)
int is calculated accord-

ing to Eqs. (18)–(20), and the formulas from the Appendix,
which involve double and triple summations over the inter-
mediate states. The number of basis functions is increased
up to N = 210 to achieve clear convergence pattern of the
results and then the extrapolation N → ∞ is performed. The
partial wave summation over the relativistic angular quantum
number κ = ( j + 1/2) j+l+1/2 was terminated at |κmax| = 16,
and the remainder was estimated using least-squares inverse
polynomial fitting. Moreover, two-electron contributions in-
volve integration over the virtual photon energy ω, which
requires special attention due to the poles and cuts from
the electron and photon propagators. We use the integration
contour proposed in Ref. [81] based on a Wick rotation.
The number of the integration points is varied to achieve the
required accuracy.

For a consistency check, the two-photon exchange correc-
tion is calculated within the Feynman and Coulomb gauges,
and the difference between the results is found to be well
within the numerical uncertainty. The gauge invariance is
demonstrated in Table I where the individual terms and the

total �g(2)
int values for 28Si11+ and 208Pb79+ obtained with the

core-Hartree potential are presented.
Calculations of the third- and higher-orders �g(3+)

int are
carried out within the Breit approximation using Eqs. (29) and
(31). On the one hand, these calculations are rather compli-
cated and time consuming. On the other hand, the higher the
order k the smaller |�g(k)

int |. Therefore, these contributions are
required with lower relative accuracy and the corresponding N
and |κmax| are taken much smaller than for the first and second
orders. This is an important advantage of the perturbation
theory as compared to CI-DFS and other all-order methods.
In particular, to achieve the same accuracy as performed here
within the CI-DFS method, one would need to calculate the
matrix element (28) to ten digits.

The convergence of the perturbation theory is illustrated in
Table II where the Breit-approximation values of �g(k)

int with
k = 0 · · · 5 are given for the ground-state g factor of lithium-
like silicon. Calculations are carried out for the Coulomb,
core-Hartree and six different DFT potentials: with (KSL,
DHL, and DSL) and without (KS, DH, and DS) the Latter cor-
rection. Note that the KS, DH, and DS potentials in Ref. [53]
are with the Latter correction, so those values would be placed
in the “L” columns. It can be seen that the results without the
Latter correction for the one- and two-photon exchange are,
at least, an order of magnitude more accurate than with it.
The Latter correction causes the unsmoothness of potentials,
which leads to numerical instability. At the same time, all the
total values are in agreement within the uncertainties. So, we
choose to opt out of the Latter correction in the following.

In Table III we present the interelectronic-interaction con-
tributions �gint to the ground-state g factor of lithiumlike ions
for Z = 14, 54, 82. The results are obtained with the Coulomb
and different screening potentials: CH, KS, DH, and DS. As
seen from this table, the total values obtained at different
screening potentials are quite close to each other and overlap
within their uncertainties.
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TABLE II. Interelectronic-interaction contributions �g(k)
int,L to the ground-state g factor of 28Si11+, in units of 10−6. The results are obtained

in the Breit approximation with the Coulomb and different screening potentials: CH, KS, DH, and DS. The last three are considered with
(marked by superscript L) and without the Latter correction.

k Coulomb CH KS KSL DH DHL DS DSL

0 348.26678 341.44336 341.3682 417.19816 353.1638 302.70955 329.1102
1 321.43711 −33.66323 −25.28906 −25.211(1) −104.40966 −39.393(1) 14.54644 −11.879(1)
2 −6.82589(4) 0.14664(3) −1.48024(3) −1.4718(2) 2.10245(3) 1.1326(3) −2.64579(3) −2.5766(2)
3 0.1077(41) −0.0469(12) 0.0343(22) 0.0224(14) −0.1978(22) −0.2192(10) 0.1001(23) 0.0535(13)
4 −0.01313(93) 0.00465(43) −0.00142(40) −0.00190(23) 0.01618(30) 0.02695(73) −0.00433(19) −0.00368(39)
5 0.00112(20) −0.00012(14) 0.00009(5) 0.00008(10) −0.00165(16) −0.00316(15) −0.00015(5) −0.00021(5)
Total 314.7069(42) 314.7078(13) 314.7070(22) 314.706(2) 314.7077(22) 314.708(2) 314.7058(23) 314.704(2)

Table IV shows the values of the interelectronic-interaction
correction �gint to the g factor of lithiumlike ions for Z = 14–
82. We have chosen the CH potential here since it is defined
unambiguously in contrast to the DFT potentials. For com-
parison, the values from Refs. [49,52] are given. As one can
see, we have improved the accuracy by an order of magnitude
as compared to Volotka et al. [47]. The disagreement with
the Coulomb-potential results of Yerokhin et al. [52] awaits
further investigation. The uncertainty of the total values is
mainly determined by the numerical error of �g(3+)

int,L and by

estimation of unknown �g(3+)
int,H. The former is obtained by

analyzing the dependence of the results on the basis size. The
latter is found as ±2�g(2)

int,H/Z .

V. CONCLUSION

In conclusion, the electron correlation effects on the g
factor of lithiumlike ions in the range Z = 14–82 are evalu-
ated with an uncertainty on the level of 10−6. The first- and
second-order interelectronic-interaction corrections are calcu-
lated within the rigorous bound-state QED approach, i.e., to
all orders in αZ . The third- and higher-order contributions
are taken into account within the Breit approximation using
the recursive perturbation theory. In comparison to previous
theoretical calculations, the accuracy of the interelectronic-
interaction contributions to the bound-electron g factor in
lithiumlike ions is substantially improved.

TABLE III. Interelectronic-interaction contributions to the g factor of 28Si11+, 132Xe51+, and 208Pb79+ ions obtained in the Coulomb and
different screening potentials: CH, KS, DH, and DS (all without the Latter correction), in units of 10−6.

Coulomb CH KS DH DS

Z = 14
�g(0)

int 348.2661 341.4434 417.1982 302.7096
�g(1)

int 321.5903 −33.5491 −25.1729 −104.3024 14.6672
�g(2)

int −6.8782(1) 0.1362(1) −1.4929(1) 2.0986(1) −2.6630(1)
−6.8787(1)a

�g(3+)
int,L 0.0934(21) −0.0443(10) 0.0330(22) −0.1833(22) 0.0956(23)

�g(3+)
int,H 0.0000(74) 0.0000(14) 0.0000(18) 0.0000(5) 0.0000(25)

0.0000(14)a

Total 314.8055(77) 314.8089(17) 314.8106(28) 314.8111(23) 314.8094(34)
314.8058(15)a

Z = 54
�g(0)

int 1463.1608 1414.1410 1763.0709 1238.6240
�g(1)

int 1306.2170 −164.6779 −113.4828 −466.1252 63.4535
�g(2)

int −7.6565(3) 0.1376(2) −2.0667(1) 1.7041(1) −3.5117(1)
−7.6569(5)a

�g(3+)
int,L 0.0308(22) −0.0106(19) 0.0174(10) −0.0354(17) 0.0417(9)

�g(3+)
int,H 0.0000(255) 0.0000(74) 0.0000(81) 0.0000(41) 0.0000(101)

Total 1298.5913(256) 1298.6099(76) 1298.6089(82) 1298.6144(44) 1298.6075(101)

Z = 82
�g(0)

int 2448.8325 2341.3605 2952.7350 2034.2466
�g(1)

int 2148.2959 −309.3425 −198.8050 −814.6876 110.2598
�g(2)

int −8.9897(5) −0.1361(1) −3.2341(1) 1.3279(1) −5.2159(1)
−8.9905(6)a

�g(3+)
int,L 0.0459(24) −0.0057(31) 0.0232(27) −0.0237(23) 0.0564(14)

�g(3+)
int,H 0.0000(283) 0.0000(122) 0.0000(115) 0.0000(86) 0.0000(130)

Total 2139.3521(284) 2139.3482(126) 2139.3446(118) 2139.3516(89) 2139.3469(131)

aYerokhin et al. [52].
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TABLE IV. Interelectronic-interaction contributions to the g factor of lithiumlike ions with Z = 14 – 82 obtained for the CH potential, in
units of 10−6.

Z �g(0)
int �g(1)

int �g(2)
int �g(3+)

int,L �g(3+)
int,H Total

14 348.2661 −33.5491 0.1362(1) −0.0443(10) 0.0000(14) 314.8089(17)
348.267a −33.549a 0.137a −0.046(6)a 314.809(6)a

314.8058(15)b

18 452.6955 −45.1729 0.1301(1) −0.0318(12) 0.0000(20) 407.6209(23)
20 505.2339 −51.0429 0.1291(1) −0.0300(8) 0.0000(24) 454.2902(25)

505.234a −51.042a 0.129a −0.031(9)a 454.290(9)a

454.2834(25)b

24 611.0988 −62.9331 0.1300(1) −0.0239(17) 0.0000(29) 548.2718(34)
32 826.7992 −87.5079 0.1371(1) −0.0185(13) 0.0000(40) 739.4099(42)
40 1049.4869 −113.5613 0.1451(1) −0.0147(13) 0.0000(57) 936.0560(58)
54 1463.1608 −164.6779 0.1376(2) −0.0106(19) 0.0000(74) 1298.6099(76)
70 1991.9926 −237.5105 0.0466(1) −0.0090(24) 0.0000(100) 1754.520(10)
82 2448.8325 −309.3425 −0.1361(1) −0.0057(31) 0.0000(122) 2139.348(13)

2448.833a −309.340a −0.134a −0.015(10)a 0.000(40)a 2139.34(4)a

aVolotka et al. [49].
bYerokhin et al. [52].
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APPENDIX: QED FORMULAS FOR TWO-PHOTON-EXCHANGE CONTRIBUTION

In this Appendix we present the explicit formulas for the two-photon-exchange contribution to the g factor of lithiumlike
ions derived within the two-time Green’s function method [66]. We separate the irreducible contributions of the two- and
three-electron diagrams, the reducible contribution, including the nondiagrammatic terms, and the counterterm contribution,
see Eq. (18).

1. Three-electron contribution

The three-electron contribution to the two-photon-exchange correction, see Fig. 2, is given by the sum, according to the types
of diagrams in Fig. 2,

�g(2)
3el = �g(2)

3el,A + �g(2)
3el,B + �g(2)

3el,C + �g(2)
3el,D, (A1)

where

�g(2)
3el,A = 1

ma

∑
b1,b2

∑
P,Q

(−1)P+Q
∑

n

′ 〈Pa Pb1|I (�Pa Qa)|ξQan〉〈n Pb2|I (�Pb2Qb2 )|Qb1Qb2〉
εPa + εPb1 − εQa − εn

, (A2)

�g(2)
3el,B = 1

ma

∑
b1,b2

∑
P,Q

(−1)P+Q
∑

n

′ 〈ξPaPb1|I (�Pa Qa)|Qa n〉〈n Pb2|I (�Pb2Qb2 )|Qb1Qb2〉
εPa + εPb1 − εQa − εn

, (A3)

�g(2)
3el,C = 1

2ma

∑
b1,b2

∑
P,Q

(−1)P+Q
∑
n1,n2

′ 〈Pa Pb1|I (�Pa Qa)|Qa n1〉〈n1|U |n2〉〈n2Pb2|I (�Pb2Qb2 )|Qb1Qb2〉
(εPa + εPb1 − εQa − εn1 )(εQb1 + εQb2 − εPb2 − εn2 )

, (A4)

�g(2)
3el,D = 1

ma

∑
b1,b2

∑
P,Q

(−1)P+Q
∑

n

′ 〈Pa ξPb1 |I (�Pa Qa)|Qa n〉〈n Pb2|I (�Pb2Qb2 )|Qb1Qb2〉
εPa + εPb1 − εQa − εn

, (A5)

where

|ξc〉 =
∑

n

′ |n〉〈n|U |c〉
εc − εn

, (A6)

the prime over the sums means that terms with vanishing denominators should be omitted in the summation, P and Q are
permutation operators, which determine the sign (−1)P+Q, �Pa Qb = εPa − εQb.
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2. Two-electron contribution

The irreducible parts of the two-electron diagrams depicted in Fig. 3 yield

�g(2)
2el = �g(2)

2el,lad-W + �g(2)
2el,lad-S + �g(2)

2el,cr-W + �g(2)
2el,cr-S, (A7)

with

�g(2)
2el,lad-W = 1

ma

∑
b

∑
P,Q

(−1)P+Q i

π

∫ ∞

−∞
dω

∑
n1,n2

′ 〈Pa Pb|I (ω)|n1n2〉〈n1n2|I (ω + �Pa Qa)|ξQaQb〉(
εPa + ω − uεn1

)(
εQb − ω − �Pa Qa − uεn2

) , (A8)

�g(2)
2el,lad-S = 1

ma

∑
b

∑
P,Q

(−1)P+Q i

2π

∫ ∞

−∞
dω

∑
n1–n3

′ 〈Pa Pb|I (ω)|n1n2〉〈n2|U |n3〉〈n1n3|I (ω + �Pa Qa)|Qa Qb〉(
εPa + ω − uεn1

)(
εQb − ω − �Pa Qa − uεn2

)(
εQb − ω − �Pa Qa − uεn3

) ,

(A9)

�g(2)
2el,cr-W = 1

ma

∑
b

∑
P,Q

(−1)P+Q i

π

∫ ∞

−∞
dω

∑
n1,n2

′ 〈Pa n2|I (ω)|n1Qb〉〈ξPbn1|I (ω − �Pa Qa)|n2Qa〉(
εPa − ω − uεn1

)(
εQb − ω − uεn2

) , (A10)

�g(2)
2el,cr-S = 1

ma

∑
b

∑
P,Q

(−1)P+Q i

2π

∫ ∞

−∞
dω

∑
n1–n3

′ 〈Pa n2|I (ω)|n1Qb〉〈n3|U |n2〉〈Pb n1|I (ω − �Pa Qa)|n3Qa〉(
εPa − ω − uεn1

)(
εQb − ω − uεn2

)(
εQb − ω − uεn3

) , (A11)

where the prime on the sums indicates that in the summation we omit the reducible and infrared-divergent terms, namely, those
with εn1 + εn2 = εa + εb in the ladder-W diagrams, with εn1 = εPa, εn2 = εQb in the direct parts of the cross-W diagrams and
εn1 = εn2 = εa, εb in the exchange parts of the cross-W diagrams, with εn1 + εn2 = εa + εb, εn1 + εn3 = εa + εb, and εn2 = εn3 =
εQb − �Pa Qa in the ladder-S diagrams, with εn1 = εPa, εn2 = εQb, εn1 = εPa, εn3 = εQb, and εn2 = εn3 = εQb in the direct parts
of the cross-S diagrams with εn1 = εn2 = εa, εb, εn1 = εn3 = εa, εb, and εn2 = εn3 = εa, εb in the exchange parts of the cross-S
diagrams. u = 1 − i0 preserves the proper treatment of poles of the electron propagators.

3. Reducible contribution

The reducible parts of the two-electron diagrams are given by the following expressions:

�g(2)
red = �g(2)

red,E + �g(2)
red,F + �g(2)

red,G + �g(2)
red,2el, (A12)

where the red,E term is given by

�g(2)
red,E = �g(2)

red,Ea + �g(2)
red,Eb, (A13)

with

�g(2)
red,Ea = 1

ma

∑
b1,b2

∑
P,Q

(−1)P+Q〈a|U |a〉
∑

n

′
{

1

2

〈Qb1Qb2|I (�Qb1a)|a n〉〈n a|I (�a Pb2 )|Pb1Pb2〉
(2εb − εa − εn)2

− 〈Qb1Qb2|I ′(�Qb1a)|a n〉〈n a|I (�a Pb2 )|Pb1Pb2〉
2εb − εa − εn

+ 〈Qb1Qa|I (�Qb1b2 )|b2n〉〈n b2|I (�b2Pb1 )|Pa Pb1〉
(εa − εn)2

−2
〈Qb1Qa|I ′(�Qb1b2 )|b2 n〉〈n b2|I (�b2Pb1 )|Pa Pb1〉

εa − εn
+ 〈Qa Qb1|I (�Qab1 )|b1 n〉〈n b2|I (�b2Pb2 )|Pa Pb2〉

(εa − εn)2

−2
〈Qa Qb1|I ′(�Qab1 )|b1 n〉〈n b2|I (�b2Pb2 )|Pa Pb2〉

εa − εn
− 2

〈Qa Qb2|I ′(�Qaa)|a n〉〈n b1|I (�b1Pb1 )|Pb2Pb1〉
εb − εn

}
, (A14)

and

�g(2)
red,Eb = 1

ma

∑
b1,b2

∑
P,Q

(−1)P+Q〈b2|U |b2〉
∑

n

′
{ 〈Qb2Qa|I (�Qb2b1 )|b1n〉〈n b1|I (�b1Pb2 )|Pa Pb2〉

(εa − εn)2

+〈Qb2Qb1|I (�Qb2a)|a n〉〈n a|I (�a Pb2 )|Pb1Pb2〉
(2εb − εa − εn)2

− 〈Qb2Qb1|I ′(�Qb2a)|a n〉〈n a|I (�a Pb2 )|Pb1Pb2〉
2εb − εa − εn

+2
〈Qb2Qb1|I (0)|b1n〉〈n a|I (�a Pa)|Pb2Pa〉

(εb − εn)2
+ 2

〈Qb2Qb1|I (0)|b1n〉〈n a|I ′(�a Pa)|Pb2Pa〉
εb − εn

+〈Qa Qb1|I (�Qab2 )|b2n〉〈n b2|I (�b2Pb1 )|Pa Pb1〉
(εa − εn)2

− 2
〈Qa Qb1|I ′(�Qab2 )|b2n〉〈n b2|I (�b2Pb1 )|Pa Pb1〉

εa − εn

−2
〈Qb2Qa|I ′(�Qb2b2 )|b2n〉〈n b1|I (�b1Pb1 )|Pa Pb1〉

εa − εn

}
. (A15)
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The term red,F can be written as

�g(2)
red,F = �g(2)

red,Fa + �g(2)
red,Fb, (A16)

with

�g(2)
red,Fa = 2

ma

∑
b1,b2

∑
P,Q

(−1)P+Q
εn=εa∑

n

{
[〈ξPb2 Pa|I ′(�Pb2b2 )|b2n〉 + 〈Pb2ξPa|I ′(�Pb2b2 )|b2n〉

−〈Pb2Pξ ′
a|I (�Pb2b2 )|b2n〉]〈n b1|I (�b1Qb1 )|Qa Qb1〉 + [〈ξPb2 Pa|I (�Pb2b2 )|b2n〉

+〈Pb2ξPa|I (�Pb2b2 )|b2n〉]〈n b1|I ′(�b1Qb1 )|Qa Qb1〉 − 〈Pb1Pa|I ′(�Pb1b2 )|ξb2 n〉
×〈n b2|I (�b2Qb1 )|Qa Qb1〉 + 〈Pb1ξPa|I (�Pb1b2 )|b2n〉〈n b2|I ′(�b2Qb1 )|Qa Qb1〉

+
∑

m

′
[ 〈Pb1Pa|I (�Pb1b2 )|b2m〉〈m|U |n〉〈n b2|I (�b2Qb1 )|Qa Qb1〉

(εa − εm)2

−〈Pb1Pa|I ′(�Pb1b2 )|b2m〉〈m|U |n〉〈n b2|I (�b2Qb1 )|Qa Qb1〉
εa − εm

+ 〈Pb1Pa|I (�Pb1b2 )|b2m〉〈m|U |n〉〈n b2|I ′(�b2Qb1 )|Qa Qb1〉
εa − εm

]}

− 2

ma

∑
b1,b2

εn=εa∑
n

{
[〈ξab1|I ′(�ab)|b2n〉 + 〈a ξb1 |I ′(�ab)|b2n〉]〈n b2|I (�ab)|b1a〉 + 〈a b1|I (�ab)|ξ ′

b2
n〉

×〈n b2|I (�ab)|b1a〉 + [〈ξab1|I (�ab)|b2n〉 + 〈a b1|I (�ab)|ξb2 n〉]〈n b2|I ′(�ab)|b1a〉

+
∑

m

′ 〈b1a|I (0)|b2m〉〈m|U |n〉〈n b2|I (0)|a b1〉
(εa − εm)2

}
, (A17)

and

�g(2)
red,Fb = 2

ma

∑
b1,b2

∑
P,Q

(−1)P+Q
εn=εb∑

n

{[〈ξPaPb2|I ′(�Pa a)|a n〉 + 〈Pa ξPb2 |I ′(�Pa a)|a n〉

− 〈Pa Pξ ′
b2

|I (�Pa a)|a n〉]〈n b1|I (0)|Qb2Qb1〉 − 〈Pb2Pξ ′
b1

|I (0)|b2n〉〈n a|I (�aQa)|Qb1Qa〉
− [〈Pb2ξPb1 |I (0)|b2n〉 + 〈ξPb2 Pb1|I (0)|b2n〉]〈n a|I ′(�aQa)|Qb1Qa〉}, (A18)

where |ξ ′
c〉 = ∂/∂εc |ξc〉. The term red,G can be expressed by

�g(2)
red,G = �g(2)

red,Ga + �g(2)
red,Gb, (A19)

with

�g(2)
red,Ga = 1

ma

∑
b1,b2

∑
P

(−1)P
εn=εa∑

n

{〈a|U |a〉[〈a b1|I ′′(�ab)|b2n〉〈n b2|I (�b2Pb1 )|Pa Pb1〉

− 〈a b1|I ′(�ab)|b2n〉〈n b2|I ′(�b2Pb1

)|Pa Pb1〉 − 〈a b1|I ′′(�ab)|b1n〉〈n b2|I
(
�b2Pb2

)|Pa Pb2〉
+ 〈a b1|I ′(�ab)|b1n〉〈n b2|I ′(�b2Pb2

)|Pa Pb2〉] + 〈n|U |n〉[〈a b1|I ′′(�ab)|b2n〉
× 〈n b2|I

(
�b2Pb1

)|Pa Pb1〉 − 〈a b1|I ′(�ab)|b2n〉〈n b2|I ′(�b2Pb1 )|Pa Pb1〉]}

+ 1

ma

∑
b1,b2

∑
P

(−1)P
εn=εb∑

n

〈a|U |a〉〈b1a|I ′′(�ab)|a n〉〈n b2|I (0)|Pb1Pb2〉, (A20)

and

�g(2)
red,Gb = 1

2

1

ma

∑
b1,b2

εn=εa∑
n

〈b2|U |b2〉{2〈a b1|I ′′(�ab)|b2n〉〈n b2|I (�ab)|b1a〉

+ 2〈a b1|I ′(�ab)|b2n〉〈n b2|I ′(�ab)|b1a〉 − 〈b1a|I (0)|b2n〉〈n b2|I ′′(�ab)|b1a〉
+ 2〈a b2|I ′′(�ab)|b1n〉〈n b1|I (�ab)|b2a〉 + 2〈a b2|I ′(�ab)|b1n〉〈n b1|I ′(�ab)|b2a〉
− 〈b2a|I (0)|b1n〉〈n b1|I ′′(�ab)|b2a〉 − 2〈a b2|I ′′(�ab)|b2n〉〈n b1|I (0)|a b1〉
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+ 2〈a b2|I ′′(�ab)|b2n〉〈n b1|I (�ab)|b1a〉 − 2〈a b2|I ′(�ab)|b2n〉〈n b1|I ′(�ab)|b1a〉}

+ 1

ma

∑
b1,b2

∑
P

(−1)P
εn=εb∑

n

〈b2|U |b2〉{〈b1b2|I ′′(0)|b2n〉〈n a|I (�a Pa)|Pb1Pa〉

− 〈b2b1|I ′′(0)|b1n〉〈n a|I (�a Pa)|Pb2Pa〉 − 〈b2a|I ′′(�ab)|a n〉〈n b1|I (0)|Pb2Pb1〉}. (A21)

The reducible two-electron term is found to be

�g(2)
red,2el = �g(2)

red,2el,lad-W + �g(2)
red,2el,lad-S + �g(2)

red,2el,cr-W + �g(2)
red,2el,cr-S, (A22)

where

�g(2)
red,2el,lad-W = − 1

ma

∑
b

i

π

∫ ∞

−∞
dω

⎧⎨
⎩

εn1 +εn2 =εa+εb∑
n1,n2

[∑
P

(−1)P

(
〈a b|I (ω)|n1n2〉〈n1n2|I (ω + �a Pa)|PξaPb〉(

εa + ω − uεn1

)2

−1

2

〈a b|I (ω)|n1n2〉〈n1n2|I (ω + �a Pa)|Pa Pb〉〈a|U |a〉(
εa + ω − uεn1

)3 + 〈Pa Pb|I (ω + �Pa a)|n1n2〉〈n1n2|I (ω)|a ξb〉(
εa − ω − uεn1

)2

+ 1

2

〈Pa Pb|I (ω + �Pa a)|n1n2〉〈n1n2|I (ω)|a b〉〈b|U |b〉(
εa − ω − uεn1

)3

)
− 1

2

〈a b|I (ω)|n1n2〉〈n1n2|I ′(ω + �ab)|b a〉〈a|U |a〉(
εa + ω − uεn1

)2

− 1

2

〈b a|I ′(ω + �ba)|n1n2〉〈n1n2|I (ω)|a b〉〈b|U |b〉(
εa − ω − uεn1

)2

]

+1

2

εn1 +εn2 	=εa+εb∑
n1,n2

[∑
P

(−1)P

(
〈a b|I (ω)|n1n2〉〈n1n2|I (ω + �a Pa)|Pa Pb〉〈a|U |a〉(

εa + ω − uεn1

)2(
εb − ω − uεn2

)
+ 〈Pa Pb|I (ω + �Pa a)|n1n2〉〈n1n2|I (ω)|a b〉〈b|U |b〉(

εa − ω − uεn1

)(
εb + ω − uεn2

)2

)
+ 〈a b|I (ω)|n1n2〉〈n1n2|I ′(ω + �ab)|b a〉〈a|U |a〉(

εa + ω − uεn1

)(
εb − ω − uεn2

)
+ 〈b a|I (ω + �ba)|n1n2〉〈n1n2|I ′(ω)|a b〉〈b|U |b〉

(εa − ω − uεn1 )(εb + ω − uεn2 )

]}

− 1

2ma

εn1 +εn2 =εa+εb∑
b,n1,n2

〈a b|I (�an1 )|n1n2〉〈n1n2|I ′′(�n1b)|b a〉[〈a|U |a〉 − 〈b|U |b〉], (A23)

�g(2)
red,2el,lad-S

= − 1

ma

∑
b

∑
P

(−1)P i

π

∫ ∞

−∞
dω

⎧⎨
⎩

(i)∑
n1–n3

〈a b|I (ω)|n1n2〉〈n2|U |n3〉〈n1n3|I (ω + �aPa)|Pa Pb〉(
εa + ω − uεn1

)2(
εb − ω − uεn2

)

+
(ii)∑

n1–n3

〈Pb Pa|I (ω + �Pb b)|n1n2〉〈n2|U |n3〉〈n1n3|I (ω)|b a〉(
εb + ω − uεn1

)2(
εa − ω − uεn3

) + 1

2

(iii)∑
n1–n3

〈a b|I (ω)|n1n2〉〈n2|U |n3〉〈n1n3|I (ω + �a Pa)|Pa Pb〉(
εa + ω − uεn1

)3

+ 1

2

(iii)∑
n1–n3

〈Pb Pa|I (ω + �Pb b)|n1n2〉〈n2|U |n3〉〈n1n3|I (ω)|b a〉(
εb + ω − uεn1

)3

⎫⎬
⎭ + 1

ma

∑
b

∑
P,Q

(−1)P+Q i

2π

∫ ∞

−∞
dω

×
(iv)∑

n1,n2,n3

〈Pa Pb|I (ω)|n1n2〉〈n2|U |n3〉〈n1n3|I (ω + �Pa Qa)|Qa Qb〉(
εPa + ω − uεn1

)(
εQb − ω − �Pa Qa − uεn2

)(
εQb − ω − �Pa Qa − uεn3

)

+ 1

ma

∑
b

εn1 =εb and εn2 =εn3 =εa∑
n1,n2,n3

〈a b|I (ω)|n1n2〉〈n2|U |n3〉〈n1n3|I ′′(0)|b a〉, (A24)

here, (i) stands for the restrictions εn1 + εn3 = εa + εb together with εn1 + εn2 	= εa + εb, (ii) corresponds to the εn1 + εn2 =
εa + εb together with εn1 + εn3 	= εa + εb, (iii) is shortening of εn1 + εn2 = εn1 + εn3 = εa + εb, and (iv) stands for εn2 = εn3 =
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εQb − �Pa Qa together with εn1 	= εQa − �Pb Qb,

�g(2)
red,2el,cr-W = 1

ma

∑
b

∑
P,Q

(−1)P+Q i

π

∫ ∞

−∞
dω

(i)∑
n1,n2

〈Pa n2|I (ω)|n1Qb〉〈ξPbn1|I (ω − �Pa Qa)|n2Qa〉(
εPa − ω − uεn1

)(
εQb − ω − uεn2

)

− 1

ma

∑
b

i

π

∫ ∞

−∞
dω

∑
n1,n2

{
〈a n2|I (ω)|n1b〉〈b n1|I (ω)|n2a〉〈b|U |b〉(

εa − ω − uεn1

)(
εb − ω − uεn2

)2

− 〈a n2|I (ω)|n1a〉〈b n1|I ′(ω + �ab)|n2b〉〈b|U |b〉(
εa + ω − uεn1

)(
εa + ω − uεn2

) + 〈b n2|I (ω)|n1a〉〈a n1|I (ω)|n2b〉〈a|U |a〉(
εb − ω − uεn1

)(
εa − ω − uεn2

)2

− 〈b n2|I (ω)|n1b〉〈a n1|I ′(ω − �ab)|n2a〉〈a|U |a〉(
εb + ω − uεn1

)(
εb + ω − uεn2

)
}

, (A25)

here, (i) means εn1 = εPa and εn2 = εQb in the direct parts and εn1 = εn2 = εa or εn1 = εn2 = εb in the exchange parts,

�g(2)
red,2el,cr-S = 1

ma

∑
b

∑
P,Q

(−1)P+Q i

2π

∫ ∞

−∞
dω

×
(i)∑

n1–n3

〈Pa n2|I (ω)|n1Qb〉〈n3|U |n2〉〈Pb n1|I (ω − �Pa Qa)|n3Qa〉(
εPa − ω − uεn1

)(
εQb − ω − uεn2

)(
εQb − ω − uεn3

) , (A26)

here, (i) means the summation over (εn1 = εPa and εn2 = εQb) or (εn1 = εPa and εn3 = εQb) or εn2 = εn3 = εQb in the direct
parts, and over εn1 = εn2 = εa or εn1 = εn2 = εb or εn1 = εn3 = εa or εn1 = εn2 = εb or εn2 = εn3 = εa or εn1 = εn2 = εb in the
exchange parts.

4. Counterterm contribution

The formal expressions corresponding to the counterterm diagrams depicted in Fig. 4 are given by

�g(2)
ct = �g(2)

ct-1 + �g(2)
ct-2, (A27)

where

�g(2)
ct-1 = 2

ma

∑
b

∑
P,Q

(−1)P+Q

{∑
n

′
[∑

m

′ 〈Pa|Vscr|n〉〈n|U |m〉〈m Pb|I (�Pb Qb)|Qa Qb〉
(εPa − εn)(εPa − εm)

+〈ξPa|Vscr|n〉〈n Pb|I (�Pb Qb)|Qa Qb〉
εPa − εn

+ 〈ξPaPb|I (�Pb Qb)|n Qb〉〈n|Vscr|Qa〉
εQa − εn

+〈Pa|Vscr|n〉〈n ξPb|I (�Pb Qb)|Qa Qb〉
εPa − εn

+ 〈ξPa Pb|I (�Pb Qb)|Qa n〉〈n|Vscr|Qb〉
εQb − εn

+〈Pa|Vscr|n〉〈n Pb|I ′(�Pa Qa)|Qa Qb〉
εPa − εn

(〈Pa|U |Pa〉 − 〈Pb|U |Pb〉)

− 〈Pa|Vscr|n〉〈n Pb|I ′(�Pa Qa)|Qa Qb〉
(εPa − εn)2

〈Pa|U |Pa〉
]

+ 〈Pa Pb|I (�Pa Qa)|Qa Qb〉〈ξ ′
Qb|Vscr|Qb〉

+〈Pa Pb|I ′(�Pa Qa)|Qa Qb〉〈ξQb|Vscr|Qb〉 + 〈ξPaPb|I ′(�Pa Qa)|Qa Qb〉
×(〈Pa|Vscr|Pa〉 − 〈Pb|Vscr|Pb〉) + 〈ξ ′

PaPb|I (�Pa Qa)|Qa Qb〉〈Pa|Vscr|Pa〉

+ 1

4
〈Pa Pb|I ′′(�Pa Qa)|Qa Qb〉(〈Pa|Vscr|Pa〉 − 〈Qa|Vscr|Qa〉)2

}
(A28)

corresponds to the five diagrams from the upper part of Fig. 4, and

�g(2)
ct-2 = 1

ma

∑
n,m

′ 〈a|Vscr|n〉〈n|U |m〉〈m|Vscr|a〉
(εa − εn)(εa − εm)

+ 2

ma
〈ξ ′

a|Vscr|a〉〈a|Vscr|a〉

+ 2

ma

∑
n

′
[ 〈ξa|Vscr|n〉〈n|Vscr|a〉

εa − εn
− 1

2

〈a|Vscr|n〉〈n|Vscr|a〉
(εa − εn)2

〈a|U |a〉
]

(A29)

stays for the two diagrams from the lower part of Fig. 4.
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