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Abstract: An essential tool in data-driven modeling of dynamical systems
from frequency response measurements is the barycentric form of the underly-
ing rational transfer function. In this work, we propose structured barycentric
forms for modeling dynamical systems with second-order time derivatives using
their frequency domain input-output data. By imposing a set of interpolation
conditions, the systems’ transfer functions are rewritten in different barycentric
forms using different parametrizations. Loewner-like algorithms are developed
for the explicit computation of second-order systems from data based on the
developed barycentric forms. Numerical experiments show the performance
of these new structured data driven modeling methods compared to other
interpolation-based data-driven modeling techniques from the literature.
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Novelty statement: We develop new structured barycentric forms for the
transfer functions of second-order systems that allow structured data-driven
modeling from frequency domain input-output data. For the explicit compu-
tation of second-order systems from data, interpolation-based Loewner-like
algorithms are proposed.

1 Introduction

Data-driven reduced-order modeling, i.e., the construction of models describing the un-
derlying dynamics of unknown systems from measurements, has become an increasingly
preeminent discipline. It is an essential tool in situations when explicit models in the form
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of state space formulations are not available, yet abundant input/output data are, motivat-
ing the need for data-driven modeling. Depending on the underlying physics, dynamical
systems can inherit differential structures leading to specific physical interpretations. In
this work, we concentrate on systems that are described by differential equations with
second-order time derivatives of the form

Mẍ(t) + Dẋ(t) + Kx(t) = bu(t),

y(t) = cTx(t),
(1)

with M ,D,K ∈ Rn×n and b, c ∈ Rn. Systems like (1) typically appear in the modeling of
mechanical, electrical, and related structures [1, 11,21,23]. In the frequency domain (also
known as the Laplace domain), the input-to-output behavior of (1) is equivalently given
by the corresponding transfer function

H(s) = cT(s2M + sD + K)−1b, (2)

which is a degree-2n rational functions in s, where n is the state-space dimension of (1).
In recent years, several methods have been developed for learning reduced-order state-

space representations of dynamical systems from given data. However, most of these
approaches consider the classical, unstructured case of first-order systems of the form

Eẋ(t) = Ax(t) + bu(t),

y(t) = cTx(t),
(3)

where E,A ∈ Rn×n and b, c ∈ Rn, with the transfer function

H(s) = cT(sE −A)−1b. (4)

Examples for such methods are the subspace identification framework [18–20], dynamic
mode decomposition [35, 40], operator inference [27, 29, 33], the Loewner framework [22,
28], rational least-squares methods such as vector fitting [14, 17] or RKFIT [8], or the
transfer-function based H2-optimal model reduction [7]. See also [12] for a more general
introduction to this topic. The importance of preserving internal system structures in
the computation of reduced-order approximations of dynamical systems for the case of
second-order systems (1) has been observed in [34, 42], which allows in particular the
reinterpretation of system quantities, the preservation of structure-inherent properties and
provides cheap-to-evaluate models with high accuracy. However, only a few data-driven
approaches have been recently extended to (1) such as the Loewner framework [30,36] and
operator inference [15,37].

In this work, we concentrate on the case in which input-output measurements are avail-
able in the frequency domain, i.e., evaluations of the system’s transfer function (2). For
this type of data, the goal in data-driven reduced-order modeling is the construction of
low-order rational functions Ĥ(s) that approximate the given data well in an appropriate
measure. These rational functions can be interpreted as transfer functions corresponding
to dynamical systems. Typically, it is not possible to extract additional differential struc-
tures from general rational functions. For example, even though one can always convert
the structured transfer function in (2) to an unstructured rational function in (4), the
reverse direction is not guaranteed. Most methods for learning transfer functions from
frequency domain data have been mainly developed for the unstructured case (3). In
particular, such methods include the barycentric Loewner framework [2], the vector fit-
ting algorithm [14, 17] and the AAA algorithm [24]. The backbone of these methods is
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the barycentric form of rational functions, which allows for computationally efficient con-
structions of rational interpolants and least-squares fits [9]. Enforcing structures in the
barycentric form allows the design of structured data-driven modeling algorithms. In [44],
this idea led to the extension of the vector fitting algorithm towards mechanical systems
with modal damping structure.

In this paper, we develop new structured barycentric forms associated with the transfer
functions of second-order systems (2). By enforcing interpolation conditions, we show that
the system matrices in (1) satisfy certain equality constraints. Using different parametriza-
tions of the matrices in (1), we derive corresponding structured barycentric forms that
allow an easy construction of the system matrices (1) and enforce interpolation by con-
struction. We are using free parameters in the barycentric forms that are not bound in
the derivation, in order to design several Loewner-like algorithms, allowing the direct con-
struction of second-order systems from given frequency domain data with interpolating
transfer functions. We also present several strategies that allow the choice of free parame-
ters in the structured barycentric forms to enforce additional properties in the constructed
system matrices such as positive definiteness. Numerical examples are used to verify the
developed theory and algorithms based on these barycentric forms.

The rest of the paper is organized as follows: In Section 2, we include mathemati-
cal preliminaries, needed for the theoretical derivations in this paper, and briefly review
the theory about the barycentric form of unstructured systems (3). Then, we develop
the structured barycentric forms in Section 3, followed by computational algorithms in
Section 4 for the explicit construction of second-order systems (1) from frequency data.
Section 5 illustrates the effectiveness of the presented methods for several numerical ex-
amples, including the vibrational responses of an underwater drone and bone tissue. The
paper is concluded in Section 6.

2 Mathematical preliminaries and first-order systems analysis

For our derivation of the (structured) barycentric forms, the Sherman-Morrison-Woodbury
formula for matrix inversion takes an essential role. Given an invertible matrix X ∈ Cr×r
and two vectors u,v ∈ Cr such that X + uvT is also invertible, the Sherman-Morrison-
Woodbury formula yields(

X + uvT
)−1

= X−1 − X−1uvTX−1

1 + vTX−1u
; (5)

see, for example, [16]. In this work, we focus on transfer functions as in (2) and (4) where
the inverse in the middle is pre- and post-multiplied by two vectors. Thus we consider the
following adaption of (5).

Proposition 1. Let X ∈ Cr×r be an invertible matrix and let u,v ∈ Cr be column vectors
such that X + uvT is also invertible. Then, for any z ∈ Cr it holds

zT
(
X + uvT

)−1
u =

zTX−1u

1 + vTX−1u
. (6)

Let H(s) denote the transfer function of an unknown dynamical system. We assume
that we have access to evaluations of the transfer function at distinct frequency points
λ1, . . . , λr ∈ C such that

H(λ1) = h1, H(λ2) = h2, . . . , H(λr) = hr. (7)
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We denote the complete data set of frequency points and transfer function values by
{(λi, hi)| 1 ≤ i ≤ r}.

Next, we consider the parametrization of first-order (unstructured) dynamical systems
of the form (3) with the transfer function Ĥ(s) = ĉT(sÊ − Â)−1b̂ that interpolates the
given data (7). In the following, the first-order dynamical system (3) of order r is denoted
by Σ̂FO : (Ê, Â, b̂, ĉ). A slightly different proof of the next result can be found in [3] for
the case of multi-input/multi-output dynamical systems. For thoroughness, we include a
proof here as it will be the starting point for the structured variants considered later on.

Lemma 1. Given the data (7), define

Λ = diag(λ1, . . . , λr) ∈ Cr×r and ĉ =
[
h1 h2 · · · hr

]T ∈ Cr,

and let 1Tr =
[
1 · · · 1

]
∈ C1×r be the vector of ones. If the first-order model Σ̂FO :

(Ê, Â, b̂, ĉ) is constructed such that

ÊΛ− Â = b̂1Tr (8)

holds, where b̂ =
[
w1 . . . wr

]T ∈ Cr contains free parameters with wk 6= 0, for k =

1, . . . , r, and the matrix Ê is invertible, then the transfer function

Ĥ(s) = ĉT(sÊ − Â)−1b̂ (9)

of Σ̂FO interpolates the data in (7), i.e., it holds

Ĥ(λ1) = h1, Ĥ(λ2) = h2, . . . , Ĥ(λr) = hr. (10)

Proof. Without loss of generality, we show the proof tailored specifically to the case Ê =
Ir. This scenario is by no means restrictive, since the matrix Ê is considered to be
invertible, and thus, can be incorporated into the matrices Â and b̂, accordingly. Let ei
denote the i-th unit vector of length r. By multiplying the constraint in (8) with ei from
the right, one obtains

(Λ− Â)ei = b̂1Trei

and, therefore,
(λiIr − Â)ei = b̂. (11)

Note that since the entries of b̂ are nonzero, λi is not an eigenvalue of Â. We prove this
claim by contradiction. Let the entries of b̂ be nonzero and assume that λi is an eigenvalue
of Â with the corresponding left eigenvector v. Thus, it holds that

vT
(
Λ− b̂1Tr − λiIr

)
= 0,

and, therefore,

vT (Λ− λiIr) =
(
vTb̂

)
1Tr =

[
vTb̂ vTb̂ . . . vTb̂

]
.

Since the i-th entry of the row vector vT (Λ− λiIr) is zero, we consequently have vTb̂ = 0,

and thus vT (Λ− λiIr) = 0. Let v =
[
α1 α2 . . . αr

]T
. Since Λ is diagonal, it holds

vT(Λ− λiIr)
=
[
α1(λ1 − λi) . . . αi−1(λi−1 − λi) 0 αi+1(λi+1 − λi) . . . αr(λr − λi)

]
= 0.
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Since the λk’s are assumed to be distinct, this implies α1 = . . . = αi−1 = αi+1 = . . . = αr =
0. Moreover, using vTb̂ = 0, one obtains αiwi = 0. But recall that wi 6= 0; thus αi = 0
and, in summary, v = 0. However, v is an eigenvector, which leads to the contradiction.
Therefore, λi is not an eigenvalue of Â. Since λiIr − Â is invertible, Equation (11) yields
(λiIr− Â)−1b̂ = ei. Then by multiplying this final relation with ĉT from the left, it holds
ĉT(λiIr − Â)−1b̂ = ĉTei, which proves the interpolation conditions (10).

In this work, we do not consider the case of systems Σ̂FO with differential-algebraic
equations (descriptor systems), for which the matrix Ê is allowed to be singular. Such
endeavors are kept for future research. Hence, in what follows we consider the matrix Ê
to be invertible. For the simplicity of exposition, we choose without loss of generality the
matrix Ê to be the r × r identity matrix Ir, since any system Σ̂FO with Ê invertible can
be equivalently written as (Ir, Ê

−1Â, Ê−1b̂, ĉ). In this representation, one can observe
that in the construction of Σ̂FO in (8), r parameters in b̂ remain free to be chosen. They
can, for example, be used to match further r interpolation conditions additionally to (10).

Using Ê = Ir, Equation (8) now reads Λ − Â = b̂1Tr . Thus, substituting Â into (9),
the transfer function of Σ̂FO can be rewritten as

Ĥ(s) = ĉT(sIr − Â)−1b̂ = ĉT
[
sIr − (Λ− b̂1Tr )

]−1
b̂ = ĉT

[
(sIr −Λ) + b̂1Tr

]−1
b̂. (12)

Define Φ̂(s) = sIr − Λ to be the diagonal matrix function depending on the frequency
parameter s ∈ C. Then, the transfer function in (12) can be formulated as

Ĥ(s) = ĉT(sIr − Â)−1b̂ = ĉT
(
Φ̂(s) + b̂1Tr

)−1
b̂. (13)

The form of the transfer function Ĥ(s) in terms of Φ̂(s) as given by (13) will play a
crucial role in later sections to extend the interpolation theory to the structured case.
The following result, which recovers the classical barycentric form of rational interpolants,
follows from applying Lemma 1 to (13).

Corollary 1. Given the interpolation data (7), the transfer function (13) of the first-order
model that yields the interpolation conditions (10) can be equivalently expressed as

Ĥ(s) =
ĉTΦ̂(s)−1b̂

1 + 1Tr Φ̂(s)−1b̂
, (14)

where Φ̂(s) = sIr −Λ, and Λ, ĉ, and b̂ are defined as in Lemma 1. This formula can be
further represented as barycentric rational interpolation form

Ĥ(s) =

r∑
i=1

hiwi
s− λi

1 +

r∑
i=1

wi
s− λi

. (15)

Proof. Applying the identity (6) in Proposition 1 to Ĥ(s) = ĉT
(
Φ̂(s) + b̂1Tr

)−1
b̂ using

u = b̂, v = 1r, z = ĉ, X = Φ̂(s)
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yields (14). The fact that Φ̂(s) is diagonal and the definitions of b̂ and ĉ directly lead to

ĉTΦ̂(s)−1b̂ =
r∑
i=1

hiwi
(s− λi)

and 1Tr Φ̂(s)−1b̂ =
r∑
i=1

wi
(s− λi)

,

which then together result in the barycentric form (15).

As stated earlier, the expression (15) is known as the barycentric form of the rational
interpolant and is a well-studied object [9] as it forms the foundation for many rational
approximation techniques [2, 24]. The derivation of the barycentric form in Corollary 1
follows a perspective from systems and control theory that aligns well with the second-
order dynamics we study next.

The additional value of one in the denominator of (14) appears as a result of the
Sherman-Morrison-Woodbury formula. Typically, in the classical theory about barycentric
interpolation, such term does not appear in the denominator of the barycentric formula;
see in particular [9, 24]. The rational function represented in (14) is strictly proper since
the degree of the denominator is greater than the one of the numerator, which aligns
with the setting of corresponding LTI systems. Although this may seem restrictive, the
proposed approach can also accommodate proper rational functions corresponding to LTI
systems with a nonzero feed-through term in the state-output equation.

3 Structured barycentric forms

As in the previous section, we assume to have transfer function measurements of the
form (7) given and aim to construct models that fit the given data. However, in contrast
to Section 2, we aim, from now on, to construct structured models of the form (1) denoted

as Σ̂SO : (M̂ , D̂, K̂, b̂, ĉ), with the model matrices M̂ , D̂, K̂ ∈ Rr×r and b̂, ĉ ∈ Rr. Before
we present the main results of this work, we introduce the following two sets of assumptions
that will be needed later on.

Assumption 1. For the model matrices Σ̂SO : (M̂ , D̂, K̂, b̂, ĉ) and given data in (7), we
assume that

(a) the matrix M̂ is invertible, and (A1.1)

(b) the interpolation points {λ1, . . . , λr} are all distinct. (A1.2)

The reasons for imposing Assumptions (A1.1) and (A1.2) are similar to those in the case
of first-order systems from the previous section. More specifically, Assumption (A1.1)
enforces the system (1) to be described by ordinary differential equations rather than

differential-algebraic ones, which require a singular M̂ . The modeling of such descrip-
tor systems is left for future research. As in the first-order case, Assumption (A1.2) is
necessary to avoid inconsistencies in the interpolation conditions. The case in which re-
peated interpolation points and derivative data are used for Hermite interpolation will be
considered in a separate work.

Assumption 2. For the model matrices Σ̂SO : (M̂ , D̂, K̂, b̂, ĉ) and given data in (7), we
assume for i, k = 1, . . . , r and i 6= k that either

(a) −(λk + λi) is not an eigenvalue of the matrix M̂−1D̂, or (A2.1)

(b) (λkλi) is not an eigenvalue of the matrix M̂−1K̂. (A2.2)
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In contrast to Assumptions (A1.1) and (A1.2), which need to hold both at the same
time, only one of Assumptions (A2.1) and (A2.2) will be imposed at once, since these
two assumptions are equivalent to each other for their respectively corresponding struc-
tured barycentric form, as it will become clearer later on. Although Assumptions (A2.1)
and (A2.2) may seem restrictive at first glance, we will show that they occur naturally
for practical choices of the parameters in the new structured barycentric forms. A more
detailed discussion of this topic is provided in Section 4.3.

3.1 Interpolatory second-order transfer functions

The following result extends Lemma 1 to second-order systems establishing sufficient con-
ditions for the interpolation of given transfer function data (7).

Lemma 2. Given the interpolation data (7), define

Λ = diag(λ1, . . . , λr) ∈ Cr×r and ĉ =
[
h1 h2 · · · hr

]T ∈ Cr,

and let 1Tr =
[
1 · · · 1

]
∈ C1×r be the vector of ones. Let the second-order model

Σ̂SO : (M̂ , D̂, K̂, b̂, ĉ) be constructed such that

M̂Λ2 + D̂Λ + K̂ = b̂1Tr , (16)

holds, where b̂ =
[
w1 . . . wr

]T ∈ Cr contains free parameters with wk 6= 0 for k =
1, . . . , r. If Assumptions (A1.1) and (A1.2) as well as either Assumption (A2.1) or (A2.2)
hold, then the transfer function

Ĥ(s) = ĉT(s2M̂ + sD̂ + K̂)−1b̂

of Σ̂SO interpolates the data in (7), i.e., it holds

Ĥ(λ1) = h1, Ĥ(λ2) = h2, . . . , Ĥ(λr) = hr. (17)

Proof. Without loss of generality, we show the proof tailored specifically to the case
M̂ = Ir. This scenario is by no means restrictive, since the M̂ matrix is considered
to be invertible; see Assumption (A1.1). Thus, it can be incorporated into D̂, K̂ and b̂,
accordingly. For the consideration of eigenvalues of second-order systems, we introduce
the augmented matrices

E =

[
Ir 0

0 M̂

]
= I2r, A =

[
0 Ir
−K̂ −D̂

]
. (18)

Since the entries of b̂ are nonzero and with Assumption (A2.1) that −(λk + λi) is not
an eigenvalue of matrix D̂, the interpolation point λi is not a solution to the linearized
eigenvalue problem of the matrix pencil (A,E) in (18), i.e., it is not an eigenvalue of the

quadratic pencil involving M̂ , D̂ and K̂. We prove this claim by contradiction. Let the
entries of b̂ be nonzero and assume that λi is an eigenvalue of A with the corresponding
left-eigenvector vT =

[
vT1 vT2

]
. Thus, it holds[

vT1 vT2
]

(λiE −A) = 0.

Employing the block matrix structure from (18) yields the quadratic eigenvalue relation

λ2iv
T
2Ir + λiv

T
2D̂ + vT2K̂ = 0. (19)
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By multiplying the constraint in (16) with ei from the right, we obtain for 1 ≤ i ≤ k that

(λ2i Ir + D̂λi + K̂)ei = b̂. (20)

Then, multiplication of this last equation (20) with vT2 from the left yields

λ2iv
T
2ei + λiv

T
2D̂ei + vT2K̂ei = vT2 b̂. (21)

It follows directly from (19) and (21) that vT2 b̂ = 0. Let the eigenvector be given as

v2 =
[
α1 α2 . . . αr

]T
. Without loss of generality assume that D̂ is a diagonal matrix

with D̂ = diag(δ1, . . . , δr). Now we use (16) to describe the stiffness matrix K̂ in terms

of the rest such that K̂ = b̂1Tr − D̂Λ−Λ2 and substitute this relation into (19) to obtain

0 = λ2iv
T
2 + λiv

T
2D̂ + vT2 (b̂1Tr − D̂Λ−Λ2)

= vT2D̂(λiIr −Λ) + vT2 (λ2i Ir −Λ2) + vT2 b̂︸︷︷︸
=0

1Tr

= vT2 (D̂ + λiIr + Λ)(λiIr −Λ)

=
[
α1(δ1 + λ1 + λi)(λ1 − λi) . . . 0 . . . αr(δr + λr + λi)(λr − λi)

]
.

Since the λk’s are distinct (Assumption (A1.2)) and δk +λk +λi 6= 0 for all 1 ≤ k ≤ r due
to Assumption (A2.1), it implies that α1 = . . . = αi−1 = αi+1 = . . . = αr = 0. Moreover,
using vT2 b̂ = 0, it holds that αiwi = 0. Since wi 6= 0, this would imply αi = 0, yielding
v2 = 0. However, v2 is an eigenvector, thus leading to the contradiction. Therefore, λi is
not a solution to the quadratic eigenvalue problem.

As a results, the matrix λ2i Ir + λiD̂ + K̂ is non-singular, and by multiplying (20) with

(Irλ
2
i + D̂λi + K̂)−1 from the left, we get

(Irλ
2
i + D̂λi + K̂)−1b̂ = ei

and, therefore,
ĉT(Irλ

2
i + D̂λi + K̂)−1b̂ = ĉei = hi.

Hence, we have shown that Ĥ(λi) = hi for any 1 ≤ i ≤ r. Note that we only used (A2.1)
out of Assumption 2 in this proof, which allowed the description of the stiffness matrix
K̂ by the other terms in (16). An analogous proof relies on Assumption (A2.2), which
allows the reformulation of (16) for the damping matrix D̂. Due to the similarity to the
presented proof, we omit this part.

Similar to the case of first-order systems in Section 2, we can eliminate one of the
unknown matrices in the constraint (16) by using Assumption (A1.1). Thereby, we will

choose the mass matrix to be the r-dimensional identity matrix, M̂ = Ir. However, in
contrast to the case of first-order systems, this leaves us with three remaining unknown
matrices in (16) instead of two. Following diagonalization assumptions, which we will
point out later in detail, this leaves us with 2r free parameters to choose for the explicit
realization of interpolating second-order systems.

Remark 1. Aside from this work, a data-driven method for the derivation of struc-
tured models with interpolating transfer functions has been developed in [36]. Therein,
the authors use constraints similar to (16) to parametrize the model matrices as the so-
lution of large-scale linear systems of equations to enforce the interpolation conditions.
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The unknowns in these linear systems correspond to the entries of the vectorized state-
space quantities. There is no discussion of or connection to structured barycentric forms
in [36] (which represents the main novelty of the current work) as [36] is directly related
to and based on the non-barycentric Loewner framework for interpolation [22] and the
projection-based interpolatory model reduction of structured systems [6]. However, it will
be interesting to revisit [36] in a future work since it might provide directions for extending
the barycentric form to different structures than those we consider here.

In the following derivation of structured barycentric forms, we will make use of the
equality constraint in (16) that enforces r interpolation conditions. As mentioned above,
the remaining free 2r parameters are given in the input vector b̂ and either in the stiffness
matrix K̂ or damping matrix D̂. Therefore, different barycentric forms result from the
reformulation of (16) in terms of either stiffness (in Section 3.2) or damping matrix (in
Section 3.3).

3.2 Parametrization with constrained stiffness matrix

3.2.1 General setup

In this section, we incorporate the remaining free parameters of the system Σ̂SO into the
damping matrix D̂ and the input vector b̂. Therefore, from (16) it follows that the stiffness
matrix satisfies

K̂ = b̂1Tr − M̂Λ2 − D̂Λ. (22)

Substituting (22) into the transfer function Ĥ(s) corresponding to the second-order model

Σ̂SO : (M̂ , D̂, K̂, b̂, ĉ) yields

Ĥ(s) = ĉT(s2M̂ + sD̂ + K̂)−1b̂

= ĉT(s2M̂ + sD̂ + b̂1Tr − M̂Λ2 − D̂Λ)−1b̂

= ĉT(Φ̂(s) + b̂1Tr )−1b̂, (23)

where the matrix-valued function Φ̂(s) is given by

Φ̂(s) = s2M̂ + sD̂ − M̂Λ2 − D̂Λ

= M̂(s2Ir −Λ2) + D̂(sIr −Λ)

=
(
M̂(sIr + Λ) + D̂

)
(sIr −Λ).

The following lemma states the structured barycentric form of (23) in terms of the input
and output vectors, and the matrix-valued function Φ̂(s).

Lemma 3. Given the interpolation data (7), the transfer function (23) of the second-order
model that yields the interpolation conditions (17) can be equivalently expressed as

Ĥ(s) =
ĉTΦ̂(s)−1b̂

1 + 1Tr Φ̂(s)−1b̂
,

where Φ̂(s) =
(
M̂(sIr + Λ) + D̂

)
(sIr−Λ), and Λ, ĉ, and b̂ are as defined in Lemma 1.

Proof. Using Proposition 1 for the formulation of Ĥ(s) in (23), with the following choice
of vectors and matrices

u = b̂, v = 1r, z = ĉ, X = Φ̂(s)

yields the result of the lemma.
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As mentioned in Section 3.1, we choose the mass matrix M̂ to be the identity due to
Assumption (A1.1). Under the assumption that D̂ has no higher order Jordan blocks, it

can be diagonalized while preserving M̂ = Ir such that

D̂ = diag(δ1, . . . , δr) and M̂ = Ir = diag(1, . . . , 1).

In this case, the matrix-valued function Φ̂(s) is a diagonal matrix for all s ∈ C, which
allows us to write

Φ̂(s) =
(
M̂(sIr + Λ) + D̂

)
(sIr −Λ)

= diag
(

(s− λ1)(s+ λ1 + δ1), . . . , (s− λr)(s+ λr + δr)
)
. (24)

Using this diagonal form of the matrix-valued function in Lemma 3 yields the following
result: a structured barycentric formula for second-order transfer functions.

Theorem 1. Given interpolation points and measurements {(λi, hi)| 1 ≤ i ≤ r} and let
Assumptions (A1.1) and (A1.2) as well as Assumption (A2.1) hold. The barycentric form

of the transfer function Ĥ(s) corresponding to second-order system Σ̂SO : (M̂ , D̂, K̂, b̂, ĉ)
is given by

Ĥ(s) =

r∑
i=1

hiwi
(s− λi)(s− σi)

1 +

r∑
i=1

wi
(s− λi)(s− σi)

, (25)

with the weights 0 6= wi ∈ C and support points σi = −(δi + λi), where δi ∈ C are
damping parameters, for 1 ≤ i ≤ r. The barycentric form (25) satisfies the interpolation
conditions (17). The matrices of the corresponding second-order system are given by

M̂ = Ir, D̂ = −diag(λ1 + σ1, . . . , λr + σr),

K̂ = b̂1Tr −Λ2 − D̂Λ, b̂ =
[
w1 . . . wr

]T
,

ĉ =
[
h1 . . . hr

]T
.

(26)

Proof. By making use of the diagonal structure of Φ̂(s) in (24) and the other components

1r =
[
1 . . . 1

]T
, b̂ =

[
w1 . . . wr

]T
, ĉ =

[
h1 . . . hr

]T
in the formulation of the transfer function in Lemma 3, the transfer function is rewritten
in barycentric form by multiplying out the matrix-vector products as

Ĥ(s) =
ĉTΦ̂(s)−1b̂

1 + 1Tr Φ̂(s)−1b̂
=

r∑
i=1

hiwi
(s− λi)(s+ λi + δi)

1 +

r∑
i=1

wi
(s− λi)(s+ λi + δi)

.

Setting the support points σi = −(δi + λi), the result in (25) follows directly. The real-
ization (26) is then given by rearranging the different parameters into the corresponding
matrices and vectors.
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Note that given the notation Σ = diag(σ1, . . . , σr), the realization in (26) can equiva-
lently be written as

M̂ = Ir, D̂ = −Λ−Σ,

K̂ = b̂1Tr + ΛΣ, b̂ =
[
w1 . . . wr

]T
,

ĉ =
[
h1 . . . hr

]T
.

The free parameters that explicitly appear above are 2r in total and are given by the
entries of the vector b̂ and of the diagonal matrix Σ, i.e., the free parameters in the
structured barycentric form (25) are {w1, . . . , wr} ∪ {σ1, · · · , σr}.

3.2.2 Systems with zero damping matrix

An important subclass of second-order systems (1) is given by a zero damping matrix,
i.e., D = 0. These occur, for example, in the case of “conservative” dynamics where no
dissipation/damping is considered. Hamiltonian systems belong to this category [1, 23].
Retaining this additional structure allows, for example, modeling the preservation of en-
ergy in the system. Another problem class that can be modeled by a zero damping matrix
is the case of hysteretic damping, i.e., constant damping over the complete frequency
range [5, 13]. This is used, for example, to model the general influence of physical struc-
tures on the damping behavior of systems. Thereby, the damping matrix is considered
to be frequency dependent with D(s) = 1

s iηK. Inserting this damping definition into the
second-order transfer function (2) yields

H(s) = cT
(
s2M +

s

s
iηK + K

)−1
b = cT(s2M + (1 + iη)K)−1b,

which can be seen as a system with a complex stiffness matrix and zero damping matrix.
The following corollary refines the results from Theorem 1 to the case of system structure
with zero damping matrix, D̂ = 0.

Corollary 2. Given interpolation points and measurements {(λi, hi)| 1 ≤ i ≤ r} and let
Assumptions (A1.1) and (A1.2) as well as Assumption (A2.1) hold. The barycentric form

of the transfer function Ĥ(s) corresponding to second-order system Σ̂SO : (M̂ ,0, K̂, b̂, ĉ)
is given by

Ĥ(s) =

r∑
i=1

hiwi
s2 − λ2i

1 +
r∑
i=1

wi
s2 − λ2i

, (27)

with the weights 0 6= wi ∈ C, for 1 ≤ i ≤ r. The barycentric form (27) satisfies the
interpolation conditions (17) and it can be written as a second-order dynamical systems
with zero damping, i.e.,

Ĥ(s) = ĉT(s2M̂ + K̂)−1b̂,

where

M̂ = Ir, K̂ = b̂1Tr −Λ2, b̂ =
[
w1 . . . wr

]T
, ĉ =

[
h1 . . . hr

]T
.

As in Theorem 1, Assumption (A2.1) needs to hold for (27) to satisfy the interpolation
conditions (17). However, in the special case of D̂ = 0, Assumption (A2.1) simplifies
to λi 6= −λk, for all i 6= k. In particular, if the interpolation points are chosen on the
imaginary axis, no complex conjugate pairs are allowed in the set of interpolation points.
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3.3 Parametrization with constrained damping matrix

In this section, we incorporate the remaining free parameters of the system Σ̂SO into the
stiffness matrix K̂ and the input vector b̂. Therefore, it follows from (16) that the damping
matrix satisfies

D̂Λ = b̂1Tr − M̂Λ2 − K̂. (28)

Under the assumption that Λ is invertible, i.e., zero is not an interpolation point, one can
equivalently write (28) as

D̂ = b̂1TrΛ
−1 − M̂Λ− K̂Λ−1. (29)

By substituting (29) into the formula of the transfer function Ĥ(s) corresponding to the

second-order model Σ̂SO : (M̂ , D̂, K̂, b̂, ĉ), it holds

Ĥ(s) = ĉ(s2M̂ + sD̂ + K̂)−1b̂

= ĉT
(
s2M̂ + s

(
b̂1TrΛ

−1 − M̂Λ− K̂Λ−1
)

+ K̂
)−1

b̂

= ĉT
(
M̂(s2Ir − sΛ) + K̂(Ir − sΛ−1) + sb̂1TrΛ

−1
)−1

b̂

= ĉT
(
Ψ̂(s) + sb̂1TrΛ

−1
)−1

b̂, (30)

where the matrix-valued function Ψ̂(s) is given by

Ψ̂(s) = M̂(s2Ir − sΛ) + K̂(Ir − sΛ−1)
= (sM̂ − K̂Λ−1)(sIr −Λ).

Similar to Lemma 3, the following lemma states the structured barycentric form of (30)
in terms of the input and output vectors and the matrix-valued function Φ̂(s).

Lemma 4. Given the interpolation data (7), the transfer function (30) of the second-order
model that yields the interpolation conditions (17) can be equivalently expressed as

Ĥ(s) =
ĉTΨ̂(s)−1b̂

1 + sf̂TΨ̂(s)−1b̂

where Ψ̂(s) = (sM̂ − K̂Λ−1)(sIr − Λ), f̂ = Λ−11r and Λ, ĉ, and b̂ are defined as in
Lemma 1.

Proof. As previously done in the proof of Lemma 3, we apply Proposition 1 to the formu-
lation of Ĥ(s) in (30), with the following choice of vectors and matrices

u = b̂, v = sf̂ = sΛ−11r, z = ĉ, X = Ψ̂(s),

which yields the result of the lemma.

As in Section 3.2, we can assume that the mass matrix M̂ to be the identity due to
Assumption (A1.1). However, this time, we additionally assume that K̂ has no higher
order Jordan blocks such that we can diagonalize the stiffness matrix while preserving the
identity mass matrix

K̂ = diag(κ1, . . . , κr) and M̂ = Ir = diag(1, . . . , 1).
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Therefore, the matrix-valued function Ψ̂(s) is a diagonal matrix for all s ∈ C, which can
be written as

Φ̂(s) = (sM̂ − K̂Λ−1)(sIr −Λ)

= diag
(

(s− λ1)(s− κ1λ−11 ), . . . , (s− λr)(s− κrλ−1r )
)
. (31)

Using this diagonal form of the matrix-valued function in Lemma 4 yields the barcycentric
form for the constrained damping case.

Theorem 2. Given interpolation points and measurements {(λi, hi)| 1 ≤ i ≤ r}, let
Assumptions (A1.1) and (A1.2) as well as Assumption (A2.2) hold. The barycentric form

of the transfer function Ĥ(s) corresponding to second-order system Σ̂SO : (M̂ , D̂, K̂, b̂, ĉ)
is given by

Ĥ(s) =

r∑
i=1

hiwi
(s− λi)(s− θi)

1 +

r∑
i=1

swiλ
−1
i

(s− λi)(s− θi)

, (32)

with the weights 0 6= wi ∈ C and support points θi = κiλ
−1
i , where κi ∈ C are stiffness

parameters, for 1 ≤ i ≤ r. The barycentric form (32) satisfies the interpolation condi-
tions (17). Moreover, the matrices of the corresponding second-order system are given as

M̂ = Ir, D̂ = b̂1TrΛ
−1 −Λ− K̂Λ−1,

K̂ = diag(θ1λ1, . . . , θrλr), b̂ =
[
w1 . . . wr

]T
,

ĉ =
[
h1 . . . hr

]T
.

(33)

Proof. By using the diagonal structure of Ψ̂(s) in (31), and the structure of the other
components

f̂ = Λ−11r =
[
λ−11 . . . λ−1r

]T
, b̂ =

[
w1 . . . wr

]T
, ĉ =

[
h1 . . . hr

]T
,

in the formulation of the transfer function in Lemma 4, the transfer function is rewritten
in barycentric form by multipliying out the matrix-vector products as

Ĥ(s) =
ĉTΨ̂(s)−1b̂

1 + sf̂TΨ̂(s)−1b̂
=

r∑
i=1

hiwi

(s− λi)(s− κiλ−1i )

1 +

r∑
i=1

swiλ
−1
i

(s− λi)(s− κiλ−1i )

.

Setting the support points θi = κiλ
−1
i , the result in (32) follows directly. The realiza-

tion (33) is then given by rearranging the different parameters into the corresponding
matrices and vectors.

As for the realization of matrices in Theorem 1, the matrices in (33) can be reformulated
by introducing the notation Θ = diag(θ1, . . . , θr) such that

M̂ = Ir, D̂ = b̂1TrΛ
−1 −Λ−Θ,

K̂ = ΘΛ, b̂ =
[
w1 . . . wr

]T
,

ĉ =
[
h1 . . . hr

]T
.
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Algorithm 1: Linearized K-constrained second-order barycentric Loewner
framework.

Input: Left and right interpolation data {(λi, hi)| 1 ≤ i ≤ r} and
{(µi, gi)| 1 ≤ i ≤ r}, support points σ1, . . . , σr ∈ C.

Output: Second-order system matrices M̂ , D̂, K̂, b̂, ĉ.
1 Construct the r-dimensional divided differences matrix

LK =


h1 − g1

(µ1 − λ1)(µ1 − σ1) · · · hr − g1
(µ1 − λr)(µ1 − σr)

...
. . .

...
h1 − gr

(µr − λ1)(µr − σ1) · · · hr − gr
(µr − λr)(µr − σr)

 .
2 Solve the linear system of equations LKw = g, for the unknown weights

w =
[
w1 . . . wr

]T
and the given data g =

[
g1 . . . gr

]T
.

3 Construct the second-order system matrices

M̂ = Ir, D̂ = −Λ−Σ, K̂ = b̂1Tr + ΛΣ, b̂ = w, ĉ =
[
h1 . . . hr

]T
,

with Λ = diag(λ1, . . . , λr) and Σ = diag(σ1, . . . , σr).

The free parameters that explicitly appear above are 2r in total, and are given by the
entries of the vector b̂ and of the diagonal matrix Θ, i.e., the free parameters in the
structured barycentric form (32) are {w1, . . . , wr} ∪ {θ1, · · · , θr}.

4 Computational methods

In this section, we discuss computational aspects for the construction of interpolating
second-order models from data based on the different barycentric forms introduced in the
previous section.

4.1 Linearized structured barycentric Loewner frameworks

The different barycentric forms presented in this paper are designed to interpolate, by
construction, given transfer function data {(λi, hi)| 1 ≤ i ≤ r}. However, in all three
structured forms, free parameters remain. In the first-order case (Corollary 1), these can
be used, for example, to interpolate additional transfer function data {(µi, gi)| 1 ≤ i ≤ r},
where it is assumed that the interpolation points of the two sets are distinct, i.e.,

{λ1, . . . , λr} ∩ {µ1, . . . , µr} = ∅.

The resulting method can be seen as a barycentric transfer function version of the un-
structured (first-order) Loewner framework [22].

Here, we aim to derive similar algorithms for the interpolation of additional transfer
function data {(µi, gi)| 1 ≤ i ≤ r} via the new structured barycentric forms (25), (27), and
(32) by making use of the remaining free parameters. We can observe that (25) and (32)
have 2r free parameters left, which potentially allow constructing of models that match the
same number of interpolation conditions. However, the resulting systems of equations that
need to be solved are nonlinear in the unknowns and, thus, need thorough investigations in
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Algorithm 2: Linearized D-constrained second-order barycentric Loewner
framework.

Input: Left and right interpolation data {(λi, hi)| 1 ≤ i ≤ r} and
{(µi, gi)| 1 ≤ i ≤ r}, support points θ1, . . . , θr ∈ C.

Output: Second-order system matrices M̂ , D̂, K̂, b̂, ĉ.
1 Construct the r-dimensional divided differences matrix

LD =


h1 − µ1g1λ−11

(µ1 − λ1)(µ1 − θ1) · · · hr − µ1g1λ−1r
(µ1 − λr)(µ1 − θr)

...
. . .

...

h1 − µrgrλ−11
(µr − λ1)(µr − θ1) · · · hr − µrgrλ−1r

(µr − λr)(µr − θr)

 .

2 Solve the linear system of equations LDw = g, for the unknown weights

w =
[
w1 . . . wr

]T
and the given data g =

[
g1 . . . gr

]T
.

3 Construct the second-order system matrices

M̂ = Ir, D̂ = b̂f̂T −Λ−Θ, K̂ = ΘΛ, b̂ = w, ĉ =
[
h1 . . . hr

]T
,

with f̂T =
[
λ−11 . . . λ−1r

]
, Λ = diag(λ1, . . . , λr) and Θ = diag(θ1, . . . , θr).

terms of solvability. For simplicity of exposition, we consider in this work only linearized
versions of the equations by choosing “suitable” σi’s in (25) and θi’s in (32) a priori,
leading to small linear systems to solve to satisfy additional r interpolation conditions. A
discussion of heuristic choices for these support points is given in the upcoming Section 4.3.

The resulting methods based on the barycentric forms (25) and (32) are given in Al-
gorithms 1 and 2. Both algorithms follow a similar structure. In Step 1 of Algorithms 1
and 2, the given interpolation data and support points are used to set up divided dif-
ferences matrices. The realizations of these matrices are determined by the underlying
barycentric forms (25) and (32).

For example, consider the barycentric form in (25). The goal is to find the weights

w =
[
w1 . . . wr

]T
in this barycentric form (25) such that the additional interpolation

conditions (35) for {(µi, gi)| 1 ≤ i ≤ r} are satisfied. By inserting the form (25) into the
interpolation conditions (35) and by multiplying both sides with the denominator of the
barycentric form, we obtain the new relation

r∑
i=1

hiwi
(µj − λi)(µj − σi)

= gj +

r∑
i=1

gjwi
(µj − λi)(µj − σi)

,

for j = 1, . . . , r. Bringing the terms with the unknowns w1, . . . , wr to the left-hand side
yields the relation

r∑
i=1

(hi − gj)wi
(µj − λi)(µj − σi)

= gj , (34)

for j = 1, . . . , r. Rearranging all equations of the form (34) such that the unknowns can

be written as the vector w =
[
w1 . . . wr

]T
results in the linear system of equations

LKw = g,
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Algorithm 3: Second-order barycentric Loewner framework with zero damping.

Input: Left and right interpolation data {(λi, hi)| 1 ≤ i ≤ r} and
{(µi, gi)| 1 ≤ i ≤ r}.

Output: Second-order system matrices M̂ , D̂, K̂, b̂, ĉ.
1 Construct the r-dimensional divided difference matrix

LKD0 =


h1 − g1
µ21 − λ21

· · · hr − g1
µ21 − λ2r

...
. . .

...
h1 − gr
µ2r − λ21

· · · hr − gr
µ2r − λ2r

 .

2 Solve the linear system of equations LKD0w = g, for the unknown weights

w =
[
w1 . . . wr

]T
and the given data g =

[
g1 . . . gr

]T
.

3 Construct the second-order system matrices

M̂ = Ir, D̂ = 0, K̂ = b̂1Tr −Λ2, b̂ = w, ĉ =
[
h1 . . . hr

]T
,

with Λ = diag(λ1, . . . , λr).

with the data vector g =
[
g1 . . . gr

]T
and the matrix of divided differences

LK =


h1 − g1

(µ1 − λ1)(µ1 − σ1) · · · hr − g1
(µ1 − λr)(µ1 − σr)

...
. . .

...
h1 − gr

(µr − λ1)(µr − σ1) · · · hr − gr
(µr − λr)(µr − σr)

 .
This system of linear equations is then solved in Step 2 of Algorithm 1. A similar deriva-
tion using (32) leads to the divided differences matrix in Step 1 of Algorithm 2 and the
solve of an analogous linear system of equations in Step 2 of Algorithm 2. Under the
assumption that the number of given data points r is less than the minimal system dimen-
sion and suitable choices of support points {σi} and {θi} such that Assumptions (A1.2),
(A2.1) and (A2.2) are satisfied for all interpolation points λ1, . . . , λr, µ1, . . . , µr, these

linear systems of equations have unique solutions.
In Step 3 of Algorithms 1 and 2, the second-order systems are constructed following

the theory of Theorems 1 and 2. In both cases, the transfer functions of the constructed
systems satisfy the 2r imposed interpolation conditions

Ĥ(λ1) = h1, . . . , Ĥ(λr) = hr, Ĥ(µ1) = g1, . . . , Ĥ(µr) = gr. (35)

Algorithm 3 shows the barycentric Loewner framework for the case of zero damping
matrices based on Corollary 2. While the main computational steps are following the
same ideas as in Algorithms 1 and 2, the difference to these methods is the lack of the
set of support points {σi}i=1,...r and {θi}i=1,...r, which results from enforcing the D̂ = 0
damping model. The corresponding barycentric form (27) has r remaining free parameters
that exactly allow the construction of an interpolating second-order system satisfying (35).

4.2 Construction of systems with real-valued matrices

A property desired in many applications for learned systems is the realization by means of
real-valued matrices. This often allows the reinterpretation of the learned quantities and
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the use of classical tools, established for real systems resulting, for example, from finite
element discretizations. The key feature of second-order systems (1) with real matrices
that needs to be exploited for the construction is that data at complex conjugate frequency
points are also complex conjugate:

H(s) = cT(s2M + sD + K)−1b = cT(s2M + sD + K)−1b = H(s).

As in the classical Loewner framework, we assume the given data {(λi, hi)| 1 ≤ i ≤ r} and
{(µi, gi)| 1 ≤ i ≤ r} to be closed under conjugation in the respective sets. Additionally, for
Algorithms 1 and 2, we need to assume that the support points {σi}i=1,...r and {θi}i=1,...r

are also closed under conjugation and that if λi, λi+1 are complex conjugate, then so are
σi, σi+1 or θi, θi+1, respectively. Let the interpolation data and parameters be ordered
such that complex conjugate are sorted together, e.g., for the interpolation points in
{(λi, hi)| 1 ≤ i ≤ r}, we have that

λ1, λ2 = λ1, λ3, λ4 = λ3, . . . .

Given the matrices M̂ , D̂, K̂, b̂, ĉ computed by any of the Algorithms 1 to 3, a real-valued
realization of the described system is given by

P
T
M̂P , P

T
D̂P , P

T
K̂P , P

T
b̂, ĉP ,

where the transformation matrix P is block diagonal with

P = diag(J1, J2, . . . , J`) ∈ Cr×r,

and the block matrices are chosen according to the given interpolation data by

Jk =


1√
2

[
1 −i
1 i

]
for complex conjugate interpolation points,

1 for real interpolation points.

Remark 2. A special situation occurs in the case of Algorithm 3 for the construction of
models with zero damping matrix. As discussed at the end of Section 3.2.2, the collection of
data on the imaginary axis iR in complex conjugate pairs violates Assumption (A2.1). This
is consistent with the observation that the corresponding transfer function yields identical
values for complex conjugate points on the imaginary axis, i.e., for any M ,K ∈ Cn×n,
D = 0 and b, c ∈ Cn, it holds that

H(s) = cT(s2M + K)−1b = H(s),

for all s = iω ∈ iR. As a result, the collection of data from complex conjugate points on
the imaginary axis yields no additional information due to the specific system structure
and leads to singular linear systems in Step 2 of Algorithm 3. A side effect is that systems
with zero damping and real matrices produce only real data on the imaginary axis such
that no additional enforcement of real valued matrices is necessary.

4.3 Heuristics for choosing the support points

To discuss suitable choices for the support points σ1, . . . , σr and θ1, . . . , θr, we consider
their influence on the transfer functions (25) and (32). First, consider the case of the
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barycentric form (25) resulting from the constrained stiffness matrix. Assume for the
moment that σ1, . . . , σr are all distinct. Then, for the transfer function (25), it holds that

Ĥ(σi) =
hiwi
wi

= hi, for all 1 ≤ i ≤ r,

i.e., the transfer function assumes the same values at the support points as at the interpo-
lation points. Since the typical case will be H(λi) 6= H(σi), this introduces approximation
errors at the chosen support points. In the case that some of the support points are chosen
to be identical, i.e., σi = σi1 = . . . = σi` for some indices i1, . . . , i`, one can observe that

Ĥ(σi) =

∑̀
k=1

hikwik(σi − λik)

∑̀
k=1

wik(σi − λik)

, for all 1 ≤ i ≤ r, (36)

holds. Similar to the case of distinct support points, approximation errors at σi are
introduced. However, choosing many support points to be identical, allows to cluster the
introduced errors away from frequency ranges of interest.

In a similar way, one can observe for the barycentric form (32) resulting from the
constrained damping matrix that in the case of distinct support points θ1, . . . , θr, it holds

Ĥ(θi) =
hiwi

wiθiλ
−1
i

=
hiλi
θi

, for all 1 ≤ i ≤ r.

As before, typically H(θi) 6= hiλi
θi

will hold, indicating approximation errors introduced at
the chosen support points. In the case that some of the support points are identical, i.e.,
θi = θi1 = . . . = θi` for some indices i1, . . . , i`, it holds that

Ĥ(θi) =

∑̀
k=1

hikwik(θi − λik)

∑̀
k=1

θiwikλ
−1
ik

(θi − λik)

, for all 1 ≤ i ≤ r. (37)

To summarize, Equations (36) and (37) show that poorly chosen support points intro-
duce undesired approximation errors. The points σ1, . . . , σr and θ1, . . . , θr do not need
to be distinct (in contrast to the interpolation points; cf. Assumption (A1.2)), and the
undesired approximation errors are enforced at the support points themselves. The second
observation motivates to choose σ1, . . . , σr and θ1, . . . , θr outside the considered frequency
region of interest, i.e.,

σk, θk 6∈ convR{λ1, . . . , λr, µ1, . . . , µr},

for k = 1, . . . , r and where

convR{a1, . . . , a`} :=

{
z ∈ C

∣∣∣∣∣ z =
∑̀
k=1

βkak,
∑̀
k=1

βk = 1, β1 ≥ 0, . . . , β` ≥ 0

}

denotes the convex hull of elements in C over R. This can be achieved, for example, by
taking large shifts or multiples of the given interpolation points for the support points.

Next, we revisit the construction of the final second-order system matrices in Algo-
rithms 1 and 2 and the influence of the support points on the properties of these matrices.
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In both algorithms, the damping matrices take into account the negatives of the interpo-
lation points λ1, . . . , λr, which are subtracted by the chosen support points σ1, . . . , σr or
θ1, . . . , θr. Eigenvalues with positive real parts in the damping matrix can be interpreted
as dissipation of energy from the system. To achieve this, a reasonable choice for σ1, . . . , σr
and θ1, . . . , θr is to have negative real parts, which pushes the eigenvalues of the resulting
damping matrix toward the right open half-plane. Especially, it is possible to construct
real, symmetric positive definite damping matrices via Algorithm 1 in the case that the
interpolation data has been obtained on the imaginary axis by choosing the support points
σ1, . . . , σr to yield

Re(σi) < 0 and Im(σi) = − Im(λi), for all i = 1, . . . , r. (38)

On the other hand, we observe that the stiffness matrices in Algorithms 1 and 2 involve
the multiplication of the interpolation points λ1, . . . , λr with the support points σ1, . . . , σr
and θ1, . . . , θr. Aiming for stiffness matrices that have eigenvalues with positive real parts,
which together with eigenvalues with positive real parts in the damping matrix drives the
system towards asymptotic stability, the support points σ1, . . . , σr and θ1, . . . , θr should
be chosen to have imaginary parts in the opposite half-plane of the imaginary parts of
λ1, . . . , λr, e.g., if the interpolation points are chosen over the positive imaginary axis, then
σ1, . . . , σr and θ1, . . . , θr should have negative imaginary parts. In the case of Algorithm 2
and the interpolation points λ1, . . . , λr to be on the imaginary axis, the support points
θ1, . . . , θr can be chosen such that K̂ can be realized as a real-valued, symmetric positive
definite matrix by

Im(θi) = − (Im(λi) + ci) , for all i = 1, . . . , r,

where ci ∈ R are real constants with the same sign as the imaginary part of λi such that
ci Im(λi)) > 0 holds.

5 Numerical experiments

In this section, we verify the proposed algorithms and barycentric forms numerically in
different examples. The experiments reported here have been executed on a machine
equipped with an AMD Ryzen 5 5500U processor running at 2.10 GHz and with 16 GB total
main memory. The computer runs on Windows 10 Home version 21H2 (build 19044.2251)
and, for all reported experiments, we use MATLAB 9.9.0.1592791 (R2020b). Source codes,
data and numerical results are available at [43].

5.1 Computational setup

As setup of the subsequent comparative study, we consider the following data driven,
interpolation-based methods:

soBaryLoewK the linearized K-constrained second-order barycentric Loewner framework
from Algorithm 1,

soBaryLoewD the linearized D-constrained second-order barycentric Loewner framework
from Algorithm 2,

soBaryLoewKD0 the second-order barycentric Loewner framework with zero damping
matrix from Algorithm 3,
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Table 1: Dimensions and numbers of data samples for numerical examples. The amount
of matched interpolation conditions for all constructed models is 2r, due to the
partition into left and right data. The column “c.c.d” denotes the use of complex
conjugate interpolation points and data.

full order r c.c.d.

Butterfly gyroscope 17 361 14 true

Artificial fishtail 779 232 6 true

Flexible aircraft — 52 true

Bone model 986 703 19 false

Hysteretic plate 201 900 52 false

soLoewRayleigh the second-order (matrix) Loewner framework for Rayleigh-damped sys-
tems from [30],

BaryLoew the classical first-order barycentric Loewner framework based on the results in
Corollary 1; see also [2].

All models are constructed such that the transfer functions satisfy the same interpolation
conditions.

As interpolation points, we have chosen the local minima and maxima of the given
data samples on the positive part of the imaginary axis using the MATLAB functions
islocalmin and islocalmax supplemented by the limits of the considered frequency in-
tervals of interest [iωmin, iωmax] and, if necessary, some additional intermediate points. The
interpolation points are then split into the left and right sets by alternating the ascending
order of the positive imaginary parts, i.e.,

Im(λ1) < Im(µ1) < Im(λ2) < Im(µ2) < . . . < Im(λr) < Im(µr).

For soBaryLoewK and soBaryLoewD, the support points are chosen according to the discus-
sion in Section 4.3, more specifically as in (38). The individual choices are outlined in the
description of the examples below. The Rayleigh damping parameters for soLoewRayleigh
are either known from the original model or inferred in an optimal way. This means that
we do not consider the optimization process of these additional parameters here.

For the comparison of the different methods, we consider the transfer function magni-
tude, given as the absolute value |H(iωk)|, in the discrete frequency points iωk given in
the data sets, and the corresponding pointwise relative errors via

εrel(ωk) :=
|H(iωk)− Ĥ(iωk)|

|H(iωk)|
.

An overview providing the dimensions of the original full-order systems, the dimensions
of the learned (reduced-order) models and if complex conjugate data has been used in the
computations for the construction of real-valued system matrices can be found in Table 1.
The rows of the table are split into the examples with and without damping matrix.
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soLoewRayleigh BaryLoew

Figure 1: Butterfly gyroscope example: All methods recover reduced-order models with
similar accuracy using the same amount of given interpolation data. The model
learned by soLoewRayleigh performs slightly better for frequencies between 500
and 5 000 rad/s.

5.2 Examples with non-zero damping matrix

We first consider the case of models with energy dissipation, which need the presence of
a damping matrix D̂. Three examples are considered to test the proposed methods. The
butterfly gyroscope models the behavior of a micro-mechanical vibrating gyroscope struc-
ture for the use in inertia-based navigation systems [10, 26]. The artificial fishtail models
the deformation of a silicon structure in the shape of a fishtail used in the construction of
underwater vehicles with fish-like locomotion [38, 39]. Lastly, we have sampled data from
a high-fidelity simulation of a flexible aircraft model used in civil aeronautics to optimize
lightweight structures [31, 32]. The dimensions of the sampled models and the dimension
of the constructed second-order models are shown in Table 1. Note that we consider here
SISO versions of these examples, which are originally single-input/multi-output.

The results computed by the different methods are shown in Figures 1 to 3, where we
have set the support points as

σ1 = . . . = σr = θ1 = . . . = θr = −(5 + 10−3i) · ωmax

for the butterfly gyroscope and flexible aircraft, and

σ1 = . . . = σr = θ1 = . . . = θr = −(5 + 10−5i) · ωmax

in the case of the fishtail example, where ωmax ∈ R is the upper limit of the considered
frequency interval. The figures show the transfer function magnitudes of the constructed
models with the used interpolation data and the pointwise relative errors computed with
respected to all given data samples. In the case of the butterfly and fishtail examples,
these are 1 000 samples in the frequency range of interest and 421 samples for the flexible
aircraft example. For all three examples, the considered methods perform similarly well
in terms of the pointwise relative errors shown in Figures 1 to 3. However, we can note
that the learned models assume different spectral properties. In the case of the butterfly
gyroscope, the proposed methods soBaryLoewK and soBaryLoewD produce asymptotically
stable reduced-order models due to the choice of support points, in contrast to the classical
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Figure 2: Artificial fishtail example: All methods provide a similar approximation ac-
curacy. The model inferred by soBaryLoewD performs insignificantly worse for
frequencies between 1 and 100 rad/s, while the model from soLoewRayleigh keeps
the accuracy level also for higher frequencies.

BaryLoew, which has one unstable pole. The Rayleigh-damped approach soLoewRayleigh
gives one unstable and one infinite eigenvalue, where the infinite one likely results from
the finite arithmetic in the eigenvalue computations and the highly ill-conditioned learned
system matrices. For the fishtail example, all computed reduced-order models are stable
and for the aircraft example, no reduced-order model is stable. In particular, soBaryLoewD,
soLoewRayleigh and BaryLoew have three pairs of unstable complex conjugate eigenvalues,
while soBaryLoewK has only two pairs.

5.3 Examples with zero damping matrix

Now, we consider two examples with zero damping matrix, in order to test soBaryLoewKD0.
First, we have the bone model as a conservative system, which is used to simulate the
porous bone micro-architecture in studies of bone tissue under different loads [25,41]. As
a second example, we consider the model of a vibrating plate that is equipped with tuned
vibration absorbers, which lead to hysteretic structural damping [4,5]. The results of the
different methods can be seen in Figures 4 and 5. In both examples, the second-order
methods soBaryLoewKD0 and soLoewRayleigh perform better in terms of the pointwise
relative errors than the classical BaryLoew. This comes from the additional preservation of
the damping model in these methods. In particular, we can observe that in the absence of
any type of energy dissipation, the two methods that preserve the zero damping structure
outperform the classical Loewner framework by several orders of magnitude.

Additionally, we note that the curves of soBaryLoewKD0 and soLoewRayleigh are in fact
identical in both examples. This is a numerical verification that the barycentric form in
Corollary 2 describes exactly the same system that is recovered by soLoewRayleigh with
zero Rayleigh damping parameters, i.e., both methods construct different realizations of
exactly the same interpolatory second-order systems.
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Figure 3: Flexible aircraft example: All methods construct reduced-order models that
recover the given data set with sufficient accuracy. For higher frequencies, more
interpolation data is used due to the presence of many local maxima and minima.

6 Conclusions

We have developed new structured barycentric forms for the transfer functions of second-
order systems for data-driven, interpolatory reduced-order modeling. Based on these
barycentric forms, we have proposed three Loewner-like algorithms for the construction of
second-order systems from data. Numerical experiments compared these new methods to
the classical, unstructured Loewner approach as well as to another Loewner-like method
for the construction of second-order systems from frequency domain data. In all examples,
the new structured approaches were able to provide a similar , and in some cases signifi-
cantly better, approximation accuracy as the established methods from the literature some
of which do not obey to preserve the structure. Since the proposed algorithms rely on
some fixed parameter choices to simplify computations, we expect that including these
additional “support points” as parameters would significantly increase the approximation
capabilities of methods based on the presented structured barycentric forms. However,
we leave these considerations for future work. Additionally, we have observed that these
support points can be used to alter the properties of the constructed system matrices,
allowing, for example, the construction of asymptotically stable second-order systems.

At the heart of this work are the new structured barycentric forms that allow for a
large bandwidth of new algorithms for learning structured models from frequency domain
data. For the clarity of the presentation, we restricted the analysis in this work to a purely
interpolatory framework. However, the use of the free parameters in the barycentric forms
for least-squares fitting will allow the derivation of methods like vector fitting [17] and
AAA [24] for second-order systems. In particular, the presence of more parameters than
in the unstructured, first-order system case gives rise to a lot more variety in resulting
algorithms. We will consider these ideas in future work.
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Figure 4: Bone model example: For lower frequencies, the second-order methods produce
models with at least one order of magnitude smaller relative errors than the
classical Loewner framework. The curves of soBaryLoewKD0 and soLoewRayleigh
are identical up to numerical round-off errors.
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