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Balanced Singular Perturbation Approximation (SPA) is a model order reduction method
for linear time-invariant systems that guarantees asymptotic stability and for which there
exists an a priori error bound. In that respect, it is similar to Balanced Truncation (BT).
However, the reduced models obtained by SPA generally introduce better approximation
in the lower frequency range and near steady-states, whereas BT is better suited for the
higher frequency range. Even so, independently of the frequency range of interest, BT and
its variants are more often applied in practice, since there exist more efficient algorithmic
realizations thereof.
In this paper, we aim at closing this practically-relevant gap for SPA. We propose two

novel and efficient algorithms that are adapted for different settings. Firstly, we derive
a low-rank implementation of SPA that is applicable in the large-scale setting. Secondly,
a data-driven reinterpretation of the method is proposed that only requires input-output
data, and thus, is realization-free. A main tool for our derivations is the reciprocal transfor-
mation, which induces a distinct view on implementing the method. While the reciprocal
transformation and the characterization of SPA is not new, its significance for the practi-
cal algorithmic realization has been overlooked in the literature. Our proposed algorithms
have well-established counterparts for BT, and as such, also a comparable computational
complexity. The numerical performance of the two novel implementations is tested for
several numerical benchmarks, and comparisons to their counterparts for BT as well as the
existing implementations of SPA are made.
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tion, transfer function, realization free, system Gramians.

AMS subject classifications: 93A15, 93B15, 93B40, 37M99, 65D30

alanced singular perturbation approximation, balanced truncation, numerical quadrature, data-
driven modeling, non-intrusive methods, linear systems, low-rank implementation, realization-free

1. Introduction

For many modern applications in the applied sciences, the simulation, control and optimization of very
large-scale dynamical systems is required. The increased development of modern computing environ-
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ments and high-performance computing tools has pushed the boundaries of what is computationally
feasible in this regard. Another way to go about this issue and to save computational time is by my
means of approximating such large-scale dynamical systems with reduced models. This is the essence
of model reduction, which is a sub-field at the intersection of many established fields, such as auto-
matic control, systems theory, approximation theory, as well as numerical linear algebra; see e.g., the
following books [1, 2, 6, 11, 36].
For the reduction of linear time-invariant systems, system-theoretic methods are widely used. Mo-

ment matching methods and projection-based balancing-related methods, such as Balanced Truncation
(BT), are among the most popular methods falling in this category, see [4, 17] and references therein.
Moment matching methods are particularly efficient in terms of computational complexity. The result-
ing reduced models are also typically of high fidelity, but it is in general difficult to enforce theoretical
guarantees.
The balancing-related methods preserve important qualitative features of a system, such as stabil-

ity, and there exists a priori error bounds for those methods [21]. The concept behind BT, originally
proposed in [31, 32], is to identify and truncate components of the original system that are weakly
controllable and observable. This turns out to be a natural approach assuming the truncated states
have a fast dynamic. Another closely related method is the (Balanced) Singular Perturbation Approx-
imation (SPA) [20, 29]. It is a non-projection based balancing-related method, for which the same a
priori guarantees as for BT are valid. Other than that, SPA is better suited for the lower frequency
range and near steady states.
Notably, the numerical algorithms available for BT are more developed than those for SPA. For

example, low-rank implementations are exclusive to BT and thus SPA, until now, could not be applied
in the truly large-scale setting; cf. Section 4 for references and more details. The recent contribution
[22] connects classical projection-based BT approach to data-driven interpolation-based approach and
provides a non-intrusive implementation of the method. With the ever-increasing availability of data,
i.e., measurements related to the original model, the interest in non-intrusive methods has grown
significantly. Among other methods, we would like to mention the Loewner framework [30], Dynamic
Mode Decomposition [39] and Operator Inference [5, 34].
The main objective of this paper is twofold: first, we aim at deriving an efficient algorithm for

SPA in a large-scale setting and, second, at providing a realization-free implementation of SPA. The
latter will be performed in a non-intrusive manner, using solely transfer function evaluations and
corresponding quadrature weights. Both new implementations have strong resemblances with existing
implementations of BT. The essential link between BT and SPA is given by the so-called reciprocal
transformation, and this plays a crucial role in our derivations.
The remainder of the paper is organized as follows: Section 2 provides an overview on balancing and

the balancing-related model reduction methods BT and SPA and points towards the open issues for
the implementation of SPA.
Then, in Section 3, the reciprocal transformation is defined and analyzed in a slightly generalized

setting as compared to the literature. In Section 4 we recall the square-root and low-rank implemen-
tations of BT and then, present a novel counterpart for SPA. Numerical results for the novel low-rank
algorithm are provided. Next, Section 5 introduces in detail the data-driven interpretation of BT, and,
by that, sets the stage for the newly-proposed data-driven implementation of SPA. Moreover, connec-
tions to the Loewner framework are discussed. An extensive numerical study for the data-driven
methods is provided in Section 6 for two benchmark examples. Finally, in Section 7, the conclusions
of the paper are outlined, together with a brief outlook to future research endeavors.
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2. Balancing and balancing-related model reduction

Consider the linear time-invariant (LTI) dynamical system

E ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

where the input mapping is given by u : [0,∞] → Rm, the (generalized) state variable is x : [0,∞] →
Rn, and the output mapping is y : [0,∞] → Rp. The system matrices are given by E,A ∈ Rn×n, and
B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m. The system is closed by choosing initial conditions x(0) = x0 ∈ R
n.

We assume the system to be asymptotically stable, i.e., E and A are nonsingular, and the eigenvalues
of E−1A are located in the open left half-plane. In general, the state dimension n may be large, and
(1) will also be referred to as full order model (FOM).
The input-output behavior of the system, for x(0) = 0, and in the frequency domain, is fully

characterized by the transfer function, given by

H(s) = C(sE−A)−1B+D, H(s) ∈ C
p×q, (2)

for any scalar (frequency) s ∈ C.
Model reduction aims at computing a ROM, i.e., a LTI system of a reduced state dimension r ≪ n,

that is supposed to reproduce a similar output yr ≈ y for the same inputs. This ROM is given by

ẋr(t) = Ar xr(t) +Br u(t),

yr(t) = Cr xr(t) +Dr u(t),
(3)

with initial conditions xr(0) = x0
r ∈ Rr, and reduced dimension matrices Ar ∈ Rr×r, Br ∈ Rr×m,

Cr ∈ R
p×r and Dr ∈ R

p×m. Arguably, the projection-based approach is most commonly used [1,8], in
which reduction bases Wr,Vr ∈ Rn×r with WT

r EVr = Ir ∈ Rr×r (unit matrix) are used to construct
the reduced model. In that case Ar = WT

r AVr, Br = WT
r A, Cr = CVr and D = Dr.

2.1. Balanced realization

The two fundamental quantities in BT and SPA are the controllability and observability Gramians P
and Q, given as the solutions of the two Lyapunov equations

APET +EPAT +BBT = 0, ATQE+ETQA+CTC = 0. (4)

The Gramian P induces a measure for the controllability of a state, and likewise, Q a measure for the
observability. However, these measures are not invariant under state transformations. For, let a matrix
F ∈ Rn×n be given with FEF−1 = I, and define the transformed matrices Â = FAF−1, B̂ = FB,
and Ĉ = CF−1. Then the input-output behavior of (1) is equivalently described by the alternative
LTI realization

˙̂x(t) = Â x̂(t) + B̂ u(t), y(t) = Ĉ x̂(t) +Du(t),

and x̂(0) = Fx0. A realization is called balanced, when its Gramians are diagonal and equal to each

other. More specifically, we require for the transformed Gramians P̂ and Q̂ that it holds

P̂ = FPFT !
= Q̂ = F−TQF−1 !

= diag(σ1, . . . , σn) ∈ R
n×n,

with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 sorted in a descending order. The σi’s are invariants of the LTI system
(they are the same for any realization of the state-space), and referred to as the Hankel singular values.
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2.2. Balancing-related model reduction

Balancing-related model reduction methods construct a reduced model based on the most observable
and most controllable states, which relate to the dominant few Hankel singular values. Let 1 < r < n
and σr > σr+1 and the balanced state x̂ = Fx be partitioned as x̂ = [x̂T

1 , x̂
T
2 ]

T , with x̂1 : [0,∞] → Rr

and the remainder x̂2 : [0,∞] → Rn−r. The transformed system matrices are partitioned accordingly,

Â =

[
Â11 Â12

Â21 Â22

]
, B̂ =

[
B̂1

B̂2

]
, Ĉ =

[
Ĉ1 Ĉ2

]
,

and thus, the following relations hold

˙̂x1(t) = Â11x̂1(t) + Â12x̂2(t) + B̂1u(t), (5a)

˙̂x2(t) = Â21x̂1(t) + Â22x̂2(t) + B̂2u(t), (5b)

y(t) = Ĉ1x̂1(t) + Ĉ2x̂2(t) +Du(t). (5c)

For both BT and SPA, reduced models are constructed by a simplification of (5a) which can be
expressed in terms of the variable xr ≈ x̂1.

Balanced truncation In BT, the reduced model is obtained by completely eliminating the second
state, i.e., replacing (5b) with the simplified dynamics x̂2 ≈ 0. The ensuing ROM is given as in (3),
with the following choice of reduced matrices

Ar = Â11, Br = B̂1, Cr = Ĉ1, Dr = D.

This approximation assumes x̂2 consists of fast dynamics that decay rapidly to zero.

Singular perturbation approximation SPA pursues, in some sense, a converse path from that of BT.
The remainder state is approximated using the steady-state equation d

dt x̂2(t) ≈ 0 for t ≥ 0. Thus,

equation (5b) is modified to 0 ≈ Â21x̂1(t)+Â22x̂2(t)+B̂2u(t), which implies the approximation x̂2(t) ≈

−Â−1
22 (Â21x̂1(t) + B̂2u(t)). A reduced formulation with xr(t) ≈ x̂1(t) enforcing this approximated

dynamics can be obtained by basic manipulations. This yields the matrices of the SPA reduced system,
which read

Ar = Â11 − Â12Â
−1
22 Â21, Br = B̂1 − Â12Â

−1
22 B̂2,

Cr = Ĉ1 − Ĉ2Â
−1
22 , Dr = D− Ĉ2Â

−1
22 B̂2.

(6)

Note that this method leads, in general, to a feedthrough term Dr 6= 0, even if D was equal to zero.
Thus, the SPA method is not a projection-based approach.

2.3. Open issues for the implementation of Singular Perturbation Approximation

Unfortunately, the numerical determination of a balanced realization is computationally very demand-
ing and not well-conditioned for large-scale systems. Therefore, balancing-free implementations have
been proposed for various balancing-related model reduction methods. Efficient implementations for
dense systems of medium size have been derived based on the sign function method and similar tech-
niques, both, for BT (see [1, 10, 12]) as well as for SPA [3, 13, 42].
Other significant results and application areas have been exclusively developed for BT and other pro-

jection-based balancing-related methods. It is to be noted that the existing implementations of SPA
explicitly use formula (6), which inherently prohibits the use of low-rank approximations. Furthermore,
there has not been proposed a data-driven (realization-free) implementation of SPA yet in literature. In
this paper, we aim at filling this practically-relevant gap for SPA by deriving low-rank and realization-
free algorithms.
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3. Reciprocal transformation

It is well-known that the SPA can be interpreted in terms of the so-called reciprocal transformation
[23,29]. While this interpretation has been used for the theoretical investigations of SPA, its relevance
for the algorithmic implementation was not further investigated so far. In this section, we propose a
definition of the reciprocal transformation in a slightly modified setting, considering LTI systems with
general matrices E as opposed to the special case E = I used in literature. We show that our extension
inherits the fundamental properties that have been derived in [23, 26, 29] for the special case.

Definition 3.1. For a LTI system as in (1), the reciprocal system, i.e., the reciprocal transformed
counterpart of the LTI system, is defined as

E ẋ(t) = A x(t) +Bu(t).

y(t) = C x(t) +Du(t),

with A = EA
−1

E, B = EA
−1

B, E = E,

C = −CA
−1

E, D = D−CA
−1

B.

The reciprocal transfer function is defined by H(s) = C(sE− A)−1B+D for s ∈ C.

From a theoretical point of view, one could directly invert the matrix E to end up in the standard
setting. However, this step needs to be avoided for the efficient implementation of SPA in the general
large-scale setting, cf. Section 4.2 below.

Proposition 3.1. The reciprocal transformed system of an asymptotically-stable LTI system as in (1)
is well-defined and asymptotically stable. Moreover, by applying twice the reciprocal transformation to
a LTI system, the LTI system is obtained.

The latter result follows by straightforward calculus. Next, the relation in the frequency domain
between the two transfer functions is provided; this will clarify the origin of the term ”reciprocal”.

Theorem 3.1. The transfer function H of the LTI system in (1) and the reciprocal transfer function
H are reciprocal to each other, in the sense that for any s ∈ C+, it holds

H(s) = H

(
1

s

)
and, respectively, H

(
1

s

)
= H(s).

Proof. We first prove that (1/sE−A)−1 = (−E−1A)[E−1 + (sE − A)−1AE−1] as a preliminary step.
The latter holds due to

(1/sE−A)(−E−1A)
[
E−1 + (sE− A)−1AE−1

]

= 1/s(sE− A)
[
E−1 + (sE− A)−1AE−1

]
= 1/s[(sE− A)E−1 + AE−1] = I.

With this equality, it follows that

H(1/s) = D+C(1/sE−A)−1B

= D+C(−E−1A)
[
E−1 + (sE− A)−1AE−1

]
B

= [D−CE−1AE−1B]−C[E−1A(sE− A)−1AE−1]B

= D+ [−CE−1A](sE− A)−1[AE−1B] = D+ C
(
sE− A

)
−1

B = H(s).

The other relation follows by interchanging the role of the LTI and the reciprocal system, cf. Proposition 3.1.

The main results of this paper are based on the following alternative characterization of SPA that
is also graphically illustrated in Figure 1.
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Figure 1.: Commutative diagram and alternative characterization of SPA (following the brown dashed
route) that is stated in Proposition 3.2.

FOM

ROM

Reciprocal

FOM

Intermediate

ROM

reduce by
SPA

reduce by
BT

Reciprocal Transformation

Reciprocal Transformation

Proposition 3.2. For an asymptotically-stable LTI system with Hankel singular values fulfilling σr >
σr+1, the ROM of dimension r obtained by SPA, defined in (6), can be equivalently obtained by a
procedure that incorporates the next steps:

i) Apply the reciprocal transformation to the FOM.

ii) Construct an intermediate reduced model of dimension r for the reciprocal system, using BT.

iii) Apply the reciprocal transformation to the intermediate reduced model.

The proof of the proposition can be found in [26, 29] for the special case E = I. Since the ROM

obtained by a balancing-related method does not depend on the state realization of the LTI system, it
is clear that the proposition also holds for our consistently extended definition of a reciprocal system.
The last result presented here provides the relation between the Gramians of an LTI and those of

the reciprocal system.

Proposition 3.3. The controllability and observability Gramians of the LTI system coincide with those
of its reciprocal system in Definition 3.1.

Proof. It can be proven that the Lyapunov equations of the LTI system and those of the reciprocal
system are equivalent. Since these equations have unique solutions, this implies the equality of the
Gramians. For example, the Lyapunov equation characterizing the controllability Gramian P of the
reciprocal system reads, by definition, APET + EPAT +BBT = 0. This is equivalent to

(EA−1E)PET +EP(EA−1E)T + (EA−1)BBT (EA−1)T = 0.

By multiplying the latter equation with (EA−1)−1 from the left and (EA−1)−T from the right, the first
Lyapunov equation in (4) is obtained, which impliesP = P. The equality of the observability Gramians
for the LTI system and the reciprocal system can be shown to hold true in a similar manner.

4. Low-rank implementations of balancing-related methods

In this section, we describe the typical strategies for implementing a low-rank variant of BT, based
on the balancing-free square-root method. Afterwards, our first main result is provided, consisting
of the new balancing-free implementation of SPA. Its main advantage is that it allows for a low-rank
variant similar to its BT counterpart. The gained computational efficiency is illustrated at a large-scale
numerical example.

Preprint. 2023-03-10
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4.1. Low-rank implementation of Balanced Truncation

Due to the asymptotic stability of the original LTI system (i.e., the FOM), the Gramians are symmetric,
positive semi-definite matrices. Thus, one may compute a factorization

P = UUT and Q = LLT (7)

with L,U ∈ Rn×n, e.g., via a Cholesky factorization. This provides the essential elements for an
implementation of BT by the square-root method outlined in Algorithm 1. It is to be noted that,
instead of first computing the Gramians explicitly, and then the factors L and U, one can instead
compute the latter quantities directly, by means of the Hammarling method implemented in the Matlab
function lyapchol or by a sign-function based solver, cf., [12]. This circumvents potential numerical
issues that may arise when computing Cholesky factors of already computed Gramians. Another option
for optimizing the computational steps is to replace the true Cholesky factors in (7) by approximated

low-rank factors, i.e., P ≈ ŬŬT and Q ≈ L̆L̆T , with Ŭ ∈ R
n×rU , L̆ ∈ R

n×rL , which have significantly
less columns than the square-root factors, i.e,. rL, rU ≪ n. Then, the computation a full SVD for a
large-scale matrix is averted, since LTEU ∈ Rn×n is replaced by L̆TEŬ ∈ RrL×rU . Such low-rank
factors of the Gramians can be computed by means of, among others, Lyapunov equation iterative
solvers based on the matrix sign function, on low-rank Alternating Direction Implicit (ADI) methods,
Smith-type methods, etc.; a more detailed analysis on such approaches can be found in [9, 27, 35, 40].
The low-rank adaption of the square-root implementation of BT is remarkably straight forward: the

exact factors of the Gramians have to be replaced by the approximated low-rank factors in Algorithm 1,
see, e.g., [3,12,25]. This very simple adaptation follows essentially from the projection-based nature of
BT. The underlying projection spaces consisting of the most observable and controllable states are effi-
ciently approximated by the low-rank factors. The practical relevance of the low-rank implementations
is not to be underestimated, as large-scale sparse systems appear in various applications from compu-
tational fluid dynamics and mechanical, electronic, chemical or civil engineering. Specific applications
case are numerous, ranging from microelectronics, aerodynamics, acoustics, to electromagnetics, neu-
roscience, or chemical process optimization, to enumerate only a few; see, e.g., [7, 10, 11].

Algorithm 1. Balanced truncation (BT) (square-root/low-rank implementation)

Require: LTI system described by matrices E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.
Ensure: ROM: Ar ∈ Rr×r,Br ∈ Rr×m,Cr ∈ Rp×r , and Dr ∈ Rp×m.

1: Compute the Lyapunov factors U,L ∈ Rn×n from (7) and pick a reduced dimension 1 ≤ r ≤ min(rank(U), rank(L)).

2: Compute the SVD of the matrix LTEU, partitioned as follows

LTEU =
[
Z1 Z2

]
[
S1

S2

][
YT

1

YT
2

]
,

where S1 ∈ Rr×r and S2 ∈ R(n−r)×(n−r).

3: Construct the model reduction bases Wr = LZ1S
−1/2
1 and Vr = UY1S

−1/2
1

4: The reduced-order system matrices are given by

Ar = WT
r AVr , Br = WT

r B, Cr = CVr , and Dr = D.

4.2. Low-rank implementation of Singular Perturbation Approximation

In contrast to BT, the reduction by SPA has no direct interpretation in the projection framework.
Moreover, from the characterization (6), which is explicitly used in the algorithms proposed in [3,13,42],
it was not clear how to explicitly derive a low-rank implementation of SPA.
We therefore consider the alternative procedure suggested by Proposition 3.2 for the derivation of

our new algorithm. In the upcoming, a basic non-efficient variant is sketched. Then, the novel efficient
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implementation, which allows for a low-rank adaption, is derived from the latter by a few crucial
modifications.
The basic procedure suggested by Proposition 3.2 reads as follows. First the reciprocal transforma-

tion is applied to the FOM to obtain the reciprocal system (A,B,C,D,E). Then, the reduction bases
Wr,Vr ∈ Rn×r for the reciprocal system are determined (using BT on the reciprocal system), and the
intermediate ROM is obtained by a projection step, i.e.,

Ar = WT
r AVr, Br = WT

r B, Cr = CVr, and Dr = D. (8)

As a final step, the reciprocal transformation is applied to the intermediate reduced model (Ar,Br,Cr,Dr);
cf. the last dashed brown error in Figure 1.
The computational issue with the latter procedure is that it requires the reciprocal transformation

of the FOM, implying an inversion of the FOM matrix A. Further note that the reciprocal system has
dense state matrices even if the FOM is sparse. Thus, the procedure has to be modified in such a way
that the explicit determination of the full-order reciprocal system is omitted.
A first crucial observation in this direction is that the construction of Wr and Vr does not depend

on the reciprocal system itself but only on its Gramians. By Proposition 3.3, the reciprocal system
has the same Gramians as the FOM and, thus, the reduction bases for applying BT to the reciprocal
system are the same as for applying BT to the FOM, i.e., Wr = Wr and Vr = Vr (with Wr and Vr

as in Algorithm 1). The second observation is that the projection step (8) for the intermediate ROM

does not require the full reciprocal system either but can be obtained from solving a system of linear
equations of moderate size. For example, the construction of the state matrix Ar of the intermediate
ROM can be done according to

Ar = WT
r AVr = WT

r AVr = WT
r EA−1EVr

⇐⇒ Ar = WT
r EAV , with AV solving AAV = EVr.

(9)

The efficient construction of the other matrices Br, Cr and Dr follows similarly.
The new and efficient implementation of SPA, which follows by taking into account all the previously

mentioned steps, is summarized in Algorithm 2. Similarly as for BT, one can replace the exact factors
of the Gramians (L and U) in step 1 of the algorithm with low-rank approximate factors to obtain an
efficient implementation for the large-scale setting.

Algorithm 2. Singular Perturbation Approximation (SPA) (square-root/low-rank)

Require: FOM realization: E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.
Ensure: ROM: Ar ∈ Rr×r,Br ∈ Rr×m,Cr ∈ Rp×r , and Dr ∈ Rp×m.

1: Compute the Lyapunov factors U,L ∈ Rn×n for approximating the solutions of (4) and pick a reduced dimension
1 ≤ r ≤ min(rank(U), rank(L)).

2: Compute the SVD of the matrix LTEU, partitioned as follows

LTEU =
[
Z1 Z2

]
[
S1

S2

][
YT

1

YT
2

]
,

where S1 ∈ Rr×r and S2 ∈ R(n−r)×(n−r).

3: Construct the model reduction bases Wr = LZ1S
−1/2
1 and Vr = UY1S

−1/2
1 .

4: Calculate AV = A−1(EVr) and BA = A−1B. Construct an intermediate ROM approximating the reciprocal
system:

Ar = WT
r EAV , Br = WT

r EBA,Cr = −CAV , and Dr = D−CBA.

5: Get the ROM by using the reciprocal transformation onto the intermediate ROM, i.e.,

Ar = A−1
r , Br = A−1

r Br, Cr = −CrA
−1
r , and Dr = Dr − CrA

−1
r Br.

Remark 4.1. Let us give two practical hints for Algorithm 2. Of course, the inverse of A is not
formed in step 4, but a few linear equations are solved instead. This is done by following the steps
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indicated in (9). Moreover, the last step in the algorithm is most efficiently implemented using a
successive evaluation of the matrices using the following ordering. First Ar = A−1

r is evaluated, then
Br = ArBr, followed by Cr = −CrAr. Finally, Dr = Dr +CrBr is determined.

4.3. Numerical study for low-rank implementation

It has been shown by several authors that the use of low-rank Lyapunov equation solvers saves orders
of magnitude in a large-scale setting. This allows to solve with problem sizes that are computationally
infeasible for direct (dense) solvers, based mainly on algorithms proposed by Bartels-Stewart and
Hammarling, and recent adaptations (see [41] for an overview). These results directly transfer to
BT and, as we showcase in this section, also to our newly proposed Algorithm 2, which is the first
low-rank implementation of SPA (as far as the authors are aware of). We refer to the method as
’Alg. 2, low-rank’ in the following and compare it to its dense counterpart ’Alg. 2, dense’ as well as
to the Matlab built-in method balred realizing SPA.

SPA and BT with r = 12 SPA and BT with r = 36
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Figure 2.: Rail (with n = 20 209). Frequency response of FOM and the errors related SPA and BT;
using low-rank operations.

The numerical studies are performed, from here on, for a benchmark problem described in [10,
Section 19] and referred to as Rail, which is given by a semi-discretized heat transfer model of a steel
rail. Depending on the underlying mesh resolution of the discretization, the FOM has a dimension
n ∈ {109, 371, 1 357, 5 177, 20 209, 79 841}. Both the benchmark data as well as the low-rank (ADI-
based) Lyapunov equation solvers originate from the MESS toolbox [38]. The numerical results have
been generated using MATLAB Version 9.12 (R2022a) on an computer running with an Intel Core i7-
8700 CPU with 32.0GB. To allow a better reproducibility of the reported results, the code and the
benchmark data are provided in [28].
Notably, regardless of which of the three implementations was chosen for the realization of SPA,

almost no effect on the quality of the resulting ROM was observed for the test cases with n ≤ 5 177.
More precisely, the deviations with respect to the H∞ norm were below 10−10. However, larger
dimensions could not be considered for the dense solvers, since they did not run to completion on the
running machine.

102 103 104 105

100

102 Alg. 2, low-rank
Alg. 2, dense
balred

Figure 3.: Rail with varying dimension
n. CPU times for SPA real-
ized by Algorithm 2 (either
using low-rank or dense op-
erations) and Matlab built-
in function balred (r = 12
for all ROMs).
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The qualitative behavior of the FOM and the approximation errors for SPA and BT are illustrated
in the frequency domain in Figure 2 for two different choices of the ROM order r ∈ {12, 36}. As to be
expected, SPA performs better in the lower frequency range, while BT is better in the higher frequency
range. The maximum frequency-domain errors of the methods are fairly similar, ranging at about
−50db for r = 12 and at −75db for r = 36.
However, the computational times of the different SPA implementations vary significantly as illus-

trated in Figure 3. While the two variants using dense solvers are almost the same in this respect,
the low-rank implementation Alg. 2, low-rank is already seven times faster for a FOM dimension of
n = 1 357, i.e., 0.3 seconds compared to 2.8 seconds. The difference becomes even more pronounced
for larger dimensions. The sparse solver is even faster for n = 79 841 than balred for n = 5 177.
(Alg. 2, low-rank for n = 79 841: 25.0 seconds versus balred for n = 5 177: 181.2 seconds). Larger
dimensions are not feasible for balred due to the internal memory limits of the computing machine.
It is to be noted that the very large memory demand of the dense solvers is a strong limitation in the
large-scale setting.

5. Data-driven implementation of balancing-related methods

In [22], it was shown that BT can be realized (approximately) in a non-intrusive, data-driven manner.
There, ”data” are transfer function evaluations. This is fundamentally different to the other data-
driven BT approaches in [31, 33, 37, 43], which require snapshots of the full state. The main idea
underlying the approach in [22] is to make use only implicitly of quadrature approximations of the two
system Gramians for the construction of a low-order approximately balanced model.
The novel contribution of this part is to derive a similar data-driven adaptation of SPA (or QuadSPA).

Since it follows similar principles as [22], we set the stage in Section 5.1 by going over the basic
construction underlying the latter. In Section 5.2 QuadSPA is derived, and its numerical performance
is examined in Section 6.
Since we are interested in realization-free approaches, we may assume E = I from here on. This

modification carries over to the FOM, i.e., instead of (1), we have

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t).

5.1. Data-driven Balanced Truncation

Following the BT implementation in Algorithm 1 (with E = I), square-root factors U, and L of the
Gramians are defined, and their product is approximated by a singular value decomposition, according
to

LTU ≈ Z1S1Y
T
1 , S1 ∈ R

r,r.

By the definition of the reduction bases Wr = LZ1S
−1/2
1 and Vr = UY1S

−1/2
1 (Step 3 in the algo-

rithm), the matrices of the ROM realization are expressed as

Ar = WT
r AVr = S

−1/2
1 ZT

1 (LTAU)Y1S
−1/2
1 , Br = WT

r B = S
−1/2
1 ZT

1 (LTB),

Cr = CVr = (CU)Y1S
−1/2
1 .

By the latter relations, we observe that the ROM is fully characterized in terms of the following key
quantities:

LTU, LTAU, LTB and CU. (10)

These matrices can be approximated well from input-output data, as it is shown next.
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The starting point is a quadrature approximation of the Gramians in the frequency domain. Let ı̇ı be
the complex unit with ı̇ı2 = −1. Then, the controllability Gramian P and the observability Gramian
Q. (i.e., the solutions to (4)) can be expressed as

P =
1

2π

∫
∞

−∞

(ı̇ıζI −A)−1BBT (−ı̇ıζIT −AT )−1dζ,

Q =
1

2π

∫
∞

−∞

(−ı̇ıωI−AT )−1CCT (ı̇ıωI−A)−1dω.

We consider first a numerical quadrature rule that approximates the frequency integral defining the
controllability Gramian, producing an approximate Gramian P̃:

P ≈ P̃ =

J∑

k=1

ρ2k(ı̇ıωkI−A)−1BBT (−ı̇ıωkI
T −AT )−1 (11)

Hereby, ωk and ρ2k denote the quadrature nodes and quadrature weights, respectively. Thus, ρk
are, by construction, the square-roots of the quadrature weights. Evidently, we may decompose the

quadrature-based Gramian approximation as P̃ = ŨŨ
∗

with a square-root factor Ũ ∈ Cn×Jm defined
as

Ũ =
[
ρ1(ı̇ıω1I−A)−1B · · · ρJ(ı̇ıωJI−A)−1B

]
. (12)

Note that both P and its quadrature approximation, P̃, are real-valued matrices, yet the explicit
square-root factor, Ũ, is overtly complex and subsequent computation engages complex floating point
arithmetic.
Similarly, a quadrature approximation of Q is defined by

Q ≈ Q̃ =

J∑

j=1

ϕ2
j (−ı̇ıζjI

T −AT )−1CTC(ı̇ıζjI−A)−1,

with quadrature points ζj and quadrature weights ϕ2
j . (For convenience we assume the number of

quadrature points to be the same for Q and P.) The corresponding square-root factor decomposition

reads Q̃ = L̃L̃
∗

where

L̃
∗

=



ϕ1C(ı̇ıζ1I−A)−1

...
ϕJC(ı̇ıζJI−A)−1


 ∈ C

Jp×n. (13)

For a concise notation in the multi-input multi-output setting, the following two technical definitions
are useful.

Definition 5.1. Let X ∈ CJp×Jm. Then, for 1 ≤ k, j ≤ J , we say that the (k, j)th block (p,m) entry
of matrix X is a matrix in Cp×m, denoted with Xk,j, for which its p rows are a subset of the rows
of matrix X, indexed from (k − 1)p+ 1 to kp. Additionally, the m columns of the matrix Xk,j are a
subset of the columns of the matrix X, indexed from (k − 1)m+ 1 to km.

It is to be noted that in Definition 5.1, if m = p = 1 (corresponding to the SISO case), then Xk,j is
nothing else but the (k, j)th scalar (or (1, 1)) entry of matrix X ∈ CJ×J .

Definition 5.2. Let X ∈ CJp×m. Then, for 1 ≤ k ≤ J , we say that the kth block (p,m) entry of
matrix X is a matrix in Cp×m, denoted with Xk, for which its p rows are a subset of the rows of matrix
X, indexed from (k− 1)p+1 to kp. Additionally, the m columns of matrix xk are exactly the same as
those of matrix X. (An equivalent definition can be formulated for X ∈ Cp×Jm; however, for brevity
sake, we skip the details here.)
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Algorithm 3. Quadrature-based Balanced Truncation (QuadBT)

Require: -Transfer function of FOM: H(s);
-Two sets of quadrature rules for approximating an integral of the form 1/(2π)

∫∞

−∞
f(s)ds:

given by ωk, ρk, respectively ζj , ϕj for for k, j = 1, 2, . . . , J (assuming ωk 6= ζj)
reduced dimension r, 1 ≤ r ≤ J min(m, p).

Ensure: ROM: Ãr ∈ Rr×r, B̃r ∈ Rr×m, C̃r ∈ Rp×r and D̃r ∈ Rp×m.

1: Determine feedtrough term D = lims→∞ H(s).
2: Evaluate the strictly proper transfer function H∞ : s 7→ H(s) − D at {H∞(ı̇ıωj)}Jj=1 and {H∞(ı̇ıζk)}

J
k=1. Using

the samples and the quadrature weights, construct Ñ,M̃, T̃, and G̃ as in Proposition 5.1.
3: Compute the SVD of matrix Ñ ∈ CJp×Jm:

Ñ =
[
Z̃1 Z̃2

] [
S̃1

S̃2

][
Ỹ

∗

1

Ỹ
∗

2

]
,

where S̃1 ∈ Rr×r and S̃2 ∈ R(Jp−r)×(Jm−r).
4: Construct the reduced order matrices:

Ãr = S̃
−1/2
1 Z̃

∗

1M̃ Ỹ1S̃
−1/2
1 , B̃r = S̃

−1/2
1 Z̃

∗

1T̃, C̃r = G̃T Ỹ1S̃
−1/2
1 , and D̃r = D

By the latter considerations and noticing that H(∞) = D, it can be seen that the key quantities in
(10) can be approximated by transfer function evaluations.

Proposition 5.1. Let Ũ and L̃ be as defined in (12) and (13), whereby the quadrature points ωk 6= ζj
are distinct for 1 ≤ k, j ≤ J . Also, let

H∞(s) = C(sI−A)−1
B = H(s)− lim

s̃→∞

H(s̃).

Define the matrices Ñ = L̃
∗

Ũ ∈ C
Jp×Jm and M̃ = L̃

∗

AŨ ∈ C
Jp×Jm.

Then, for 1 ≤ k, j ≤ J , the (k, j)th block (p,m) entries of matrices Ñ and M̃, respectively read as
(following Definition 5.1):

Ñk,j = −ρkϕj
H∞(ı̇ıωk)−H∞(ı̇ıωj)

ı̇ıωk − ı̇ıωj
,

M̃k,j = −ρkϕj
ı̇ıωkH∞(ı̇ıωk)− ı̇ıζjH∞(ı̇ıωj)

ı̇ıωk − ı̇ıωj
.

Likewise, defining T̃ = L̃
∗

B ∈ CJp×m and G̃T = C
T
Ũ ∈ Cp×Jm, and by following Definition 5.2, we

find

T̃k = ρkH∞(ı̇ıωk), and G̃j = ϕjH∞(ı̇ıωj), for 1 ≤ k, j ≤ J.

More details and various extensions (using time-domain data, for discrete-time systems, etc.) can
be found in [22]. Based on Proposition 5.1, the data-driven adaptation of BT can be implemented,
as it is shown in Algorithm 3. A proof of the proposition can be found in Appendix A; this is indeed
useful for setting up the stage for the derivations of the novel QuadSPA presented in the next section.

5.2. Data-driven Singular Perturbation Approximation

The formulation of the novel data-driven QuadSPA implementation is presented here. Similarly as
for the low-rank implementation of SPA (Section 4.2), we rely on a construction based on the alter-
native characterization of Proposition 3.2 and illustrated in Figure 1. First, an intermediate ROM

(Ãr, B̃r, C̃r, D̃r) approximating the reciprocal counterpart of the FOM is constructed. Then, by apply-
ing the reciprocal transformation of this low-dimensional intermediate ROM, we obtain the QuadSPA

reduced system approximating the FOM.
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However, the intermediate ROM is constructed from data here, following a similar quadrature ap-
proximation as in the data-driven BT, cf. Section 5.1. This approximation requires a careful choice
of quadrature rule. To derive an appropriate one, we rewrite the frequency representations of the
reciprocal Gramians P and Q in terms of evaluations of the original transfer function in (2). Let

K : C → C
n,n, K(s) = (sI− A)−1,

so that the strictly proper part of the reciprocal transfer function s 7→ H(s)−H(∞) can be equivalently
expressed as s 7→ CK(s)B. Similarly to the derivation of the data-driven BT, we consider the frequency
representations of the Gramians. The reciprocal controllability Gramian reads

P =
1

2π

∫
∞

−∞

K(ı̇ıζ)BBTK(−ı̇ıζ)T dζ =
1

2π

∫
∞

−∞

K

(
1

ı̇ıζ

)
BBTK

(
1

−ı̇ıζ

)T
1

ζ2
dζ,

whereby the last equality follows by using integration with the substitution s → −1/s on F(ζ) :=
1
2πK(ı̇ıζ)BBTK(−ı̇ıζ)T , according to

∫
∞

−∞

F(ζ)dζ =

∫ 0

−∞

F(ζ)dζ +

∫
∞

0

F(ζ)dζ

=

∫
∞

0

F

(
−
1

ζ

)
1

ζ2
dζ +

∫ 0

−∞

F

(
−
1

ζ

)
1

ζ2
dζ =

∫
∞

−∞

F

(
−
1

ζ

)
1

ζ2
dζ.

Based on the reformulation, we consider the following approximation by quadrature,

P ≈ P̃ =

J∑

k=1

(
ρk
ωk

)2

K

(
1

ı̇ıωk

)
BBTK

(
1

−ı̇ıωk

)T

,

with quadrature nodes ωk and weights ρ2k. This is in analogy to the approximation provided by (11).

We define a square-root factor Ũ, which fulfills P̃ = ŨŨ∗, as

Ũ =

[
ρ1
ω1

K

(
1

ı̇ıω1

)
B · · ·

ρJ
ωJ

K

(
1

ı̇ıωJ

)
B

]
∈ C

n×Jm. (14)

Similarly, the reciprocal observability Gramian is approximated by quadrature

Q ≈ Q̃ =

J∑

k=1

(
ϕj

ζj

)2

K

(
1

−ı̇ıζj

)T

CTCK

(
1

ı̇ıζj

)
,

with quadrature points and weights ζj and ϕ2
j , respectively. The corresponding square-root factor

decomposition reads Q̃ = L̃L̃∗, where

L̃∗ =




ϕ1

ζ1
CK

(
1

ı̇ıζ1

)

...
ϕJ

ζJ
CK

(
1

ı̇ıζJ

)


 ∈ C

Jp×n. (15)

Certain key quantities of the reciprocal system can be directly approximated from data, as the
following result shows. The construction is similar to the one used in Proposition 5.1.

Proposition 5.2. Let Ũ and L̃ be as defined in (14) and (15), whereby the quadrature-points ωk 6= ζj
are distinct and nonzero for 1 ≤ k, j ≤ J . Also, let

H0 : C → C
p,m, H0(s) = H(s)−H(0).
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Define the matrices Ñ = L̃∗Ũ ∈ C
Jp×Jm and M̃ = L̃∗AŨ ∈ C

Jp×Jm. Then, for 1 ≤ k, j ≤ J , the

(k, j)th block (p,m) entries of matrices Ñ and M̃, respectively read (following Definition 5.1) as

Ñk,j = −ρkϕj
H0(ı̇ıωk)−H0(ı̇ıζj)

ı̇ıωk − ı̇ıζj
,

M̃k,j = −ρkϕj
(ı̇ıωk)

−1H0(ı̇ıωk)− (ı̇ıζj)
−1H0(ı̇ıζj)

ı̇ıωk − ı̇ıζj
.

Likewise, defining T̃ = L̃∗B ∈ CJp×m and G̃T = CŨ ∈ Cp×Jm we find

T̃k =
ρk
ωk

H0(ı̇ıωk), and G̃j =
ϕj

ζj
H0(ı̇ıζj), for 1 ≤ k, j ≤ J.

Proof. Only for this proof, we introduce the abbreviations ν = (ı̇ıωk)
−1 and µ = (ı̇ıζj)

−1. A small
calculation shows that

K(ν)K(µ) =
1

ν − µ
K(ν) [(νI− A)− (µI− A)]K(µ) = −

1

ν − µ
(K(ν) − K(µ)) .

By the latter, and CK(ν)B = H0(1/ν) = H0(ı̇ıωk), and CK(µ)B = H0(ı̇ıζj), it follows

Ñk,j = (ρk/ωk)(ϕj/ζj)CK(ν)K(µ)B = −ρkϕj
1

ωkζj(ν − µ)
C [K(ν) − K(µ)]B

= −ρkϕj
H0(ı̇ıωk)−H0(ı̇ıζj)

ı̇ıωk − ı̇ıζj
,

whereby ωkζj(ν − µ) = ı̇ıωk − ı̇ıζj was used in the last step. Moreover using the relation

K(ν)AK(µ) = −
1

ν − µ
[νK(ν) − µK(µ)] ,

we can show in a similar manner that

M̃k,j = (ρk/ωk)(ϕj/ζj)C (K(ν)AK(µ))B = −ρkϕj
1

ωkζj(ν − µ)
C (νK(ν) − µK(µ))B

= −ρkϕj
(ı̇ıωk)

−1H0(ı̇ıωk)− (ı̇ıζj)
−1H0(ı̇ıζj)

ı̇ıωk − ı̇ıζj
.

The explicit representations of T̃ and G̃ (as data matrices) are easily derived, since

T̃k = (ρk/ωk)CK(ı̇ıωk)B =
ρk
ωk

H0(ı̇ıωk), G̃j = (ϕj/ζj)CK(ı̇ıζj)B =
ϕj

ζj
H0(ı̇ıζj).

The main contribution of this section, i.e., the data-driven, realization-free implementation of SPA
is summarized in Algorithm 4.

Remark 5.1. A generalized version of Proposition 5.2 omitting the assumption ωk 6= ζj for all j, k
can be derived, but it requires evaluations of the derivative of the transfer function, see Appendix B for
details.
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Algorithm 4. Quadrature-based Singular Perturbation Approximation (QuadSPA)

Require: -Transfer function of FOM: H(s);
-Two sets of quadrature rules for approximating an integral of the form 1/(2π)

∫∞

−∞
f(s)ds:

given by ωk, ρk, respectively ζj , ϕj for for k, j = 1, 2, . . . , J (assuming ωk 6= ζj)
-reduced dimension r, 1 ≤ r ≤ min(Jp, Jm).

Ensure: ROM: Ãr ∈ Rr×r, B̃r ∈ Rr×m, C̃r ∈ Rp×r, and D̃r ∈ Rp×m

1: Determine the moment D0 = H(0).
2: Evaluate the modified transfer function H0 : s 7→ H(s)−D0 at {H0(ı̇ıωk)}

J
k=1 and {H0(ı̇ıζj)}Jj=1. Using the samples

and the quadrature weights, construct the data matrices Ñ, M̃, T̃, and G̃ as in Proposition 5.2.
3: Compute the SVD of matrix Ñ ∈ CJp×Jm:

Ñ =
[
Z̃1 Z̃2

] [
S̃1

S̃2

][
Ỹ

∗

1

Ỹ
∗

2

]
,

where S̃1 ∈ Rr×r and S̃2 ∈ R(Jp−r)×(Jm−r).
4: Construct the intermediate reduced order matrices:

Ãr = S̃
−1/2
1 Z̃

∗

1M̃ Ỹ1S̃
−1/2
1 B̃r = S̃

−1/2
1 Z̃

∗

1T̃, C̃r = G̃T Ỹ1S̃
−1/2
1 , and D̃r = D0.

5: Get the ROM by using the reciprocal transformation onto the intermediate ROM, i.e.,

Ãr = Ã−1
r , Ãr = Ã−1

r , C̃r = −C̃rÃ
−1
r , and D̃r = D̃r − C̃rÃ

−1
r B̃r .

5.3. Connections of QuadSPA to the Loewner framework

In this section, we aim at revealing some connections that the newly-developed method, QuadSPA,
bears with the Loewner framework in [30]. Note that a connection of QuadBT and the Loewner
framework has already been made in [22, Section 3.4].

First, by comparing Proposition 5.2 and Proposition 5.1, it can be shown that the data matrix Ñ

used in QuadSPA and the Ñ used in QuadBT are exactly the same. They have the interpretation of

a diagonally scaled Loewner matrix. The other data matrices, i.e., M̃ in QuadBT and M̃ in QuadSPA

relate to (scaled) shifted Loewner matrices. In QuadBT, the shifts are given by ı̇ıωk, 1 ≤ k ≤ J , while
in QuadSPA, there one can find the ’inverted shifts’ (ı̇ıωk)

−1 instead.
This new context for QuadSPA implies a few observations. First, QuadSPA has a similar compu-

tational complexity as the Loewner framework. Choosing more data points J will, in general, imply
increasing closeness to the intrusively computed ROM, but will also increase the dimension of the data
matrices. Second, the quality of the ROM strongly depends on the quality of the data. When using
data sets with perturbed (noisy) measurements, or that contain redundant data (not rich enough to
capture the essential properties), the QuadSPA faces similar challenges as the Loewner framework. We
intend to study these aspects in more detail, for future works.
As was pointed out in preceding publications, the numerical conditioning of Loewner matrices can

be a relevant issue. While the application of quadrature weights (as done in QuadBT and QuadSPA)
may improve the conditioning, regularization strategies might still be necessary. Of course, the SVD is
an essential step that acts as implicit regularizer, removing the redundancies, provided the truncation
order is small enough. Other possible strategies are described in [16], while the robustness of the
Loewner approach to noise or perturbations, was investigated in [19, 44].
Also, we note that Algorithm 4 requires a complex SVD, which implies that the resulting ROM real-

ization is, in general complex-valued. However, under the additional assumption that the quadrature
points used in the approximation of either Gramian is chosen in complex-conjugate pairs, a real-valued
ROM can be enforced. This can be done in a similar manner as was proposed in [2, Section A.1] for
the Loewner framework, and in [22, Section 4.1] for QuadBT.

Preprint. 2023-03-10



B. Liljegren-Sailer, I. V. Gosea: Data-driven and low-rank implementations of SPA 16

6. Numerical study for the data-driven implementation

In this section, we compare the performance of the newly-proposed quadrature-based, data-driven
implementation of SPA according to Algorithm 4, i.e., QuadSPA, with the following model reduction
methods from the literature: the intrusive MATLAB built-in implementations of Singular Perturbation
Analysis (SPA) and Balanced Truncation (BT), and the quadrature-based implementation of Balanced
Truncation, i.e., QuadBT from [22], realized by Algorithm 3.
We consider two benchmark examples, one of low dimension and one of higher dimension; both are

available in the MOR-Wiki1 database, cf. [10]:

1. The LAbuild system models a motion problem in the Los Angeles University hospital building,
with 8 floors each having 3 degrees of freedom, namely displacements in the x and y directions,
and rotation. The model has n = 48 states, m = 1 input, and p = 1 output. We refer to [18] for
more details.

2. The ISS12A system models the structural response of the Russian Service 12A Module of the
International Space Station (ISS). The model has n = 1412 states, m = 3 inputs, and p = 3
outputs. We refer to [24] for more details.

For all experiments, the quadrature weights required for QuadSPA and QuadBT are determined
according to the given transfer function measurements and the trapezoid quadrature rule. Other choices
of quadrature rules are, of course, possible; we refer, e.g., to [14, 15, 22], which consider other more
involved quadrature schemes. Extended details are given below but can also be directly comprehended
from the MATLAB code used to generate the numerical results, provided in [28].

6.1. LAbuild model

In the first experiment, we choose J = 100 logarithmically-spaced distributed (sampling) points in
the range

[
100, 102

]
· ı. These will act as quadrature nodes. We compare the results of applying

the two data-based methods against their intrusive counterparts, i.e., SPA and BT. We fix r = 18
as the dimension of all four ROMs, for the first experiment. In the left pane of Figure 4, we depict
the magnitude of the frequency response for the original system and approximation errors for the 2
ROMs computed with SPA and QuadSPA. In the right pane of Figure 4, we depict the magnitude of
the frequency response for the original system and approximation errors for the two ROMs computed
with BT and QuadBT. We notice that the SPA-based methods provide worse approximation quality in
the higher frequency range, while the BT-based methods provide worse approximation quality in the
lower frequency range. Additionally, it is to be noticed that the error curve corresponding to QuadSPA

faithfully reproduces that of SPA. The same can be said about BT.
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Figure 4.: LAbuild. Frequency response of FOM and the errors using SPA and QuadSPA (left) and
using BT and QuadBT (right); J = 100 and r = 18 is chosen for all ROMs.

1https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Category:Benchmark
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In the next experiment, we vary the dimension r of the ROM for all four methods in increments of
6. The number of data points is fixed to the same value as before, i.e., J = 100. We compute the H∞

norm of the error systems produced by the four model reduction methods, scaled by the H∞ norm
of the original system. The numerical results are shown in Table 1. As expected, the approximation
errors decrease as r increases. Additionally, the quadrature-based methods produce errors comparable
to the intrusive counterparts. Actually, for r ∈ {18, 24}, the QuadSPA method outperforms SPA in
term of the H∞ norm approximation. However, for r = 12, the error provided by QuadSPA is much
higher than that of SPA (due to a pair of rogue poles), and a similar behavior is noticed for r = 30,
both for QuadSPA and for QuadBT.

Table 1.: LAbuild. Relative approximation errors in the H∞ norm for varying ROM order r (QuadSPA
and QuadBT, with J = 100).

r = 6 r = 12 r = 18 r = 24 r = 30

SPA 2.4185·10−1 9.3060·10−2 3.7846·10−2 1.0922·10−2 9.0847·10−4

QuadSPA 2.4971·10−1 5.7480·10−1 3.6713·10−2 1.0836·10−2 3.9822·10−3

BT 2.3084·10−1 1.0317·10−1 3.8312·10−2 1.0613·10−2 9.4410·10−4

QuadBT 2.7935·10−1 1.0442·10−1 3.8193·10−2 1.0285·10−2 4.5524·10−3

What we generally observe, is that a higher reduction order r requires more quadrature nodes J
in QuadSPA and QuadBT in order to have a similar fidelity as the intrusive methods SPA and BT,
respectively. For example, in the latter experiment, we require about J = 300 points (three times
more than before) to ensure that the quadrature-based methods reproduce the quality of the intrusive
methods for r = 30. With this choice of parameters, the relative H∞ error for QuadSPA is 9.3103 ·10−4

for QuadSPA and 7.9862 · 10−4 for QuadBT, which is very close to the errors of SPA and, interestingly,
even slightly better than for BT, respectively, cf. Table 1.
For the next experiment, we vary instead the J parameter between [20, 100]. We fix the dimension

of the ROMs as r = 18. We compute again the relative approximation errors in the H∞ norm,
for the two quadrature-based methods. The numerical results are shown in Table 2. As expected,
for increasing values of J , the relative approximation errors are decreasing for both QuadSPA and
QuadBT and typically, they reach the quality of their intrusive counterparts (SPA and BT). Notably,
the quadrature-based methods can lead to better results in exceptional cases. This is observed here
for J = 100. However, this does not guarantee, by no means, that for J > 100, the same trend is valid;
e.g., when choosing J = 120, we noticed that BT outperforms QuadBT.

Table 2.: LAbuild. Relative approximation errors in the H∞ norm for varying quadrature points J ,
compared to relative errors of intrusive ROMs (r = 18 for all ROMs).

J = 20 J = 30 J = 50 J = 70 J = 100

QuadSPA 3.4571·10−1 3.2915·10−1 6.0762·10−1 7.0414·10−2 3.6713·10−2

QuadBT 7.9048·10−1 3.8459·10−1 1.9527·10−1 9.9991·10−2 3.8193·10−2

SPA: 3.7846 · 10−2
BT: 3.8312 · 10−2

6.2. ISS12A model

For the ISS12A model, we first choose J = 1000 nodes, chosen to be logarithmically-spaced in
[10−1, 102] · ı. Since the FOM has 3 inputs and 3 outputs, the frequency-response plot of it is composed
of 3 curves, i.e., corresponding to the 3 singular values of H(ıωj) ∈ C3×3, for any frequency point ωj.
The reduction order of all ROMs is fixed at r = 100.
The frequency response plots of the FOM and the reduction errors related to four ROMs are depicted

in Figure 5. We notice a good agreement between all responses and a comparable approximation quality
for the intrusive and non-intrusive methods. Moreover, as to be expected, the SPA and QuadSPA
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methods lead to an improved fidelity in the low frequency range, whereas the errors for BT and
QuadBT are specifically small for high frequencies.
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Figure 5.: ISS12A. Frequency response of FOM and the errors using SPA and QuadSPA (left) and using
BT and QuadBT; J = 1000 and r = 100 for all ROMs.

Then, in Figure 6 we depict the configuration of the system poles for the FOM, and for the two
ROMs based on quadrature approximations. The dominant poles of the original system seem to be
well matched in both cases. Moreover, we would like to mention that the poles in the ROMs occur in
complex-conjugated pairs, which is in line with the realness of the fitted models.
In the next experiment, we vary the number of points J between 600 and 1 000, and we compute

the relative approximation errors in the H∞ norm between the original system and the two ROMs,
i.e., computed by means of QuadSPA and QuadBT. As expected, the approximation error decreases as
J increases, as shown in Table 3.

Table 3.: ISS12A. Relative approximation errors in the H∞ norm for varying number J of quadrature
points (ROM dimension r = 100).

J = 600 J = 800 J = 1000

QuadSPA 5.6244·10−1 1.6758·10−1 3.2221·10−2

QuadBT 6.0982·10−1 4.4826·10−2 3.2171·10−2

SPA: 3.3153 · 10−2
BT: 3.2941 · 10−2

Finally, we compute absolute deviations in the H∞ norm between the ROMs computed with intrusive
model reduction methods (SPA and BT), and their data-based counterparts. We vary J between 200
and 1 000 and compute the H∞ quantities in Table 4. As the number of data points is increased, the
deviation between the quadrature-based implementations QuadSPA and QuadBT and their intrusive
implementation generally decreases and becomes negligible compared to the reduction error of the
method.
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Table 4.: ISS12A. H∞ norm deviations between intrusive and quadrature-based methods for varying
J (ROM dimension is r = 100.)

J = 200 J = 600 J = 800 J = 1000

SPA versus QuadSPA 1.7813·10−2 6.6425·10−3 1.9466·10−3 2.6942·10−4

BT versus QuadBT 2.0562·10−2 7.1800·10−3 4.3901·10−4 2.9588·10−4

7. Conclusion

This paper addressed shortcomings and issues corresponding to the practical usability of SPA. Specifi-
cally, two new algorithmic implementations of this model order reduction method were proposed with
different use cases in mind. The first one was a low-rank implementation that can be used for the
reduction of systems much larger than the existing ones based on dense solvers. Notably, our SPA im-
plementation is of about the same computational complexity as the state-of-the-art algorithms for BT.
Secondly, we derived a data-driven, non-intrusive reinterpretation of SPA that is based on a quadrature
approximation requiring solely input-output data. Since these data could also be obtained by mea-
surements, the algorithm can be considered realization-free. It bears connections to the data-driven
reinterpretation of BT from [22] and thus behaves, in some sense, similarly. For example, the choice of
data shows to be crucial for the approximation quality, similarly as it is also for the Loewner frame-
work. The findings of this paper were validated by several numerical tests, which illustrated the good
correspondence between our new contributions for SPA and the well-established results for BT. Future
research endeavors could include the study of generalized versions of SPA with similar techniques as
the ones used in this paper, both for the intrusive and the data-driven setting.
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A. Proof of Proposition 5.1

For completeness, and since the proof of our main result Proposition 5.2 follows using similar argu-
ments, we state a proof for Proposition 5.1 in the following; cf. [22].
Let the assumptions of the proposition hold, and let K : C → Cn,n, be given by K(s) = (sI−A)−1,

so that H∞(s) = CK(s)B, as well as

L̃
∗
=



ρ1CK(ı̇ıω1)

...
ρJCK(ı̇ıωJ)


 and Ũ = [ ρ1K(ı̇ıω1)B · · · ρJK(ı̇ıωJ )B] .

A direct calculation shows that

K(ı̇ıωk)K(ı̇ıζj) =
1

ı̇ıωk − ı̇ıζj
K(ı̇ıωk) [(ı̇ıωkI−A)− (ı̇ıζjI−A)]K(ı̇ıζj)

= −
1

ı̇ıωk − ı̇ıζj
(K(ı̇ıωk)−K(ı̇ıζj)) .

By the latter, we conclude

Ñk,j = L̃kŨj = ρkϕjCK(ı̇ıωk)K(ı̇ıζj)B = −
ρkϕj

ı̇ıωk − ı̇ıζj
(CK(ı̇ıωk)B−CK(ı̇ıζj)B)

= −ρkϕj
H∞(ı̇ıωk)−H∞(ı̇ıζj)

ı̇ıωk − ı̇ıζj
.
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Similarly, by using

K(ı̇ıωk)AK(ı̇ıζj) =
1

ı̇ıωk − ı̇ıζj
K(ı̇ıωk) [ı̇ıζj(ı̇ıωkI−A)− ı̇ıωk(ı̇ıζjI−A)]K(ı̇ıζj)

= −
1

ı̇ıωk − ı̇ıζj
(ı̇ıωkK(ı̇ıωk)− ı̇ıζjK(ı̇ıζj)) ,

we can write

M̃k,j = ρkϕjCK(ı̇ıωk)AK(ı̇ıζj)B = −
ρkϕj

ı̇ıωk − ı̇ıζj
(ı̇ıωkCK(ı̇ıωk)B− ı̇ıζjCK(ı̇ıζj)B)

= −ρkϕj
ı̇ıωkH∞(ı̇ıωk)− ı̇ıζjH∞(ı̇ıζj)

ı̇ıωk − ı̇ıζj
.

Finally, the representations of T̃ and G̃ (as data matrices) claimed in the proposition, also follows in
a straightforward manner. �

B. An extension of Proposition 5.2

The assumption ωk 6= ζj for k, j ∈ {1, . . . , Nq} can be omitted in Proposition 5.2. However, in that
cases, samples corresponding to the derivative of the transfer function are required.

The required adaptions concern the data matrices Ñ and M̃ only, given as

Ñk,j =




−ρkϕj

H0(ı̇ıωk)−H0(ı̇ıζj)

ı̇ıωk − ı̇ıζj
ωk 6= ζj

−ρkϕj
d
ds
H0(s)s=ı̇ıζj ωk = ζj ,

M̃k,j =




−ρkϕj

(ı̇ıωk)
−1

H0(ı̇ıωk)− (ı̇ıζj)
−1

H0(ı̇ıζj)

ı̇ıωk − ı̇ıζj
ωk 6= ζj

−ρkϕj

(
(ı̇ıζj)

−1 d
ds
H0(s)s=ı̇ıζj − (ı̇ıζj)

−2
H0(ı̇ıζj)

)
ωk = ζj .

In the light of the proof that was presented for Proposition 5.2, it only remains to show the validity

of the representations Ñk,j and M̃k,j for the special case ωk = ζj . We do this considering the limit
ωk → ζj of the representations that have already been shown for ωk 6= ζj using L’Hospital’s rule.

For M̃k,j with ωk = ζj , the crucial step is

lim
ωk→ζj

H0(ı̇ıωk)−H0(ı̇ıζj)

ı̇ıωk − ı̇ıζj
= lim

ωk→ζj

d
ds

(H0(s)−H0(ı̇ıζj))s=ı̇ıωk

d
ds

(s− ı̇ıζj)s=ı̇ıωk

=
d

ds
H0(s)s=ı̇ıζj .

From the latter result, the claimed representation directly follows. Similarly, the expression for Ñk,j

and ωk = ζj can be shown using

lim
ωk→ζj

(ı̇ıωk)
−1

H0(ı̇ıωk)− (ı̇ıζj)
−1

H0(ı̇ıζj)

ı̇ıωk − ı̇ıζj
=

d

ds

(
s
−1

H0(s)
)
s=ı̇ıζj

= (ı̇ıζj)
−1 d

ds
H0(s)s=ı̇ıζj − (ı̇ıζj)

−2
H0(ı̇ıζj).
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[38] J. Saak, M. Köhler, and P. Benner. M-M.E.S.S.-2.1 – The Matrix Equations Sparse Solvers library.
https://doi.org/10.5281/zenodo.4719688, 2021.

[39] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. J. of Fluid
Mech., 656:5–28, 2010. doi:10.1017/S0022112010001217.

[40] V. Simoncini. Computational methods for linear matrix equations. SIAM Rev., 58(3):377–441,
2016. doi:10.1137/130912839.

[41] D. C. Sorensen and Y. Zhou. Direct methods for matrix Sylvester and Lyapunov equations. J.
Appl. Math., 2003(6):277–303, 2003. doi:10.1155/S1110757X03212055.

[42] A. Varga. Balancing free square-root algorithm for computing singular perturbation ap-
proximations. In Proc. of the 30th IEEE Conf. Decision Contr., pages 1062–1065, 1991.
doi:10.1109/CDC.1991.261486.

[43] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal decomposition.
AIAA J., 40(11):2323–2330, 2002. doi:10.2514/2.1570.

[44] Q. Zhang, I. V. Gosea, and A. C. Antoulas. Factorization of the Loewner matrix pencil and its con-
sequences. e-print 2103.09674, arXiv, 2021. cs.NA. URL: https://arxiv.org/abs/2103.09674.

Preprint. 2023-03-10

https://doi.org/10.1016/j.cma.2016.03.025
https://doi.org/10.1137/S1064827598347666
https://doi.org/10.1142/S0218127405012429
https://doi.org/10.5281/zenodo.4719688
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1137/130912839
https://doi.org/10.1155/S1110757X03212055
https://doi.org/10.1109/CDC.1991.261486
https://doi.org/10.2514/2.1570
https://arxiv.org/abs/2103.09674

	1 Introduction
	2 Balancing and balancing-related model reduction
	2.1 Balanced realization
	2.2 Balancing-related model reduction
	2.3 Open issues for the implementation of Singular Perturbation Approximation

	3 Reciprocal transformation
	4 Low-rank implementations of balancing-related methods
	4.1 Low-rank implementation of Balanced Truncation
	4.2 Low-rank implementation of Singular Perturbation Approximation
	4.3 Numerical study for low-rank implementation

	5 Data-driven implementation of balancing-related methods
	5.1 Data-driven Balanced Truncation
	5.2 Data-driven Singular Perturbation Approximation
	5.3 Connections of QuadSPA to the Loewner framework

	6 Numerical study for the data-driven implementation
	6.1 LAbuild model
	6.2 ISS12A model

	7 Conclusion
	A Proof of prop:quadMatrices
	B An extension of prop:quadSPA

