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Abstract. Balanced singular perturbation approximation (SPA) is a model order reduction
method for linear time-invariant systems that guarantees asymptotic stability and for which there
exists an a priori error bound. In that respect, it is similar to balanced truncation (BT). However, the
reduced models obtained by SPA generally introduce better approximation in the lower frequency
range and near steady-states, whereas BT is better suited for the higher frequency range. Even
so, independently of the frequency range of interest, BT and its variants are more often applied in
practice, since there exist more efficient algorithmic realizations thereof. In this paper, we aim at
closing this practically relevant gap for SPA. We propose two novel and efficient algorithms that are
adapted for different settings. First, we derive a low-rank implementation of SPA that is applicable
in the large-scale setting. Second, a data-driven reinterpretation of the method is proposed that
only requires input-output data and thus is realization-free. A main tool for our derivations is
the reciprocal transformation, which induces a distinct view on implementing the method. While
the reciprocal transformation and the characterization of SPA are not new, their significance for
the practical algorithmic realization has been overlooked in the literature. Our proposed algorithms
have well-established counterparts for BT and, as such, a comparable computational complexity. The
numerical performance of the two novel implementations is tested for several numerical benchmarks,
and comparisons to their counterparts for BT as well as to existing implementations of SPA are
made.
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1. Introduction. For many modern applications in the applied sciences, the
simulation, control, and optimization of very large-scale dynamical systems is re-
quired. The increased development of modern computing environments and high-
performance computing tools has pushed the boundaries of what is computationally
feasible in this regard. Another way to navigate this issue and to save computational
time is by means of approximating such large-scale dynamical systems with reduced
models. This is the essence of model reduction, which is a subfield at the intersection
of many established fields, such as automatic control, systems theory, approximation
theory, and numerical linear algebra; see, e.g., the books [1, 36, 11, 6, 2].

For the reduction of linear time-invariant systems, system-theoretic methods
are widely used. Moment matching methods and projection-based balancing-related
methods, such as balanced truncation (BT), are among the most popular methods
falling in this category; see [17, 4] and references therein. Moment matching methods
are particularly efficient in terms of computational complexity. The resulting reduced
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A484 BJ\"ORN LILJEGREN-SAILER AND ION VICTOR GOSEA

models are also typically of high fidelity, but in general it is difficult to enforce theo-
retical guarantees.

The balancing-related methods preserve important qualitative features of a sys-
tem, such as stability, and there exists a priori error bounds for those methods [21].
The concept behind BT, originally proposed in [32, 31], is to identify and truncate com-
ponents of the original system that are weakly controllable and observable. This turns
out to be a natural approach, assuming the truncated states have a fast dynamic. An-
other closely related method is (balanced) singular perturbation approximation (SPA)
[20, 29]. It is a nonprojection-based balancing-related method, for which the same a
priori guarantees as for BT are valid. Other than that, SPA is better suited for the
lower frequency range and near steady-states.

Notably, the numerical algorithms available for BT are more developed than those
for SPA. For example, low-rank implementations are exclusive to BT, and until now
SPA could not be applied in the truly large-scale setting; cf. section 4 for references
and more details. The recent contribution [22] connects classical projection-based BT
approach to the data-driven interpolation-based approach and provides a nonintrusive
implementation of the method. With the ever-increasing availability of data, i.e.,
measurements related to the original model, the interest in nonintrusive methods has
grown significantly. Among other methods, we would like to mention the Loewner
framework [30], dynamic mode decomposition [40], and operator inference [34, 5].

The main objective of this paper is twofold: first, we aim at deriving an efficient
algorithm for SPA in a large-scale setting and, second, at providing a realization-free
implementation of SPA. The latter will be performed in a nonintrusive manner, using
solely transfer function evaluations and corresponding quadrature weights. Both new
implementations have strong resemblances to existing implementations of BT. The
essential link between BT and SPA is given by the so-called reciprocal transformation,
and this plays a crucial role in our derivations.

The remainder of the paper is organized as follows. Section 2 provides an overview
on balancing and the balancing-related model reduction methods BT and SPA and
points toward the open issues for the implementation of SPA.

Then, in section 3 the reciprocal transformation is defined and analyzed in a
slightly generalized setting as compared to the literature. In section 4 we recall the
square-root and low-rank implementations of BT and then present a novel counterpart
for SPA. Numerical results for the novel low-rank algorithm are provided. Next, sec-
tion 5 introduces in detail the data-driven interpretation of BTand, by that, sets the
stage for the newly proposed data-driven implementation of SPA. Moreover, connec-
tions to the Loewner framework are discussed. An extensive numerical study for the
data-driven methods is provided in section 6 for two benchmark examples. Finally,
in section 7 the conclusions of the paper are outlined, together with a brief outlook
to future research endeavors.

2. Balancing and balancing-related model reduction. Consider the linear
time-invariant (LTI) dynamical system

E \.x(t) =Ax(t) +Bu(t),

y(t) =Cx(t) +Du(t),
(2.1)

where the input mapping is given by u : [0,\infty ]\rightarrow \BbbR m, the (generalized) state variable
is x : [0,\infty ] \rightarrow \BbbR n, and the output mapping is y : [0,\infty ] \rightarrow \BbbR p. The system matrices
are given by E,A \in \BbbR n\times n, B \in \BbbR n\times m, C \in \BbbR p\times n, and D \in \BbbR p\times m. The system is
closed by choosing initial conditions x(0) = x0 \in \BbbR n. We assume the system to be
asymptotically stable, i.e., E and A are nonsingular, and the eigenvalues of E - 1A are
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DATA-DRIVEN AND LOW-RANK IMPLEMENTATIONS OF SPA A485

located in the open left half-plane. In general, the state dimension n may be large,
and (2.1) will also be referred to as the full order model (FOM).

The input-output behavior of the system, for x(0) = 0 and in the frequency
domain, is fully characterized by the transfer function, given by

H(s) =C(sE - A) - 1B+D, H(s)\in \BbbC p\times q,(2.2)

for any scalar (frequency) s\in \BbbC .
Model reduction aims at computing a reduced order model (ROM), i.e., an LTI

system of a reduced state dimension r \ll n, that is supposed to reproduce a similar
output yr \approx y for the same inputs. This ROM is given by

\.xr(t) =Ar xr(t) +Br u(t),

yr(t) =Cr xr(t) +Dr u(t),
(2.3)

with initial conditions xr(0) = x0
r \in \BbbR r and reduced dimension matrices Ar \in \BbbR r\times r,

Br \in \BbbR r\times m, Cr \in \BbbR p\times r, and Dr \in \BbbR p\times m. Arguably, the projection-based approach is
most commonly used [1, 8], in which reduction bases Wr,Vr \in \BbbR n\times r with WT

r EVr =
Ir \in \BbbR r\times r (unit matrix) are used to construct the reduced model. In that case,
Ar =WT

r AVr, Br =WT
r A, Cr =CVr, and D=Dr.

2.1. Balanced realization. The two fundamental quantities in BT and SPA
are the controllability and observability Gramians P and Q, given as the solutions of
the two Lyapunov equations

APET +EPAT +BBT = 0, ATQE+ETQA+CTC= 0.(2.4)

The Gramian P induces a measure for controllability of a state, and likewise, Q
induces a measure for observability. However, these measures are not invariant under
state transformations. Let matrix F \in \BbbR n\times n such that FEF - 1 = I, and define the
transformed matrices \^A=FAF - 1, \^B=FB, and \^C=CF - 1. Then the input-output
behavior of (2.1) is equivalently described by the alternative LTI realization

\.\^x(t) = \^A \^x(t) + \^Bu(t), y(t) = \^C \^x(t) +Du(t),

and \^x(0) = Fx0. A realization is called balanced if the Gramians are diagonal and
equal to each other. More specifically, the transformed Gramians \^P and \^Q need to
satisfy the relation

\^P=FPFT !
= \^Q=F - TQF - 1 !

=diag(\sigma 1, . . . , \sigma n)\in \BbbR n\times n,

with \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq \sigma n \geq 0 sorted in descending order. The \sigma i's are invariants of the
LTI system (they are the same for any realization of the state-space) and referred to
as to the Hankel singular values.

2.2. Balancing-related model reduction. Balancing-related model reduction
methods construct a reduced model based on the most observable and most control-
lable states, which relate to the dominant Hankel singular values. Let 1 < r < n,
\sigma r > \sigma r+1, and the balanced state \^x = Fx be partitioned as \^x = [\^xT

1 , \^x
T
2 ]

T , with
\^x1 : [0,\infty ] \rightarrow \BbbR r and the remainder \^x2 : [0,\infty ] \rightarrow \BbbR n - r. The transformed system
matrices are partitioned accordingly as

\^A=

\biggl[ 
\^A11

\^A12

\^A21
\^A22

\biggr] 
, \^B=

\biggl[ 
\^B1

\^B2

\biggr] 
, \^C=

\bigl[ 
\^C1

\^C2

\bigr] 
,

and thus the following relations hold:
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A486 BJ\"ORN LILJEGREN-SAILER AND ION VICTOR GOSEA

\.\^x1(t) = \^A11\^x1(t) + \^A12\^x2(t) + \^B1u(t),(2.5a)

\.\^x2(t) = \^A21\^x1(t) + \^A22\^x2(t) + \^B2u(t),(2.5b)

y(t) = \^C1\^x1(t) + \^C2\^x2(t) +Du(t).(2.5c)

For both BT and SPA, reduced models are constructed by a simplification of (2.5a)
which can be expressed in terms of the variable xr \approx \^x1.

Balanced truncation. In BT, the reduced model is obtained by completely elimi-
nating the second (remainder) component of the state, i.e., by enforcing the simplified
dynamics \^x2 \approx 0. The ensuing ROM is given as in (2.3), with the following choice of
reduced matrices:

Ar = \^A11, Br = \^B1, Cr = \^C1, Dr =D.

This approximation assumes that the remainder component \^x2 consists of fast dy-
namics that rapidly decay to zero.

Singular perturbation approximation. SPA pursues, in some sense, a converse
path from that of BT. The remainder component of the state is approximated us-
ing the steady-state equation d

dt
\^x2(t) \approx 0 for t \geq 0. Thus, (2.5b) is modified

to 0 \approx \^A21\^x1(t) + \^A22\^x2(t) + \^B2u(t), which implies the approximation \^x2(t) \approx 
 - \^A

 - 1

22 (
\^A21\^x1(t) + \^B2u(t)). A reduced formulation with xr(t) \approx \^x1(t) enforcing this

approximated dynamics can be obtained by basic manipulations. This yields the
matrices of the SPA reduced system, which read

Ar = \^A11  - \^A12
\^A
 - 1

22
\^A21, Br = \^B1  - \^A12

\^A
 - 1

22
\^B2,

Cr = \^C1  - \^C2
\^A
 - 1

22 , Dr =D - \^C2
\^A
 - 1

22
\^B2.

(2.6)

Note that this method leads, in general, to a feedthrough term Dr \not = 0, even if D is
equal to zero. Thus, the SPA method is not a projection-based approach.

2.3. Open issues for the implementation of singular perturbation ap-
proximation. The numerical implementation of balanced realizations turns out to be
computationally demanding and not well-conditioned for large-scale systems. There-
fore, balancing-free implementations have been proposed for various balancing-related
model reduction methods. Efficient implementations for dense systems of medium size
have been derived based on the sign function method and similar techniques for both
BT (see [12, 10, 1]) and SPA [43, 13, 3]. Other significant results and application areas
have exclusively been developed for BT and other projection-based balancing-related
methods. It should be noted that the existing implementations of SPA explicitly use
formula (2.6), which inherently prohibits the use of low-rank approximations. Fur-
thermore, a data-driven (realization-free) implementation of SPA has not yet been
proposed in the literature. In this paper, we aim at filling this gap for the case of SPA
by deriving low-rank and realization-free algorithms.

3. Reciprocal transformation. It is well known that the SPA can be inter-
preted in terms of the so-called reciprocal transformation [29, 23]. While this inter-
pretation has been used for theoretical investigations of SPA, its relevance for the
algorithmic implementation was not broadly investigated until now. In this section,
we propose a definition of the reciprocal transformation in a slightly modified setting,
considering LTI systems with general regular matrices E as opposed to the special case
E = I used in the literature. We show that our extension inherits the fundamental
properties that have been derived in [29, 23, 26] for this special case.
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DATA-DRIVEN AND LOW-RANK IMPLEMENTATIONS OF SPA A487

Definition 3.1. The reciprocal system, i.e., the reciprocal transformed counter-
part of the LTI system in (2.1), is defined as

E \.x(t) =A x(t) +B u(t),

y(t) =C x(t) +D u(t),

with A =EA - 1E, B =EA - 1B, E =E,

C = - CA - 1E, D =D - CA - 1B.

The reciprocal transfer function is defined by H (s) =C (sE  - A ) - 1B +D for s\in \BbbC .

From a theoretical point of view, one could directly invert the matrix E to end
up in the standard setting. However, this step needs to be avoided for an efficient
implementation of SPA in the general large-scale setting; cf. subsection 4.2.

Proposition 3.2. The reciprocal transformed system of an asymptotically stable
LTI system as in (2.1) is well-defined and asymptotically stable. Moreover, by applying
twice the reciprocal transformation to an LTI system, the same LTI system is obtained.

The latter result follows by straightforward calculus. Next, the relation in the
frequency domain between the two transfer functions is provided; this will clarify the
origin of the term ``reciprocal.""

Theorem 3.3. The transfer function H of the LTI system in (2.1) and the re-
ciprocal transfer function H are reciprocal to each other, in the sense that for any
s\in \BbbC +, it holds that

H (s) =H

\biggl( 
1

s

\biggr) 
and, respectively, H

\biggl( 
1

s

\biggr) 
=H(s).

Proof. We first prove that (1/sE - A) - 1 = ( - E  - 1A )[E  - 1 + (sE  - A ) - 1A E  - 1]
as a preliminary step. The latter holds due to

(1/sE - A)( - E  - 1A )
\bigl[ 
E  - 1 + (sE  - A ) - 1A E  - 1

\bigr] 
= 1/s(sE  - A )

\bigl[ 
E  - 1 + (sE  - A ) - 1A E  - 1

\bigr] 
= 1/s[(sE  - A )E  - 1 +A E  - 1] = I.

With this equality, it follows that

H(1/s) =D+C(1/sE - A) - 1B

=D+C( - E  - 1A )
\bigl[ 
E  - 1 + (sE  - A ) - 1A E  - 1

\bigr] 
B

= [D - CE  - 1A E  - 1B] - C[E  - 1A (sE  - A ) - 1A E  - 1]B

=D + [ - CE  - 1A ](sE  - A ) - 1[A E  - 1B] =D +C
\bigl( 
sE  - A

\bigr)  - 1
B =H (s).

The other relation follows by interchanging the roles of the LTI system and its recip-
rocal system; cf. Proposition 3.2.

The main results of this paper are based on the following alternative characteri-
zation of SPA that is illustrated by means of Figure 1.

Proposition 3.4. For an asymptotically stable LTI system with Hankel singular
values fulfilling \sigma r >\sigma r+1, the ROM of dimension r obtained by SPA, defined in (2.6),
can be equivalently obtained by a procedure that incorporates the following steps:
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FOM

ROM

Reciprocal
FOM

Intermediate
ROM

reduce by
SPA

reduce by
BT

Reciprocal Transformation

Reciprocal Transformation

Fig. 1. Commutative diagram and alternative characterization of SPA (following the brown
dashed route) that is stated in Proposition 3.4.

(i) Apply the reciprocal transformation to the FOM.
(ii) Construct an intermediate reduced model of dimension r for the reciprocal

system, using BT.
(iii) Apply the reciprocal transformation to the intermediate reduced model.

The proof of this proposition can be found in [29, 26] for the special case E =
I. Since the ROM obtained by a balancing-related method does not depend on the
state realization of the LTI system, it is clear that the proposition also holds for our
consistently extended definition of a reciprocal system.

The last result presented here provides the relation between the Gramians of an
LTI and those of the reciprocal system.

Proposition 3.5. The controllability and observability Gramians of the LTI sys-
tem coincide with those of its reciprocal system in Definition 3.1.

Proof. It can be proven that the Lyapunov equations of the LTI system and
those of the reciprocal system are equivalent. Since these equations have unique
solutions, this implies the equality of the Gramians. For example, the Lyapunov
equation characterizing the controllability Gramian P of the reciprocal system reads,
by definition, A PE T + E PA T +BBT = 0. This is equivalent to

(EA - 1E)PET +EP(EA - 1E)T + (EA - 1)BBT (EA - 1)T = 0.

By multiplying this equation by (EA - 1) - 1 to the left and by (EA - 1) - T to the right,
the first Lyapunov equation in (2.4) is obtained, which implies P =P. The equality
between the observability Gramians of the LTI system and of its reciprocal system
can be shown to hold true in a similar manner.

4. Low-rank implementations of balancing-related methods. In this sec-
tion, we describe some archetypal strategies for implementing a low-rank variant of
BT, based on the balancing-free square-root method. Afterward, the first main result
is provided, consisting of the new balancing-free implementation of SPA. Its main
advantage is that it allows for a low-rank variant similar to its BT counterpart. The
gained computational efficiency is illustrated by a large-scale numerical example.

4.1. Low-rank implementation of balanced truncation. Since the original
LTI system (i.e., the FOM) is assumed to be asymptotic stable, its Gramians are
symmetric, positive semidefinite matrices. Thus, one may compute a factorization

P=UUT and Q=LLT(4.1)
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DATA-DRIVEN AND LOW-RANK IMPLEMENTATIONS OF SPA A489

with L,U \in \BbbR n\times n, e.g., via a Cholesky factorization. This provides the essential
elements for an implementation of BT by the square-root method outlined in Algo-
rithm 4.1. It should be noted that, instead of first computing the Gramians explicitly
and then the factors L and U, one can directly compute the latter quantities by
means of the Hammarling method implemented in the MATLAB function lyapchol or
by a sign-function-based solver; cf. [12]. Such approaches hence circumvent poten-
tial numerical issues that may arise when computing Cholesky factors of the already
computed Gramians. Another option for optimizing the computational steps is to
replace the true Cholesky factors in (4.1) by approximated low-rank factors thereof.

Let P \approx \u U \u U
T
and Q \approx \u L\u L

T
, with \u U \in \BbbR n\times rU , \u L \in \BbbR n\times rL having significantly fewer

columns than the square-root factors, i.e., rL, rU \ll n. Then, the computation of
a full singular value decomposition (SVD) for a large-scale matrix is averted, since

LTEU \in \BbbR n\times n is replaced by \u L
T
E \u U \in \BbbR rL\times rU . Such low-rank factors of the Grami-

ans can be computed by means of, among others, iterative solvers for the Lyapunov
equation based on the matrix sign function, low-rank alternating direction implicit
(ADI) methods, Smith-type methods, etc. We refer the reader to the more detailed
analysis on such approaches in [35, 27, 9, 41].

The low-rank adaptation of the square-root implementation of BT is remarkably
straightforward: the exact factors of the Gramians have to be replaced by the ap-
proximated low-rank factors in Algorithm 4.1; see, e.g., [12, 25, 3]. This very simple
adaptation follows essentially from the projection-based nature of BT. The underlying
projection spaces consisting of the most observable and controllable states are effi-
ciently approximated by the low-rank factors. The practical relevance of the low-rank
implementations is not to be underestimated, as large-scale sparse systems appear
in various applications in computational fluid dynamics and mechanical, electronic,
chemical, and civil engineering. Specific applications are numerous and include mi-
croelectronics, aerodynamics, acoustics, electromagnetics, neuroscience, and chemical
process optimization, to enumerate only a few. We refer the reader to [10, 11, 7] for
more details.

Algorithm 4.1 Balanced truncation (BT) (square-root/low-rank implementation).
Require: LTI system described by matrices E,A\in \BbbR n\times n,B\in \BbbR n\times m, C\in \BbbR p\times n,
D\in \BbbR p\times m.
Ensure: ROM: Ar \in \BbbR r\times r,Br \in \BbbR r\times m,Cr \in \BbbR p\times r, and Dr \in \BbbR p\times m.
1: Compute the Lyapunov factors U,L\in \BbbR n\times n from (4.1) and pick a reduced

dimension 1\leq r\leq min(rank(U), rank(L)).

2: Compute the SVD of the matrix LTEU, partitioned as follows:

LTEU=
\bigl[ 
Z1 Z2

\bigr] \Biggl[ S1

S2

\Biggr] \Biggl[ 
YT

1

YT
2

\Biggr] 
,

where S1 \in \BbbR r\times r and S2 \in \BbbR (n - r)\times (n - r).

3: Construct the model reduction bases Wr =LZ1S
 - 1/2
1 and Vr =UY1S

 - 1/2
1 .

4: The reduced order system matrices are given by

Ar =WT
r AVr, Br =WT

r B, Cr =CVr, and Dr =D.
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A490 BJ\"ORN LILJEGREN-SAILER AND ION VICTOR GOSEA

4.2. Low-rank implementation of singular perturbation approximation.
In contrast to BT, the reduction by SPA has, the the best of the authors' knowledge,
no direct interpretation as a projection-based framework. Moreover, from the char-
acterization (2.6), which is explicitly used in the algorithms proposed in [13, 3, 43], it
was not clear how to explicitly derive a low-rank implementation of SPA.

We therefore consider the alternative procedure suggested by Proposition 3.4 for
the derivation of our new algorithm. In what follows, a basic variant is sketched
(this proves to be rather inefficient). Then, the novel efficient implementation, which
allows for a low-rank adaptation, is derived from the latter by a few, yet crucial,
modifications.

The basic procedure suggested by Proposition 3.4 will now be summarized. First,
the reciprocal transformation is applied to the FOM to obtain the reciprocal system
(A ,B,C ,D ,E ). Then, the reduction bases Wr,Vr \in \BbbR n\times r for the reciprocal system
are determined (using BT on the reciprocal system), and the intermediate ROM is
obtained by a projection step, i.e.,

Ar =W T
r A Vr, Br =W T

r B, Cr =C Vr, and Dr =D .(4.2)

As a final step, the reciprocal transformation is applied to the intermediate reduced
model (Ar,Br,Cr,Dr); this is marked by the dashed brown arrow in the diagram
displayed in Figure 1.

One possible issue with this procedure is that the reciprocal transformation of the
FOM is explicitly needed, which requires the inverse of the matrix A corresponding to
the FOM. Furthermore, note that the reciprocal system has dense state matrices even
if those of the FOM are sparse. Thus, the procedure needs to be modified in such a
way that the explicit determination of the full-order reciprocal system is omitted.

A first crucial observation in this direction is that the construction of Wr and Vr

does not depend on the reciprocal system itself but only on its Gramians. By Propo-
sition 3.5, the reciprocal system has the same Gramians as the FOM, and thus the
reduction bases for applying BT to the reciprocal system are the same as for applying
BT to the FOM, i.e., Wr =Wr and Vr =Vr (with Wr and Vr as in Algorithm 4.1).
The second observation is that the projection step (4.2) for the intermediate ROM
does not require the full reciprocal system either but can be obtained by solving a
linear system of equations having moderate size. For example, the construction of the
state matrix Ar of the intermediate ROM can be done according to the following:

Ar =W T
r A Vr =WT

r A Vr =WT
r EA - 1EVr

\Leftarrow \Rightarrow Ar =WT
r EAV , with AV solving AAV =EVr.

(4.3)

The efficient construction of the other matrices Br, Cr, and Dr follows similarly.
The newly proposed, efficient implementation of SPA, which follows by taking into

account all the previously mentioned steps, is summarized in Algorithm 4.2. Simi-
larly to BT, one can replace the exact factors of the Gramians (L and U) in step 1
of this algorithm with low-rank approximate factors to obtain an efficient implemen-
tation for the large-scale setting. Two final practical hints for the implementation of
Algorithm 4.2 are provided in Remark 4.1.

Remark 4.1. The inverse of the potentially large matrix A does not need to be
explicitly formed in step 4 of Algorithm 4.2, but instead, a few linear equations can
be solved. This is done by following the steps indicated in (4.3). Moreover, the last
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Algorithm 4.2 Singular perturbation approximation (SPA) (square-root/low-rank).

Require: FOM: E,A\in \BbbR n\times n,B\in \BbbR n\times m, C\in \BbbR p\times n, D\in \BbbR p\times m.
Ensure: ROM: Ar \in \BbbR r\times r,Br \in \BbbR r\times m,Cr \in \BbbR p\times r, and Dr \in \BbbR p\times m.
1: Compute the matrix factors U,L\in \BbbR n\times n for approximating the solutions of

Lyapunov equations (2.4) and choose reduced dimension 1\leq r\leq min(rank(U),
rank(L)).

2: Compute the SVD of the matrix LTEU as follows:

LTEU=
\bigl[ 
Z1 Z2

\bigr] \Biggl[ S1

S2

\Biggr] \Biggl[ 
YT

1

YT
2

\Biggr] 
,

where S1 \in \BbbR r\times r and S2 \in \BbbR (n - r)\times (n - r).

3: Construct the model reduction bases Wr =LZ1S
 - 1/2
1 and Vr =UY1S

 - 1/2
1 .

4: Calculate AV =A - 1(EVr) and BA =A - 1B. Construct an intermediate ROM
approximating the reciprocal system:

Ar =WT
r EAV , Br =WT

r EBA, Cr = - CAV , and Dr =D - CBA.

5: Get the ROM by means of the reciprocal transformation of the intermediate
ROM, i.e.,

Ar =A  - 1
r , Br =A  - 1

r Br, Cr = - CrA
 - 1
r , and Dr =Dr  - CrA

 - 1
r Br.

step in the algorithm is most efficiently implemented using a successive evaluation
of the matrices using the following ordering. First, Ar = A  - 1

r is evaluated, then
Br =ArBr, followed by Cr = - CrAr. Finally, Dr =Dr +CrBr is determined.

4.3. Numerical study for the low-rank implementation. It has been shown
in several previous works that the use of low-rank Lyapunov equation solvers is benefi-
cial in a large-scale setting. This allows one to solve for dimensions that are computa-
tionally infeasible for direct (dense) solvers, based mainly on classical algorithms pro-
posed by Bartels--Stewart and Hammarling, and on more recent adaptations (see [42]
for an overview). These results directly transfer to BT and, as we showcase in this sec-
tion, also to our newly proposed Algorithm 4.2, which is the first low-rank implementa-
tion of SPA (to the best of our knowledge). In what follows, we refer to the method as
``Alg.2, low-rank"" and compare it to its dense counterpart ``Alg.2, dense"" as well
as to the MATLAB built-in method balred, realizing SPA.

In this section, the numerical studies are performed for a benchmark problem
described in [10, section 19] and referred to as Rail, which is given by a semidiscretized
heat transfer model of a steel rail. Depending on the underlying mesh resolution of the
discretization, the FOM has a dimension of n\in \{ 109, 371, 1357, 5177, 20209, 79841\} .
Both the benchmark data and the low-rank (ADI-based) Lyapunov equation solvers
originate from the MESS toolbox [39]. The numerical results have been generated using
MATLAB version 9.12 (R2022a) on a desktop computer running with an Intel Core
i7-8700 CPU with 32.0GB. All reported results were generated with the code and
benchmark data provided in [28].

Notably, regardless of which of the three implementations was chosen for the
realization of SPA, almost no effect on the quality of the resulting ROM was observed
for the test cases with n \leq 5177. More precisely, the deviations with respect to the
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SPA and BT with r = 12 SPA and BT with r = 36
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Fig. 2. Rail (with n = 20209). Frequency response of FOM and the errors related to SPA and
BT, using low-rank operations.

102 103 104 105

100

102 Alg. 2, low-rank
Alg. 2, dense
balred

Fig. 3. Rail with varying dimension n. CPU times for SPA realized by Algorithm 2 (using either
low-rank or dense operations) and MATLAB built-in function balred (r= 12 for all ROMs).

\scrH \infty norm were below 10 - 10. However, larger dimensions could not be considered for
the dense solvers, since they did not run to completion on the running machine.

The qualitative behavior of the FOM and the approximation errors for SPA and
BT are illustrated in the frequency domain in Figure 2 for two different choices of the
ROM order, i.e., r \in \{ 12,36\} . As expected, SPA performs better in the lower frequency
range, while BT is more accurate in the higher frequency range. The maximum
frequency-domain errors of the methods are fairly similar, ranging from about  - 50db
for r= 12 to about  - 75db for r= 36.

However, the computational times of the different SPA implementations vary sig-
nificantly as illustrated in Figure 3. While the two variants using dense solvers are
almost the same in this respect, the low-rank implementation Alg.2, low-rank is al-
ready seven times faster for a FOM dimension of n= 1357, i.e., 0.3 seconds compared
to 2.8 seconds. The difference becomes even more pronounced for larger dimensions.
The sparse solver is even faster for n = 79841 than balred for n = 5177. (Alg.2,
low-rank for n = 79841 required 25.0 seconds compared to balred for n = 5177,
which needed 181.2 seconds.) Larger dimensions are not feasible for balred due to
the limited internal memory of the computing machine. It should be noted that the
very high memory demand of the dense solvers is a strong limitation in the large-scale
setting.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

4/
24

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



DATA-DRIVEN AND LOW-RANK IMPLEMENTATIONS OF SPA A493

5. Data-driven implementation of balancing-related methods. In [22], it
was shown that BT can be (approximately) realized in a nonintrusive, data-driven
manner. There, in the frequency domain, ``data"" are transfer function evaluations, or
samples of the impulse response (and its derivative), for the time-domain case. This is
fundamentally different from the other data-driven BT approaches in [31, 44, 38, 33],
which require snapshots of the full state. The main idea underlying the approach in
[22] is to make use only implicitly of quadrature approximations of the two system
Gramians for the construction of a low-order approximately balanced model.

The novel contribution of this section is represented by a similar data-driven
adaptation of SPA, which will be referred to as QuadSPA. Since this new approach
follows principles similar to those of QuadBT in [22], we set the stage in subsection 5.1
by reviewing the basic construction underlying the latter. In subsection 5.2, QuadSPA
is derived, and its numerical performance is examined in section 6.

Since we are interested in realization-free approaches, we are assuming E= I from
here on (the case of noninvertible matrix E is not treated in this contribution). This
modification carries over to the FOM, i.e., instead of (2.1), we have

\.x(t) =Ax(t) +Bu(t), y(t) =Cx(t) +Du(t).

5.1. Data-driven balanced truncation. Following the BT implementation in
Algorithm 4.1 (with E= I), square-root factors U, and L of the Gramians are defined,
and their product is approximated by a singular value decomposition, according to

LTU\approx Z1S1Y
T
1 , S1 \in \BbbR r,r.

By the definition of the reduction bases Wr = LZ1S
 - 1/2
1 and Vr =UY1S

 - 1/2
1 (step

3 in the algorithm), the matrices of the ROM realization are expressed as

Ar =WT
r AVr = S

 - 1/2
1 ZT

1 (LTAU)Y1S
 - 1/2
1 , Br =WT

r B= S
 - 1/2
1 ZT

1 (LTB),

Cr =CVr = (CU)Y1S
 - 1/2
1 .

By the latter relations, we observe that the ROM is fully characterized in terms of the
following key quantities:

LTU, LTAU, LTB, and CU.(5.1)

These matrices can be approximated from input-output data as shown next.
The starting point is a quadrature approximation of the Gramians in the fre-

quency domain. Let \.\imath \imath be the complex unit with \.\imath \imath 2 =  - 1. Then, the controllability
Gramian P and the observability Gramian Q. (i.e., the solutions to (2.4)) can be
expressed as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

4/
24

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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P=
1

2\pi 

\int \infty 

 - \infty 
(\.\imath \imath \zeta I - A) - 1BBT ( - \.\imath \imath \zeta IT  - AT ) - 1d\zeta ,

Q=
1

2\pi 

\int \infty 

 - \infty 
( - \.\imath \imath \omega I - AT ) - 1CCT (\.\imath \imath \omega I - A) - 1d\omega .

First, we consider a numerical quadrature rule that approximates the frequency inte-
gral defining the controllability Gramian, yielding an approximate Gramian \widetilde P:

P\approx \widetilde P=

J\sum 
k=1

\rho 2k(\.\imath \imath \omega kI - A) - 1BBT ( - \.\imath \imath \omega kI
T  - AT ) - 1.(5.2)

In this formula, \omega k and \rho 2k denote the quadrature nodes and quadrature weights, re-
spectively. Thus, \rho k are, by construction, the square-roots of the quadrature weights.

Next, the quadrature-based Gramian approximation is decomposed as \widetilde P= \widetilde U\widetilde U\ast 
with

a square-root factor \widetilde U\in \BbbC n\times Jm defined as\widetilde U=
\bigl[ 
\rho 1(\.\imath \imath \omega 1I - A) - 1B \cdot \cdot \cdot \rho J(\.\imath \imath \omega JI - A) - 1B

\bigr] 
.(5.3)

Note that both P and its quadrature approximation, \widetilde P, are real-valued matrices, yet
the explicit square-root factor, \widetilde U, is overtly complex, and subsequent computation
engages complex floating point arithmetic. However, in QuadBT, it is not required to
explicitly compute the matrix \widetilde U. The quadrature approximation of Q is defined by

Q\approx \widetilde Q=

J\sum 
j=1

\varphi 2
j ( - \.\imath \imath \zeta jI

T  - AT ) - 1CTC(\.\imath \imath \zeta jI - A) - 1,

with quadrature points \zeta j and quadrature weights \varphi 2
j (for convenience we assume

the number of quadrature points to be the same for Q and P). The corresponding

square-root factor decomposition reads \widetilde Q= \widetilde L\widetilde L\ast 
, where

\widetilde L\ast 
=

\left[   \varphi 1C(\.\imath \imath \zeta 1I - A) - 1

...
\varphi JC(\.\imath \imath \zeta JI - A) - 1

\right]   \in \BbbC Jp\times n.(5.4)

For a concise notation in the multi-input multi-output setting, the following two
technical definitions are to be used.

Definition 5.1. Let X \in \BbbC Jp\times Jm. Then, for 1 \leq k, j \leq J , we say that the
(k, j)th block (p,m) entry of matrix X is a matrix in \BbbC p\times m, denoted with Xk,j, for
which its p rows are a subset of the rows of matrix X, indexed from (k  - 1)p+ 1 to
kp. Additionally, the m columns of the matrix Xk,j are a subset of the columns of the
matrix X, indexed from (k - 1)m+ 1 to km.

In the case of m = p = 1 (corresponding to the single-input single-output case),
Xk,j in Definition 5.1 is nothing else but the (k, j)th scalar entry of matrix X\in \BbbC J\times J .

Definition 5.2. Let X\in \BbbC Jp\times m. Then, for 1\leq k\leq J , we say that the kth block
(p,m) entry of matrix X is a matrix in \BbbC p\times m, denoted with Xk, for which its p rows
are a subset of the rows of matrix X, indexed from (k  - 1)p+ 1 to kp. Additionally,
the m columns of matrix xk are exactly the same as those of matrix X (an equivalent
definition can be formulated for X\in \BbbC p\times Jm; however, these details will be skipped).
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Proposition 5.3. Let \widetilde U and \widetilde L be as defined in (5.3) and (5.4), whereby the
quadrature points \omega k \not = \zeta j are distinct for 1\leq k, j \leq J . Also, let

H\infty (s) =C(sI - A) - 1B=H(s) - lim
\~s\rightarrow \infty 

H(\~s).(5.5)

Define the matrices \widetilde N= \widetilde L\ast \widetilde U\in \BbbC Jp\times Jm and \widetilde M= \widetilde L\ast 
A\widetilde U\in \BbbC Jp\times Jm.

Then, for 1 \leq k, j \leq J , the (k, j)th block (p,m) entries of matrices \widetilde N and \widetilde M,
respectively, read as (following Definition 5.1)

\widetilde Nk,j = - \rho k\varphi j
H\infty (\.\imath \imath \omega k) - H\infty (\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
,

\widetilde Mk,j = - \rho k\varphi j
\.\imath \imath \omega kH\infty (\.\imath \imath \omega k) - \.\imath \imath \zeta jH\infty (\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
.

Likewise, defining \widetilde T = \widetilde L\ast 
B \in \BbbC Jp\times m and \widetilde GT = CT \widetilde U \in \BbbC p\times Jm, and by following

Definition 5.2, we find\widetilde Tk = \rho kH\infty (\.\imath \imath \omega k), and \widetilde Gj =\varphi jH\infty (\.\imath \imath \zeta j), for 1\leq k, j \leq J.

By the previous considerations, one can conclude that the main advantage of
QuadBT is that all necessary quantities are approximated by means of transfer func-
tion evaluations. More details and various extensions (e.g., using time-domain data
or for discrete-time systems) can be found in [22]. Based on Proposition 5.3, the data-
driven adaptation of BT can be implemented as shown in Algorithm 5.1. A proof of

Algorithm 5.1 Quadrature-based balanced truncation (QuadBT).
Require: a). Two sets of quadrature weights and nodes for approximating an
integral of the form 1/(2\pi )

\int \infty 
 - \infty f(s)ds, given by \omega k, \rho k, respectively \zeta j , \varphi j for

k, j = 1,2, . . . , J (assuming \omega k \not = \zeta j).
b). Evaluations of the FOM's transfer function H(s), at the quadrature nodes

above.
c). Reduced dimension r, 1\leq r\leq Jmin(m,p).

Ensure: ROM: \~Ar \in \BbbR r\times r, \~Br \in \BbbR r\times m, \~Cr \in \BbbR p\times r, and \~Dr \in \BbbR p\times m.
1: Determine feedthrough term D= lims\rightarrow \infty H(s).
2: Subtract the term D from the original data, and put together measurements

\{ H\infty (\.\imath \imath \omega j)\} Jj=1 and \{ H\infty (\.\imath \imath \zeta k)\} Jk=1, where H\infty (s) =H(s) - D is as in (5.5).

Using the samples and the quadrature weights, construct \widetilde N,\widetilde M, \widetilde T, and \widetilde G as in
Proposition 5.3.

3: Compute the SVD of matrix \widetilde N\in \BbbC Jp\times Jm as

\widetilde N=
\Bigl[ \widetilde Z1

\widetilde Z2

\Bigr] \Biggl[ \widetilde S1 \widetilde S2

\Biggr] \Biggl[ \widetilde Y\ast 
1\widetilde Y\ast 
2

\Biggr] 
,

where \widetilde S1 \in \BbbR r\times r and \widetilde S2 \in \BbbR (Jp - r)\times (Jm - r).
4: Construct the reduced order matrices:

\~Ar = \widetilde S - 1/2

1
\widetilde Z\ast 
1
\widetilde M \widetilde Y1

\widetilde S - 1/2

1 , \~Br = \widetilde S - 1/2

1
\widetilde Z\ast 
1
\widetilde T, \~Cr = \widetilde GT \widetilde Y1

\widetilde S - 1/2

1 , and \~Dr =D
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the proposition can be found in Appendix A; this could provide additional insight and
also contribute to setting the stage for the novel QuadSPA approach presented in the
next subsection.

5.2. Data-driven singular perturbation approximation. The formulation
of the novel data-driven QuadSPA implementation is presented in this subsection.
Similarly to the low-rank implementation of SPA (subsection 4.2), we rely on a con-
struction based on the alternative characterization of Proposition 3.4 and illustrated in
Figure 1. First, an intermediate ROM ( \widetilde Ar, \widetilde Br, \widetilde Cr, \widetilde Dr) approximating the reciprocal
counterpart of the FOM is constructed. Then, by applying the reciprocal transfor-
mation of this low-dimensional intermediate ROM, we obtain the QuadSPA reduced
system approximating the FOM.

However, the intermediate ROM is constructed from data here, following a similar
quadrature approximation as in the data-driven BT; cf. subsection 5.1. This approx-
imation requires a careful choice of quadrature rule. To derive an appropriate one,
and to highlight the similarities to the QuadBT approach, we start from the reciprocal
frequency representations of the Gramians P and Q and then rewrite them in terms
of evaluations of the original transfer function in (2.2). Thus, we do not explicitly use
the equality of the original and reciprocal Gramians (Proposition 3.5), which could
also be used instead. Let

K :\BbbC \rightarrow \BbbC n,n, K (s) = (sI - A ) - 1,

so that the strictly proper part of the reciprocal transfer function s \mapsto \rightarrow H (s) - H (\infty )
can be equivalently expressed as s \mapsto \rightarrow C K (s)B. Similarly to the derivation of
QuadBT, we consider the frequency representations of the Gramians. The recipro-
cal controllability Gramian reads

P =
1

2\pi 

\int \infty 

 - \infty 
K (\.\imath \imath \zeta )BBTK ( - \.\imath \imath \zeta )T d\zeta =

1

2\pi 

\int \infty 

 - \infty 
K

\biggl( 
1

\.\imath \imath \zeta 

\biggr) 
BBTK

\biggl( 
1

 - \.\imath \imath \zeta 

\biggr) T
1

\zeta 2
d\zeta ,

whereby the last equality follows from integration using the substitution s\rightarrow  - 1/s on
F(\zeta ) := 1

2\pi K (\.\imath \imath \zeta )BBTK ( - \.\imath \imath \zeta )T , according to the following derivations:

\int \infty 

 - \infty 
F(\zeta )d\zeta =

\int 0

 - \infty 
F(\zeta )d\zeta +

\int \infty 

0

F(\zeta )d\zeta 

=

\int \infty 

0

F

\biggl( 
 - 1

\zeta 

\biggr) 
1

\zeta 2
d\zeta +

\int 0

 - \infty 
F

\biggl( 
 - 1

\zeta 

\biggr) 
1

\zeta 2
d\zeta =

\int \infty 

 - \infty 
F

\biggl( 
 - 1

\zeta 

\biggr) 
1

\zeta 2
d\zeta .

Based on the reformulation, we consider the following approximation by quadrature,

P \approx \~P =

J\sum 
k=1

\biggl( 
\rho k
\omega k

\biggr) 2

K

\biggl( 
1

\.\imath \imath \omega k

\biggr) 
BBTK

\biggl( 
1

 - \.\imath \imath \omega k

\biggr) T

,

making use of the same quadrature nodes \omega k and the same quadrature weights \rho 2k as

for \widetilde P (in the context of QuadBT). This is analogous to the approximation provided

by (5.2). We define the square-root factor \widetilde U , which fulfills \widetilde P = \widetilde U \widetilde U \ast , as follows:
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\widetilde U =

\biggl[ 
\rho 1
\omega 1

K

\biggl( 
1

\.\imath \imath \omega 1

\biggr) 
B \cdot \cdot \cdot \rho J

\omega J
K

\biggl( 
1

\.\imath \imath \omega J

\biggr) 
B

\biggr] 
\in \BbbC n\times Jm.(5.6)

Similarly, the reciprocal observability Gramian is approximated by quadrature

Q \approx \widetilde Q =

J\sum 
k=1

\biggl( 
\varphi j

\zeta j

\biggr) 2

K

\biggl( 
1

 - \.\imath \imath \zeta j

\biggr) T

C TC K

\biggl( 
1

\.\imath \imath \zeta j

\biggr) 
,

using the same quadrature points \zeta j and the same quadrature weights \varphi 2
j as for \widetilde Q (in

the context of QuadBT). The corresponding square-root factor decomposition reads\widetilde Q = \widetilde L \widetilde L \ast , where

\widetilde L \ast =

\left[     
\varphi 1

\zeta 1
C K

\Bigl( 
1
\.\imath \imath \zeta 1

\Bigr) 
...

\varphi J

\zeta J
C K

\Bigl( 
1
\.\imath \imath \zeta J

\Bigr) 
\right]     \in \BbbC Jp\times n.(5.7)

Certain key quantities of the reciprocal system can be directly approximated from
data, as the following result shows. The construction is similar to the one used in
Proposition 5.3.

Proposition 5.4. Let \widetilde U and \widetilde L be as defined in (5.6) and (5.7), whereby the
quadrature points \omega k \not = \zeta j are distinct and nonzero for 1\leq k, j \leq J . Also, let

H0 :\BbbC \rightarrow \BbbC p,m, H0(s) =H(s) - H(0).(5.8)

Define the matrices \widetilde N = \widetilde L \ast \widetilde U \in \BbbC Jp\times Jm and \widetilde M = \widetilde L \ast A \widetilde U \in \BbbC Jp\times Jm. Then, for
1\leq k, j \leq J , the (k, j)th block (p,m) entries of matrices \widetilde N and \widetilde M , respectively, read
(following Definition 5.1)

\widetilde Nk,j = - \rho k\varphi j
H0(\.\imath \imath \omega k) - H0(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
,

\widetilde Mk,j = - \rho k\varphi j
(\.\imath \imath \omega k)

 - 1H0(\.\imath \imath \omega k) - (\.\imath \imath \zeta j)
 - 1H0(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
.

Likewise, defining \widetilde T = \widetilde L \ast B \in \BbbC Jp\times m and \widetilde G T =C \widetilde U \in \BbbC p\times Jm, we find\widetilde Tk =
\rho k
\omega k

H0(\.\imath \imath \omega k), and \widetilde Gj =
\varphi j

\zeta j
H0(\.\imath \imath \zeta j), for 1\leq k, j \leq J.

Proof. For the following derivations, we introduce abbreviations \nu = (\.\imath \imath \omega k)
 - 1 and

\mu = (\.\imath \imath \zeta j)
 - 1. Simple calculations show that

K (\nu )K (\mu ) =
1

\nu  - \mu 
K (\nu ) [(\nu I - A ) - (\mu I - A )]K (\mu ) = - 1

\nu  - \mu 
(K (\nu ) - K (\mu )) .

This identity is also known as the ``first resolvent formula""; e.g., see Theorem VI.5 in
[37]. By using this formula, together with identities C K (\nu )B =H0(1/\nu ) =H0(\.\imath \imath \omega k)
and C K (\mu )B =H0(\.\imath \imath \zeta j), it follows that

\widetilde Nk,j = (\rho k/\omega k)(\varphi j/\zeta j)C K (\nu )K (\mu )B = - \rho k\varphi j
1

\omega k\zeta j(\nu  - \mu )
C [K (\nu ) - K (\mu )]B

= - \rho k\varphi j
H0(\.\imath \imath \omega k) - H0(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
,
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A498 BJ\"ORN LILJEGREN-SAILER AND ION VICTOR GOSEA

whereby \omega k\zeta j(\nu  - \mu ) = \.\imath \imath \omega k - \.\imath \imath \zeta j was used in the last step. Moreover, using the relation

K (\nu )A K (\mu ) = - 1

\nu  - \mu 
[\nu K (\nu ) - \mu K (\mu )] ,

which is also known as the ``second resolvent formula"" (e.g., according to [37]), we
can show in a similar manner that

\widetilde Mk,j = (\rho k/\omega k)(\varphi j/\zeta j)C (K (\nu )A K (\mu ))B

= - \rho k\varphi j
1

\omega k\zeta j(\nu  - \mu )
C (\nu K (\nu ) - \mu K (\mu ))B

= - \rho k\varphi j
(\.\imath \imath \omega k)

 - 1H0(\.\imath \imath \omega k) - (\.\imath \imath \zeta j)
 - 1H0(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
.

The explicit representations of \widetilde T and \widetilde G (as data matrices) are given as

\widetilde Tk = (\rho k/\omega k)C K (\.\imath \imath \omega k)B =
\rho k
\omega k

H0(\.\imath \imath \omega k),\widetilde Gj = (\varphi j/\zeta j)C K (\.\imath \imath \zeta j)B =
\varphi j

\zeta j
H0(\.\imath \imath \zeta j).

The main contribution of this section, i.e., the data-driven, realization-free im-
plementation of SPA is summarized in Algorithm 5.2.

Remark 5.5. A generalized version of Proposition 5.4 omitting the assumption
\omega k \not = \zeta j for all j, k can be derived, but it requires evaluations of the derivative of the
transfer function. For details, we refer the reader to Appendix B.

5.3. Connections between QuadSPA and the Loewner framework. In this
subsection, we aim at revealing some connections that the newly developed method,
QuadSPA, shares with the Loewner framework in [30]. Note that a connection between
QuadBT and the Loewner framework has already been made in [22, section 3.4].

First, by comparing Proposition 5.4 and Proposition 5.3, it can be shown that
the data matrix \widetilde N used in QuadSPA and the matrix \widetilde N used in QuadBT are exactly
the same. They are actually diagonally scaled Loewner matrices. The other data
matrices, i.e., \widetilde M in QuadBT and \widetilde M in QuadSPA, relate to diagonally scaled shifted
Loewner matrices (see [30] for more details). In QuadBT, the shifts are given by \.\imath \imath \omega k,
1\leq k\leq J , while in QuadSPA, the ``inverted shifts"" (\.\imath \imath \omega k)

 - 1 are used instead.
This new interpretation of QuadSPA gives insight into some observations detailed

in what follows. First, QuadSPA has a computational complexity similar to that of
the Loewner framework. Choosing more data points J will, in general, make the
nonintrusive ROM a closer and closer approximation to the intrusively computed
ROM but will also increase the dimension of the data matrices. Second, the quality
of the ROM strongly depends on the quality of the data. When using data sets with
perturbed (noisy) measurements, or that contain redundant data (not rich enough to
capture the essential properties), the QuadSPA may face challenges similar to those of
the Loewner framework. We intend to study these aspects in more detail for future
works.

As was pointed out in preceding publications, the numerical conditioning of
Loewner matrices can be an important issue. While the application of quadrature
weights (as done in QuadBT and in QuadSPA) may improve the conditioning, regular-
ization strategies might still be necessary. Of course, the SVD is an essential step that
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Algorithm 5.2 Quadrature-based Singular Perturbation Approximation (QuadSPA).

Require: a). Two sets of quadrature weights and nodes for approximating an
integral of the form 1/(2\pi )

\int \infty 
 - \infty f(s)ds, given by \omega k, \rho k, respectively \zeta j , \varphi j for

k, j = 1,2, . . . , J (assuming \omega k \not = \zeta j);
b). Evaluations of the FOM's transfer function H(s);
c). Reduced dimension r, 1\leq r\leq min(Jp,Jm).

Ensure: ROM: \~Ar \in \BbbR r\times r, \~Br \in \BbbR r\times m, \~Cr \in \BbbR p\times r, and \~Dr \in \BbbR p\times m

1: Determine the moment D0 =H(0).
2: Subtract the term D0 from the original data and put together measurements

\{ H0(\.\imath \imath \omega k)\} Jk=1 and \{ H0(\.\imath \imath \zeta j)\} Jj=1, where H0(s) =H(s) - D0 is as in (5.8). Using

the samples and the quadrature weights, construct the data matrices \widetilde N , \widetilde M , \widetilde T ,
and \widetilde G as in Proposition 5.4.

3: Compute the SVD of matrix \widetilde N \in \BbbC Jp\times Jm:

\widetilde N =
\Bigl[ \widetilde Z1

\widetilde Z2

\Bigr] \Biggl[ \widetilde S1 \widetilde S2

\Biggr] \Biggl[ \widetilde Y\ast 
1\widetilde Y\ast 
2

\Biggr] 
,

where \widetilde S1 \in \BbbR r\times r and \widetilde S2 \in \BbbR (Jp - r)\times (Jm - r).
4: Construct the intermediate reduced order matrices:

\widetilde Ar = \widetilde S - 1/2

1
\widetilde Z\ast 
1

\widetilde M \widetilde Y1
\widetilde S - 1/2

1 , \widetilde Br = \widetilde S - 1/2

1
\widetilde Z\ast 
1
\widetilde T , \widetilde Cr = \widetilde G T \widetilde Y1

\widetilde S - 1/2

1 , and \widetilde Dr =D0.

5: Get the ROM by means of the reciprocal transformation of the intermediate
ROM, i.e.,

\~Ar = \widetilde A  - 1
r , \~Br = \widetilde A  - 1

r
\widetilde Br, \~Cr = - \widetilde Cr

\widetilde A  - 1
r , and \~Dr = \widetilde Dr  - \widetilde Cr

\widetilde A  - 1
r

\widetilde Br.

acts as an implicit regularizer, removing the redundancies, provided that the trunca-
tion order is small enough. Other possible strategies are described in [16], while the
robustness of the Loewner framework to noise or perturbations was investigated in
[45, 19]. Also, we note that Algorithm 5.2 requires a complex SVD, which implies
that the resulting ROM realization is, in general complex-valued. However, under the
additional assumption that the quadrature points used in the approximation of either
Gramian are chosen in complex-conjugate pairs, a real-valued ROM can be enforced.
This can be done in a manner similar to that in [2, section A.1] for the Loewner
framework, and in [22, section 4.1] for QuadBT.

6. Numerical study for the data-driven implementation. In this section,
we compare the performance of the quadrature-based, data-driven implementation of
SPA according to Algorithm 5.2, i.e., QuadSPA, with the following model reduction
methods from the literature: the intrusive MATLAB built-in implementations of sin-
gular perturbation analysis (SPA) and balanced truncation (BT), and the quadrature-
based implementation of BT, i.e., QuadBT from [22], realized by Algorithm 5.1.

We consider the following two benchmark examples, one of low dimension and
one of higher dimension, both available in the MOR-Wiki1 database; cf. [10]:

1. The LAbuild system models a motion problem in the Los Angeles University
hospital building, with 8 floors, where each havs 3 degrees of freedom, namely

1https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Category:Benchmark.
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Fig. 4. LAbuild. Frequency response of FOM and the errors using SPA and QuadSPA (left) and
using BT and QuadBT (right); J = 100 and r= 18 are chosen for all ROMs.

displacements in the x and y directions, and rotation. The model has n= 48
states, m = 1 input, and p = 1 output. We refer the reader to [18] for more
details.

2. The ISS12A system models the structural response of the Russian Service 12A
Module of the International Space Station (ISS). The model has n = 1412
states, m= 3 inputs, and p= 3 outputs. We refer the reader to [24] for more
details.

In all reported experiments, the quadrature weights required for QuadSPA and
QuadBT are determined according to the given transfer function measurements and to
the exponentially convergent trapezoid quadrature rule used also in [22]. Other choices
of quadrature rules are, of course, possible; we refer the reader to, e.g., [14, 15, 22],
which consider other, more involved quadrature schemes. Extended details are pro-
vided below; we also refer to the MATLAB code provided in [28], which was used to
generate the results.

6.1. LAbuild model. In the first experiment, we choose J = 100 logarithmically
distributed (sampling) points in the range

\bigl[ 
100,102

\bigr] 
\cdot \.\imath \imath . These will act as quadrature

nodes. We compare the results of applying the two data-based methods against their
intrusive counterparts, i.e., SPA and BT. We fix r = 18 as the dimension of all four
ROMs for the first experiment. In the left pane of Figure 4, we depict the magnitude
of the frequency response for the original system and approximation errors for the two
ROMs computed with SPA and QuadSPA. In the right pane of Figure 4, we depict the
magnitude of the frequency response for the original system and approximation errors
for the two ROMs computed with BT and QuadBT. We notice that the SPA-based
methods provide worse approximation quality in the higher frequency range, while the
BT-based methods provide worse approximation quality in the lower frequency range.
Additionally, it should be noticed that the error curve corresponding to QuadSPA
faithfully reproduces that of SPA. The same can be said about BT.

In the next experiment, we vary the dimension r of the ROM for all four methods
in increments of 6. The number of data points is fixed to the same value as before, i.e.,
J = 100. We compute the \scrH \infty norm of the error systems produced by the four model
reduction methods, scaled by the \scrH \infty norm of the original system. The numerical
results are shown in Table 1. As expected, the approximation errors decrease as r
increases. Additionally, the quadrature-based methods produce errors comparable to
the intrusive counterparts. Actually, for r \in \{ 18,24\} , the QuadSPA method outper-
forms SPA in terms of the \scrH \infty norm approximation. However, for r = 12, the error
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Table 1
LAbuild. Relative approximation errors in the \scrH \infty norm for varying ROM order r (QuadSPA

and QuadBT, with J = 100).

r= 6 r= 12 r= 18 r= 24 r= 30

SPA 2.4185 \cdot 10 - 1 9.3060 \cdot 10 - 2 3.7846 \cdot 10 - 2 1.0922 \cdot 10 - 2 9.0847 \cdot 10 - 4

QuadSPA 2.4971 \cdot 10 - 1 5.7480 \cdot 10 - 1 3.6713 \cdot 10 - 2 1.0836 \cdot 10 - 2 3.9822 \cdot 10 - 3

BT 2.3084 \cdot 10 - 1 1.0317 \cdot 10 - 1 3.8312 \cdot 10 - 2 1.0613 \cdot 10 - 2 9.4410 \cdot 10 - 4

QuadBT 2.7935 \cdot 10 - 1 1.0442 \cdot 10 - 1 3.8193 \cdot 10 - 2 1.0285 \cdot 10 - 2 4.5524 \cdot 10 - 3

Table 2
LAbuild. Relative approximation errors in the \scrH \infty norm for varying quadrature points J,

compared to relative errors of intrusive ROMs (r= 18 for all ROMs).

J = 20 J = 30 J = 50 J = 70 J = 100

QuadSPA 3.4571 \cdot 10 - 1 3.2915 \cdot 10 - 1 6.0762 \cdot 10 - 1 7.0414 \cdot 10 - 2 3.6713 \cdot 10 - 2

QuadBT 7.9048 \cdot 10 - 1 3.8459 \cdot 10 - 1 1.9527 \cdot 10 - 1 9.9991 \cdot 10 - 2 3.8193 \cdot 10 - 2

SPA: 3.7846 \cdot 10 - 2 BT: 3.8312 \cdot 10 - 2

provided by QuadSPA is much higher than that of SPA (due to a pair of rogue poles),
and a similar behavior is noticed for r= 30, both for QuadSPA and for QuadBT.

What we generally observe, is that a higher reduction order r requires more
quadrature nodes J in QuadSPA and QuadBT in order to have fidelity similar to
that of the intrusive methods SPA and BT, respectively. For example, in the latter
experiment, we require about J = 300 points (three times more than before) to ensure
that the quadrature-based methods reproduce the quality of the intrusive methods
for r = 30. With this choice of parameters, the relative \scrH \infty error for QuadSPA is
9.3103 \cdot 10 - 4 for QuadSPA and 7.9862 \cdot 10 - 4 for QuadBT, which is very close to the
errors of SPA and, interestingly, even slightly better than for BT, respectively; cf.
Table 1.

For the next experiment, we vary instead the J parameter between [20,100]. We
fix the dimension of the ROMs as r= 18. We compute again the relative approxima-
tion errors in the \scrH \infty norm for the two quadrature-based methods. The numerical
results are shown in Table 2. As expected, for increasing values of J , the relative
approximation errors are decreasing for both QuadSPA and QuadBT, and typically
they reach the quality of their intrusive counterparts (SPA and BT). Notably, the
quadrature-based methods can lead to better results in exceptional cases. This is
observed here for J = 100. However, this by no means guarantees that for J > 100,
the same trend is valid; e.g., when choosing J = 120, we noticed that BT outperforms
QuadBT.

6.2. ISS12A model. For the ISS12A model, we first choose J = 1000 nodes,
chosen to be logarithmically spaced in [10 - 1,102] \cdot \.\imath \imath . Since the FOM has three inputs
and three outputs, its frequency-response plot is composed of three curves, i.e., cor-
responding to the three singular values of H(\.\imath \imath \omega j)\in \BbbC 3\times 3, for any frequency point \omega j .
The reduction order of all ROMs is fixed at r= 100.

The frequency response plots of the FOM and the reduction errors related to
four ROMs are depicted in Figure 5. We notice a good agreement between all re-
sponses and a comparable approximation quality for the intrusive and nonintrusive
methods. Moreover, as to be expected, the SPA and QuadSPA methods lead to an
improved fidelity in the low frequency range, whereas the errors for BT and QuadBT
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Fig. 5. ISS12A. Frequency response of FOM and the errors using SPA and QuadSPA (left) and
using BT and QuadBT (right); J = 1000 and r= 100 for all ROMs.
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Fig. 6. ISS12A. Distribution of system poles for QuadBT and QuadSPA; r = 100 and J = 1000
were used.

are specifically small for high frequencies.
In Figure 6 we depict the configuration of the system poles for the FOM and

for the two ROMs based on quadrature approximations. The dominant poles of the
original system seem to be well matched in both cases. Moreover, we would like to
mention that the poles in the ROMs occur in complex-conjugate pairs, which is in line
with the real-valued property of the fitted models.

In the next experiment, we vary the number of points J between 600 and 1000,
and we compute the relative approximation errors in the \scrH \infty norm between the
original system and the two ROMs, i.e., computed by means of QuadSPA and QuadBT.
As expected, the approximation error decreases as J increases, as shown in Table 3.

Finally, we compute absolute deviations in the \scrH \infty norm between the ROMs com-
puted with intrusive model reduction methods (SPA and BT) and their data-based
counterparts. We vary J between 200 and 1000 and compute the \scrH \infty quantities
in Table 4. As the number of data points is increased, the deviation between the
quadrature-based implementations QuadSPA and QuadBT and their intrusive imple-
mentation generally decreases and becomes negligible compared to the reduction error
of the method.

7. Conclusion. This paper addressed some open issues corresponding to the
practical usability of the SPA approach. Specifically, two new algorithmic implemen-
tations of this model order reduction method were proposed with different use cases
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Table 3
ISS12A. Relative approximation errors in the \scrH \infty norm for varying number J of quadrature

points (ROM dimension r= 100).

J = 600 J = 800 J = 1000

QuadSPA 5.6244 \cdot 10 - 1 1.6758 \cdot 10 - 1 3.2221 \cdot 10 - 2

QuadBT 6.0982 \cdot 10 - 1 4.4826 \cdot 10 - 2 3.2171 \cdot 10 - 2

SPA: 3.3153 \cdot 10 - 2 BT: 3.2941 \cdot 10 - 2

Table 4
ISS12A. \scrH \infty norm deviations between intrusive and quadrature-based methods for varying J

(ROM dimension is r= 100).

J = 200 J = 600 J = 800 J = 1000

SPA versus QuadSPA 1.7813 \cdot 10 - 2 6.6425 \cdot 10 - 3 1.9466 \cdot 10 - 3 2.6942 \cdot 10 - 4

BT versus QuadBT 2.0562 \cdot 10 - 2 7.1800 \cdot 10 - 3 4.3901 \cdot 10 - 4 2.9588 \cdot 10 - 4

in mind. The first one was a low-rank implementation that can be used for the re-
duction of systems much larger than those manageable by existing implementations
(based mostly on dense solvers). Notably, our SPA implementation has about the
same computational complexity as the state-of-the-art algorithms for BT. Second, we
derived a data-driven, nonintrusive reinterpretation of SPA that is based on a quadra-
ture approximation requiring solely input-output data. Since these data could also be
obtained by measurements, the algorithm can be considered realization-free. It shares
connections with the data-driven reinterpretation of BT from [22] and thus behaves
similarly in some sense. For example, the choice of data is shown to be crucial for
the approximation quality, similarly to the Loewner framework. The findings of this
paper were validated by several numerical tests, which illustrated the good correspon-
dence between our new contributions for SPA and the well-established results for BT.
Future research endeavors could include the study of generalized versions of SPA with
techniques similar to the ones used in this paper, for both intrusive and data-driven
settings.

Appendix A. Proof of Proposition 5.3. For completeness, and since the
proof of our main resultProposition 5.4 follows using similar arguments, we state a
proof for Proposition 5.3 in the following; cf. [22].

Let the assumptions of the proposition hold, and let K : \BbbC \rightarrow \BbbC n,n be given by
K(s) = (sI - A) - 1, so that H\infty (s) =CK(s)B, as well as

\widetilde L\ast 
=

\left[   \rho 1CK(\.\imath \imath \omega 1)
...

\rho JCK(\.\imath \imath \omega J)

\right]   and \widetilde U= [\rho 1K(\.\imath \imath \omega 1)B \cdot \cdot \cdot \rho JK(\.\imath \imath \omega J)B] .

A direct calculation shows that

K(\.\imath \imath \omega k)K(\.\imath \imath \zeta j) =
1

\.\imath \imath \omega k  - \.\imath \imath \zeta j
K(\.\imath \imath \omega k) [(\.\imath \imath \omega kI - A) - (\.\imath \imath \zeta jI - A)]K(\.\imath \imath \zeta j)

= - 1

\.\imath \imath \omega k  - \.\imath \imath \zeta j
(K(\.\imath \imath \omega k) - K(\.\imath \imath \zeta j)) .
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By the latter, we conclude that

\widetilde Nk,j = \widetilde Lk
\widetilde Uj = \rho k\varphi jCK(\.\imath \imath \omega k)K(\.\imath \imath \zeta j)B= - \rho k\varphi j

\.\imath \imath \omega k  - \.\imath \imath \zeta j
(CK(\.\imath \imath \omega k)B - CK(\.\imath \imath \zeta j)B)

= - \rho k\varphi j
H\infty (\.\imath \imath \omega k) - H\infty (\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
.

Similarly, by using the fact that

K(\.\imath \imath \omega k)AK(\.\imath \imath \zeta j) =
1

\.\imath \imath \omega k  - \.\imath \imath \zeta j
K(\.\imath \imath \omega k) [\.\imath \imath \zeta j(\.\imath \imath \omega kI - A) - \.\imath \imath \omega k(\.\imath \imath \zeta jI - A)]K(\.\imath \imath \zeta j)

= - 1

\.\imath \imath \omega k  - \.\imath \imath \zeta j
(\.\imath \imath \omega kK(\.\imath \imath \omega k) - \.\imath \imath \zeta jK(\.\imath \imath \zeta j)) ,

we can write\widetilde Mk,j = \rho k\varphi jCK(\.\imath \imath \omega k)AK(\.\imath \imath \zeta j)B= - \rho k\varphi j

\.\imath \imath \omega k  - \.\imath \imath \zeta j
(\.\imath \imath \omega kCK(\.\imath \imath \omega k)B - \.\imath \imath \zeta jCK(\.\imath \imath \zeta j)B)

= - \rho k\varphi j
\.\imath \imath \omega kH\infty (\.\imath \imath \omega k) - \.\imath \imath \zeta jH\infty (\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
.

Finally, the representation of \widetilde T and \widetilde G (as data matrices) claimed in the proposition
also follows in a straightforward manner.

Appendix B. An extension of Proposition 5.4. The assumption \omega k \not = \zeta j for
k, j \in \{ 1, . . . , J\} can be omitted in Proposition 5.4. However, in those cases, samples
corresponding to the derivative of the transfer function are required.

The required adaptations concern the data matrices \widetilde N and \widetilde M only, given as

\widetilde Nk,j =

\left\{    - \rho k\varphi j
H0(\.\imath \imath \omega k) - H0(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
, \omega k \not = \zeta j ,

 - \rho k\varphi j
d
dsH0(s)s=\.\imath \imath \zeta j , \omega k = \zeta j ,

\widetilde Mk,j =

\left\{    - \rho k\varphi j
(\.\imath \imath \omega k)

 - 1H0(\.\imath \imath \omega k) - (\.\imath \imath \zeta j)
 - 1H0(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
, \omega k \not = \zeta j

 - \rho k\varphi j

\bigl( 
(\.\imath \imath \zeta j)

 - 1 d
dsH0(s)s=\.\imath \imath \zeta j  - (\.\imath \imath \zeta j)

 - 2H0(\.\imath \imath \zeta j)
\bigr) 
, \omega k = \zeta j .

In light of the proof that was presented for Proposition 5.4, it only remains to show
the validity of the representations \widetilde Nk,j and \widetilde Mk,j for the special case \omega k = \zeta j . We do
this by considering the limit \omega k \rightarrow \zeta j of the representations that have already been
shown for \omega k \not = \zeta j using the classical L'Hospital's rule.

For \widetilde Mk,j with \omega k = \zeta j , the crucial step is

lim
\omega k\rightarrow \zeta j

H0(\.\imath \imath \omega k) - H0(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
= lim

\omega k\rightarrow \zeta j

d
ds (H0(s) - H0(\.\imath \imath \zeta j))s=\.\imath \imath \omega k

d
ds (s - \.\imath \imath \zeta j)s=\.\imath \imath \omega k

=
d

ds
H0(s)s=\.\imath \imath \zeta j .

From the latter result, the claimed representation directly follows. Similarly, the
expression for \widetilde Nk,j and \omega k = \zeta j can be shown using

lim
\omega k\rightarrow \zeta j

(\.\imath \imath \omega k)
 - 1H0(\.\imath \imath \omega k) - (\.\imath \imath \zeta j)

 - 1H0(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
=

d

ds

\bigl( 
s - 1H0(s)

\bigr) 
s=\.\imath \imath \zeta j

= (\.\imath \imath \zeta j)
 - 1 d

ds
H0(s)s=\.\imath \imath \zeta j  - (\.\imath \imath \zeta j)

 - 2H0(\.\imath \imath \zeta j).
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the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://doi.org/10.5281/zenodo.7671264 as well as in the
accompanying supplementary materials (CodeBalancedSPA.zip [local/web 6.62MB]).
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