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ABSTRACT

Massive stars are linked with diverse astronomical processes and objects including star formation,

supernovae and their remnants, cosmic rays, interstellar media, and galaxy evolution. Understanding

their properties is of primary importance for modern astronomy, and finding simple rules that charac-

terize them is especially useful. However, theoretical simulations have not yet realized such relations,

instead finding that the late evolutionary phases are significantly affected by a complicated interplay

between nuclear reactions, chemical mixing, and neutrino radiation, leading to non-monotonic initial

mass dependencies of the iron core mass and the compactness parameter. We conduct a set of stellar

evolution simulations, in which evolutions of He star models are followed until their central densities

uniformly reach 1010 g cm−3, and analyze their final structures as well as their evolutionary properties

including the lifetime, surface radius change, and presumable fates after core collapse. Based on the

homogeneous data set, we have found that monotonicity is inherent in the cores of massive stars. We

show that not only the density, entropy, and chemical distributions, but also their lifetimes and explo-

sion properties such as the proto-neutron-star mass and the explosion energy can be simultaneously

ordered into a monotonic sequence. This monotonicity can be regarded as an empirical principle that

characterizes the cores of massive stars.

Keywords: Stellar evolution — Core Collapse Supernovae

1. INTRODUCTION

Massive stars are an important component of the uni-

verse. Throughout their lifetime, they affect ambient

environments by emitting intense photon radiation and

powerful stellar winds (Langer 2012). Massive stars

are also important as progenitors of core-collapse super-

novae (CCSNe). CCSNe allows us to observe the dis-

tant universe as luminous transients (e.g. Modjaz et al.

2019) and are one of the main drivers of the chemo-

dynamical evolution of galaxies (Woosley et al. 2007;

Nomoto et al. 2013). These explosions produce neutron

stars (NSs) and black holes (BHs), and they may also
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trigger star formation (e.g. Girichidis et al. 2020). The

remnants left behind after the explosion are observed as

supernova remnants, which can be a source of cosmic

rays (Vink 2012; Blasi 2013). Understanding the prop-

erties of massive stars is, thus, crucial for entire fields in

modern astronomy.

One-dimensional stellar evolution simulations have

shown that robust monotonicity is inherent in the struc-

ture and the evolution of main-sequence stars (e.g. Kip-

penhahn & Weigert 1990). Namely, strong correlations

have been found between the fundamental parameter of

the initial mass of the star, and stellar properties such

as luminosity, radius, and lifetime. The term, ‘massive

star’, already implies that the initial mass is also useful

to distinguish stars that eventually experience core col-

lapse from the others which form white dwarves at the

end of their lives. However, previous works have also
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shown that the initial mass is not applicable for charac-

terizing the sub-populations of massive stars. For exam-

ple, the importance of the mass of the iron core has been

recognized for many years (Woosley & Weaver 1986;

Nomoto & Hashimoto 1988, and references therein), and

interestingly, the iron core mass shows a significant non-

monotonic dependence on the initial mass. In particu-

lar, the steep increase of the iron core mass has been

attributed to the transition from the convective to the

radiative nature of central carbon burning (Woosley &

Weaver 1986, see also, Timmes et al. 1996).

The subject above can be rephrased as the question of

whether there is a single parameter that has the capa-

bility to characterize the evolutionary properties of the

cores of massive stars, such as the core mass, the en-

tropy, and the lifetime. From a theoretical point of view,

the existence of such a parameter is non-trivial. First

of all, the hydrostatic structure of a star has infinite

degrees of freedom derived from the pressure-density re-

lation, or equation of states (EOS), given the central

density. Since EOS is in reality determined by entropy

and composition, for a simple relation to holding for the

sequence of stellar structures, the composition and en-

tropy distributions must satisfy another simple relation.

However, it seems difficult to establish such a simple

relationship in the cores of massive stars. This is funda-

mental because the nuclear reactions and neutrino en-

ergy losses that occur inside massive stars are strongly

dependent on temperature and density. These reactions

not only directly affect the composition and entropy dis-

tributions, but also indirectly complicate them by caus-

ing core convection. As a result, the composition and

entropy distributions of massive star cores become gen-

erally very complex.

Interesting implications have been obtained from re-

cent investigations about the progenitor-explosion con-

nection. A significant increase in the number of ob-

served CCSNe in recent decades has resulted in nu-

merous intriguing correlations. For Type II SNe show-

ing lines of hydrogen in the spectrum, correlations

have been suggested between 56Ni ejecta mass, total

ejecta mass, plateau luminosity, and expansion velocity

(Hamuy 2003; Anderson et al. 2014; Spiro et al. 2014;

Valenti et al. 2015; Müller et al. 2017; Anderson 2019;

Martinez et al. 2022). Similarly, correlations among ki-

netic energy, ejecta mass, and 56Ni ejecta mass have

been found for the stripped-envelope SNe (SE-SNe) con-

sisting of types IIb, Ib, and Ic (Lyman et al. 2016; Tad-

dia, F. et al. 2018; Anderson 2019; Barbarino et al. 2021,

see also Meza & Anderson 2020; Saito et al. 2022). Given

that SN explosions can be defined as the solution to the

initial value problem initiated by the collapse of the core

of a massive star, the diversity and the correlations in

the properties of the explosions should essentially come

from the structure of the progenitor star.

Not all massive stars successfully explode and leave

NSs behind. Some will explode but still form a BH as a

result of accretion after shock revival, while others will

create a BH without shock revival and may not explode

(the ‘failed’ SNe, Kochanek et al. 2008) or may only

have a very weak and sub-luminous explosion (the ‘faint’

SNe, Lovegrove & Woosley 2013). Indeed, the existence

of stellar mass BHs have been indicated by X-ray bina-

ries (cf. Casares & Jonker 2014; Corral-Santana et al.

2016; Tetarenko et al. 2016) and, more recently, by BH

mergers detected by gravitational wave detectors (Ab-

bott et al. 2021; The LIGO Scientific Collaboration et al.

2021a,b). Moreover, a direct indication of BH forma-

tion has been obtained from the disappearance of a red

supergiant (RSG) from successive monitoring (Smartt

2009, 2015; Davies & Beasor 2018). Not only the explo-

sion properties but also the explodability, i.e., whether

a massive star successfully explodes or not, should also

be determined by the progenitor structure. Then, the

important question is what is the property that controls

the explodability and the properties of successful explo-

sions?

Several studies have investigated the progenitor-

explosion connection by conducting systematic simula-

tions of hydrodynamical evolution after core collapse

(O’Connor & Ott 2011; Ugliano et al. 2012; Pejcha &

Thompson 2015; Perego et al. 2015; Sukhbold et al.

2016; Ertl et al. 2016; Müller et al. 2016; Ebinger et al.

2018, 2020; Ertl et al. 2020) and suggested the possi-

bility of characterizing the explosion properties based

on one or two simple parameters that characterize the

progenitor structure. One example is the so-called com-

pactness parameter, which was defined by O’Connor &

Ott (2011) as

ξM =
M/M�

R(M)/1000 km
, (1)

at the time of core bounce, where M and R(M) are the

enclosed mass and the radius as a function of the mass

coordinate. The capability for judging the explodability

(O’Connor & Ott 2011), as well as for characterizing the

properties of CCSN explosions (e.g., O’Connor & Ott

2013; Müller et al. 2016), has been suggested. Similarly,

the efficacy of the set of parameters M4 and µ4, which

are related to the density and entropy distributions, for

judging the explodability was proposed by Ertl et al.

(2016). Since the nature of the CCSN explosion should

be determined by the time evolution of hydrodynamical

quantities such as accretion history, and thus the func-
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tional form of the density distribution throughout the

core, it is surprising to conclude that a judgment can

be made based on such partial and limited information

as the compactness parameter. It should be noted here

that the above works have utilized either a paramet-

ric one-dimensional hydrodynamic code or a simplified

semi-analytical model to estimate the explodability. In

this regard, Burrows et al. (2020) concluded that the

compactness is not a measure of the explodability based

on the results of state-of-the-art three-dimensional sim-

ulations. Further research is still needed to settle the

true efficacy of compactness.

Nevertheless, the concept of discerning the exploding

or non-exploding progenitors from a single parameter

may be consistent with observations. So far, dozens of

SN progenitors that were accidentally imaged before the

SN explosion have been identified. By analyzing these

pre-explosion images, the nature of the progenitors of SN

explosions can be estimated, and it has been reported

that there is a lack of luminous progenitors characterized

by logL/L� & 5.1 (the missing RSG problem; Smartt

2009, 2015, however, see Davies & Beasor 2018). Hori-

uchi et al. (2014) have further pointed out another prob-

lem, the supernova rate problem, i.e., the deficiency of

cosmic supernova rate compared to the cosmic star for-

mation rate. And they have shown that if massive stars

with compact structures characterized by ξ2.5 & 0.2 fail

to explode as canonical SNe, then not only the SN rate

problem but also the missing RSG problem can be solved

simultaneously.

Similar to the iron core mass, the compactness param-

eter is also known to have a non-monotonic initial mass

dependence. The non-monotonicity is affected espe-

cially by convective shell burnings of carbon and oxygen

(Sukhbold & Woosley 2014; Chieffi & Limongi 2020),

and thus depends on the treatments of input physics

including convective boundary mixing, semi-convection,

the 12C(α,γ)16O reaction rate, as well as the mass-loss

rate and the metallicity (Sukhbold & Woosley 2014;

Sukhbold et al. 2018; Sukhbold & Adams 2020; Chieffi

& Limongi 2020). As a particularly interesting find-

ing, a strong correlation between the compactness pa-

rameter and the iron core mass has been recognized in

many works (e.g., O’Connor & Ott 2011; Ertl et al. 2016;

Schneider et al. 2021, see also Sukhbold & Woosley 2014

for the binding energy outside the iron core, Chieffi &

Limongi 2020 for compactness parameters defined at dif-

ferent locations, and Schneider et al. 2021 for the core

entropy and masses of carbon- and neon-free regions).

In this work, we aim to find a simple relation, which

can be used to characterize the core properties of mas-

sive stars, by conducting the simulation of the massive

star evolution. Even if it exists, such a relation could be

subtle, and hence, there is concern that some influence,

whether physical or numerical, may obscure the relation.

The wind mass-loss and H shell burning could be such

an effect that impacts the initial-mass to core mass rela-

tions as well as the core structure. In order to avoid such

complications, we follow the evolution of the helium star

model, which is not affected by the aforementioned ef-

fects and can be regarded as an idealized helium core of

a massive star. Although the models cannot be directly

compared to observations, we assume that the qualita-

tive tendencies are still common to more realistic models

and, hopefully, to real stars.

In the next section, we describe the two theoretical

frameworks that we utilize in this work; the stellar evo-

lution code and the semi-analytic code that is developed

following Müller et al. (2016) and used to estimate prop-

erties of the post-collapse evolutions. In section 3, first,

an alternative indicator of the density structure, Mff ,

is introduced, which has a more intuitive definition as

well as a better convergency than the compactness pa-

rameter during the late time evolution. Then we show

that the global (but still inner) density structure of the

CCSN progenitors can be well sorted according to the

Mff order. In section 4, correlations between Mff and

two other evolutionary properties, the remaining time

till collapse and the stellar radius, as well as explosion

properties including the explodability are investigated.

We discuss the robustness of the correlations by com-

paring stellar models obtained from different codes and

settings and discuss the observational relevance of the

newly found lifetime-core structure correlation to the

pre-collapse mass ejection in section 5. The summary

and conclusion are given in section 6.

2. METHOD

2.1. The stellar evolution code

The evolution of single He stars is calculated using

the HOSHI code (Takahashi et al. 2018; Takahashi &

Langer 2021). The initial chemical composition is set to

pure helium, and the initial metallicity is zero. The in-

put physics used in the code is almost the same as that

used in Takahashi & Langer (2021), so we omit writing

the details here and describe only the differences. First,

while the code is capable of treating the time evolution

of the stellar rotation and the magnetic fields, these are

neglected in the present models. Also, wind mass loss

is not taken into account in the current modeling. The

nuclear reaction network includes 300 isotopes ranging

from n and p to 80Br. The complete list is given in

Takahashi et al. (2018). The 12C(α,γ)16O rate of de-

Boer et al. (2017) is applied for our fiducial models.
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Figure 1. Relation between the He star mass and the CO
core mass. As a result of applying a minimal convective
boundary mixing for the core He burning, this relation is
almost identical to models with completely neglect the con-
vective boundary mixing.

The effect of convective boundary mixing is treated as

a diffusive process as described in Takahashi & Langer

(2021), however, the effect is set to be minimal as a very

small control parameter of fov = 0.001 is applied for the

current models.

We calculate stellar evolution for a total of 128 mod-

els with different initial masses. The initial mass in-

terval (dMini) is changed for light, intermediate-mass,

and heavy stars. For the lightest stars in the range

Mini/M� ∈ [2.0, 9.1], we calculate 72 models using

dMini/M� = 0.1, and for the intermediate mass range

Mini/M� ∈ [9.2, 14.0], 25 models are calculated with

dMini/M� = 0.2. For the heavier side Mini/M� ∈
[14.5, 29.5], an increment of dMini/M� = 0.5 is used

(31 models).

For each model, the evolution from the He-zero-age-

main-sequence (HeZAMS) phase until the central den-

sity, ρc, reaches 1010 g cm−1 is calculated unless the

simulation stops due to convergence problems. We

have confirmed that the star has already lost hydro-

static stability with this final central density. Con-

vergence problems happen for the lowest mass models

with Mini ≤ 2.7M�, where two models stop during

the shell carbon burning phase (Mini/M� = 2.0, 2.1),

five models stop after the formation of the ONe core

(Mini/M� ∈ [2.2, 2.6]), and one model of Mini/M� = 2.7

stops during the shell O+Ne burning phase. After re-

moving the 8 non-convergent models, we obtained in

total of 120 progenitor models of CCSNe.

As a result of neglecting the wind mass loss, the CO

core mass (MCO) distribution obeys a highly monotonic

relation with the He star mass (Fig. 1). In this work,

MCO is defined as the lower mass limit of the region

where the helium mass fraction exceeds 0.01. The usage

of other definitions (such as based on the heating rate) is

possible but the qualitative results would be unchanged.

Hereafter, we will use the CO core mass, instead of the

He star mass, as the model indicator.

2.2. Müller’s semi-analytic model

In order to estimate the fate after core collapse, a semi-

analytic code has been developed following the descrip-

tion in Müller et al. (2016). By integrating a few ordi-

nary differential equations, Müller’s semi-analytic model

provides the result of the post-collapse evolution includ-

ing the fate and the explosion properties such as the

explosion energy and the remnant (NS) mass if the pro-

genitor is estimated to successfully explode.

This model relies on the delayed neutrino-heating

mechanism for CCSNe, in which a fraction of the grav-

itational energy released by the accretion is converted

into thermal energy as a result of the neutrino energy

transport. Hence, the shock revival is assumed to hap-

pen if the neutrino heating timescale becomes shorter

than the advection timescale, τheat < τadv. Each of the

timescales is estimated based on scaling relations and fit-

ting formulae obtained from realistic simulations. Shock

propagation after the revival is treated differently de-

pending on whether the shock is strong enough to blow

off the post-shock material. In the earlier phase, the

post-shock material is still bound and a fraction of the

shocked material is assumed to accrete onto the central

remnant, leading to the growth of the remnant mass as

well as the additional energy injection. On the other

hand, all the shocked material is ejected in the later

phase, and accordingly, the remnant mass becomes con-

stant and the explosion energy is changed only by the

explosive nucleosynthesis. The transition is assumed to

take place when the post-shock velocity exceeds the lo-

cal escape velocity, vpost > vesc.

An outline of the flow that determines fate is as fol-

lows. First, it is assumed that stars that do not expe-

rience shock revival fail to explode and eventually form

BHs. Of those that experience shock revival, stars that

are affected by significant matter accretion after shock

revival are also assumed not to explode and form BHs.

The judgment on this is based on the evolution of either

the proto-neutron star (PNS) mass, diagnostic explosion

energy, or redshift correction at the surface of the PNS.

Eventually, stars that experience shock revival and are

affected by minimal matter accretion are assumed to

successfully explode and form NSs. BH formation can

be accompanied by matter ejection if an accretion disk

surrounding the central BH is formed (e.g., Just et al.

2022; Fujibayashi et al. 2022) or if a large energy loss

due to neutrinos occurs (Lovegrove & Woosley 2013).
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However, the possibility of a successful explosion from a

BH forming progenitor is not considered in our model as

in Müller’s original work, given the huge uncertainties

in the current theory.

We have carefully constructed the code and have con-

firmed that it yields largely consistent results with the

original work. Hence, we believe that the conclusions

regarding the fate presented in this work will be unaf-

fected by the different implementations of this model.

Nevertheless, some disagreements have remained. For

the traceability, we provide our implementation of the

model in the Appendix.

The advantage of utilizing a semi-analytic model is the

low cost of the computation, which enables us to com-

pare the explosion properties for hundreds of progeni-

tors (e.g., Schneider et al. 2021; Aguilera-Dena et al.

2022). On the other hand, care must be taken since

the model relies on many approximated relations. Com-

parison with the most realistic, and thus the most com-

putationally expensive, simulations (e.g., Takiwaki et al.

2016, 2021; Müller et al. 2017; Nagakura et al. 2018; Var-

tanyan et al. 2019; Bollig et al. 2021) and with statistical

properties derived from a number of multi-dimensional

simulations (Nakamura et al. 2015; Summa et al. 2016;

Suwa et al. 2016; Pan et al. 2016; Vartanyan et al. 2018;

Ott et al. 2018; O’Connor & Couch 2018; Burrows et al.

2020) will be needed for verification. For this purpose, a

discussion of whether the trends obtained in this model

are consistent with previous studies is given in the Ap-

pendix.

3. CHARACTERIZING THE STRUCTURE OF

CORE-COLLAPSE SUPERNOVA

PROGENITORS

In this section, we focus on quantities that charac-

terize the structure of massive stars at the pre-collapse

stage. In general, these quantities are divided into three

categories; quantities related to the density structure,

quantities related to the chemical structure, and quan-

tities related to the thermal structure. The first cat-

egory includes the compactness parameter ξM , and a

quantity newly introduced in this work, Mff . Although

we do not discuss the compactness parameter defined

at different locations in detail in this work, correlations

between them have been noted in the literature, e.g.,

Pejcha & Thompson (2015); Chieffi & Limongi (2020).

The masses of bases of the chemically defined layers are

involved in the second category. In particular, the mass

of the iron core, which should be identical to the base

mass of the silicon layer used in this work, is known

to correlate with the compactness parameter. Further-

more, Schneider et al. (2021) have reported that the
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Figure 2. Evolution of ξ2.5 as a function of central density.
Plot is made for zero-metallicity models of MZAMS = 11,
20, 30, 60, and 90 M�, and the ZAMS and the CO core
masses are indicated by the legends. For the MZAMS = 11
M� model, ξ2.5 multiplied by 100 is shown. The reason for
multiplying by the large factor of 100 is that this model has
a CO core mass smaller than 2.5 M� and the reference mass
of ξ2.5 is located in the inflated He layer. The vertical dotted
line is set at ρc = 1010 g cm−3 to make the comparison with
our fiducial He star models easier.

masses of the C-free and Ne-free regions have a CO core

mass dependence similar to that of the compactness and

the iron core mass. Schneider et al. (2021) have also re-

ported qualitatively similar trends of the core entropy as

a function of the CO core mass, which is included in the

third category. The Ertl’s parameters, M4 and µ4, may

also be included in this category since they utilize the

entropy distribution. We will confirm that these corre-

lations indeed arise in our models, and moreover, will

show that they follow an identical monotonic sequence.

3.1. The compactness parameter

As noted by O’Connor & Ott (2011), care must be

taken for the timing of evaluation of the compactness

parameter because the value can change as the star

collapses. To avoid this uncertainty, O’Connor & Ott

(2011) uniformly evaluate the compactness parameter

at the core bounce time. However, calculations until

core bounce may be expensive for a stellar evolution

simulation. Instead, it is beneficial if one has a crite-

rion about the timing, after which the constancy of the

compactness parameter is guaranteed.

Throughout this work, we set 2.5 M� as the reference

mass coordinate to assign the compactness parameter

for a given progenitor structure (ξ2.5). The evolution of

ξ2.5 as a function of central density is shown in Fig. 2.

For this purpose, a sequence of zero-metallicity stellar

models is additionally calculated, and results of models

with initial masses 11, 20, 30, 60, and 90 M� are plot-

ted. Their ZAMS and the CO core masses are indicated
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Figure 3. Distribution of ξ2.5 evaluated at ρc = 1010 g
cm−3. To emphasize the non-monotonicity, the decreasing
trends in MCO ∈ [4.0, 6.2] M� and MCO ∈ [6.9, 8.8] M� and
the increasing trend at MCO ∈ [6.2, 6.9] M� are overlaid with
cyan and red bands.

in the figure as well. It shows that more compact mod-

els require a larger central density for the time evolution

of ξ2.5 to converge. Less compact models that have ξ2.5
. 1.0 when the central density reaches 1010 g cm−3 do

not change their compactness values thereafter. There-

fore, the ξ2.5 measured when the central density reaches

1010 g cm−3 for models with ξ2.5 . 1.0 is expected to be

maintained until core bounce. On the other hand, to

measure converged values of compactness for more com-

pact models characterized by ξ2.5& 1.0, a central density

greater than 1011 g cm−3 is needed1.

For our fiducial He star models, Fig. 3 shows the dis-

tribution of ξ2.5 as a function of the CO core mass, which

is evaluated at ρc = 1010 g cm−3. Note that the results

for models with MCO ≤ 1.4M� (MHe ≤ 2.7M�) are not

included here since evolution simulations for these mod-

els are halted before their central densities reach 1010

g cm−3. Given the results of the examination of the

compactness convergence presented above, the central

density ρc = 1010 g cm−3 is large enough to converge

ξ2.5 for these He star models since all of these models

have ξ2.5 < 1.0, especially ξ2.5 . 0.7 for MCO ≤ 15M�.

The feature of the ξ2.5 distribution will be summarized

as follows: ξ2.5 monotonically increases with the mass

in the less massive end with MCO < 2.6M�. Except

for some offsets, the monotonic behavior is kept until

MCO < 4.0M�. The compactness follows an interesting

decreasing trend with significant scatter and reaches a

local minimum at MCO = 6.2M�. After showing a steep

1 Here, we have implicitly assumed that the convergence of com-
pactness with respect to time evolution depends monotonically
on compactness. This assumption can be confirmed from Fig. 2
and can be inferred from the monotonicity of the cores found in
this study.

increase, it shows a prominent peak at MCO = 6.9M�.

Then a second decreasing trend follows, after which the

second local minimum exists at MCO = 8.8M�. At

last, the compactness follows a monotonically increasing

trend. These are, in particular, very consistent with the

KU series in Sukhbold & Woosley (2014), which is a CO

core model series with a very metal-poor 10−4 Z� initial

composition2.

The non-monotonic behavior has been described in

detail by Sukhbold & Woosley (2014). In accordance

with their analysis, we have confirmed that the first de-

creasing trend in MCO ∈ [4.0, 6.2] M� is due to the

decreasing widths of C burning convective regions (both

the core and the shell convective regions), which is re-

lated to the transition of the convective to radiative na-

ture of central C burning. We have confirmed that the

sudden increase in the range of MCO ∈ [6.2, 6.9] M� as

well as the more gentle increase in MCO ≥ 8.8M� re-

sult from outward migration of the third or second C

burning shells in these mass ranges, and the transitional

inward migration of the second C burning explains the

decreasing trend between them.

There are changes of inclination at MCO = 2.6M�
and 15.6M�. We note that these changes are artificially

introduced through the definition of the compactness

parameter. Namely, the inclination in the compactness

distribution is affected by the chemical composition of

the location where it is estimated because layers of two

different chemical compositions can have different den-

sity gradients. ξ2.5 is evaluated at the enclosed mass of

2.5 M�. While this location is inside the oxygen-carbon

layer in the majority of cases, it is included in the helium

layer for the less massive models with MCO < 2.6M�,

and is included in the inner carbon-free layer for more

massive models with MCO > 15.6M�. Therefore, the

two changes of inclination should not mean qualitative
changes in the density structure.

3.2. The enclosed mass inside an iso-free-fall-time

surface

The compactness parameter may not be the unique

indicator for characterizing the density structure of a

progenitor model. To find another indicator, we utilize

the free-fall time, which can be defined as a function of

2 More smooth ξ2.5 distributions as a function of the CO core mass
can be found in Fig. 21 and 22 of Limongi & Chieffi (2018). This
may be because they have applied wide initial mass spacing be-
tween models and have mixed models with different metallicities
in the figures. Also, the higher carbon mass fraction in their mod-
els (Chieffi & Limongi 2020) could account for the difference.
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Figure 4. Distribution of Mff evaluated at ρc = 1010 g
cm−3. The cyan and red bands are the same as those in
Fig. 3.

the mass coordinate as

τff(M) =
π

2
√

2

√
R(M)3

GM
. (2)

The free-fall time is in proportion to the inverse of the

average density, hence, it becomes a monotonically in-

creasing function as long as the density distribution is

monotonically decreasing. We define the mass coordi-

nate at which the free-fall timescale exceeds a provided

time reference as Mff . In this work, a reference time of

1 s is used3. Owing to the monotonicity of the free-fall

time, a unique solution is found for Mff .

Figure 4 shows the distribution of Mff evaluated when

ρc = 1010 g cm−3. The similarity to the compactness

distribution is apparent. For instance, both ξ2.5 and Mff

follow decreasing trends for MCO ∈ [4.0, 6.2] M� and

MCO ∈ [6.9, 8.8] M�, which are overlaid with the cyan

bands as well as the sudden increasing trends between

them overlaid with the red band. The accurate corre-
spondence may not be so surprising because both quan-

tities are merely determined by ratios between (powers

of) the mass coordinate and the radius.

Nevertheless, there are several benefits of utilizing Mff

instead of ξ2.5. Firstly, the value of Mff is more intuitive

since it provides a rough estimate of the averaged mass

accretion rate during the formation of the PNS. At the

same time, this value can be regarded as an estimate

of the remnant mass, assuming that shock revival oc-

curs in about 1 s after core collapse and that subsequent

3 We do not have a strong motivation to decide the reference time
of 1 s, though it is perhaps closer to the timescale of CCSN
explosion than 0.1 or 10 s. In fact, the results shown later are
insensitive to the choice, and the fact that there is no specific way
to determine the reference time at least up to the zeroth order
is an important property that supports the monotonicity of the
core discussed later.
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mass accretion is negligible. Secondly, Mff is applicable

to a less massive progenitor model in which the refer-

ence mass coordinate (M of ξM ) is outside the CO core.

In such a case, the compactness parameter is evaluated

to be extremely small, while Mff is basically set to be

the CO core mass. Similarly, the monotonically increas-

ing trend in more massive models of MCO > 15.6M�
is now linearly followed. Hence, fewer artifacts are in-

cluded in the Mff distribution. Thirdly, Mff has a better

convergence on the evolutionary phases than ξ2.5. The

evolution of Mff as a function of the central density is

shown in Fig. 5 for the same zero-metallicity models as

in Fig. 2, which shows better convergence of Mff for the

most massive MCO = 34.5M� model than ξ2.5.

3.3. The mass coordinates of bases of chemically

defined layers

A massive star is considered to form an onion-like

chemical structure, in which layers composed of heav-

ier elements are located closer to the stellar center. In
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addition to the density distribution, the chemical distri-

bution is also fundamental to the progenitor structure.

In order to characterize the chemical distribution, we de-

fine base masses, that is, the mass coordinates of bases

of chemically defined layers. For example, the silicon

base mass, MSi,base, is defined as the innermost mass

coordinate where the mass fraction of 28Si firstly ex-

ceeds X(28Si) = 10−2. Similarly, the oxygen base mass

(MO,base) and the carbon base mass (MC,base) are de-

fined by the conditions of X(16O) = 10−3 and X(12C)

= 10−3. Although the reference mass fractions are set

arbitrarily, the base masses defined here will correspond

to the traditional core masses such as the Fe and Si core

masses.

The relation between the base masses and MCO is

shown in Fig. 6. Similar to the Mff distribution, the

distributions of the three base masses clearly share the

basic features of non-monotonicity obtained for the ξ2.5
distribution. The correlation of MSi,base is comparable

to the correlation between the compactness parameter

and the iron core mass shown in O’Connor & Ott (2011).

In addition, we find that MO,base and MC,base, which are

defined at outer layers than MSi,base, also show strong

correlations with ξ2.5 and Mff .

The time evolution of MO,base and MSi,base as a func-

tion of central density is shown in Fig. 7. MO,base is

basically kept constant if ρc > 109 g cm−3. An excep-

tion is the model with MCO = 1.54 M�, but the change

is ∼ 15% and it approaches convergence if ρc & 1010 g

cm−3. On the other hand, MSi,base is farther from con-

vergence since it is defined more inside than MO,base,

where the temperature is higher and the nuclear reaction

timescale is shorter. Conversely, we have confirmed that

MC,base becomes nearly constant at least for ρc > 108 g

cm−3.

3.4. Ertl’s parameters

Ertl et al. (2016) have analyzed the interaction be-

tween matter accretion and neutrino heating and have

proposed a criterion to judge the explodability of CCSN

progenitors, which can discriminate between explosion

and non-explosion with high accuracy of only a few per-

cent exceptions. They have defined two parameters, M4

and µ4, which are related to both the density and en-

tropy distributions, and have used M4 and the prod-

uct of the two, M4µ4, for the criterion. M4 is de-

fined as the mass coordinate at which the entropy per

baryon firstly exceeds the reference value of 4 kB. For

clarity, we express the parameter by M(sk = 4) here-

after in this work. The other parameter, µ4, is the

normalized mass derivative, (dM/dr)/(M�/1000 km),

evaluated at M(sk = 4). Again, we express the pa-
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Figure 7. Same as Fig.2, but for MC,base (top), MO,base

(middle) and MSi,base (bottom).

rameter by µ(sk = 4). In practice, µ(sk = 4) has

been evaluated by numerical differentiation as µ(sk=4)

= ∆M/[r(M(sk = 4) + ∆M) − r(M(sk = 4))] with the

mass interval of ∆M = 0.3M� in the original work, and

has not been directly related to the density atM(sk = 4)

that is implied by the formal definition.

The distributions of M(sk=4) and µ(sk=4) as a func-

tion of MCO are shown in Fig. 8. Both parameters ex-

hibit non-monotonic CO core mass dependencies, which

are very similar to the ξ2.5 and Mff distributions in the

less massive models characterized by MCO . 17 M�.

This property originates from the fact that M(sk=4) is

almost identical to MO,base on the less compact side Mff

. 3.5 M� corresponding to MCO . 17 M�, as Fig. 9

plotting the distribution of M(sk=4) and MO,base as a

function of Mff shows. This is because oxygen burning

forms a strong entropy jump; in fact, M(sk = 4) has

been used as an indicator to specify the O-burning shell

(cf. Heger & Woosley 2010). Hence, the correlation be-

tween M(sk=4) and Mff shown here is essentially iden-
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of Mff . Values are evaluated at ρc = 1010 g cm−3.

tical to the one between MO,base and Mff , which has

been discussed earlier. Meanwhile, the M(sk = 4) and

µ(sk=4) distributions in models characterized by MCO

& 17 M� show completely different trends. The distri-

bution of M(sk=5) as a function of Mff in Fig. 9 shows

that, in models with Mff & 3.5 M� corresponding to the

heavier models, the indicator tracing MO,base shifts from

M(sk = 4) to M(sk = 5) explaining the changes in the

trends. The shift is due to the effect that the entropy of

the entire core is larger for more compact models (see

Section 3.5), and the entropy after the jump exceeds

sk = 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

108 109 1010 1011

(MZAMS, MCO)=

µ
(s
k
=
4
)

central density [g cm-3]

(11, 1.54)x100
(20, 4.01)
(30, 7.82)
(60, 22.6)
(90, 34.5)
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Figure 11. Distribution of the entropy per baryon at the
center evaluated at ρc = 1010 g cm−3. The cyan and red
bands are the same as those in Fig. 3.

Similar to Fig. 5, the evolution of µ(sk = 4) in the

later evolutionary phase is shown in Fig. 10. It shows

that the less massive models with MCO . 20M� and

µ(sk = 4) . 0.2 keep µ(sk = 4) nearly constant in the

later phase of ρc > 109 g cm−3. Besides, we have con-

firmed that M(sk = 4) stays constant independent of

the CO core mass, which is consistent with the iden-

tity between M(sk = 4) and MO,base. Hence, as far

as the identity between M(sk = 4) and MO,base is es-

tablished, both µ(sk = 4) and M(sk = 4) stay constant

during the collapsing phase. The figure also shows that

µ(sk=4) changes by ∼ 30% for the more massive mod-

els. However, this result may not be relevant to us,

because µ(sk = 4) of such massive models will have in-

compatible characteristics with that of the less massive

models because it lacks the identity to MO,base.

3.5. The core entropy
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In Fig. 11, the entropy of the stellar center is shown

as a function of CO core mass. Given the similar shapes

of the distributions, this figure shows that the central

entropy is strongly correlated with the base masses of

the Si, O, and C layers as well as Mff . It is noteworthy

that Schneider et al. (2021) attributes the correlation be-

tween the iron core mass and the central entropy to the

property of quasi-isentropic iron cores. Our results are

consistent with this understanding, but more so, imply

that this correlation can be traced back to earlier evo-

lutionary phases as the correlation extends not only to

the base masses of the inner Si and O layers but also to

the base mass of the C layer.

However, the correlation is not so trivial from the

point of view of stellar evolution because the core en-

tropy should initially correlate with the total mass of

the star, and the total mass is not correlated well with

Mff . In order to develop the monotonic dependence on

Mff , the entropy order must reverse in some models dur-

ing the stellar evolution. The example of the reversal is

illustrated by the evolution in the central density and

temperature plane shown in Fig. 12, in which results of

models with MCO = 3.12, 7.82, and 8.70 M� are com-

pared. They have Mff = 1.94, 2.51, and 1.94 M� and the

mass coordinates of the last shell C burning, MC,base, of

1.85, 2.96, and 1.93 M� for models with MCO= 3.12,

7.82, and 8.70 M�, respectively. In the beginning, the

entropy order coincides with the mass order as expected.

The lowest mass model follows the track of the lowest

entropy, in which several bumpy features (e.g., a bump

at Tc ∼ 108.8 K, a loop at Tc ∼ 109.2 K, bumps at

Tc ∼ 109.3 and ∼ 109.6 K, respectively due to the C, Ne,

O, and Si burnings) appear due to the relatively high

electron degeneracy. The higher mass models initially
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Figure 13. Same as Fig.2 but for the central entropy per
baryon. Note that the later result of ρc & 1011 g cm−3 is
unreliable because the neutrino trapping is not taken into
account in this work.

follow higher entropy tracks, which have fewer bumpy

features. However, the entropy order reverses after the

central Ne burning (Tc ∼ 109.2 K). After this phase, the

most massive model with MCO= 8.70 M� eventually fol-

lows a converging evolution on the track of the lowest

mass model with MCO= 3.12 M�.

Based on the rough concurrence of the start of the

last C burning with the start of the reversal of the en-

tropy order, we speculate that the late evolution after

the central Ne burning can be described as an evolu-

tion of a core that has an effective core mass given by

the base mass of the last C burning shell. The reversal

taking place in the model with MCO= 8.70 M� would

be understood as a relaxation process, in which a core

having a high initial entropy eventually cools to adopt a

lower entropy that is required to contract with a given

small effective mass.

The late-time evolution of the central entropy is plot-

ted in Fig. 13. It shows that the central entropy be-

comes nearly constant for ρc & 109 g cm−3 irrespective

of MCO. This result indicates that the rate of change of

Ye and the accompanied neutrino emission do not sig-

nificantly affect the entropy in the central NSE region

during the early collapsing phase. We note that the

entropy change after ρc & 1011 g cm−3 shown in the

figure is unreliable. This is because our stellar evolution

code does not treat neutrino trapping, which will take

place in such a high-density region. Both the Ye evolu-

tion and neutrino emission will be overestimated in the

high-density regions. The entropy evolution will be less

substantial in the later collapsing phase if the neutrino

processes are properly treated.

3.6. Convergent internal structures of progenitors with

similar Mff
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So far, we have investigated the behavior of parame-

ters that characterize the progenitor structure such as

ξ2.5 and Mff . Although interesting correlations among

these parameters have been found, relevance to the

global structure is not clear. In order to link these
parameters to the global progenitor structure, distribu-

tions of the entropy, density, and chemical elements are

plotted in Fig. 14, in which the two models with MCO=

3.12 and 8.70 M�, the converging evolutions of which

have been discussed in the previous section, are com-

pared.

In spite of the difference in the CO core masses, these

models show a striking resemblance of the entropy distri-

butions, in particular for the inner regions of ∼ 1.9 M�,

which is shown in the top panel. The most important

feature is the coincidence of the significant jumps at

∼ 1.6 M�, which trace the strong heating of the shell O

burning. Not only the locations but also the level dif-

ferences are similar. The entropy structures inside the

jump are also similar, though less significant saw-shaped

bumps, which are remnants from previous shell Si burn-

ing phases, are involved. Mass coordinates of the last

shell C burnings that are indicated by more or less sig-

nificant jumps outside the O burning bases are close as

well. Meanwhile, the outer distributions of shell C burn-

ing are totally different. The entropy of the convective

C burning layers are ∼ 5.1 and ∼ 6.2 respectively for

the less and more massive models. This order originates

from the entropy order of the CO cores. Furthermore,

while the plot includes the high entropy helium envelope

surrounding the CO core of 3.12 M� for the less massive

model, the corresponding structure is out of the plot for

the more massive model as it has a more extended CO

core of 8.70 M�.

The density distributions shown in the middle panel

also validate the close resemblance of the progenitor’s

internal structures. As we have selected the progenitor

models having the same central density of 1010 g cm−3,

they show nearly perfect agreement up to ∼ 1.9M�,

where carbon layers begin. Inside the carbon layer, den-

sity jumps locate at ∼ 1.6M� in both models, which, of

course, coincide with the entropy jump due to the shell

O burning. On the other hand, density distributions

outside the carbon layers are totally different, as they

must connect with the helium layers at different loca-

tions.

Crosses in the top and middle panels indicate the lo-

cations of Mff for both models. By chance, the loca-

tions roughly correspond to the bases of the shell C lay-

ers at ∼ 1.9M�. The Mff depends on the mass and

radius distributions, hence only on the density distri-

bution. Therefore, by having the nearly same density

structures of inner ∼ 1.9M� regions, these two models

give the same Mff for reference times shorter than 1 s.

In turn, these models are also expected to have nearly

the same mass accretion histories up to ∼ 1 s after core

collapse.

Consistent with the similarities confirmed for the en-

tropy and density distributions, the chemical distribu-

tions shown in the bottom panel are also similar for these

two models. Accordingly, the models have similar base

masses of (MSi,base/M�, MO,base/M�, MC,base/M�) =

(1.49, 1.63, 1.85) and (1.50, 1.64, 1.93), respectively.

3.7. One parameter characterization

The similarities discussed in the above section imply

that it is possible to represent the global core structure

based on the parameter Mff , which is calculated from

only partial information about the core structure. To

further investigate this implication, density distributions

of all models are projected by using a color coordinate

in Fig. 15. Models are sorted according to MCO in the

top panel, and each horizontal line shows the density
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Figure 15. Density distributions of all models with a different order, with the MCO order (top panel) and with the Mff order
(bottom panel). Each line shows the density distribution of the inner M ≤ 6 M� region of one model using the color coordinate,
the definition of which is indicated by the right color box. In the top panel, mass coordinates of Mff , MSi,base, MO,base, and
MC,base are additionally plotted by black dashed, black solid, red solid, and blue solid lines, respectively. Instead of Mff , MCO

is plotted by the black-dashed line in the bottom panel.

distribution of one model. The location of Mff is shown

by the black dashed line, and locations of base masses

of MSi,base, MO,base, and MC,base are overplotted by the

black, red, and blue solid lines. Because the central den-

sities of our models are adjusted to be ρc = 1010 g cm−3,

inner density structures of ρ & 109 g cm−3 are nearly

identical. On the other hand, density structures marked

by the color boundaries of ρ = 108, 107, and 106 g cm−3

show similar MCO dependencies to ξ2.5 and Mff . The

models are sorted according to the Mff order in the bot-

tom panel. This plot demonstrates that, by sorting the

models with Mff , the density structure approximately

inside MC,base can be sorted into a highly monotonic

sequence for the wide range of MCO.

In addition to the density structure, the thermal struc-

ture follows a monotonic sequence once the models are

sorted with Mff . This is shown by Fig. 16, in which the

temperature distributions ordered by Mff are shown in

the top panel, and the entropy distributions are in the

bottom. The high monotonicity of the temperature dis-

tributions will explain the strong correlations between

Mff and the chemically defined base masses. This is be-

cause the temperature is the chief determinant of nuclear

reaction rates so the locations of the elemental bases are

well traced by the contour of constant temperature, such
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Figure 16. The same as the bottom panel of Fig. 15, but
for the temperature distributions (top panel) and the entropy
distributions (bottom panel).

as MSi,base by T ∼ 109.6 K, MO,base by T ∼ 109.5 K, and

MC,base by T ∼ 109.3 K. Although the monotonicity in

the entropy distributions is much more complicated than

in the density and temperature distributions, the figure

shows that the central entropy follows the Mff order as

discussed in the previous section. Also, note that the

coincidence of MO,base and the color boundary of the

entropy of sk = 4.0 for models with Mff . 3.5M� or

sk = 5.0 for models with Mff & 2.5M� indicates that

the location of the most significant entropy jump in a

collapsing star also correlates well with Mff as discussed

above.

From this result, we further deduce that the inner

structure of a collapsing star can be identified as first

order by specifying only a single parameter, even though

the late-time stellar evolution, especially the convective

evolution, of CCSN progenitors is quite complicated.

The density-dependent parameter Mff , or equivalently

ξ2.5, is applicable for the sorting. Besides, provided

the strong correlations, other parameters such as base

masses of MSi,base, MO,base, and MC,base or the central

entropy are also plausible.

4. CORRELATIONS WITH OBSERVABLES

So far, we have discussed correlations between quan-

tities that characterize the core structure at the onset

of core collapse. Although these correlations are funda-

mental for improving our understanding of massive star

structure, they are difficult to confirm directly from ob-

servations because the core is hidden deep inside the

star. Therefore, correlations involving observable quan-

tities are equally interesting. In this section, we intend

to find such correlations from quantities that could be

observed, or at least constrained, from current and fu-

ture observations.

Firstly, we analyze the remaining lifetimes from par-

ticular evolutionary phases till core collapse. Secondly,

the surface quantities of the radii and the luminosi-

ties of the models, which would be comparable to those

of envelope-stripped stars in the real universe, are dis-

cussed. Finally, properties of the CCSN including the

PNS mass, the explosion energy, and the explodability

are highlighted because of their particularly high acces-

sibility through transient surveys.

4.1. Remaining time till core-collapse

Once an evolutionary phase is properly defined, the

remaining time from that phase to core collapse can be

evaluated based on a stellar evolution calculation. In

this work, we define evolutionary phases mainly based

on chemical composition. The location of the maximum

temperature is first taken as a reference position for one

time-snapshot (most of the time, it is at the stellar cen-

ter). The evolutionary phase, iphase, is set according to

the chemical composition at the reference position as

iphase =



2, if X4He > 2%,

3, else if X12C > 2%,

4, else if X20Ne > 2%,

5, else if X16O > 2%,

6, else if X28Si > 2%,

7, otherwise,

(3)

and the initial value of iphase = 1 is set for the start of

the simulation, the He ZAMS phase. For each iphase,

the reference element is defined as

elem(iphase) =



4He, (iphase = 2),
12C, (iphase = 3),
20Ne, (iphase = 4),
16O, (iphase = 5),
28Si, (iphase = 6),

(4)

and furthermore, the mass fraction of the reference ele-

ment, Xref =(mass fraction of elem(iphase) at the ref-

erence position), is defined.

The remaining time till core-collapse estimated for our

model set is shown in Fig 17. Similar to Fig. 15, the

remaining times are shown according to the MCO or-

der in the top panel and shown according to the Mff

order in the bottom panel. The rightmost black line
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Figure 17. The remaining time until core-collapse from several evolutionary phases, which are defined based on the chemical
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indicates the start of the simulation of the He ZAMS

phase. The leftmost lines of each color, corresponding to

the boundaries between different iphase, are set to indi-

cate the depletion times of the corresponding elements.

Other thinner lines indicate the depleting processes; in

the beginning of each iphase, the initial reference mass

fraction Xref,0 is recorded, and lines are drawn when

Xref/Xref,0 = 0.9, 0.8, ..., and 0.1. Hence, the thinner

lines of Xref/Xref,0 = 0.9 roughly indicate the beginning

of each nuclear-burning phase but carbon. Since the

mass fraction of 12C has already begun to decrease due

to the 12C(α,γ)16O reaction in the late core He burning

phase, Xref/Xref,0 ∼ 0.7 may provide a better proxy for

the initiation of the core C burning. Also note that a

depletion line indicates the time when the reference el-

ement is depleted at the reference location for the first

time, but it does not necessarily mean the complete de-

pletion of the reference element from the whole core. On

the contrary, the depletion is usually followed by succes-

sive shell burnings. In particular, the shell C burning

phase starts after central C depletion.

The remaining times for the He burning phase show

clear correlations to the CO core mass, thus, to the He

core mass and presumably to the ZAMS mass. Simi-

larly, the remaining times of the C burning phase also

show strong correlations to MCO, though the mass de-

pendency is stronger than the He burning phase. The

least massive models take ∼ 104 yr from the initiation

of core C burning till collapse, while it takes only ∼ 1 yr

for the most massive models in our sample. This huge

difference is due to the significant temperature depen-

dency of the neutrino cooling rate. Besides, a jump at

MCO ∼ 5M� indicates a transition from the convective

to the radiative nature of the central C burning. Above

this transition, the duration of the central C burning is

reduced because convective transport no longer supplies

nuclear fuel to the center.

The later Ne, O, and Si burning phases show peak

structures; the durations are longest locally around

MCO ∼ 6M�, decrease towards the local shortest peak

at MCO ∼ 7M�, increase until MCO ∼ 9M�, then de-

crease constantly. These features are quite consistent

with the trends obtained for the ξ2.5 and Mff distribu-

tions, which are indicated in the top panel as cyan and

red bands. Therefore, clear monotonic correlations can

be manifested when the remaining times are expressed

as a function of Mff , as shown in the bottom panel.

The plot still involves a huge scatter, especially in the

less massive range with Mff ∈ [1.6, 2.3] M�. This scat-

ter is not due to the shuffling of models having smaller

and larger MCO, but rather originates from the scatter

seen in the less massive models with MCO ∈ [3, 6] M�.
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Figure 18. Radius evolution of He star models shown by
the color map overplotted with the distributions of remain-
ing time till collapse from evolutionary phases. The y-axis
is MCOof the model and the remaining time till collapse is
shown by the x-axis: the radius evolution of one model is
indicated by the color change on a horizontal line from the
right side to the left. The color coordinate for the radius
change is shown in the right column.

At present, it is unclear whether this kind of scatter is

realistic or not. The large scatter is likely induced by

the highly non-linear interplay of nuclear burning and

convective mixing, which can significantly affect the life-

times of nuclear burning phases. Hence, real stars would

show the same scatter. However, from a numerical point

of view, such behavior might be enhanced due to coarse

resolutions both in space and time. To answer the ques-

tion, further investigation is needed.

It is noteworthy that the least massive models with

Mff ≤ 1.56 M� (MCO≤ 1.72 M�) start the ‘core Si

burning’ ∼ 1 year before core-collapse. This Si burning

is induced by the off-center O+Ne flash, which takes

place in a low mass oxygen core having a high electron

degeneracy (Umeda et al. 2012; Woosley & Heger 2015).

The relevance of observations is discussed later.

4.2. Radius, luminosity, and effective temperature

The radius evolution of all models is plotted in Fig. 18,

in which the evolutionary phases are also shown. The

mass dependence of the radius evolution up to core C

depletion is rather simple. As a common feature, a He

star model first expands and then contracts during the

core He burning phase. In this phase, the smaller the ini-

tial mass is, the smaller the stellar radius is. Later, this

relation is reversed by the shell He burning; the helium

envelope expands more for less massive models, while it

keeps contracting for more massive models after core He
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Figure 19. Radius (top) and luminosity (bottom) distri-
butions as a function of MCO. In both panels, distributions
recorded at the central C depletion are shown by the cyan
lines, and at the core-collapse by the black lines. The cyan
and red bands are the same as those in Fig. 3.

depletion. The expansion/contraction bifurcation takes

place at MCO ∼ 15 M�.

On the other hand, the evolution after core C deple-

tion has a more complicated mass dependency. The

less massive models with MCO . 4.3 M� except for

the least massive model hardly change the radii for the

later phases, thus |Rcollapse/RCdep| < 0.05 dex, where

Rcollapse and RCdep are the stellar radii at the core-

collapse and core C depletion phases. Models with

MCO ∼ 4.5–6.8 M� expand their radii during Ne and
O burning phases. This is particularly true for mod-

els with MCO ∼ 5.6–6.4 M�, in which Rcollapse/RCdep

can be as large as +0.1 dex. Conversely, models with

MCO ∼ 7.1–8.4 M� contract during the later phases,

resulting in Rcollapse/RCdep ∼ −0.1 dex. More massive

models with MCO & 8.7 M� expand after the core Ne

burning phase. Among them, less massive models with

MCO ∼ 8.7–15.0 M� expand also after the O burning

phase similar to the models with MCO ∼ 4.5–6.8 M�,

while the radii decrease during the later phases for more

massive models with MCO & 15.0 M�.

As a result, the stellar radius shows a smooth relation

with the CO core mass up to C depletion, but eventu-

ally forms distinctive peaks (MCO ∼5–7 M� and ∼ 9–15

M�) and a valley between them by core-collapse. In the

top panel of Fig. 19, the distribution of the stellar ra-

dius at the core-collapse phase and the C depletion is
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Figure 20. Histograms of models labeled with success-
ful or unsuccessful CCSN explosions, which are assessed by
Muller’s semi-analytic model, are shown. Exploding mod-
els are shown in the red bins and non-exploding models are
in the blue bins. The x-axes are set from ξ2.5 (top-left),
Mff(top-right), µ(sk = 4) (bottom-left), and Mµ(sk = 4)
(bottom-right). The threshold lines, below which the model
is supposed to explode, are shown by red dashed lines with
indications of the values, and the false identification numbers
are indicated in the upper right.

shown. The coincidence between the first peak (valley)

and small (large) Mff at MCO ∼ 5–7 (7–9) M� strongly

indicates that this structure originates from different in-

ner core evolutions. Meanwhile, such a structure does

not develop significantly for the luminosity distribution

shown in the bottom panel. Consequently, the peak-

valley structure in the radius distribution appears as a

valley-peak structure in the effective temperature distri-

bution.

4.3. Properties of supernova explosions

Figure 20 shows the relation between the explodabil-

ity and density indicators (ξ2.5 and Mff) and the Ertl’s

parameters. The explodability is estimated based on the

semi-analytic model developed by Müller et al. (2016),

with which we assign ‘explosion’ for models experiencing

the shock revival and forming NSs and ‘implosion’ for

models never experiencing the shock revival or forming

BHs due to the late time accretion. The critical value

of each indicator is determined as the value that would

minimize the false identification number of

(number of imploded models with x < xcrit

+number of exploded models with x ≥ xcrit),

where x ∈ {ξ2.5,Mff , µ(sk = 4),Mµ(sk = 4)}. The false

identification rate is the ratio of the false identification

number to the total model number.
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As for ξ2.5, the figure clearly shows that the abso-

lute value can be used to determine the explodability,

which is consistent with previous works. Besides, we

also find that Mff is as useful as the compactness for

the identification, showing the same false identification

number. Originally, the Ertl’s parameters of µ(sk = 4)

and Mµ(sk = 4) (product of M(sk = 4) and µ(sk = 4))

were used in combination for the fate identification in

Ertl et al. (2016). However, Müller et al. (2016) has

reported that a single-parameter classification only de-

pending on µ(sk = 4) can yield a better false identifica-

tion with their semi-analytic model because the possibil-

ity of the late time BH formation after the shock revival

has been neglected in Ertl et al. (2016). This is why

we compare the results of the fate classification utilizing

one of µ(sk = 4) and Mµ(sk = 4) in this work. These

parameters are also capable of identifying the fate, re-

sulting in similar false identification rates. In summary,

we have found that, based on any of these indicators, ex-

plodability can be judged with roughly equal accuracy.

Although we compute the false identification number

and rate, these are only for determining the optimal

value to identify different fates, and it is not our pur-

pose to determine the precise values. This is because

we do not expect that a complete identification is possi-

ble from approximate methods such as those performed

in this work. False identification rates of about 10% are

obtained for all the indicators in this work, and it should

be interpreted as a typical accuracy when using such an

approximate method. Furthermore, the critical values

derived in this work are not accurate enough for quanti-

tative comparisons. This is because we have found that

the critical values are sensitive to the method applied for

the fate estimate. For example, implosion more likely

takes place if ξ2.5 > 0.36 for our model set, which is

larger than 0.278 obtained in Müller et al. (2016). How-

ever, we speculate this is not due to the different model

set but chiefly due to the different implementations of

Müller’s semi-analytic prescription since a critical value

of 0.33, which is closer to ours than that of Müller et al.

(2016), is obtained even if we apply our implementa-

tion to the same progenitor models used in Müller et al.

(2016). If another method based on, for example, 1D

hydrodynamical simulations were used, even different

values could be obtained. Therefore, we conclude that

the qualitative feature of being able to identify fate is

more robust and reliable than the quantitative features

including the false identification rate and the critical

values.

Explosion properties of (baryonic) PNS mass, explo-

sion energy, nickel ejecta mass, and shock revival time
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Figure 21. Relation between explosion properties estimated
by the semi-analytic model of Müller et al. (2016) and model
indicators. The explosion properties of the PNS mass (top
panels), the explosion energy (second top), the 56Ni ejecta
mass (third top), and the shock revival time (bottom) are
shown by the vertical axis, and the model indicators of Mff

(left panels) and the CO core mass (right) are shown by the
horizontal axis.

are presented as a function of Mff and MCO in Fig. 214.

It shows that these explosion properties, especially the

PNS mass, have strong positive correlations with Mff .

These correlations suggest that the progenitor density

structure would determine not only the explodability

but also the detailed properties of the supernova ex-

plosions. Taking the fact that the supernova explosion

is a genuine non-linear phenomenon into consideration,

the existence of this kind of correlation is non-trivial

and thus interesting. Since the present analysis is based

on the approximate model, further investigations with

more realistic simulations are required. Nevertheless, it

is noteworthy that the correlations shown here are con-

sistent with an interesting correlation between the mass

4 The PNS mass, explosion energy, and nickel ejecta mass are
MPNS, Ediag, and MNi calculated at the simulation end, respec-
tively, and the shock revival time is the time when the condition
theat < tadv is met. For detailed definitions, see the Appendix.
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and the entropy of PNSs that is found from more real-

istic and systematic 1D explosion simulations (da Silva

Schneider et al. 2020). This is because, provided a likely

correlation between the entropies of the nascent NS and

the progenitor’s iron core, the aforementioned correla-

tion results from the correlation between the PNS mass

and the entropy of the progenitor core.

MCO is probably a more accessible parameter by ob-

servations than Mff as it could correlate with the to-

tal ejecta mass both in cases of type II SNe and SE-

SNe. The right column of Fig. 21 indicates that ex-

plosion properties show different tendencies depending

on MCO. In the lower end of MCO . 4M�, explosion

properties, in particular the PNS mass and the explo-

sion energy, obey linear correlations with MCO. This

is due to the linear correlation between MCO and Mff

for these less massive progenitors. Because the CO core

mass range roughly corresponds to the ZAMS mass of

MZAMS . 20M�, and because most SNe may emerge

from the less massive range considering the nature of

the initial mass function, this coincides with the corre-

lations observed for type II SNe (e.g., Müller et al. 2017).

An island of explosion exists for MCO ∈ [8.1, 11.6] M�,

which is consistent with earlier theoretical studies (e.g.,

Ugliano et al. 2012). These massive exploding models

are estimated to yield explosions with relatively larger

NS masses, explosion energies, and 56Ni ejecta masses,

and this could be consistent with observations suggest-

ing the positive correlation between the total ejecta

mass, the 56Ni ejecta mass, and the kinetic energy of

SE-SNe (e.g., Taddia, F. et al. 2018).

5. DISCUSSION

5.1. Monotonicity in other model sets

In this subsection, we aim to check the degree to which

the monotonic relation between the indicator, Mff , and

the global density and temperature distributions is ro-

bust. For this purpose, a similar analysis has been per-

formed for four additional sets of models, in addition to

the set we have described so far (hereafter referred to

as H1). Three of them, H2, H3, and H4 are calculated

using the same stellar evolution code but with different

initial compositions; they have pure helium (H2), solar-

(H3), or zero-metallicity (H4) compositions initially (full

stellar evolution with hydrogen envelopes are treated in

H3 and H4). Another difference is that a reaction rate

of 12C(α, γ)16O of Caughlan & Fowler (1988) multiplied

by a factor of 1.2 is applied for models in these sets. The

fourth set is the one provided by Müller et al. (2016),

which consists of models with solar-metallicity calcu-

lated by the stellar evolution code KEPLER applying
12C(α, γ)16O of Buchmann (1996) multiplied by a factor
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Figure 22. The MCO-Mff relation for different sets. H1
(shown by the black line) is the set we have so far dis-
cussed. Using the same code, but applying different initial
compositions and 12C(α,γ)16O reaction rate, sets H2 (He
star, blue), H3 (solar composition with H envelopes, cyan),
and H4 (zero-metallicity with H envelopes, red) are calcu-
lated. M16 (green) consists of models analyzed in Müller
et al. (2016).

of 1.2. This set is referred to as M16 hereafter. In ad-

dition, these model sets use different termination condi-

tions for stellar evolution simulations; H2 uses the same

condition as H1, stopping the simulation at ρc = 1010 g

cm−3, and H3 and H4 use the condition Tc = 109.9 K.

On the other hand, simulations in M16 terminate when

the collapse velocity anywhere in the core exceeds 1,000

km s−1 (Heger, private communication).

The MCO–Mff relations compared in Fig. 22 show dif-

ferent properties among the model sets. In particular,

the locations, widths, and heights of the peaks seen at

MCO∼ 5–9 M� are different for all sets (The major

peaks are around 6–9 M� for H1, 5–7 M� for H2, 5–

8 M� for H3, 6–9 M� for H4, and 5–6 M� for M16).

The diversity seen in models H1 to H4 indicates that the

MCO–Mff relation is sensitive to the different computa-

tional settings of hydrogen envelopes, metallicity, and
12C(α, γ)16O rate. This result is understandable since

any of those differences result in different C/O ratios

that the CO cores have at their birth (e.g., Sukhbold

& Woosley 2014; Patton & Sukhbold 2020; Sukhbold

& Adams 2020). Moreover, more significant offsets be-

tween H models and model M16 may indicate that the

difference in the stellar evolution code including the re-

action network, EOS, opacity, convective boundary mix-

ing, etc, is as influential as the other settings. We do not

perform a comprehensive analysis in this work as it is

beyond its scope, however, performing such an analysis

is clearly important for future realistic predictions.
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Figure 23. The same as the bottom panel of Fig. 15 but for density (left column) and temperature (right column) distributions
of different sets H2 (top), H3 (second), H4 (third), and M16 (bottom).

Figure 23 shows the projections of density and tem-

perature distributions similar to Fig. 15 and 16 but for

other model sets. Differences exist in the details. For

example, in the M16 model set, the MO,base (shown by

the red line) traces a constant temperature T ∼ 109.6 K,

whereas, in other model sets calculated with the HOSHI

code, it traces a lower constant temperature T ∼ 109.5

K. This would indicate the strong impact of applying

different reaction rates, reaction network, or QSE/NSE

treatments on determining the innermost stellar struc-

tures. Also, due to different termination conditions, the

density and temperature structures below ∼1 M� show

different trends for different model sets, i.e., when com-

pared at the same Mff , the H1 and H2 models show

higher densities and temperatures in the inner regions

than the H3, H4, and M16 models. Nevertheless, the

Mff -based sorting clearly reveals a significant correla-

tion in density, temperature, and compositional struc-

ture for all model sets. Hence, this correlation is likely

to be universal and independent of the prescriptions for

stellar evolution simulations.
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5.2. Mass ejection prior to core-collapse

Recent high-cadence SN surveys have revealed that

many CCSN progenitors experience enhanced mass loss

in the final years before core-collapse, which leads to the

formation of dense circumstellar medium (CSM) (e.g.,

Bruch et al. 2021). The CSM-ejecta interaction is be-

lieved to be the origin of the narrow lines of Type IIn

SNe (e.g., Chevalier & Fransson 1994) as well as Type

Ibn SNe, and the existence of a dense CSM can also be

inferred from the so-called ‘flash-spectroscopy’ (Khazov

et al. 2016; Yaron et al. 2017). More direct evidence

can be obtained from pre-explosion images. Ofek et al.

(2014) has conducted a systematic search for the pre-

cursor eruptions for progenitors of Type IIn SNe and

concluded that most Type IIn progenitors undergo the

precursor eruptions prior to the SN explosion (see also

Strotjohann et al. 2021). Furthermore, it will be possible

to estimate the onset time of the enhanced mass loss by

monitoring the evolution of the spectroscopic features

changing from optically thick to optically thin.

Several theoretical explanations have been proposed

for the mechanism of enhanced mass loss. The high mass

loss rate may be achievable by line-driven winds (Vink,

Jorick S. & de Koter, A. 2002) or super-Eddington

continuum-driven winds (Shaviv 2001; Van Marle et al.

2008). However, considering the peculiar proximity to

the core collapse, other mechanisms such as wave-driven

mass loss (Quataert & Shiode 2012; Shiode & Quataert

2013) or mass ejection powered by off-center nuclear

flashes (Dessart et al. 2010) might be more plausible be-

cause these mechanisms will operate for only later evo-

lutionary phases.

The convective motion inside the star will excite waves

when it hits the convective boundary layers. After the

waves are transported to the surface evanescent region,

some of the energy will be dissipated leading to heating

in the stellar envelope. The convective motion is more

energetic for the later evolutionary phases, so at some

point, this energy transfer may result in mass ejection

from the surface. Theoretical studies have estimated

that this wave-driven mass loss can operate during and

after the Ne burning phase (Quataert & Shiode 2012;

Shiode & Quataert 2013; Fuller 2017; Fuller & Ro 2018).

As we have shown, the remaining lifetime till collapse

for the later burning phases of Ne, O, and Si burnings

have rough anti-correlations to Mff (Fig. 17). Hence, we

expect that the onset time of the wave-driven mass loss

will also show anti-correlations to Mff
5.

In addition, Figure 17 illustrates that the least mas-

sive models of MCO ∈ [1.42, 1.72] M� (M(τff = 1s) ∈
[1.40, 1.56] M�) experience off-center O+Ne flashes due

to the high electron degeneracy, which takes place ∼ 1–

10 yr before core-collapse. Depending on the injected en-

ergy, such flashes may result in mass ejection (Woosley

& Heger 2015), which itself could be observed as SN-

like transients or SN impostors (Dessart et al. 2010).

From the small Mffs, it is expected that the additional

transients triggered by the off-center flashes will be as-

sociated only with the least energetic CCSNe that fi-

nally form the least massive NSs (Suwa et al. 2018). In

the coming decades, the number of SNe, in which both

the explosion properties and the onset time of the fi-

nal enhanced mass loss are estimated, will significantly

increase thanks to the large surveys such as the Rubin

Observatory LSST (Ivezić et al. 2019). We expect that

the further correlations linked via the fundamental cor-

relations with Mff will be verified with future statistics.

6. SUMMARY AND CONCLUSION

We have found that monotonicity is inherent in the

cores of massive stars. The density, entropy, and chem-

ical distributions inside the base of the C burning layer

can be sorted simultaneously if a characterizing param-

eter for the sorting is appropriately given. The correla-

tions between the structural properties discussed in this

work are summarized in the top panel of Fig. 24. Be-

cause of the monotonicity, choosing the characterizing

parameter is arbitrary. The compactness parameter ξ

could be one possibility, but other parameters such as

Mff , the chemically defined base masses, and the core en-

tropy have the same qualitative functionality. We have

also found that not only the final core structure but also

the evolutionary properties of the remaining lifetimes af-

ter neon ignition and the final He star radius obey the

monotonicity (the bottom panel of Fig. 24).

We stress that the existence of such monotonicity is

non-trivial. Indeed, it is well known that the core struc-

ture has no monotonic correlation to the initial stellar

mass. This is because stiff nuclear reaction rates and

neutrino energy loss rates, as well as the non-linear inter-

play between the nuclear reactions and chemical mixing,

bring significant complexity to the entropy and chemical

distributions, and hence, the hydrostatic density struc-

ture inside the core of the massive star.

5 This expectation should be consistent with the anti-correlation
between the onset time and the He core mass indicated by Shiode
& Quataert (2013).
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Figure 24. Matrices showing correlations between structure properties (top) and evolutionary properties (bottom). In the top
panel, the characterizing parameters of MCO, Mff , MHe, MC,base, MO,base, MSi,base (in units of M�), ξ1.5, ξ2.5, sk,c, and M4 are
compared, and in the bottom panel, the logarithm of the remaining lifetimes from the beginning of the He burning phase and
from the depletion of He, C, Ne, O, and Si at the reference points (in units of Myr), as well as the logarithm of radius (R�) and
luminosity (L�) at the surface at core-collapse, are shown together with MCO and Mff . The face colors indicate Spearman’s
rank correlation coefficients, which are also indicated by the numbers included in each sub-panel, with the color scale shown in
the top-right color bar.
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Figure 25. The same as Fig. 24, but for CCSN explosion
properties including PNS mass (M�), explosion energy (1051

erg), nickel ejecta mass (M�), and shock revival time (s).
The correlations shown here are made for successfully ex-
ploded models only.

Based on the semi-analytic model of Müller et al.

(2016), we have suggested the existence of correlations

between Mff and explosion properties such as explosion

energy, 56Ni ejecta mass, shock revival time, and espe-

cially PNS mass (Fig. 25). This should be interpreted as

the result of the more general monotonicity, in particular

the correlation betweenMff and the global density struc-

ture of the core. In this sense, the monotonicity of the

core provides a unified understanding of the progenitor-

explosion connection that has been investigated in the

past decade. Furthermore, as long as the assumed ex-

plosion mechanism is linked to the density distribution

of the progenitor’s core and does not have an irregular

dependency, the outcome of any theoretical investiga-

tions will also be characterized by the same parameter

that is connected to the monotonicity of the progenitor’s

core. In a real explosion, however, progenitor properties

other than the density distribution, such as the stellar

rotation, the convective turbulence, and the magnetic

fields may have an equally important influence.

The monotonicity will be useful for some aspects. For

example, in order to reduce the computational cost, pop-

ulation synthesis studies have used simple prescriptions

to determine the fate of the star that is based on the

initial, the final, and the He- and CO-core masses (e.g.,

Belczynski et al. 2010; Kinugawa et al. 2014; Spera et al.

2019; Rodriguez et al. 2016; Banerjee 2017; Tagawa et al.

2020). Utilizing the core monotonicity will further re-

duce the complexity and may improve the accuracy of

such a prescription. It will be also useful for construct-

ing a parametric model of CCSN progenitors (e.g. Suwa

& Müller 2016). The monotonicity will be particularly

substantial as a sanity check, and it may also improve

the efficiency of parametric studies by setting a con-

straint to the parameter space.

The monotonicity we have shown is far from perfect,

and many outliers have been found. The scatter might

be due to some physical effects, but equally possible is

that they originate from numerical errors. Improving

numerical accuracy (e.g., increasing the spatial resolu-

tion, Sukhbold et al. 2018) will be worthwhile to disen-

tangle the possibilities. Besides, it will be interesting to

search for higher-order correlations.

The last note about the robustness of our result is that

our calculation is based on 1D stellar evolution simula-

tions, in which significant simplifications are involved in

many aspects. One critical issue will be the treatment of

convection. In our calculation, both energy and chem-

ical transport due to the convective turbulence relies

on the traditional mixing-length theory (Böhm-Vitense

1958). Applying a more sophisticated theory (e.g., Ar-

nett et al. 2019; Arnett et al. 2018; Yokoi et al. 2022)

with a more reliable treatment for the convective bound-

ary mixing may affect the result. Similarly, it will be

interesting to investigate the effect of stellar rotation

(Maeder & Meynet 2000; Heger et al. 2000) and stellar

magnetic fields (e.g., Takahashi & Langer 2021) on the

monotonicity.
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Facilities: PC cluster (NAOJ, CfCA) Software: HOSHI (Takahashi et al. 2018; Takahashi

& Langer 2021)

APPENDIX

A. MULLER’S SEMI-ANALYTIC MODEL

Although the complete physical concept is well described in Müller et al. (2016), we have observed that subtle

differences in the implementation can affect the result considerably. In order to improve the traceability of our work,

here we describe how the semi-analytic model is implemented and provide results of the comparison between the original

work. The physical constants applied are c = 3.0×1010 cm s−1, G = 6.67408×10−8 cm3 s−2 g−1, M� = 1.9884×1033 g,

mu = 1.66054× 10−24 g, and arad = 7.5657× 10−15 erg cm−3 K−4 for the speed of light, the gravity constant, the solar

mass, the unified atomic mass unit, and the radiation constant, respectively.

A.1. Basic equations

Throughout the post-collapse evolution, time evolutions of the PNS mass MPNS, the explosion energies Eimm and

Ediag, and the ejected nickel mass MNi are evaluated. Before shock revival, the mass of the PNS is identical to the

stellar mass, MPNS(i) = M(i), where i is the grid number and M(i) is the (cell-surface) enclosed mass. Other quantities

are set to zero.

We assign a time for each grid, with which the mass shell reaches the stellar center after the core collapse, as

t(i) =

√
π

4Gρave
, (A1)

with the average density ρave = M(i)/(4πr3(i)/3) and the (cell-surface) radius r(i). Consequently, the mass accretion

rate is given by

Ṁ(i) =
2M(i)

t(i)

ρ(i)

ρave(i)− ρ(i)
, (A2)

where ρ(i) is the (cell-center) density.

The gain and shock radii at time t(i) are estimated by

rg(i) =
3

√
r3
0 + r3

1

(
Ṁ(i)

M�

)(
MPNS(i)

M�

)−3

(A3)

with the parameters r0 = 12 km and r1 = 120 km and

rsh(i) = αturb × 0.55 km×
(

Lν(i)

1052 erg s−1

)4/9(
MPNS(i)

M�

)5/9(
rg(i)

10 km

)16/9(
Ṁ(i)

M�

)−2/3

(αredshift(i))
6/9 (A4)

with αturb = 1.18. The neutrino luminosity is estimated as Lν(i) = Lacc(i) + Ldiff(i), which consists of the accretion

component

Lacc(i) = ζ × GMPNS(i)Ṁ(i)

rg(i)
(A5)

with ζ = 0.8 and the diffusion component

Ldiff(i) = 0.3× Ebind(i)

τcool(i)
exp

(
− t(i)

τcool(i)

)
. (A6)

Note that the factor 1/τcool(i) is missing in Müller et al. (2016). For the diffusion component, the binding energy of

the PNS is

Ebind(i) = a×
(
MPNS(i)

M�

)2

M�c
2 (A7)
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with a = 0.084 and the cooling time is

τcool(i) = max

[
0.1 s, τ15

(
MPNS(i)

M�

)5/3]
(A8)

with τ15 = 1.2 s. The redshift correction is given by

αredshift(i) = 1− 2GMPNS(i)

rPNS(i)c2
, (A9)

where the PNS radius is estimated to be rPNS(i) = 5
7rg(i). Note that the power of the redshift correction in eq. (A4)

is increased from the value written in the original work of 2/9 to obtain results consistent with them.

These radii are used to estimate the advection timescale as

tadv(i) = 18 ms×
(
rsh(i)

100 km

)3/2(
MPNS(i)

M�

)−1/2

ln

(
rsh(i)

rg(i)

)
, (A10)

and it is compared with the heating timescale given by

theat(i) = 150 ms×
(

eg(i)

1019 erg

)(
rg(i)

100 km

)2(
Lν(i)

1052 ergs−1

)−1(
MPNS(i)

M�

)−2

(αredshift(i))
−3/2, (A11)

where

eg(i) =
3

4
ediss +

1

4

GMPNS(i)

max[rg(i), rsh(i)]
(A12)

with ediss = 8.8 MeV/mu being the post-shock binding energy without rest-mass contributions, to yield the condition

of shock-revival: the bounce shock revives if theat(i) < tadv(i). Also, note that the power of the redshift correction in

eq. (A11) is changed from the original value of −1/2. At shock revival, the PNS mass one time-step before is recorded

as the ‘initial’ mass of the PNS, Mini = MPNS(i− 1).

In the earlier phase after shock revival, equations solved are

MPNS(i+ 1) =MPNS(i) + (1− αout)

(
1− ηacc(i)

eg(i)

)
×∆M(i) (A13)

Eimm(i+ 1) =Eimm(i) + erec

(
ηacc(i)

eg(i)

)
min

[
1.0,

Ṁ(i)

4πr2(i)ρ(i)vsh(i)

]
×∆M(i)

+αout(εbind(i) + εburn(i))×∆M(i) (A14)

Ediag(i+ 1) =Ediag(i) + erec

(
ηacc(i)

eg(i)

)
(1− αout)×∆M(i)

+αout(εbind(i) + εburn(i))×∆M(i) (A15)

MNi(i+ 1) =MNi(i) +XNi(i)×∆M(i) (A16)

with ∆M(i) = M(i + 1) −M(i) and the parameters are αout = 0.5 and erec = 5 MeV/mu. ηacc(i) is an efficiency

parameter relating the mass accretion rate and the neutrino heating rate and is evaluated as

ηacc(i) = eg(i)

(
tadv(i)

theat(i)

)
, (A17)

and vsh(i) is the shock velocity evaluated as

vsh(i) = 0.794×
(

Eimm(i)

M(i)−Mini

)1/2(
M(i)−Mini

ρ(i)r3(i)

)0.19

. (A18)

εbind(i) and εburn(i) are the binding energy per unit mass of the unshocked material and the added energy due to

nuclear burnings. They are estimated as

εbind(i) = etherm(i)− GM(i)

r(i)
(A19)
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with the thermal energy, etherm(i), and as

εburn(i) = Σk(Xk(i)−X ′k(i))εrm,k, (A20)

where Xk(i) is the chemical composition after the explosive nucleosynthesis, X ′k(i) is the initial composition, and εrm,k
is the rest mass contributions per unit mass for nucleus k. Note that the definition of εbind(i) is not explicitly provided

in Müller et al. (2016).

Xk(i) is determined using the post-shock temperature Tsh(i), which is given by

Tsh(i) =

[
3β − 1

aradβ
ρ(i)v2

sh(i)

]1/4

(A21)

with β = 4. Using the temperature, Xk(i) is given as

1. changing elements lighter than O into 16O if Tsh(i) ∈ [2.5× 109, 3.5× 109) K.

2. changing elements lighter than Si into 28Si if Tsh(i) ∈ [3.5× 109, 5× 109) K.

3. changing all elements into 56Ni if Tsh(i) ≥ 5× 109 K.

Note that this post-shock temperature is the same as eq. (46) in Müller et al. (2016) and is different from Tsh(i) =

[(3(β − 1)/(aradβ))ρ(i)v2
sh(i)]1/4 that is implied from eq. (45) in Müller et al. (2016).

The first explosion phase ends when the post-shock velocity,

vpost =
β − 1

β
vsh, (A22)

exceeds the local escape velocity,

vesc =

√
2GM(i)

r(i)
, (A23)

thus vpost > vesc. Thereafter, the second explosion phase begins, and the evolution equations

MPNS(i+ 1) =MPNS(i) (A24)

Eimm(i+ 1) =Eimm(i) + (εbind(i) + εburn(i))×∆M(i) (A25)

Ediag(i+ 1) =Ediag(i) + (εbind(i) + εburn(i))×∆M(i) (A26)

MNi(i+ 1) =MNi(i) +XNi(i)×∆M(i) (A27)

are solved.

We set four possibilities for judging BH formation. Firstly, a BH forms if the model never meets the shock revival

condition. Secondly, a BH forms if the (baryonic) mass of the PNS exceeds 2.40301 M�, which corresponds to the

maximum gravitational mass of Mgrav = 2.05M� under a relation

MPNS = Mgrav + 0.084

(
Mgrav

M�

)2

M�. (A28)

Thirdly, a BH forms if the diagnostic explosion energy, Ediag(i), becomes negative. Lastly, a BH forms if the redshift

correction, αredshift(i), becomes negative.

A.2. Comparison with the original work

Detailed comparisons between our and the original implementations for models with the initial masses of 12 and

15 M� are shown in Fig. 26. We have confirmed that, throughout the evolution, except for at the very beginning,

more than 5-digit consistency is achieved for the quantities shown in the top four panels. On the other hand, the

two energies shown in the bottom panels involve ∼ 1% inconsistencies for the first explosion phase, which increase to

∼ 10% order differences for the second explosion phase.



26 Takahashi, K, et al.

 10

 100

 1000

model=s1200

ra
d
iu
s
 [
k
m
]

rg
rsh
rg,M
rsh,M

 1

 10

lu
m
in
o
s
it
y
 [
1
0
5
2
 e
rg

 s
-1
]

Lν
Ldiff
Lν,M
Ldiff,M

 1

 10

tim
e
s
c
a
le

 [
m
s
] tadv

theat
tadv,M
theat,M

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

m
a
s
s
 [
M
s
u
n
]

MPNS
MNi x10
Mrem,M

MNi,M x10

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0.1  1  10  100  1000

e
n
e
rg
y
 [
1
0
5
1
 e
rg
]

time [s]

Ediag
Eimm

Ediag,M
Eimm,M

 10

 100

 1000

model=s1500

ra
d
iu
s
 [
k
m
]

rg
rsh
rg,M
rsh,M

 1

 10

lu
m
in
o
s
it
y
 [
1
0
5
2
 e
rg

 s
-1
]

Lν
Ldiff
Lν,M
Ldiff,M

 1

 10

tim
e
s
c
a
le

 [
m
s
] tadv

theat
tadv,M
theat,M

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

m
a
s
s
 [
M
s
u
n
]

MPNS
MNi x10
Mrem,M

MNi,M x10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0.1  1  10  100  1000

e
n
e
rg
y
 [
1
0
5
1
 e
rg
]

time [s]

Ediag
Eimm

Ediag,M
Eimm,M

Figure 26. Detailed comparisons for models with the initial masses of 12 (left) and 15 M� (right) that are taken from Müller
et al. (2016). From the top to bottom panels, time evolutions of rg and rsh (top), Lν and Ldiff (2nd), tadv and theat (3rd),
MPNS and MNi multiplied by a factor of 10 (4th), and Ediag and Eimm (bottom) are shown. As for the comparison, results
obtained with our implementations are shown by magenta solid and cyan dotted curves, and that of the original work are by
orange dashed and purple dash-dotted curves. In the legends, results from the original work are also indicated by the subscript
‘M’. The timing of shock revival is indicated by filled points, while the timing of vpost = vesc is indicated by crosses.

An estimate of the explodability is shown in the left panel of Fig. 27, which is comparable to Fig. 6 of Müller et al.

(2016). This distribution includes a region of implosion around the peak at Mini ∼ 20.5 M� as well as a region of BH

formation due to late time accretion at Mini ∼ 29 M�, and these are qualitatively consistent with the original. The

region of explosion between them (Mini ∼ 22–28 M�) is wider in this work, and this may be due to the disagreement

of Eimm and Ediag in the latter explosion phase. Qualitatively speaking, this disagreement enlarges the window of

exploding models in our implementation. This is illustrated in the right panel of Fig. 27, which shows the histogram of

ξ2.5 of progenitor models in M16. The threshold value, ξ2.5 ∼ 0.33, is larger than the original estimate of ξ2.5 = 0.278.

As in Fig. 25, a summary for the M16 set is shown in Fig. 28. A strong correlation between Mff and the explosion

properties, in particular, the NS mass is also found in the result, hence we obtain almost the same trends as with our

own model set.

B. COMPARISON OF THE EXPLOSION PROPERTIES

The Müller’s semi-analytic model we have used to predict the property of CCSN explosion, like any other theoretical

calculation, involves a certain degree of uncertainty. Therefore, it is important to know how robust the obtained

results are. Accordingly, although predicting the properties of CCSNe is not the main topic of this study, we compare

the results obtained here with previous studies and summarize their similarities and differences. In particular, we

investigate whether the explosion can be judged by ξ2.5 and similar parameters and whether there are correlations

between the various quantities that characterize the explosion.
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Figure 28. The same as Fig. 25, but for CCSN explosion properties calculated for the M16 set using our implementation of
the Müller’s semi-analytic model.

We first compare the results of three studies using the Müller’s model (Müller et al. 2016; Schneider et al. 2021;

Aguilera-Dena et al. 2022). Regarding the estimate of the explodability, it was stated that the exploding models can

be roughly judged with ξ2.5 . 0.278 (Müller et al. 2016) or with ξ2.5 . 0.35 (Aguilera-Dena et al. 2022). Results in

Schneider et al. (2021) also seem to indicate that the explosion is more successful for models with small compactness,

for example, looking at their Fig. 7. In other words, all of these studies show that the explodability can be judged in

a semi-empirical (compactness-based) manner to first order, although the discrimination is not perfect and the critical

value is not definitive.

In all of these works, correlations between explosion properties (explosion energy, nickel ejecta mass, and PNS mass)

were found. Furthermore, Schneider et al. (2021) and Aguilera-Dena et al. (2022) have shown that the nature of the

explosion, in particular the PNS mass, correlates with ξ2.5. Although Müller et al. (2016) stated that there is no strong

correlation between compactness and the explosion properties, their results (e.g., Fig. 12) also show that the strongest

explosions come from the most compact stars, so it seems likely that a loose correlation could be found. Besides, when
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progenitor models of Müller et al. (2016) are analyzed using the Müller’s model with our implementation, a correlation

is found, especially between PNS mass and Mff (see Appendix). From these facts, we consider that the properties of

the CCSN explosion estimated by the Müller’s model are correlated with each other and that they are also correlated

with the compactness, especially the PNS mass to some extent. These properties are in good agreement with our

results.

By combining simulations and analytical relations, Pejcha & Thompson (2015) investigated the explodability and the

nature of the CCSN explosion. They first simulated the gravitational collapse of a massive star including the neutrino

emission processes using the 1D general relativistic neutrino radiation hydrodynamical code GR1D (O’Connor & Ott

2010) and determined the time evolution of Lν/Lcrit. Here, Lcrit(t) is the analytically estimated critical neutrino

luminosity required for the explosion, and Lν(t) is the neutrino luminosity obtained from the simulation. Then, the

explosion was assumed to occur when Lν/Lcrit(t) exceeds a certain threshold value, and the explosion energy and nickel

mass were further estimated by a semi-analytical method for exploding models. This threshold, which was given as a

simple function of the mass accretion rate Ṁ , includes parameters, and various explosion conditions were considered

by changing the parameters. They argued that explodability is not determined by compactness alone. However, their

result includes a region where it is difficult to find exploding parameters at MZAMS = 22–26M� (their Fig. 13), which

corresponds to the peak of the compactness distribution. Besides, for a specific model set (the parameter (a)) that

mimics the explosion fraction in Ugliano et al. (2012), the compactness-based judgment was able to separate models

that explode from those that do not with 88% accuracy. So there seems to be a loose correlation between compactness

and explodability also in their result. For explosion properties, they found a correlation between the explosion energy

and the nickel ejecta mass. Their estimate of the nickel ejecta mass was based on the assumption that radiation

energy is dominant inside the shock, and the correlation seems to be a direct consequence of this robust but ad-hoc

assumption. The explosion energy was also correlated with the NS mass, but it should be noted that this is an inverse

correlation (see their Fig. 19). The inverse correlation is probably due to their method for energy estimation, where

the less compact models explode earlier, having stronger neutrino winds, and therefore have larger explosion energies

estimated by integrating the power of the neutrino winds. For compactness, it was stated that compactness roughly

correlates with NS mass.

Ugliano et al. (2012), Ertl et al. (2016), and Sukhbold et al. (2016) performed parametric 1D simulations calibrated

with observations. A NS model was incorporated as an energy source, and the neutrino luminosity was controlled by

parameters to yield explosions even in the 1D hydrodynamical simulations.

Ugliano et al. (2012) calibrated the parameters for SN 1987A, the most closely observed supernova. They found

that the NS mass correlates with the mass at the bottom of the oxygen-burning shell (equivalent to our MO,base), but

there is no clear correlation between the various quantities characterizing the explosion. Later, it was recognized that

calibration with 1987A alone would cause the less compact models to explode very strongly, which is contrary to the

sophisticated simulations of Crab-like supernovae. Accordingly, Ertl et al. (2016) and Sukhbold et al. (2016) treated the

parameters as variables that vary in proportion to compactness (or a similar measure), rather than constants, for stars

with small compactness, so that less massive stars have weak neutrino luminosities correlated with compactness. This

modification appears to affect the correlation between the properties of the explosion; Sukhbold et al. (2016) reported

that, for the heavier mass models using constant parameters, nickel ejecta mass correlates with the compactness while

the explosion energy is roughly constant meaning no correlation. On the other hand, a correlation between nickel

ejecta mass and explosion energy exists for the less massive stars using a linear function of compactness for the engine

parameters.

Perego et al. (2015) and Ebinger et al. (2018, 2020) performed 1D explosion simulations using the PUSH method,

which incorporates the effect that the efficiency of neutrino heating is increased by multidimensional convective motion.

In Push, heavy-flavor neutrinos are used as the effective additional source of energy, and the region where convection is

likely to occur is heated for the time that convection is likely to occur. Parameters are included for the heating efficiency

and the convection generation time. Three types of outcomes were considered for calibration: crab-like supernovae with

less compactness, SN 1987A-like supernovae with intermediate compactness, and compact stars, which are thought to

create BHs. Then, by interpolating these three points with a quadratic function of compactness, they determined a

parameter function for the neutrino heating efficiency.

Ebinger et al. (2018, 2020) found that there is a correlation between the properties of the explosion (explosion energy,

nickel emission mass, NS mass) and also between compactness and, in particular, NS mass. They also studied the
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chemical composition of the supernova ejecta in detail and found that the amount of 56Ni and 44Ti correlate with

compactness (Ebinger et al. 2020).

Finally, we compare the trends obtained from multi-D explosion simulations conducted by Nakamura et al. (2015)

and Burrows et al. (2020). Among many works that conduct multi-D simulations, these are particularly relevant to our

work, as they discuss how the characteristics of the explosion depend on the structure of the progenitor star. While

these simulations still rely on approximate treatments of neutrino transport and general relativity, there is no artificial

engine, and the explosion is driven by neutrino heating in accordance with the delayed explosion mechanism. For this

reason, estimates of explodability and explosion features may be more realistic than results from parametric models.

On the other hand, due to the computational costs, especially for Burrows et al. (2020), where 3D simulations were

performed, the number of calculated models is small. For the same reason, long simulations were not performed in

these works, and the estimation of explosion energy is not yet certain (However, see Murphy et al. 2019). This is why

the correlation between the explosion energy and the nickel ejecta mass cannot be confirmed from these works.

Nakamura et al. (2015) calculated 2D axisymmetric simulations for 378 progenitor models with three metallicities:

solar metalicity, ultra metal-poor, and zero metallicity. In their calculations, most of the models exploded, so there

is no discussion of what determines the explodability. On the other hand, a number of explosion indices, such as

accretion luminosity and nickel ejecta mass, were shown to correlate with compactness. In particular, PNS mass had

the strongest correlation. The shock revival time, defined as the time when the shock front passes 400 km, was shown

to have a weak positive correlation with compactness, although it has a large scatter.

Burrows et al. (2020) performed 3D simulations for 19 progenitor models. An important conclusion is that their

results show that models with small or large compactness explode, while models with intermediate compactness (their

MZAMS = 13, 14, 15M� models) do not, i.e., the explodability cannot be separated by compactness. On the other

hand, if we restrict ourselves to exploded models, many of their properties appear to be correlated with compactness.

For example, neutrino luminosity and neutrino energy deposition rate are smaller for less compact models and larger

for more compact models (their Figs. 4 and 5). PNS mass is also highly correlated with compactness (Table 3). One

exception is that shock revival time does not appear to correlate with compactness (Fig. 2). This property may be

related to explodability.

In summary, we have found similar trends to our results in many previous studies. In particular, the correlation

between explosion energy and nickel ejecta mass and the correlation between PNS mass and compactness are common

features. The former correlation indicates that the equation (9) in Pejcha & Thompson (2015) is robust. As for the

correlation between PNS mass and compactness, compactness correlates with the density structure of the entire core as

shown by this work, and thus compactness is a highly predictive indicator of the time evolution of the mass accretion

rate. Hence, it suggests that the PNS mass determined as a result of the explosion can be predicted solely from

the evolution of the mass accretion rate and does not sensitively depend on the details of the explosion mechanism.

Conclusions about the relation between explodability and compactness depend on the modeling method. In other

words, parametric 1D simulations have shown that explodability can be determined by compactness, while more self-

consistent 3D simulations by Burrows et al. (2018); Burrows et al. (2020) have concluded that compactness does not

predict the explodability, but is determined by differences in the entropy jump at the base of the O layer and the

non-uniformity of density due to convection. It should be noted that many parametric calculations implicitly assume

that the engine property depends on the compactness of the progenitor, which may be why the explosion properties are

correlated with compactness. To accurately determine explodability, a more realistic engine model should be used in

parametric calculations. On the other hand, regardless of the modeling method, explosion properties, such as explosion

energy, tend to correlate with compactness when limited to models that experience a successful explosion.
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