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Abstract

Massive stars are linked to diverse astronomical processes and objects including star formation, supernovae and
their remnants, cosmic rays, interstellar media, and galaxy evolution. Understanding their properties is of primary
importance for modern astronomy, and finding simple rules that characterize them is especially useful. However,
theoretical simulations have not yet realized such relations, instead finding that the late evolutionary phases are
significantly affected by a complicated interplay between nuclear reactions, chemical mixing, and neutrino
radiation, leading to nonmonotonic initial-mass dependencies of the iron core mass and the compactness parameter.
We conduct a set of stellar evolution simulations, in which evolutions of He star models are followed until their
central densities uniformly reach 1010 g cm−3, and analyze their final structures as well as their evolutionary
properties, including the lifetime, surface radius change, and presumable fates after core collapse. Based on the
homogeneous data set, we have found that monotonicity is inherent in the cores of massive stars. We show that not
only the density, entropy, and chemical distributions, but also their lifetimes and explosion properties such as the
proto-neutron-star mass and the explosion energy can be simultaneously ordered into a monotonic sequence. This
monotonicity can be regarded as an empirical principle that characterizes the cores of massive stars.

Unified Astronomy Thesaurus concepts: Stellar evolution (1599); Core-collapse supernovae (304)

1. Introduction

Massive stars are an important component of the universe.
Throughout their lifetime, they affect ambient environments by
emitting intense photon radiation and powerful stellar winds
(Langer 2012). Massive stars are also important as progenitors
of core-collapse supernovae (CCSNe). CCSNe allows us to
observe the distant universe as luminous transients (e.g.,
Modjaz et al. 2019) and are one of the main drivers of the
chemodynamical evolution of galaxies (Woosley et al. 2007;
Nomoto et al. 2013). These explosions produce neutron stars
(NSs) and black holes (BHs), and they may also trigger star
formation (e.g., Girichidis et al. 2020). The remnants left
behind after the explosion are observed as SN remnants, which
can be a source of cosmic rays (Vink 2012; Blasi 2013).
Understanding the properties of massive stars is, thus, crucial
for entire fields in modern astronomy.

One-dimensional stellar evolution simulations have shown
that robust monotonicity is inherent in the structure and the
evolution of main-sequence stars (e.g., Kippenhahn &
Weigert 1990). Namely, strong correlations have been found
between the fundamental parameter of the initial mass of the
star and stellar properties such as luminosity, radius, and
lifetime. The term “massive star” already implies that the initial
mass is also useful to distinguish stars that eventually
experience core collapse from the others that form white
dwarfs at the end of their lives. However, previous works have
also shown that the initial mass is not applicable to characterize
the subpopulations of massive stars. For example, the
importance of the mass of the iron core has been recognized

for many years (Woosley & Weaver 1986; Nomoto &
Hashimoto 1988, and references therein), and interestingly,
the iron core mass shows a significant nonmonotonic
dependence on the initial mass. In particular, the steep increase
of the iron core mass has been attributed to the transition from
the convective to the radiative nature of central carbon burning
(Woosley & Weaver 1986, see also, Timmes et al. 1996).
The subject above can be rephrased as the question of

whether there is a single parameter that has the capability to
characterize the evolutionary properties of the cores of massive
stars, such as the core mass, the entropy, and the lifetime. From
a theoretical point of view, the existence of such a parameter is
nontrivial. First of all, the hydrostatic structure of a star has
infinite degrees of freedom derived from the pressure–density
relation, or the equation of states (EOS), given the central
density. Since the EOS is in reality determined by entropy and
composition, for a simple relation to hold for the sequence of
stellar structures, the composition and entropy distributions
must satisfy another simple relation. However, it seems difficult
to establish such a simple relationship in the cores of massive
stars. This is fundamental because the nuclear reactions and
neutrino energy losses that occur inside massive stars are
strongly dependent on temperature and density. These reactions
not only directly affect the composition and entropy distribu-
tions but also indirectly complicate them by causing core
convection. As a result, the composition and entropy distribu-
tions of massive-star cores become generally very complex.
Interesting implications have been obtained from recent

investigations about the progenitor–explosion connection. A
significant increase in the number of observed CCSNe in recent
decades has resulted in numerous intriguing correlations. For
Type II SNe showing lines of hydrogen in the spectrum,
correlations have been suggested between 56Ni ejecta mass,
total ejecta mass, plateau luminosity, and expansion velocity
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(Hamuy 2003; Anderson et al. 2014; Spiro et al. 2014; Valenti
et al. 2015; Muller et al. 2017b; Anderson 2019; Martinez et al.
2022). Similarly, correlations among kinetic energy, ejecta
mass, and 56Ni ejecta mass have been found for the stripped-
envelope SNe (SE-SNe) consisting of Types IIb, Ib, and Ic
(Lyman et al. 2016; Taddia et al. 2018; Anderson 2019;
Barbarino et al. 2021, see also Meza & Anderson 2020; Saito
et al. 2022). Given that SN explosions can be defined as the
solution to the initial value problem initiated by the collapse of
the core of a massive star, the diversity and the correlations in
the properties of the explosions should essentially come from
the structure of the progenitor star.

Not all massive stars successfully explode and leave NSs
behind. Some will explode but still form a BH as a result of
accretion after shock revival, while others will create a BH
without shock revival and may not explode (the “failed” SNe;
Kochanek et al. 2008) or may only have a very weak and
subluminous explosion (the “faint” SNe; Lovegrove & Woos-
ley 2013). Indeed, the existence of stellar-mass BHs have been
indicated by X-ray binaries (see Casares & Jonker 2014; Corral-
Santana et al. 2016; Tetarenko et al. 2016) and, more recently,
by BH mergers detected by gravitational wave detectors (The
LIGO Scientific Collaboration et al. 2021a, 2021b; Abbott et al.
2021). Moreover, a direct indication of BH formation has been
obtained from the disappearance of a red supergiant (RSG) from
successive monitoring (Smartt 2009, 2015; Davies & Bea-
sor 2018). It is not only the explosion properties but also the
explodability, i.e., whether a massive star successfully explodes
or not, that should also be determined by the progenitor
structure. Then, the important question is: What is the property
that controls the explodability and the properties of successful
explosions?

Several studies have investigated the progenitor–explosion
connection by conducting systematic simulations of hydro-
dynamical evolution after core collapse (O’Connor & Ott 2011;
Ugliano et al. 2012; Pejcha & Thompson 2015; Perego et al.
2015; Ertl et al. 2016; Muller et al. 2016; Sukhbold et al. 2016;
Ebinger et al. 2018, 2020; Ertl et al. 2020) and suggested the
possibility of characterizing the explosion properties based on
one or two simple parameters that characterize the progenitor
structure. One example is the so-called compactness parameter,
which was defined by O’Connor & Ott (2011) as

( )
( )x =

M M

R M 1000 km
, 1M

at the time of core bounce, where M and R(M) are the enclosed
mass and the radius as a function of the mass coordinate. The
capability to judge the explodability (O’Connor & Ott 2011), as
well as to characterize the properties of CCSN explosions (e.g.,
O’Connor & Ott 2013; Muller et al. 2016), has been suggested.
Similarly, the efficacy of the set of parameters M4 and μ4,
which are related to the density and entropy distributions, to
judge the explodability was proposed by Ertl et al. (2016).
Since the nature of the CCSN explosion should be determined
by the time evolution of hydrodynamical quantities such as
accretion history, and thus the functional form of the density
distribution throughout the core, it is surprising to conclude that
a judgment can be made based on such partial and limited
information as the compactness parameter. It should be noted
here that the above works have utilized either a parametric one-
dimensional hydrodynamic code or a simplified semianalytical

model to estimate the explodability. In this regard, Burrows
et al. (2020) concluded that the compactness is not a measure of
the explodability based on the results of state-of-the-art three-
dimensional simulations. Further research is still needed to
settle the true efficacy of compactness.
Nevertheless, the concept of discerning the exploding or

nonexploding progenitors from a single parameter may be
consistent with observations. So far, dozens of SN progenitors
that were accidentally imaged before the SN explosion have
been identified. By analyzing these pre-explosion images, the
nature of the progenitors of SN explosions can be estimated,
and it has been reported that there is a lack of luminous
progenitors characterized by L Llog 5.1 (the missing RSG
problem; Smartt 2009, 2015; however, see Davies &
Beasor 2018). Horiuchi et al. (2014) have further pointed out
another problem, the SN rate problem, i.e., the deficiency of the
cosmic SN rate compared to the cosmic star formation rate.
And they have shown that if massive stars with compact
structures characterized by ξ2.5 0.2 fail to explode as
canonical SNe, then not only the SN rate problem but also
the missing RSG problem can be solved simultaneously.
Similar to the iron core mass, the compactness parameter is

also known to have a nonmonotonic initial-mass dependence.
The nonmonotonicity is affected especially by convective shell
burnings of carbon and oxygen (Sukhbold & Woosley 2014;
Chieffi & Limongi 2020) and thus depends on the treatments of
input physics including convective boundary mixing, semi-
convection, the 12C(α,γ)16O reaction rate, as well as the mass-
loss rate and the metallicity (Sukhbold & Woosley 2014;
Sukhbold et al. 2018; Chieffi & Limongi 2020; Sukhbold &
Adams 2020). As a particularly interesting finding, a strong
correlation between the compactness parameter and the iron
core mass has been recognized in many works (e.g., O’Connor
& Ott 2011; Ertl et al. 2016; Schneider et al. 2021; see also
Sukhbold & Woosley 2014 for the binding energy outside the
iron core, Chieffi & Limongi 2020 for compactness parameters
defined at different locations, and Schneider et al. 2021 for the
core entropy and masses of carbon- and neon-free regions).
In this work, we aim to find a simple relation, which can be

used to characterize the core properties of massive stars, by
conducting a simulation of the massive star evolution. Even if it
exists, such a relation could be subtle, and hence, there is
concern that some influence, whether physical or numerical,
may obscure the relation. The wind mass loss and H shell
burning could be such an effect that impacts the initial-mass to
core-mass relations as well as the core structure. In order to
avoid such complications, we follow the evolution of the
helium star model, which is not affected by the aforementioned
effects and can be regarded as an idealized helium core of a
massive star. Although the models cannot be directly compared
to observations, we assume that the qualitative tendencies are
still common to more realistic models and, hopefully, to real
stars.
In the next section, we describe the two theoretical

frameworks that we utilize in this work: the stellar evolution
code and the semianalytic code that is developed following
Muller et al. (2016) and used to estimate properties of the
postcollapse evolutions. In Section 3, first, an alternative
indicator of the density structure, Mff, is introduced, which has
a more intuitive definition as well as a better convergency than
the compactness parameter during the late-time evolution. Then
we show that the global (but still inner) density structure of the
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CCSN progenitors can be well sorted according to the Mff

order. In Section 4, correlations between Mff and two other
evolutionary properties, the remaining time until collapse and
the stellar radius, as well as explosion properties including the
explodability, are investigated. We discuss the robustness of
the correlations by comparing stellar models obtained from
different codes and settings and discuss the observational
relevance of the newly found lifetime–core structure correlation
to the precollapse mass ejection in Section 5. The summary and
conclusion are given in Section 6.

2. Method

2.1. The Stellar Evolution Code

The evolution of single He stars is calculated using the
HOSHI code (Takahashi et al. 2018; Takahashi & Langer 2021).
The initial chemical composition is set to pure helium, and the
initial metallicity is zero. The input physics used in the code is
almost the same as that used in Takahashi & Langer (2021), so
we omit writing the details here and describe only the
differences. First, while the code is capable of treating the time
evolution of the stellar rotation and the magnetic fields, these are
ignored in the present models. Also, wind mass loss is not taken
into account in the current modeling. The nuclear reaction
network includes 300 isotopes ranging from n and p to 80Br. The
complete list is given in Takahashi et al. (2018). The
12C(α,γ)16O rate of deBoer et al. (2017) is applied for our
fiducial models. The effect of convective boundary mixing is
treated as a diffusive process as described in Takahashi &
Langer (2021); however, the effect is set to be minimal as a very
small control parameter of fov= 0.001 is applied for the current
models.

We calculate stellar evolution for a total of 128 models with
different initial masses. The initial-mass interval (dMini) is
changed for light, intermediate-mass, and heavy stars. For the
lightest stars in the range Mini/Me ä [2.0, 9.1], we calculate 72
models using dMini/Me= 0.1, and for the intermediate-mass
range Mini/Me ä [9.2, 14.0], 25 models are calculated with
dMini/Me= 0.2. For the heavier side Mini/Me ä [14.5, 29.5],
an increment of dMini/Me= 0.5 is used (31 models).

For each model, the evolution from the He zero-age main-
sequence (HeZAMS) phase until the central density, ρc, reaches
1010 g cm−1 is calculated unless the simulation stops due to
convergence problems. We have confirmed that the star has
already lost hydrostatic stability with this final central density.
Convergence problems happen for the lowest-mass models
with Mini� 2.7Me, where two models stop during the shell
carbon burning phase (Mini/Me= 2.0, 2.1), five models stop
after the formation of the ONe core (Mini/Me ä [2.2, 2.6]), and
one model of Mini/Me= 2.7 stops during the shell O+Ne-
burning phase. After removing the eight nonconvergent
models, we obtained a total of 120 progenitor models of
CCSNe.

As a result of ignoring the wind mass loss, the CO-core mass
(MCO) distribution obeys a highly monotonic relation with the
He star mass (Figure 1). In this work, MCO is defined as the
lower-mass limit of the region where the helium mass fraction
exceeds 0.01. The usage of other definitions (such as based on
the heating rate) is possible but the qualitative results would be
unchanged. Hereafter, we will use the CO-core mass, instead of
the He star mass, as the model indicator.

2.2. Müller’s Semianalytic Model

In order to estimate the fate after core collapse, a
semianalytic code has been developed following the descrip-
tion in Muller et al. (2016). By integrating a few ordinary
differential equations, Müller’s semianalytic model provides
the result of the postcollapse evolution including the fate and
the explosion properties such as the explosion energy and the
remnant (NS) mass if the progenitor is estimated to success-
fully explode.
This model relies on the delayed neutrino-heating mech-

anism for CCSNe, in which a fraction of the gravitational
energy released by accretion is converted into thermal energy
as a result of the neutrino energy transport. Hence, shock
revival is assumed to happen if the neutrino-heating timescale
becomes shorter than the advection timescale, τheat< τadv.
Each of the timescales is estimated based on scaling relations
and fitting formulae obtained from realistic simulations. Shock
propagation after the revival is treated differently depending on
whether the shock is strong enough to blow off the postshock
material. In the earlier phase, the postshock material is still
bound and a fraction of the shocked material is assumed to
accrete onto the central remnant, leading to the growth of the
remnant mass as well as the additional energy injection. On the
other hand, all the shocked material is ejected in the later phase,
and accordingly, the remnant mass becomes constant and the
explosion energy is changed only by the explosive nucleo-
synthesis. The transition is assumed to take place when the
postshock velocity exceeds the local escape velocity,
vpost> vesc. An outline of the flow that determines fate is as
follows. First, it is assumed that stars that do not experience
shock revival fail to explode and eventually form BHs. Of
those that experience shock revival, stars that are affected by
significant matter accretion after shock revival are also assumed
not to explode and form BHs. The judgment on this is based on
the evolution of either the proto-NS (PNS) mass, diagnostic
explosion energy, or redshift correction at the surface of the
PNS. Eventually, stars that experience shock revival and are
affected by minimal matter accretion are assumed to success-
fully explode and form NSs. BH formation can be accompanied
by matter ejection if an accretion disk surrounding the central
BH is formed (e.g., Fujibayashi et al. 2022; Just et al. 2022) or
if a large energy loss due to neutrinos occurs (Lovegrove &
Woosley 2013). However, the possibility of a successful
explosion from a BH-forming progenitor is not considered in

Figure 1. Relation between the He star mass and the CO-core mass. As a result
of applying a minimal convective boundary mixing for the core He burning,
this relation is almost identical to models that completely ignore the convective
boundary mixing.
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our model as in Müller’s original work, given the huge
uncertainties in the current theory.

We have carefully constructed the code and have confirmed
that it yields largely consistent results with the original work.
Hence, we believe that the conclusions regarding the fate
presented in this work will be unaffected by the different
implementations of this model. Nevertheless, some disagree-
ments have remained. For traceability, we provide our
implementation of the model in Appendix A.

The advantage of utilizing a semianalytic model is the low
cost of the computation, which enables us to compare the
explosion properties for hundreds of progenitors (e.g.,
Schneider et al. 2021; Aguilera-Dena et al. 2022). On the
other hand, care must be taken since the model relies on many
approximated relations. Comparison with the most realistic,
and thus the most computationally expensive, simulations (e.g.,
Takiwaki et al. 2016; Muller et al. 2017a; Nagakura et al. 2018;
Vartanyan et al. 2019; Bollig et al. 2021; Takiwaki et al. 2021)
and with statistical properties derived from a number of
multidimensional simulations (Nakamura et al. 2015; Pan et al.
2016; Summa et al. 2016; Suwa et al. 2016; O’Connor &
Couch 2018; Ott et al. 2018; Vartanyan et al. 2018; Burrows
et al. 2020) will be needed for verification. For this purpose, a
discussion of whether the trends obtained in this model are
consistent with previous studies is given in Appendix B.

3. Characterizing the Structure of Core-collapse Supernova
Progenitors

In this section, we focus on quantities that characterize the
structure of massive stars at the precollapse stage. In general,
these quantities are divided into three categories: quantities
related to the density structure, quantities related to the
chemical structure, and quantities related to the thermal
structure. The first category includes the compactness para-
meter ξM and a quantity newly introduced in this work, Mff.
Although we do not discuss the compactness parameter defined
at different locations in detail in this work, correlations between
them have been noted in the literature, e.g., Pejcha &
Thompson (2015) and Chieffi & Limongi (2020). The masses
of bases of the chemically defined layers are involved in the
second category. In particular, the mass of the iron core, which
should be identical to the base mass of the silicon layer used in
this work, is known to correlate with the compactness
parameter. Furthermore, Schneider et al. (2021) have reported
that the masses of the C-free and Ne-free regions have a CO-
core mass dependence similar to that of the compactness and
the iron core mass. Schneider et al. (2021) have also reported
qualitatively similar trends of the core entropy as a function of
the CO-core mass, which is included in the third category.
Ertl’s parameters, M4 and μ4, may also be included in this
category since they utilize the entropy distribution. We will
confirm that these correlations indeed arise in our models and,
moreover, will show that they follow an identical monotonic
sequence.

3.1. The Compactness Parameter

As noted by O’Connor & Ott (2011), care must be taken for
the timing of the evaluation of the compactness parameter
because the value can change as the star collapses. To avoid
this uncertainty, O’Connor & Ott (2011) uniformly evaluate the
compactness parameter at the core bounce time. However,

calculations until core bounce may be expensive for a stellar
evolution simulation. Instead, it is beneficial if one has a
criterion about the timing, after which the constancy of the
compactness parameter is guaranteed.
Throughout this work, we set 2.5 Me as the reference mass

coordinate to assign the compactness parameter for a given
progenitor structure (ξ2.5). The evolution of ξ2.5 as a function of
central density is shown in Figure 2. For this purpose, a
sequence of zero-metallicity stellar models is additionally
calculated, and results of models with initial masses 11, 20, 30,
60, and 90 Me are plotted. Their ZAMS and the CO-core
masses are indicated in the figure as well. It shows that more
compact models require a larger central density for the time
evolution of ξ2.5 to converge. Less-compact models that have
ξ2.5 1.0 when the central density reaches 1010 g cm−3 do not
change their compactness values thereafter. Therefore, the ξ2.5
measured when the central density reaches 1010 g cm−3 for
models with ξ2.5 1.0 is expected to be maintained until core
bounce. On the other hand, to measure converged values of
compactness for more compact models characterized by
ξ2.5 1.0, a central density greater than 1011 g cm−3 is
needed.5

For our fiducial He star models, Figure 3 shows the
distribution of ξ2.5 as a function of the CO-core mass, which
is evaluated at ρc= 1010 g cm−3. Note that the results for
models with MCO� 1.4Me (MHe� 2.7Me) are not included
here since evolution simulations for these models are halted
before their central densities reach 1010 g cm−3. Given the
results of the examination of the compactness convergence
presented above, the central density ρc= 1010 g cm−3 is large
enough to converge ξ2.5 for these He star models since all of
these models have ξ2.5 < 1.0, especially ξ2.5 0.7 for
MCO� 15Me.
The feature of the ξ2.5 distribution will be summarized as

follows: ξ2.5 monotonically increases with the mass in the less-
massive end with MCO< 2.6Me. Except for some offsets, the
monotonic behavior is kept until MCO< 4.0Me. The

Figure 2. Evolution of ξ2.5 as a function of central density. The plot is made for
zero-metallicity models ofMZAMS = 11, 20, 30, 60, and 90Me, and the ZAMS
and the CO-core masses are indicated by the legends. For the MZAMS = 11 Me
model, ξ2.5 multiplied by 100 is shown. The reason for multiplying by the large
factor of 100 is that this model has a CO-core mass smaller than 2.5 Me, and
the reference mass of ξ2.5 is located in the inflated He layer. The vertical dotted
line is set at ρc = 1010 g cm−3 to make the comparison with our fiducial He star
models easier.

5 Here, we have implicitly assumed that the convergence of compactness with
respect to time evolution depends monotonically on compactness. This
assumption can be confirmed from Figure 2 and can be inferred from the
monotonicity of the cores found in this study.
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compactness follows an interesting decreasing trend with
significant scatter and reaches a local minimum at
MCO= 6.2Me. After showing a steep increase, it shows a
prominent peak at MCO= 6.9Me. Then a second decreasing
trend follows, after which the second local minimum exists at
MCO= 8.8Me. At last, the compactness follows a monotoni-
cally increasing trend. These are, in particular, very consistent
with the KU series in Sukhbold & Woosley (2014), which is a
CO-core model series with a very metal-poor 10−4 Ze initial
composition.6

The nonmonotonic behavior has been described in detail by
Sukhbold & Woosley (2014). In accordance with their analysis,
we have confirmed that the first decreasing trend inMCO ä [4.0,
6.2]Me is due to the decreasing widths of C-burning
convective regions (both the core and the shell convective
regions), which is related to the transition of the convective to
the radiative nature of central C burning. We have confirmed
that the sudden increase in the range of MCOä [6.2, 6.9]Me, as
well as the more gentle increase in MCO� 8.8Me, results from
outward migration of the third or second C-burning shells in
these mass ranges, and the transitional inward migration of the
second C burning explains the decreasing trend between them.

There are changes of inclination at MCO= 2.6Me and
15.6Me. We note that these changes are artificially introduced
through the definition of the compactness parameter. Namely,
the inclination in the compactness distribution is affected by the
chemical composition of the location where it is estimated
because layers of two different chemical compositions can have
different density gradients. ξ2.5 is evaluated at the enclosed
mass of 2.5 Me. While this location is inside the oxygen-
carbon layer in the majority of cases, it is included in the
helium layer for the less-massive models with MCO< 2.6Me

and is included in the inner carbon-free layer for more-massive
models with MCO> 15.6Me. Therefore, the two changes of
inclination should not mean qualitative changes in the density
structure.

3.2. The Enclosed Mass inside an Iso-freefall-time Surface

The compactness parameter may not be the unique indicator
for characterizing the density structure of a progenitor model.
To find another indicator, we utilize the freefall time, which can
be defined as a function of the mass coordinate as

( ) ( ) ( )t
p

=M
R M

GM2 2
. 2ff

3

The freefall time is in proportion to the inverse of the average
density; hence, it becomes a monotonically increasing function
as long as the density distribution is monotonically decreasing.
We define the mass coordinate at which the freefall timescale
exceeds a provided time reference as Mff. In this work, a
reference time of 1 s is used.7 Owing to the monotonicity of the
freefall time, a unique solution is found for Mff.
Figure 4 shows the distribution of Mff evaluated when

ρc= 1010 g cm−3. The similarity to the compactness distribu-
tion is apparent. For instance, both ξ2.5 and Mff follow
decreasing trends for MCO ä [4.0, 6.2]Me and MCOä [6.9,
8.8]Me, which are overlaid with the cyan bands as well as the
sudden increasing trends between them overlaid with the red
band. The accurate correspondence may not be so surprising
because both quantities are merely determined by ratios
between (powers of) the mass coordinate and the radius.
Nevertheless, there are several benefits to utilizing Mff

instead of ξ2.5. First, the value of Mff is more intuitive since it
provides a rough estimate of the averaged mass accretion rate
during the formation of the PNS. At the same time, this value
can be regarded as an estimate of the remnant mass, assuming
that shock revival occurs in about 1 s after core collapse and
that subsequent mass accretion is negligible. Second, Mff is
applicable to a less-massive progenitor model in which the
reference mass coordinate (M of ξM) is outside the CO core. In
such a case, the compactness parameter is evaluated to be
extremely small, while Mff is basically set to be the CO-core
mass. Similarly, the monotonically increasing trend in more-
massive models of MCO> 15.6Me is now linearly followed.
Hence, fewer artifacts are included in the Mff distribution.
Third, Mff has a better convergence in the evolutionary phases

Figure 3. Distribution of ξ2.5 evaluated at ρc = 1010 g cm−3. To emphasize the
nonmonotonicity, the decreasing trends in MCO ä [4.0, 6.2] Me and
MCO ä [6.9, 8.8] Me and the increasing trend at MCO ä [6.2, 6.9] Me are
overlaid with cyan and red bands.

Figure 4. Distribution of Mff evaluated at ρc = 1010 g cm−3. The cyan and red
bands are the same as those in Figure 3.

6 More smooth ξ2.5 distributions as a function of the CO-core mass can be
found in Figures 21 and 22 of Limongi & Chieffi (2018). This may be because
they have applied a wide initial-mass spacing between models and have mixed
models with different metallicities in the figures. Also, the higher carbon mass
fraction in their models (Chieffi & Limongi 2020) could account for the
difference.

7 We do not have a strong motivation to decide the reference time of 1 s,
though it is perhaps closer to the timescale of CCSN explosion than 0.1 or 10 s.
In fact, the results shown later are insensitive to the choice, and the fact that
there is no specific way to determine the reference time at least up to the zeroth
order is an important property that supports the monotonicity of the core
discussed later.
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than ξ2.5. The evolution of Mff as a function of the central
density is shown in Figure 5 for the same zero-metallicity
models as in Figure 2, which shows a better convergence ofMff

for the most massive MCO= 34.5Me model than ξ2.5.

3.3. The Mass Coordinates of Bases of Chemically Defined
Layers

A massive star is considered to form an onion-like chemical
structure, in which layers composed of heavier elements are
located closer to the stellar center. In addition to the density
distribution, the chemical distribution is also fundamental to the
progenitor structure. In order to characterize the chemical
distribution, we define base masses, that is, the mass
coordinates of bases of chemically defined layers. For example,
the silicon base mass, MSi,base, is defined as the innermost mass
coordinate where the mass fraction of 28Si first exceeds
X(28Si)= 10−2. Similarly, the oxygen base mass (MO,base) and
the carbon base mass (MC,base) are defined by the conditions of
X(16O)= 10−3 and X(12C)= 10−3. Although the reference
mass fractions are set arbitrarily, the base masses defined here
will correspond to the traditional core masses such as the Fe
and Si core masses.

The relation between the base masses and MCO is shown in
Figure 6. Similar to the Mff distribution, the distributions of the
three base masses clearly share the basic features of
nonmonotonicity obtained for the ξ2.5 distribution. The
correlation of MSi,base is comparable to the correlation between
the compactness parameter and the iron core mass shown in
O’Connor & Ott (2011). In addition, we find that MO,base and
MC,base, which are defined at outer layers compared to MSi,base,
also show strong correlations with ξ2.5 and Mff.

The time evolution of MO,base and MSi,base as a function of
central density is shown in Figure 7. MO,base is basically kept
constant if ρc> 109 g cm−3. An exception is the model with
MCO= 1.54Me, but the change is ∼15%, and it approaches
convergence if ρc 1010 g cm−3. On the other hand, the
MSi,base is farther from convergence since it is defined more
inside than MO,base, where the temperature is higher and the
nuclear reaction timescale is shorter. Conversely, we have
confirmed that MC,base becomes nearly constant at least for
ρc> 108 g cm−3.

3.4. Ertl’s Parameters

Ertl et al. (2016) have analyzed the interaction between
matter accretion and neutrino heating and have proposed a
criterion to judge the explodability of CCSN progenitors,

which can discriminate between explosion and nonexplosion
with high accuracy of only a few percent exceptions. They have
defined two parameters, M4 and μ4, which are related to both
the density and entropy distributions, and have used M4 and the
product of the two, M4μ4, for the criterion. M4 is defined as the
mass coordinate at which the entropy per baryon first exceeds
the reference value of 4 kB. For clarity, we express the

Figure 5. Same as Figure 2, but for Mff. Figure 6. Distribution of mass coordinates at the base of the silicon layer (MSi,

base, black solid), the oxygen layer (MO,base, red dashed), and the carbon-rich
layer (MC,base, blue dotted) evaluated at ρc = 1010 g cm−3. The cyan and red
bands are the same as those in Figure 3.

Figure 7. Same as Figure 2, but for MC,base (top), MO,base (middle), and MSi,base

(bottom).
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parameter by M(sk= 4) hereafter in this work. The other
parameter, μ4, is the normalized mass derivative,
(dM/dr)/(Me/1000 km), evaluated at M(sk= 4). Again, we
express the parameter by μ(sk= 4). In practice, μ(sk= 4) has
been evaluated by numerical differentiation as μ(sk= 4)
=ΔM/[r(M(sk= 4)+ΔM)− r(M(sk= 4))] with the mass
interval of ΔM= 0.3Me in the original work and has not
been directly related to the density at M(sk= 4) that is implied
by the formal definition.

The distributions of M(sk= 4) and μ(sk= 4) as a function of
MCO are shown in Figure 8. Both parameters exhibit
nonmonotonic CO-core mass dependencies, which are very
similar to the ξ2.5 and Mff distributions in the less-massive
models characterized by MCO 17Me. This property origi-
nates from the fact that M(sk= 4) is almost identical to MO,base

on the less-compact side Mff 3.5Me corresponding to
MCO 17Me, as Figure 9 plots the distribution of M(sk= 4)
and MO,base as a function of Mff shows. This is because oxygen
burning forms a strong entropy jump; in fact, M(sk= 4) has
been used as an indicator to specify the O-burning shell (see
Heger & Woosley 2010). Hence, the correlation between
M(sk= 4) and Mff shown here is essentially identical to the one
between MO,base and Mff, which has been discussed earlier.
Meanwhile, the M(sk= 4) and μ(sk= 4) distributions in models
characterized by MCO 17Me show completely different
trends. The distribution of M(sk= 5) as a function of Mff in
Figure 9 shows that, in models with Mff 3.5Me corresp-
onding to the heavier models, the indicator tracing MO,base

shifts from M(sk= 4) to M(sk= 5) explaining the changes in
the trends. The shift is due to the effect that the entropy of the
entire core is larger for more compact models (see Section 3.5),
and the entropy after the jump exceeds sk= 5.

Similar to Figure 5, the evolution of μ(sk= 4) in the later
evolutionary phase is shown in Figure 10. It shows that the
less-massive models with MCO 20Me and μ(sk= 4) 0.2

keep μ(sk= 4) nearly constant in the later phase of ρc> 109 g
cm−3. Besides, we have confirmed that M(sk= 4) stays
constant independent of the CO-core mass, which is consistent
with the identity between M(sk= 4) and MO,base. Hence, as far
as the identity between M(sk= 4) and MO,base is established,
both μ(sk= 4) and M(sk= 4) stay constant during the
collapsing phase. The figure also shows that μ(sk= 4) changes
by ∼30% for the more-massive models. However, this result
may not be relevant to us, because μ(sk= 4) of such massive
models will have incompatible characteristics with that of the
less-massive models because it lacks the identity to MO,base.

3.5. The Core Entropy

In Figure 11, the entropy of the stellar center is shown as a
function of CO-core mass. Given the similar shapes of the
distributions, this figure shows that the central entropy is
strongly correlated with the base masses of the Si, O, and C
layers as well as Mff. It is noteworthy that Schneider et al.
(2021) attribute the correlation between the iron core mass and
the central entropy to the property of quasi-isentropic iron
cores. Our results are consistent with this understanding, but
more so imply that this correlation can be traced back to earlier
evolutionary phases as the correlation extends not only to the
base masses of the inner Si and O layers but also to the base
mass of the C layer.
However, the correlation is not so trivial from the point of

view of stellar evolution because the core entropy should

Figure 8. Distribution of M(sk = 4) (top) and μ(sk = 4) (bottom) evaluated at
ρc = 1010 g cm−3. The cyan and red bands are the same as those in Figure 3.

Figure 9. Distribution of M(sk = 4) (red, square), M(sk = 5) (blue, circle), and
MO,base (black, diamond) as a function of Mff. Values are evaluated at
ρc = 1010 g cm−3.

Figure 10. Same as Figure 2 but for μ(sk = 4). For theMZAMS = 11Me model,
μ(sk = 4) multiplied by 100 is shown. The reason for multiplying by the large
factor is that the finite ΔM = 0.3Me is used and its outer boundary was outside
the CO core.
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initially correlate with the total mass of the star, and the total
mass is not correlated well with Mff. In order to develop the
monotonic dependence on Mff, the entropy order must reverse
in some models during the stellar evolution. The example of the
reversal is illustrated by the evolution in the central density and
temperature plane shown in Figure 12, in which results of
models with MCO= 3.12, 7.82, and 8.70 Me are compared.
They have Mff= 1.94, 2.51, and 1.94 Me and the mass
coordinates of the last shell C burning, MC,base, of 1.85, 2.96,
and 1.93 Me for models with MCO= 3.12, 7.82, and 8.70 Me,
respectively. In the beginning, the entropy order coincides with
the mass order as expected. The lowest-mass model follows the
track of the lowest entropy, in which several bumpy features
(e.g., a bump at Tc∼ 108.8 K, a loop at Tc∼ 109.2 K, bumps at
Tc∼ 109.3 and ∼109.6 K, respectively due to the C, Ne, O, and
Si burnings) appear due to the relatively high electron
degeneracy. The higher-mass models initially follow higher
entropy tracks, which have fewer bumpy features. However,
the entropy order reverses after the central Ne burning
(Tc∼ 109.2 K). After this phase, the most massive model with
MCO= 8.70 Me eventually follows a converging evolution on
the track of the lowest-mass model with MCO= 3.12 Me.

Based on the rough concurrence of the start of the last C
burning with the start of the reversal of the entropy order, we
speculate that the late evolution after the central Ne burning can
be described as an evolution of a core that has an effective core
mass given by the base mass of the last C-burning shell. The
reversal taking place in the model with MCO= 8.70 Me would
be understood as a relaxation process, in which a core having a
high initial entropy eventually cools to adopt a lower entropy
that is required to contract with a given small effective mass.

The late-time evolution of the central entropy is plotted in
Figure 13. It shows that the central entropy becomes nearly
constant for ρc 109 g cm−3 irrespective of MCO. This result
indicates that the rate of change of Ye and the accompanying
neutrino emission do not significantly affect the entropy in the
central nuclear statistical equilibrium (NSE) region during the
early collapsing phase. We note that the entropy change after
ρc 1011 g cm−3 shown in the figure is unreliable. This is
because our stellar evolution code does not treat neutrino
trapping, which will take place in such a high-density region.
Both the Ye evolution and neutrino emission will be over-
estimated in the high-density regions. The entropy evolution
will be less substantial in the later collapsing phase if the
neutrino processes are properly treated.

3.6. Convergent Internal Structures of Progenitors with Similar
Mff

So far, we have investigated the behavior of parameters that
characterize the progenitor structure such as ξ2.5 and Mff.
Although interesting correlations among these parameters have
been found, relevance to the global structure is not clear. In
order to link these parameters to the global progenitor structure,
distributions of the entropy, density, and chemical elements are
plotted in Figure 14, in which the two models with MCO= 3.12
and 8.70 Me, the converging evolutions of which have been
discussed in the previous section, are compared.
In spite of the difference in the CO-core masses, these

models show a striking resemblance in the entropy distribu-
tions, in particular for the inner regions of ∼1.9Me, which is
shown in the top panel. The most important feature is the
coincidence of the significant jumps at ∼1.6Me, which trace
the strong heating of the shell O burning. Not only the locations
but also the level differences are similar. The entropy structures
inside the jump are also similar, though less significant saw-
shaped bumps, which are remnants from previous shell Si-
burning phases, are involved. The mass coordinates of the last
shell C burnings that are indicated by more or less significant
jumps outside the O-burning bases are close as well. Mean-
while, the outer distributions of shell C burning are totally
different. The entropy of the convective C-burning layers is
∼5.1 and ∼6.2, respectively, for the less and more-massive
models. This order originates from the entropy order of the CO

Figure 11. Distribution of the entropy per baryon at the center evaluated at
ρc = 1010 g cm−3. The cyan and red bands are the same as those in Figure 3.

Figure 12. Central density and temperature evolution of the models of
MCO = 3.12 (red, solid), 7.82 (blue, dotted), and 8.70 Me (green, dashed). In
this density–temperature diagram, the entropy is smaller in the lower-right
region and larger in the upper-left region.

Figure 13. Same as Figure 2 but for the central entropy per baryon. Note that
the later result of ρc  1011 g cm−3 is unreliable because neutrino trapping is
not taken into account in this work.
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cores. Furthermore, while the plot includes the high-entropy
helium envelope surrounding the CO core of 3.12Me for the
less-massive model, the corresponding structure is out of the
plot for the more-massive model as it has a more extended CO
core of 8.70Me.

The density distributions shown in the middle panel also
validate the close resemblance of the progenitor’s internal
structures. As we have selected the progenitor models having
the same central density of 1010 g cm−3, they show nearly
perfect agreement up to ∼1.9Me, where carbon layers begin.
Inside the carbon layer, density jumps are located at ∼1.6Me in
both models, which, of course, coincide with the entropy jump
due to the shell O burning. On the other hand, density
distributions outside the carbon layers are totally different, as
they must connect with the helium layers at different locations.

Crosses in the top and middle panels indicate the locations of
Mff for both models. By chance, the locations roughly
correspond to the bases of the shell C layers at ∼1.9Me. The
Mff depends on the mass and radius distributions, hence only
on the density distribution. Therefore, by having the nearly
same density structures of inner ∼1.9Me regions, these two
models give the same Mff for reference times shorter than 1 s.
In turn, these models are also expected to have nearly the same
mass accretion histories up to ∼1 s after core collapse.

Consistent with the similarities confirmed for the entropy
and density distributions, the chemical distributions shown in
the bottom panel are also similar for these two models.
Accordingly, the models have similar base masses of

(MSi,base/Me, MO,base/Me, MC,base/Me)= (1.49, 1.63, 1.85)
and (1.50, 1.64, 1.93), respectively.

3.7. One-parameter Characterization

The similarities discussed in the above section imply that it is
possible to represent the global core structure based on the
parameter Mff, which is calculated from only partial informa-
tion about the core structure. To further investigate this
implication, density distributions of all models are projected
by using a color coordinate in Figure 15. Models are sorted
according to MCO in the top panel, and each horizontal line
shows the density distribution of one model. The location of
Mff is shown by the black dashed line, and locations of base
masses of MSi,base, MO,base, and MC,base are overplotted by the
black, red, and blue solid lines. Because the central densities of
our models are adjusted to be ρc= 1010 g cm−3, inner density
structures of ρ 109 g cm−3 are nearly identical. On the other
hand, density structures marked by the color boundaries of
ρ= 108, 107, and 106 g cm−3 show similar MCO dependencies
to ξ2.5 and Mff. The models are sorted according to the Mff

order in the bottom panel. This plot demonstrates that, by
sorting the models with Mff, the density structure approxi-
mately inside MC,base can be sorted into a highly monotonic
sequence for the wide range of MCO.
In addition to the density structure, the thermal structure

follows a monotonic sequence once the models are sorted with
Mff. This is shown in Figure 16, in which the temperature
distributions ordered by Mff are shown in the top panel, and the
entropy distributions are in the bottom. The high monotonicity
of the temperature distributions will explain the strong
correlations between Mff and the chemically defined base
masses. This is because the temperature is the chief determinant
of nuclear reaction rates so the locations of the elemental bases
are well traced by the contour of constant temperatures, such as
MSi,base by T∼ 109.6 K, MO,base by T∼ 109.5 K, and MC,base by
T∼ 109.3 K. Although the monotonicity in the entropy
distributions is much more complicated than in the density
and temperature distributions, the figure shows that the central
entropy follows the Mff order as discussed in the previous
section. Also, note that the coincidence of MO,base and the color
boundary of the entropy of sk= 4.0 for models with
Mff 3.5Me or sk= 5.0 for models withMff 2.5Me indicates
that the location of the most significant entropy jump in a
collapsing star also correlates well with Mff as discussed above.
From this result, we further deduce that the inner structure of

a collapsing star can be identified as first order by specifying
only a single parameter, even though the late-time stellar
evolution, especially the convective evolution, of CCSN
progenitors is quite complicated. The density-dependent
parameter Mff, or equivalently ξ2.5, is applicable for the sorting.
Besides, provided the strong correlations, other parameters
such as base masses of MSi,base, MO,base, and MC,base or the
central entropy are also plausible.

4. Correlations with Observables

So far, we have discussed correlations between quantities
that characterize the core structure at the onset of core collapse.
Although these correlations are fundamental for improving our
understanding of the massive-star structure, they are difficult to
confirm directly from observations because the core is hidden
deep inside the star. Therefore, correlations involving

Figure 14. Distributions of the entropy per baryon (top), the density (middle),
and the mass fractions of chemical species (bottom) as a function of the mass
coordinate are compared for models of MCO = 3.12 (red, solid) and 8.70 Me
(green, dashed). Crosses in the entropy and density plots indicate the locations
of Mff for each model (Mff = 1.93 and 1.94 Me for MCO = 3.12 and 8.70 Me
models, respectively).
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observable quantities are equally interesting. In this section, we
intend to find such correlations from quantities that could be
observed, or at least constrained, from current and future
observations.

First, we analyze the remaining lifetimes from particular
evolutionary phases until core collapse. Second, the surface
quantities of the radii and the luminosities of the models, which
would be comparable to those of envelope-stripped stars in the
real universe, are discussed. Finally, properties of the CCSN
including the PNS mass, the explosion energy, and the
explodability are highlighted because of their particularly high
accessibility through transient surveys.

4.1. Remaining Time until Core Collapse

Once an evolutionary phase is properly defined, the
remaining time from that phase to core collapse can be
evaluated based on a stellar evolution calculation. In this work,
we define evolutionary phases mainly based on chemical
composition. The location of the maximum temperature is first
taken as a reference position for one time snapshot (most of the
time, it is at the stellar center). The evolutionary phase, iphase,
is set according to the chemical composition at the reference

position as
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and the initial value of iphase= 1 is set for the start of the
simulation, the HeZAMS phase. For each iphase, the reference
element is defined as
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and furthermore, the mass fraction of the reference element,
Xref= (mass fraction of elem(iphase) at the reference position),
is defined.

Figure 15. Density distributions of all models with a different order, with theMCO order (top panel) and with theMff order (bottom panel). Each line shows the density
distribution of the inner M � 6 Me region of one model using the color coordinate, the definition of which is indicated by the right color box. In the top panel, mass
coordinates of Mff, MSi,base, MO,base, and MC,base are additionally plotted by black dashed, black solid, red solid, and blue solid lines, respectively. Instead of Mff, MCO

is plotted by the black dashed line in the bottom panel.
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The remaining time until the core collapse estimated for our
model set is shown in Figure 17. Similar to Figure 15, the
remaining times are shown according to the MCO order in the
top panel and shown according to the Mff order in the bottom
panel. The rightmost black line indicates the start of the
simulation of the HeZAMS phase. The leftmost lines of each
color, corresponding to the boundaries between different
iphase, are set to indicate the depletion times of the
corresponding elements. Other thinner lines indicate the
depleting processes; at the beginning of each iphase, the initial
reference mass fraction Xref,0 is recorded, and lines are drawn
when Xref/Xref,0= 0.9, 0.8, ..., and 0.1. Hence, the thinner lines
of Xref/Xref,0= 0.9 roughly indicate the beginning of each
nuclear-burning phase but carbon. Since the mass fraction of
12C has already begun to decrease due to the 12C(α,γ)16O
reaction in the late core He-burning phase, Xref/Xref,0∼ 0.7
may provide a better proxy for the initiation of the core C
burning. Also note that a depletion line indicates the time when
the reference element is depleted at the reference location for
the first time, but it does not necessarily mean the complete
depletion of the reference element from the whole core. On the
contrary, the depletion is usually followed by successive shell
burnings. In particular, the shell C-burning phase starts after
central C depletion.

The remaining times for the He-burning phase show clear
correlations to the CO-core mass, thus, to the He core mass and
presumably to the ZAMS mass. Similarly, the remaining times
of the C-burning phase also show strong correlations to MCO,
though the mass dependency is stronger than the He-burning
phase. The least-massive models take ∼104 yr from the
initiation of core C burning until collapse, while it takes only
∼1 yr for the most massive models in our sample. This huge
difference is due to the significant temperature dependency of
the neutrino-cooling rate. Besides, a jump at MCO∼ 5Me
indicates a transition from the convective to the radiative nature
of the central C burning. Above this transition, the duration of

the central C burning is reduced because convective transport
no longer supplies nuclear fuel to the center.
The later Ne-, O-, and Si-burning phases show peak

structures; the durations are longest locally around
MCO∼ 6Me, decrease toward the local shortest peak at
MCO∼ 7Me, increase until MCO∼ 9Me, then decrease con-
stantly. These features are quite consistent with the trends
obtained for the ξ2.5 and Mff distributions, which are indicated
in the top panel as cyan and red bands. Therefore, clear
monotonic correlations can be manifested when the remaining
times are expressed as a function of Mff, as shown in the
bottom panel.
The plot still involves a huge scatter, especially in the less-

massive range with Mff ä [1.6, 2.3]Me. This scatter is not due
to the shuffling of models having smaller and larger MCO, but
rather originates from the scatter seen in the less-massive
models with MCO ä [3, 6]Me. At present, it is unclear whether
this kind of scatter is realistic or not. The large scatter is likely
induced by the highly nonlinear interplay of nuclear burning
and convective mixing, which can significantly affect the
lifetimes of nuclear-burning phases. Hence, real stars would
show the same scatter. However, from a numerical point of
view, such behavior might be enhanced due to coarse
resolutions both in space and time. To answer the question,
further investigation is needed.
It is noteworthy that the least-massive models with

Mff� 1.56Me (MCO � 1.72Me) start the “core Si burning”
∼1 year before core collapse. This Si burning is induced by the
off-center O+Ne flash, which takes place in a low-mass
oxygen core having a high electron degeneracy (Umeda et al.
2012; Woosley & Heger 2015). The relevance of observations
is discussed later.

4.2. Radius, Luminosity, and Effective Temperature

The radius evolution of all models is plotted in Figure 18, in
which the evolutionary phases are also shown. The mass
dependence of the radius evolution up to core C depletion is
rather simple. As a common feature, a He star model first
expands and then contracts during the core He-burning phase.
In this phase, the smaller the initial mass is, the smaller the
stellar radius is. Later, this relation is reversed by the shell He
burning; the helium envelope expands more for less-massive
models, while it keeps contracting for more-massive models
after core He depletion. The expansion/contraction bifurcation
takes place at MCO∼ 15 Me.
On the other hand, the evolution after core C depletion has a

more complicated mass dependency. The less-massive models
with MCO 4.3Me, except for the least-massive model, hardly
change the radii for the later phases, thus
|Rcollapse/RCdep|< 0.05 dex, where Rcollapse and RCdep are the
stellar radii at the core-collapse and core C-depletion phases.
Models with MCO∼ 4.5–6.8 Me expand their radii during the
Ne- and O-burning phases. This is particularly true for models
with MCO∼ 5.6–6.4 Me, in which Rcollapse/RCdep can be as
large as+0.1 dex. Conversely, models withMCO∼ 7.1–8.4Me
contract during the later phases, resulting in
Rcollapse/RCdep∼−0.1 dex. More-massive models with
MCO 8.7Me expand after the core Ne-burning phase. Among
them, less-massive models with MCO∼ 8.7–15.0 Me expand
also after the O-burning phase similar to the models with
MCO∼ 4.5–6.8 Me, while the radii decrease during the later
phases for more-massive models with MCO 15.0Me.

Figure 16. The same as the bottom panel of Figure 15, but for the temperature
distributions (top panel) and the entropy distributions (bottom panel).
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As a result, the stellar radius shows a smooth relation with
the CO-core mass up to C depletion, but eventually forms
distinctive peaks (MCO∼ 5–7 Me and ∼9–15 Me) and a valley
between them by core collapse. In the top panel of Figure 19,
the distribution of the stellar radius at the core-collapse phase
and the C depletion is shown. The coincidence between the first
peak (valley) and small (large) Mff at MCO∼ 5–7 (7–9) Me

strongly indicates that this structure originates from different
inner core evolutions. Meanwhile, such a structure does not
develop significantly for the luminosity distribution shown in
the bottom panel. Consequently, the peak-valley structure in
the radius distribution appears as a valley-peak structure in the
effective temperature distribution.

4.3. Properties of Supernova Explosions

Figure 20 shows the relation between the explodability and
density indicators (ξ2.5 and Mff) and Ertl’s parameters. The
explodability is estimated based on the semianalytic model
developed by Muller et al. (2016), with which we assign
“explosion” for models experiencing shock revival and forming
NSs and “implosion” for models never experiencing shock
revival or forming BHs due to the late-time accretion. The
critical value of each indicator is determined as the value that
would minimize the false-identification number of


(

)
<

+
x x

x x
number of imploded models with

number of exploded models with ,
crit

crit

Figure 17. Remaining time until core collapse from several evolutionary phases, which are defined based on the chemical composition. The beginning of the
simulation is traced by the black line (HeZAMS), and phases of the core He, C, Ne, O, and Si burnings are indicated by the blue, cyan, green, yellow, and red lines,
respectively. For the definitions of evolutionary phases, see the text. In the top panel, models are sorted according to the MCO order, and in the bottom, they are sorted
according to the Mff order. The cyan and red bands in the top panel are the same as those in Figure 3.
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where x ä {ξ2.5, Mff, μ(sk= 4), Mμ(sk= 4)}. The false
identification rate is the ratio of the false identification number
to the total model number.

As for ξ2.5, the figure clearly shows that the absolute value can
be used to determine the explodability, which is consistent with
previous works. Besides, we also find that Mff is as useful as the
compactness for the identification, showing the same false
identification number. Originally, Ertl’s parameters of μ(sk= 4)
and Mμ(sk= 4) (product of M(sk= 4) and μ(sk= 4)) were used
in combination for the fate identification in Ertl et al. (2016).

However, Muller et al. (2016) have reported that a single-
parameter classification only depending on μ(sk= 4) can yield a
better false identification with their semianalytic model because
the possibility of the late-time BH formation after the shock
revival has been ignored in Ertl et al. (2016). This is why we
compare the results of the fate classification utilizing one of
μ(sk= 4) andMμ(sk= 4) in this work. These parameters are also
capable of identifying the fate, resulting in similar false
identification rates. In summary, we have found that, based on
any of these indicators, explodability can be judged with roughly
equal accuracy.
Although we compute the false identification number and

rate, these are only for determining the optimal value to identify
different fates, and it is not our purpose to determine the precise
values. This is because we do not expect that a complete
identification is possible from approximate methods such as
those performed in this work. False-identification rates of about
10% are obtained for all the indicators in this work, and it
should be interpreted as a typical accuracy when using such an
approximate method. Furthermore, the critical values derived in
this work are not accurate enough for quantitative comparisons.
This is because we have found that the critical values are
sensitive to the method applied for the fate estimate. For
example, implosion more likely takes place if ξ2.5 > 0.36 for
our model set, which is larger than the 0.278 obtained in Muller
et al. (2016). However, we speculate this is not due to the
different model set but chiefly due to the different implementa-
tions of Müller’s semianalytic prescription since a critical value
of 0.33, which is closer to ours than that of Muller et al. (2016),
is obtained even if we apply our implementation to the same
progenitor models used in Muller et al. (2016). If another
method based on, for example, 1D hydrodynamical simulations
were used, even different values could be obtained. Therefore,
we conclude that the qualitative feature of being able to identify
fate is more robust and reliable than the quantitative features
including the false identification rate and the critical values.

Figure 18. Radius evolution of He star models shown by the color map
overplotted with the distributions of the remaining time until collapse from
evolutionary phases. The y-axis is theMCO of the model and the remaining time
until collapse is shown by the x-axis: The radius evolution of one model is
indicated by the color change on a horizontal line from the right side to the left.
The color coordinate for the radius change is shown in the right column.

Figure 19. Radius (top) and luminosity (bottom) distributions as a function of
MCO. In both panels, distributions recorded at the central C depletion are shown
by the cyan lines, and at the core collapse by the black lines. The cyan and red
bands are the same as those in Figure 3.

Figure 20. Histograms of models labeled with successful or unsuccessful
CCSN explosions, which are assessed by Muller’s semianalytic model, are
shown. Exploding models are shown in the red bins, and nonexploding models
are in the blue bins. The x-axes are set from ξ2.5 (top left), Mff (top right), μ
(sk = 4) (bottom left), and Mμ(sk = 4) (bottom right). The threshold lines,
below which the model is supposed to explode, are shown by red dashed lines
with indications of the values, and the false identification numbers are indicated
in the upper right.
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Explosion properties of (baryonic) PNS mass, explosion
energy, nickel ejecta mass, and shock-revival time are
presented as a function of Mff and MCO in Figure 21.8 It
shows that these explosion properties, especially the PNS mass,
have strong positive correlations with Mff. These correlations
suggest that the progenitor density structure would determine
not only the explodability but also the detailed properties of the
SN explosions. Taking the fact that the SN explosion is a
genuine nonlinear phenomenon into consideration, the exis-
tence of this kind of correlation is nontrivial and thus
interesting. Since the present analysis is based on the
approximate model, further investigations with more realistic
simulations are required. Nevertheless, it is noteworthy that the
correlations shown here are consistent with an interesting
correlation between the mass and the entropy of PNSs that is
found from more realistic and systematic 1D explosion
simulations (da Silva Schneider et al. 2020). This is because,
provided a likely correlation between the entropies of the
nascent NS and the progenitor’s iron core, the aforementioned
correlation results from the correlation between the PNS mass
and the entropy of the progenitor core.

MCO is probably a more accessible parameter by observa-
tions than Mff as it could correlate with the total ejecta mass

both in cases of Type II SNe and SE-SNe. The right column of
Figure 21 indicates that explosion properties show different
tendencies depending on MCO. In the lower end of
MCO 4Me, explosion properties, in particular, the PNS mass
and the explosion energy, obey linear correlations with MCO.
This is due to the linear correlation between MCO and Mff for
these less-massive progenitors. Because the CO-core mass
range roughly corresponds to the ZAMS mass of
MZAMS 20Me, and because most SNe may emerge from
the less-massive range considering the nature of the initial-mass
function, this coincides with the correlations observed for Type
II SNe (e.g., Muller et al. 2017b). An island of explosion exists
for MCO ä [8.1, 11.6]Me, which is consistent with earlier
theoretical studies (e.g., Ugliano et al. 2012). These massive
exploding models are estimated to yield explosions with
relatively larger NS masses, explosion energies, and 56Ni ejecta
masses, and this could be consistent with observations
suggesting the positive correlation between the total ejecta
mass, the 56Ni ejecta mass, and the kinetic energy of SE-SNe
(e.g., Taddia et al. 2018).

5. Discussion

5.1. Monotonicity in Other Model Sets

In this subsection, we aim to check the degree to which the
monotonic relation between the indicator, Mff, and the global
density and temperature distributions is robust. For this
purpose, a similar analysis has been performed for four
additional sets of models, in addition to the set we have
described so far (hereafter referred to as H1). Three of them,
H2, H3, and H4, are calculated using the same stellar evolution
code but with different initial compositions; they have pure
helium (H2), solar- (H3), or zero-metallicity (H4) compositions
initially (full stellar evolution with hydrogen envelopes are
treated in H3 and H4). Another difference is that a reaction rate
of ( )a gC , O12 16 of Caughlan & Fowler (1988) multiplied by a
factor of 1.2 is applied for models in these sets. The fourth set
is the one provided by Muller et al. (2016), which consists of
models with solar metallicity calculated by the stellar evolution
code KEPLER applying ( )a gC , O12 16 of Buchmann (1996)
multiplied by a factor of 1.2. This set is referred to as M16
hereafter. In addition, these model sets use different termination
conditions for stellar evolution simulations; H2 uses the same
condition as H1, stopping the simulation at ρc= 1010 g cm−3,
and H3 and H4 use the condition Tc= 109.9 K. On the other
hand, simulations in M16 terminate when the collapse velocity
anywhere in the core exceeds 1000 km s−1 (A. Heger, private
communication, 2023).
The MCO–Mff relations compared in Figure 22 show

different properties among the model sets. In particular, the
locations, widths, and heights of the peaks seen at MCO∼ 5–9
Me are different for all sets (the major peaks are around 6–9
Me for H1, 5–7 Me for H2, 5–8 Me for H3, 6–9 Me for H4,
and 5–6 Me for M16). The diversity seen in models H1 to H4
indicates that the MCO–Mff relation is sensitive to the different
computational settings of hydrogen envelopes, metallicity, and

( )a gC , O12 16 rate. This result is understandable since any of
those differences result in different C/O ratios that the CO
cores have at their birth (e.g., Sukhbold & Woosley 2014;
Patton & Sukhbold 2020; Sukhbold & Adams 2020). More-
over, more significant offsets between H models and model
M16 may indicate that the difference in the stellar evolution

Figure 21. Relation between explosion properties estimated by the
semianalytic model of Muller et al. (2016) and model indicators. The
explosion properties of the PNS mass (top panels), the explosion energy
(second top), the 56Ni ejecta mass (third top), and the shock-revival time
(bottom) are shown by the vertical axis, and the model indicators of Mff (left
panels) and the CO-core mass (right) are shown by the horizontal axis.

8 The PNS mass, explosion energy, and nickel ejecta mass are MPNS, Ediag,
and MNi calculated at the simulation end, respectively, and the shock-revival
time is the time when the condition theat < tadv is met. For detailed definitions,
see Appendix A.1.
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code including the reaction network, EOS, opacity, convective
boundary mixing, etc., is as influential as the other settings. We
do not perform a comprehensive analysis in this work as it is
beyond its scope; however, performing such an analysis is
clearly important for future realistic predictions.

Figure 23 shows the projections of density and temperature
distributions similar to Figures 15 and 16 but for other model
sets. Differences exist in the details. For example, in the M16
model set, the MO,base (shown by the red line) traces a constant
temperature of T∼ 109.6 K, whereas, in other model sets
calculated with the HOSHI code, it traces a lower constant
temperature of T∼ 109.5 K. This would indicate the strong
impact of applying different reaction rates, reaction network, or
QSE/NSE treatments on determining the innermost stellar
structures. Also, due to different termination conditions, the
density and temperature structures below ∼1 Me show
different trends for different model sets, i.e., when compared
at the same Mff, the H1 and H2 models show higher densities
and temperatures in the inner regions than the H3, H4, and
M16 models. Nevertheless, the Mff-based sorting clearly
reveals a significant correlation in density, temperature, and
compositional structure for all model sets. Hence, this
correlation is likely to be universal and independent of the
prescriptions for stellar evolution simulations.

5.2. Mass Ejection Prior to Core Collapse

Recent high-cadence SN surveys have revealed that many
CCSN progenitors experience enhanced mass loss in the final
years before core collapse, which leads to the formation of
dense circumstellar medium (CSM) (e.g., Bruch et al. 2021).
The CSM–ejecta interaction is believed to be the origin of the
narrow lines of Type IIn SNe (e.g., Chevalier & Fransson 1994)
as well as Type Ibn SNe, and the existence of a dense CSM can
also be inferred from the so-called “flash spectroscopy”
(Khazov et al. 2016; Yaron et al. 2017). More direct evidence
can be obtained from pre-explosion images. Ofek et al. (2014)
conducted a systematic search for the precursor eruptions for
progenitors of Type IIn SNe and concluded that most Type IIn

progenitors undergo precursor eruptions prior to the SN
explosion (see also Strotjohann et al. 2021). Furthermore, it
will be possible to estimate the onset time of the enhanced mass
loss by monitoring the evolution of the spectroscopic features
changing from optically thick to optically thin.
Several theoretical explanations have been proposed for the

mechanism of enhanced mass loss. The high mass-loss rate
may be achievable by line-driven winds (Vink & de
Koter 2002) or super-Eddington continuum-driven winds
(Shaviv 2001; van Marle et al. 2008). However, considering
the peculiar proximity to the core collapse, other mechanisms
such as wave-driven mass loss (Quataert & Shiode 2012;
Shiode & Quataert 2013) or mass ejection powered by off-
center nuclear flashes (Dessart et al. 2010) might be more
plausible because these mechanisms will operate for only later
evolutionary phases.
The convective motion inside the star will excite waves

when it hits the convective boundary layers. After the waves
are transported to the surface evanescent region, some of the
energy will be dissipated, leading to heating in the stellar
envelope. The convective motion is more energetic for the later
evolutionary phases, so at some point, this energy transfer may
result in mass ejection from the surface. Theoretical studies
have estimated that this wave-driven mass loss can operate
during and after the Ne-burning phase (Quataert &
Shiode 2012; Shiode & Quataert 2013; Fuller 2017; Fuller &
Ro 2018). As we have shown, the remaining lifetime until
collapse for the later burning phases of Ne, O, and Si burnings
have rough anticorrelations to Mff (Figure 17). Hence, we
expect that the onset time of the wave-driven mass loss will
also show anticorrelations to Mff.

9

In addition, Figure 17 illustrates that the least-massive
models of MCOä [1.42, 1.72]Me (M(τff= 1s)ä [1.40,
1.56]Me) experience off-center O+Ne flashes due to the high
electron degeneracy, which takes place ∼1–10 yr before core
collapse. Depending on the injected energy, such flashes may
result in mass ejection (Woosley & Heger 2015), which itself
could be observed as SN-like transients or SN impostors
(Dessart et al. 2010). From the small Mff, it is expected that the
additional transients triggered by the off-center flashes will be
associated only with the least-energetic CCSNe that finally
form the least-massive NSs (Suwa et al. 2018). In the coming
decades, the number of SNe, in which both the explosion
properties and the onset time of the final enhanced mass loss
are estimated, will significantly increase thanks to large surveys
such as the Rubin Observatory LSST (Ivezić et al. 2019). We
expect that further correlations linked via fundamental correla-
tions with Mff will be verified with future statistics.

6. Summary and Conclusion

We have found that monotonicity is inherent in the cores of
massive stars. The density, entropy, and chemical distributions
inside the base of the C-burning layer can be sorted
simultaneously if a characterizing parameter for the sorting is
appropriately given. The correlations between the structural
properties discussed in this work are summarized in the top
panel of Figure 24. Because of the monotonicity, choosing the
characterizing parameter is arbitrary. The compactness para-
meter ξ could be one possibility, but other parameters such as

Figure 22. The MCO–Mff relation for different sets. H1 (shown by the black
line) is the set we have so far discussed. Using the same code, but applying
different initial compositions and 12C(α,γ)16O reaction rate, sets H2 (He star,
blue), H3 (solar composition with H envelopes, cyan), and H4 (zero metallicity
with H envelopes, red) are calculated. M16 (green) consists of models analyzed
in Muller et al. (2016).

9 This expectation should be consistent with the anticorrelation between the
onset time and the He core mass indicated by Shiode & Quataert (2013).
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Mff, the chemically defined base masses, and the core entropy
have the same qualitative functionality. We have also found
that not only the final core structure but also the evolutionary
properties of the remaining lifetimes after neon ignition and the
final He star radius obey the monotonicity (the bottom panel of
Figure 24).

We stress that the existence of such monotonicity is
nontrivial. Indeed, it is well known that the core structure has
no monotonic correlation to the initial stellar mass. This is
because stiff nuclear reaction rates and neutrino energy loss
rates, as well as the nonlinear interplay between the nuclear
reactions and chemical mixing, bring significant complexity to
the entropy and chemical distributions, and hence, the
hydrostatic density structure inside the core of the massive star.

Based on the semianalytic model of Muller et al. (2016), we
have suggested the existence of correlations between Mff and
explosion properties such as explosion energy, 56Ni ejecta
mass, shock-revival time, and especially PNS mass (Figure 25).
This should be interpreted as the result of the more general
monotonicity, in particular the correlation between Mff and the
global density structure of the core. In this sense, the
monotonicity of the core provides a unified understanding of

the progenitor–explosion connection that has been investigated
in the past decade. Furthermore, as long as the assumed
explosion mechanism is linked to the density distribution of the
progenitor’s core and does not have an irregular dependency,
the outcome of any theoretical investigation will also be
characterized by the same parameter that is connected to the
monotonicity of the progenitor’s core. In a real explosion,
however, progenitor properties other than the density distribu-
tion, such as the stellar rotation, the convective turbulence, and
the magnetic fields, may have an equally important influence.
The monotonicity will be useful for some aspects. For

example, in order to reduce the computational cost, population
synthesis studies have used simple prescriptions to determine
the fate of the star that is based on the initial, the final, and the
He- and CO-core masses (e.g., Belczynski et al. 2010;
Kinugawa et al. 2014; Rodriguez et al. 2016; Banerjee 2017;
Spera et al. 2019; Tagawa et al. 2020). Utilizing the core
monotonicity will further reduce the complexity and may
improve the accuracy of such a prescription. It will be also
useful for constructing a parametric model of CCSN progeni-
tors (e.g., Suwa & Muller 2016). The monotonicity will be
particularly substantial as a sanity check, and it may also

Figure 23. The same as the bottom panel of Figure 15 but for density (left column) and temperature (right column) distributions of different sets H2 (top), H3
(second), H4 (third), and M16 (bottom).
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Figure 24. Matrices showing correlations between structure properties (top) and evolutionary properties (bottom). In the top panel, the characterizing parameters of
MCO, Mff, MHe, MC,base, MO,base, MSi,base (in units of Me), ξ1.5, ξ2.5, sk, c, and M4 are compared, and in the bottom panel, the logarithm of the remaining lifetimes from
the beginning of the He-burning phase and from the depletion of He, C, Ne, O, and Si at the reference points (in units of Myr), as well as the logarithm of radius (Re)
and luminosity (Le) at the surface at core collapse, are shown together with MCO and Mff. The face colors indicate Spearman’s rank correlation coefficients, which are
also indicated by the numbers included in each subpanel, with the color scale shown in the top-right color bar.
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improve the efficiency of parametric studies by setting a
constraint on the parameter space.

The monotonicity we have shown is far from perfect, and
many outliers have been found. The scatter might be due to
some physical effects, but equally possible is that they originate
from numerical errors. Improving numerical accuracy (e.g.,
increasing the spatial resolution; Sukhbold et al. 2018) will be
worthwhile to disentangle the possibilities. Besides, it will be
interesting to search for higher-order correlations.

The last note about the robustness of our result is that our
calculation is based on 1D stellar evolution simulations, in
which significant simplifications are involved in many aspects.
One critical issue will be the treatment of convection. In our
calculation, both energy and chemical transport due to the
convective turbulence relies on the traditional mixing-length
theory (Böhm-Vitense 1958). Applying a more sophisticated
theory (e.g., Arnett et al. 2018, 2019; Yokoi et al. 2022) with a
more reliable treatment for the convective boundary mixing
may affect the result. Similarly, it will be interesting to
investigate the effect of stellar rotation (Heger et al. 2000;
Maeder & Meynet 2000) and stellar magnetic fields (e.g.,
Takahashi & Langer 2021) on the monotonicity.
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Appendix A
Muller’s Semianalytic Model

Although the complete physical concept is well described
in Muller et al. (2016), we have observed that subtle differences
in the implementation can affect the result considerably. In order
to improve the traceability of our work, here we describe how
the semianalytic model is implemented and provide results of the
comparison between the original work. The physical
constants applied are c= 3.0× 1010 cm s−1, G= 6.67408×
10−8 cm3 s−2 g−1, Me= 1.9884× 1033 g, mu= 1.66054×
10−24 g, and arad= 7.5657× 10−15 erg cm−3 K−4 for the speed of
light, the gravity constant, the solar mass, the unified atomic mass
unit, and the radiation constant, respectively.

A.1. Basic Equations

Throughout the postcollapse evolution, time evolutions of
the PNS massMPNS, the explosion energies Eimm and Ediag, and
the ejected nickel mass MNi are evaluated. Before shock
revival, the mass of the PNS is identical to the stellar mass,
MPNS(i)=M(i), where i is the grid number andM(i) is the (cell-
surface) enclosed mass. Other quantities are set to zero.
We assign a time for each grid, with which the mass shell

reaches the stellar center after the core collapse, as

( ) ( )p
r

=t i
G4

, A1
ave

with the average density ρave=M(i)/(4πr3(i)/3) and the (cell-
surface) radius r(i). Consequently, the mass accretion rate is
given by
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where ρ(i) is the (cell-center) density.
The gain and shock radii at time t(i) are estimated by
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with αturb= 1.18. The neutrino luminosity is estimated as
Lν(i)= Lacc(i)+ Ldiff(i), which consists of the accretion

Figure 25. The same as Figure 24, but for CCSN explosion properties
including PNS mass (Me), explosion energy (1051 erg), nickel ejecta mass
(Me), and shock-revival time (s). The correlations shown here are made for
successfully exploded models only.
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Note that the factor 1/τcool(i) is missing in Muller et al. (2016).
For the diffusion component, the binding energy of the PNS is
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obtain results consistent with them.
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and it is compared with the heating timescale given by
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with ediss= 8.8 MeV/mu being the postshock binding energy
without rest-mass contributions, to yield the condition of shock
revival: The bounce shock revives if theat(i)< tadv(i). Also, note
that the power of the redshift correction in Equation (A11) is
changed from the original value of −1/2. At shock revival, the
PNS mass one time step before is recorded as the “initial” mass
of the PNS, Mini=MPNS(i− 1).

In the earlier phase after shock revival, the equations solved
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with ΔM(i)=M(i+ 1)−M(i) and the parameters are
αout= 0.5 and erec= 5MeV/mu. ηacc(i) is an efficiency para-
meter relating the mass accretion rate and the neutrino-heating
rate and is evaluated as
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⎞
⎠

i e i
t i

t i
, A17acc g

adv

heat

and vsh(i) is the shock velocity evaluated as

( ) ( )
( )

( )
( ) ( )

( )
r

= ´
-

-
⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

v i
E i

M i M

M i M

i r i
0.794 .

A18

sh
imm

ini

1 2
ini

3

0.19

òbind(i) and òburn(i) are the binding energy per unit mass of the
unshocked material and the added energy due to nuclear
burnings. They are estimated as

( ) ( ) ( )
( )

( ) = -i e i
GM i

r i
A19bind therm

with the thermal energy, etherm(i), and as

( ) ( ( ) ( )) ( ) = S - ¢i X i X i , A20k k k kburn rm,

where Xk(i) is the chemical composition after the explosive
nucleosynthesis, ( )¢X ik is the initial composition, and òrm,k is the
rest-mass contributions per unit mass for nucleus k. Note that the
definition of òbind(i) is not explicitly provided in Muller et al. (2016).
Xk(i) is determined using the postshock temperature Tsh(i),

which is given by

( ) ( ) ( ) ( )b
b

r=
-⎡

⎣⎢
⎤
⎦⎥

T i
a

i v i
3 1

A21sh
rad

sh
2

1 4

with β= 4. Using the temperature, Xk(i) is given as

1. changing elements lighter than O into 16O if
Tsh(i) ä [2.5× 109, 3.5× 109) K,

2. changing elements lighter than Si into 28Si if
Tsh(i) ä [3.5× 109, 5× 109) K,

3. changing all elements into 56Ni if Tsh(i)� 5× 109 K.

Note that this postshock temperature is the same as Equation
(46) in Muller et al. (2016) and is different from

( ) [( ( ) ( )) ( ) ( )]b b r= -T i a i v i3 1sh rad sh
2 1 4 that is implied from

Equation (45) in Muller et al. (2016).
The first explosion phase ends when the post-shock velocity,

( )b
b

=
-

v v
1

, A22post sh
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exceeds the local escape velocity,

( )
( )

( )=v
GM i

r i

2
, A23esc

thus, vpost> vesc. Thereafter, the second explosion phase
begins, and the evolution equations

( ) ( ) ( )+ =M i M i1 A24PNS PNS

( ) ( ) ( ( ) ( )) ( )
( )

 + = + + ´ DE i E i i i M i1
A25

imm imm bind burn

( ) ( ) ( ( ) ( )) ( )
( )

 + = + + ´ DE i E i i i M i1

A26
diag diag bind burn

( ) ( ) ( ) ( ) ( )+ = + ´ DM i M i X i M i1 A27Ni Ni Ni

are solved.
We set four possibilities for judging BH formation. First, a

BH forms if the model never meets the shock-revival condition.
Second, a BH forms if the (baryonic) mass of the PNS exceeds
2.40301Me, which corresponds to the maximum gravitational

mass of Mgrav= 2.05Me under a relation

( )


= + ⎜ ⎟
⎛
⎝

⎞
⎠

M M
M

M
M0.084 . A28PNS grav

grav
2

Third, a BH forms if the diagnostic explosion energy, Ediag(i),
becomes negative. Lastly, a BH forms if the redshift correction,
αredshift(i), becomes negative.

A.2. Comparison with the Original Work

Detailed comparisons between our and the original imple-
mentations for models with the initial masses of 12 and 15 Me
are shown in Figure 26. We have confirmed that, throughout
the evolution, except for at the very beginning, a more than
five-digit consistency is achieved for the quantities shown in
the top four panels. On the other hand, the two energies shown
in the bottom panels involve ∼1% inconsistencies for the first
explosion phase, which increase to ∼10% order differences for
the second explosion phase.
An estimate of the explodability is shown in the left

panel of Figure 27, which is comparable to Figure 6 of

Figure 26. Detailed comparisons for models with the initial masses of 12 (left) and 15 Me (right) that are taken from Muller et al. (2016). From the top to bottom
panels, time evolutions of rg and rsh (top), Lν and Ldiff (second from), tadv and theat (third from top),MPNS andMNi multiplied by a factor of 10 (4th), and Ediag and Eimm

(bottom) are shown. As for the comparison, results obtained with our implementations are shown by magenta solid and cyan dotted curves, and those from the original
work are shown by orange dashed and purple dashed–dotted curves. In the legends, results from the original work are also indicated by the subscript “M.” The timing
of shock revival is indicated by filled points, while the timing of vpost = vesc is indicated by crosses.
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Muller et al. (2016). This distribution includes a region of
implosion around the peak at Mini∼ 20.5 Me as well as a
region of BH formation due to late-time accretion at
Mini∼ 29 Me, and these are qualitatively consistent with
the original. The region of explosion between them (Mini∼
22–28 Me) is wider in this work, and this may be due to the
disagreement of Eimm and Ediag in the latter explosion phase.
Qualitatively speaking, this disagreement enlarges the
window of exploding models in our implementation. This
is illustrated in the right panel of Figure 27, which shows the
histogram of ξ2.5 of progenitor models in M16. The
threshold value, ξ2.5 ∼0.33, is larger than the original
estimate of ξ2.5= 0.278. As in Figure 25, a summary for the
M16 set is shown in Figure 28. A strong correlation between
Mff and the explosion properties, in particular, the NS mass
is also found in the result, hence we obtain almost the same
trends as with our own model set.

Appendix B
Comparison of the Explosion Properties

Müller’s semianalytic model, which we have used to predict
the property of CCSN explosion, like any other theoretical
calculation, involves a certain degree of uncertainty. Therefore,
it is important to know how robust the obtained results are.
Accordingly, although predicting the properties of CCSNe is
not the main topic of this study, we compare the results
obtained here with previous studies and summarize their
similarities and differences. In particular, we investigate
whether the explosion can be judged by ξ2.5 and similar
parameters and whether there are correlations between the
various quantities that characterize the explosion.
We first compare the results of three studies using Müller’s

model (Muller et al. 2016; Schneider et al. 2021; Aguilera-
Dena et al. 2022). Regarding the estimate of the explodability,
it was stated that the exploding models can be roughly judged
with ξ2.5 0.278 (Muller et al. 2016) or with ξ2.5 0.35
(Aguilera-Dena et al. 2022). Results in Schneider et al. (2021)
also seem to indicate that the explosion is more successful for
models with small compactness, for example, looking at their
Figure 7. In other words, all of these studies show that the
explodability can be judged in a semiempirical (compactness-
based) manner to first order, although the discrimination is not
perfect and the critical value is not definitive.
In all of these works, correlations between explosion

properties (explosion energy, nickel ejecta mass, and PNS
mass) were found. Furthermore, Schneider et al. (2021) and
Aguilera-Dena et al. (2022) have shown that the nature of the
explosion, in particular the PNS mass, correlates with ξ2.5.
Although Muller et al. (2016) stated that there is no strong
correlation between compactness and explosion properties,
their results (e.g., Figure 12) also show that the strongest
explosions come from the most compact stars, so it seems
likely that a loose correlation could be found. Besides, when
progenitor models of Muller et al. (2016) are analyzed using
Müller’s model with our implementation, a correlation is
found, especially between PNS mass and Mff (see
Appendix A). From these facts, we consider that the properties
of the CCSN explosion estimated by Müller’s model are
correlated with each other and that they are also correlated with

Figure 27. (Left) ξ2.5 distribution of the M16 model set. The colors indicate the fates expected from Müller’s semianalytic model of successful explosion (red), BH
formation due to accretion after shock revival (blue), and BH formation before shock revival (black). This figure is comparable to Figure 6 of Muller et al. (2016).
(Right) Same as Figure 20 but for the ξ2.5 histogram of progenitor models of Muller et al. (2016).

Figure 28. The same as Figure 25, but for CCSN explosion properties
calculated for the M16 set using our implementation of Müller’s semianalytic
model.
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the compactness, especially the PNS mass, to some extent.
These properties are in good agreement with our results.

By combining simulations and analytical relations, Pejcha &
Thompson (2015) investigated the explodability and the nature
of the CCSN explosion. They first simulated the gravitational
collapse of a massive star including the neutrino emission
processes using the 1D general relativistic neutrino radiation
hydrodynamical code GR1D (O’Connor & Ott 2010) and
determined the time evolution of Lν/Lcrit. Here, Lcrit(t) is the
analytically estimated critical neutrino luminosity required for
the explosion, and Lν(t) is the neutrino luminosity obtained
from the simulation. Then, the explosion was assumed to occur
when Lν/Lcrit(t) exceeds a certain threshold value, and the
explosion energy and nickel mass were further estimated by a
semianalytical method for exploding models. This threshold,
which was given as a simple function of the mass accretion rate
M , includes parameters, and various explosion conditions were
considered by changing the parameters. They argued that
explodability is not determined by compactness alone. How-
ever, their result includes a region where it is difficult to find
exploding parameters at MZAMS= 22–26Me (their Figure 13),
which corresponds to the peak of the compactness distribution.
Besides, for a specific model set (the parameter (a)) that mimics
the explosion fraction in Ugliano et al. (2012), the compact-
ness-based judgment was able to separate models that explode
from those that do not with 88% accuracy. So there seems to be
a loose correlation between compactness and explodability also
in their result. For explosion properties, they found a
correlation between the explosion energy and the nickel ejecta
mass. Their estimate of the nickel ejecta mass was based on the
assumption that radiation energy is dominant inside the shock,
and the correlation seems to be a direct consequence of this
robust but ad hoc assumption. The explosion energy was also
correlated with the NS mass, but it should be noted that this is
an inverse correlation (see their Figure 19). The inverse
correlation is probably due to their method for energy
estimation, where the less-compact models explode earlier,
having stronger neutrino winds, and therefore have larger
explosion energies estimated by integrating the power of the
neutrino winds. For compactness, it was stated that compact-
ness roughly correlates with NS mass.

Ugliano et al. (2012), Ertl et al. (2016), and Sukhbold et al.
(2016) performed parametric 1D simulations calibrated with
observations. An NS model was incorporated as an energy
source, and the neutrino luminosity was controlled by
parameters to yield explosions even in the 1D hydrodynamical
simulations.

Ugliano et al. (2012) calibrated the parameters for SN
1987A, the most closely observed SN. They found that the NS
mass correlates with the mass at the bottom of the oxygen-
burning shell (equivalent to our MO,base), but there is no clear
correlation between the various quantities characterizing the
explosion. Later, it was recognized that calibration with 1987A
alone would cause the less-compact models to explode very
strongly, which is contrary to the sophisticated simulations of
Crab-like SNe. Accordingly, Ertl et al. (2016) and Sukhbold
et al. (2016) treated the parameters as variables that vary in
proportion to compactness (or a similar measure), rather than
constants, for stars with small compactness, so that
less-massive stars have weak neutrino luminosities correlated
with compactness. This modification appears to affect the
correlation between the properties of the explosion;

Sukhbold et al. (2016) reported that, for the heavier-mass
models using constant parameters, nickel ejecta mass correlates
with the compactness while the explosion energy is roughly
constant, meaning no correlation. On the other hand, a
correlation between nickel ejecta mass and explosion energy
exists for the less-massive stars using a linear function of
compactness for the engine parameters.
Perego et al. (2015) and Ebinger et al. (2018, 2020)

performed 1D explosion simulations using the PUSH method,
which incorporates the effect that the efficiency of neutrino
heating is increased by multidimensional convective motion. In
PUSH, heavy-flavor neutrinos are used as the effective
additional source of energy, and the region where convection
is likely to occur is heated for the time that convection is likely
to occur. Parameters are included for the heating efficiency and
the convection generation time. Three types of outcomes were
considered for calibration: crab-like SNe with less compact-
ness, SN 1987A–like SNe with intermediate compactness, and
compact stars, which are thought to create BHs. Then, by
interpolating these three points with a quadratic function of
compactness, they determined a parameter function for the
neutrino-heating efficiency.
Ebinger et al. (2018, 2020) found that there is a correlation

between the properties of the explosion (explosion energy,
nickel emission mass, NS mass) and also between compactness
and, in particular, NS mass. They also studied the chemical
composition of the SN ejecta in detail and found that the
amount of 56Ni and 44Ti correlate with compactness (Ebinger
et al. 2020).
Finally, we compare the trends obtained from multi-D

explosion simulations conducted by Nakamura et al. (2015)
and Burrows et al. (2020). Among many works that conduct
multi-D simulations, these are particularly relevant to our work,
as they discuss how the characteristics of the explosion depend
on the structure of the progenitor star. While these simulations
still rely on approximate treatments of neutrino transport and
general relativity, there is no artificial engine, and the explosion
is driven by neutrino heating in accordance with the delayed
explosion mechanism. For this reason, estimates of explod-
ability and explosion features may be more realistic than results
from parametric models. On the other hand, due to the
computational costs, especially for Burrows et al. (2020),
where 3D simulations were performed, the number of
calculated models is small. For the same reason, long
simulations were not performed in these works, and the
estimation of explosion energy is not yet certain (however, see
Murphy et al. 2019). This is why the correlation between the
explosion energy and the nickel ejecta mass cannot be
confirmed from these works.
Nakamura et al. (2015) calculated 2D axisymmetric simula-

tions for 378 progenitor models with three metallicities: solar
metallicity, ultra metal poor, and zero metallicity. In their
calculations, most of the models exploded, so there is no
discussion of what determines the explodability. On the other
hand, a number of explosion indices, such as accretion
luminosity and nickel ejecta mass, were shown to correlate
with compactness. In particular, PNS mass had the strongest
correlation. The shock-revival time, defined as the time when
the shock front passes 400 km, was shown to have a weak
positive correlation with compactness, although it has a large
scatter.
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Burrows et al. (2020) performed 3D simulations for 19
progenitor models. An important conclusion is that their results
show that models with small or large compactness explode,
while models with intermediate compactness (their
MZAMS= 13, 14, 15Me models) do not, i.e., the explodability
cannot be separated by compactness. On the other hand, if we
restrict ourselves to exploded models, many of their properties
appear to be correlated with compactness. For example,
neutrino luminosity and neutrino energy deposition rate are
smaller for less-compact models and larger for more compact
models (their Figures 4 and 5). PNS mass is also highly
correlated with compactness (Table 3). One exception is that
shock-revival time does not appear to correlate with compact-
ness (Figure 2). This property may be related to explodability.

In summary, we have found similar trends to our results in
many previous studies. In particular, the correlation between
explosion energy and nickel ejecta mass and the correlation
between PNS mass and compactness are common features. The
former correlation indicates that Equation (9) in Pejcha &
Thompson (2015) is robust. As for the correlation between
PNS mass and compactness, compactness correlates with the
density structure of the entire core as shown by this work, and
thus compactness is a highly predictive indicator of the time
evolution of the mass accretion rate. Hence, it suggests that the
PNS mass determined as a result of the explosion can be
predicted solely from the evolution of the mass accretion rate
and does not sensitively depend on the details of the explosion
mechanism. Conclusions about the relation between explod-
ability and compactness depend on the modeling method. In
other words, parametric 1D simulations have shown that
explodability can be determined by compactness, while more
self-consistent 3D simulations by Burrows et al. (2018, 2020)
have concluded that compactness does not predict the
explodability but is determined by differences in the entropy
jump at the base of the O layer and the nonuniformity of
density due to convection. It should be noted that many
parametric calculations implicitly assume that the engine
property depends on the compactness of the progenitor, which
may be why the explosion properties are correlated with
compactness. To accurately determine explodability, a more
realistic engine model should be used in parametric calcula-
tions. On the other hand, regardless of the modeling method,
explosion properties, such as explosion energy, tend to
correlate with compactness when limited to models that
experience a successful explosion.
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