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Scalar, vector and tensor perturbations on the Kerr spacetime are governed by equations that can
be solved by separation of variables, but the same is not true in generic stationary and axisymmetric
geometries. This complicates the calculation of black-hole quasi-normal mode frequencies in theories
that extend/modify general relativity, because one generally has to calculate the eigenvalue spectrum
of a two-dimensional partial differential equation (in the radial and angular variables) instead of an
ordinary differential equation (in the radial variable). In this work, we show that if the background
geometry is close to the Kerr one, the problem considerably simplifies. One can indeed compute
the quasi-normal mode frequencies, at least at leading order in the deviation from Kerr, by solving
an ordinary differential equation subject to suitable boundary conditions. Although our method
is general, in this paper we apply it to scalar perturbations on top of a Kerr black hole with an
anomalous quadrupole moment, or on top of a slowly rotating Kerr background.

I. INTRODUCTION

Current and future measurements of gravitational
waves from mergers of binary black holes (BHs) provide
new ways to test the strong field and highly relativistic
regime of general relativity (GR) [1–4]. One promising
direction to probe the workings of gravity near BHs is to
study the emission of quasi-normal modes (QNMs) in the
post-merger phase of these BH binaries [5–7]. If GR is
the correct underlying theory of gravity, then the QNM
spectrum of astrophysical BHs must be uniquely deter-
mined by their mass and spin [8–10]. More precisely,
the spectrum of a perturbed Schwarzschild BH can be
obtained by solving the Regge-Wheeler [11] (in the odd
parity sector) or Zerilli [12] (in the even parity sector)
equations. For a perturbed Kerr BH, one has instead to
solve the Teukolsky equation [13] (see also [14]).

One remarkable property of GR, which does not hold
for more general gravitational theories, is that the per-
turbation equations for a rotating BH can be decoupled
into a radial and an angular part [13, 14]. This sepa-
rability property considerably simplifies the calculation
of QNMs relative to situations in which the equations do
not decouple, e.g., BH perturbations beyond GR, or even
neutron star oscillations in GR.

One obvious approach to adopt is a forward one in
which QNMs are computed beyond GR on a theory by
theory basis. Specific theories that have been studied
(for spherical or slowly rotating BHs) include, e.g., dy-
namical Chern-Simons gravity [15–18], Einstein-dilaton-
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Gauss-Bonnet gravity [19–24], Lorentz-violating grav-
ity [25]. There are also recent works aiming to gener-
alize the Teukolsky equation to more generic theories
and arbitrary rotation [26, 27]. Being this theory-by-
theory approach necessarily limited to a few case stud-
ies, much effort has also been directed at developing
theory-agnostic approaches to these calculations, e.g.,
the parametrized QNM framework [28–32], the effective
field theory of QNMs [33, 34], and modified perturba-
tion equations of parametrized BH metrics [35]. These
calculations, however, are also restricted (like those of
the aforementioned forward modeling approaches) to per-
turbations over spherically symmetric or slowly rotating
BHs, and their applicability to realistic astrophysical BHs
is therefore limited. Recent theory agnostic approaches
that go beyond spherical symmetry and/or the slow ro-
tation limit are intrinsically approximate, as they adopt
the eikonal limit [36–40], or simply attempt to describe
possible deviations from GR in the QNM spectrum by de-
composing the latter in powers of mass and spin [41, 42].

In this work, we outline an alternative approach that
allows for efficiently computing BH QNMs for back-
ground geometries that do not yield separable pertur-
bation equations, but which are perturbatively close to
Kerr or Schwarzschild. Note that a similar technique has
also been presented in Ref. [43], although it has been ap-
plied to rotating BHs in higher-derivative gravity. We
present the technical details of the method in Sec. II. To
showcase its performance, we then consider the example
of scalar perturbations, which we solve (in Sec. III) for a
slowly rotating Kerr BH, and for a Schwarzschild/Kerr
BH with an anomalous quadrupole moment. We stress
that the latter case is highly non-trivial, as it does not
yield separable perturbation equations in general. Our
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conclusions are finally presented in Sec. IV. Throughout
this work we use units in which G = c = 1.

II. METHODOLOGY

As discussed above, the aim of this work is to devise
a general method to calculate the scalar QNMs of a sta-
tionary, axisymmetric BH spacetime given by

gµν(r, θ) = g(0)µν (r, θ) + ε g(1)µν (r, θ) , (1)

where g(0)µν refers to the Kerr metric, and its deviation
away from GR is described by the term g

(1)
µν , where ε is

a small perturbation parameter. The only restriction on
the term g

(1)
µν considered here is that it is consistent with

axial symmetry. In Boyer-Lindquist coordinates xµ =
(t, r, θ, ϕ) the line element of the Kerr metric is

g(0)µν dxµdxν = −
(

1− 2Mr

ρ2

)
dt2 +

ρ2

∆
dr2

+ ρ2 dθ2 + sin2θ

[
(r2 + a2)2 −∆a2 sin2θ

ρ2

]
dϕ2

− 4Mra sin2θ

ρ2
dtdϕ,

(2)

where ρ2 = r2 + a2 cos2θ, ∆ = r2 + a2 − 2Mr, and M
and a are the mass and the spin of the BH, respectively.
The non-zero terms of g(1)µν are unspecified functions of r
and θ.

We now study scalar perturbations Ψ on top of the
metric in Eq. (1), satisfying the Klein-Gordon equation
gµν∇µ∇νΨ = 0. We will show that the assumption of
small deviations from GR makes the perturbation equa-
tion inherit the separability property of the Kerr case.
We start by expanding Ψ as [13, 14, 44],

Ψ =

∫
dω
∑
`,m

Z`m(r)√
r2 + a2

S`m(θ) e−iωt+imϕ . (3)

In the case ε = 0, the radial and angular parts decouple
and satisfy

d2Z`m
dr2∗

+ V
(0)
`m (r)Z`m = 0 , (4)

1

sin θ

d

dθ

[
sin θ

dS`m(θ)

dθ

]
+[

a2ω2 cos2θ + λ`m −
m2

sin2θ

]
S`m(θ) = 0 . (5)

Here, r∗ is the tortoise coordinate defined by dr/dr∗ =
h(r) = ∆/(r2 + a2), λ`m is a separation constant, and
the effective potential is given by [44],

V
(0)
`m (r) =

K2(r)− λ`m ∆(r)

(r2 + a2)2
− dG(r)

dr∗
−G2(r) , (6)

where K(r) = (r2 +a2)ω−am, and G(r) = r∆(r)/(r2 +
a2)2. The solutions S`m(θ) of the angular equation are
the scalar spheroidal harmonics [13, 14]. They form a
complete basis for angular functions and satisfy the or-
thonormality relation [14, 45],∫

dθ sin θ S`m(θ)S∗`′m′(θ) = δ``′ δmm′ . (7)

In the limit a → 0, they reduce to scalar spherical har-
monics, as S`m(θ)eimϕ → Y`m(θ, ϕ).

In the general case ε 6= 0, the Klein-Gordon equation
does not automatically separate, since it acquires addi-
tional terms coupling the radial and angular functions.
By neglecting terms of second order in ε, the Klein-
Gordon equation becomes∫
dω
∑
`,m

e−iωt+imϕS`m(θ)

[
d2

dr2∗
+ V

(0)
`m (r)

]
Z`m = ε J[Ψ] ,

(8)

where the source term is given by

J[Ψ] = − h(r)ρ2

g(0)
√
r2 + a2

∂µ

[
g(0) g

µν
(1) ∂νΨ + g(1) g

µν
(0) ∂νΨ

]
,

(9)
and we have used the notation

√
−det g = g(0) + ε g(1).

Inserting the ansatz given by Eq. (3) in the source term,
one gets the following form

J =

∫
dω
∑
`,m

e−iωt+imϕJ`m(r, θ) (10)

where the function J`m takes the following form

J`m = a(r, θ)Z`m(r)S′`m(θ) + b(r, θ)Z ′`m(r)S`m(θ)

+ c`m(r, θ)Z`m(r)S`m(θ) .
(11)

The explicit form of the functions a`m, b`m and c`m is
given in Appendix A. To obtain this formula, we made
use of the fact that S(θ) satisfies Eq. (5) to get rid of
S′′(θ) terms, and that, neglecting O(ε)2 terms, d2Z/dr2∗
can be eliminated with Eq. (4).1 Now, we can make use
of the fact that scalar spheroidal harmonics represent a
complete basis for angular functions, meaning that it is
possible to perform the following decomposition

J`m(r, θ) =
∑
`′

j``′m(r)S`′m(θ) (12)

By reintroducing this form back into Eq. (8), we have
that for each term in `, m it reads

S`m

[
d2

dr2∗
+ V

(0)
`m

]
Z`m = ε

∑
`′

j``′m(r)S`′m(θ) (13)

1 It is also worth noticing that terms proportional to Z′(r)S′(θ)
never appear due to the choice of g(1)µν being axisymmetric.
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By multiplying both side by S∗`m and using the orthonor-
mality relation in Eq. (7), one can completely decouple
away the angular contribution from the radial perturba-
tion equation. As it was singled out in Eq. (11) for J`m,
also the coefficients j``′(r) must contain terms linear in
Z and Z ′, with all the possible indices `′ selected by the
projection of the equation onto the spheroidal harmonics
S`m. Hence, without loss of generality, we have

j`′m ≡ j`′`′m = α`′m(r)Z`′m + β`′m(r)
dZ`′m

dr∗
, (14)

where the exact form of α`′m and β`′m depends on the
case of study and on the exact form of g(1)µν . We can write
the radial perturbation equation as

d2Z`m
dr2∗

+ V
(0)
`m (r)Z`m = ε j`m + ε

∑
`′ 6=`

j`′m . (15)

One can further simplify the equation with the redefini-
tion Z`m → Z`m exp

[
−ε/2

∫
drβ`m(r)/h(r)

]
to get rid of

the dZ`m/dr∗ term introduced via Eq. (14),2 yielding

d2Z`m
dr2∗

+ V`m(r)Z`m = ε
∑
`′ 6=`

j`′m , (16)

where the master potential is given by

V`m(r) = V
(0)
`m (r)− ε

[
α`m(r)− 1

2
β′`m(r)h(r)

]
. (17)

Note that Eq. (16) still represents a coupled system
of equations between different ` modes of the radial
eigenfunction Z`m. Finally, with the field redefinition,
Z`m(r) = X`m(r) + ε U`m(r), such that U`m(r) is chosen
to obey the differential equation

d2U`m
dr2∗

+ V
(0)
`m (r)U`m =

∑
`′ 6=`

j`′m(r) := T`m(r∗) , (18)

X`m(r) must satisfy the decoupled equation

d2X`m

dr2∗
+ V`m(r)X`m = 0 , (19)

with the QNM potential V`m(r) given in Eq. (17). This is
an eigenvalue equation, which can be solved for the QNM
frequencies ω`m by imposing ingoing boundary conditions
at the horizon and outgoing boundary conditions at infin-
ity. The QNMs obtained in this way are the main result
of our perturbative calculation.

2 To ensure that the boundary conditions at r∗ → ±∞ for the new
functions Z`m are the same as for the old functions, one needs
to require that β goes at least as 1/r2∗ as r∗ → ±∞. This is
verified for the examples that we consider in the following, for
which β(r) = 0 and therefore the transformation is not needed.

As for U`m(r), the differential equation (18) has known
coefficients, and the source T`m is a functional of Z`′m
(with `′ 6= `) and their derivatives, which are known
(in principle) by solving the background QNM equation
given by Eq. (4). Moreover, the frequency ω = ω`m ap-
pearing in Eq. (18) (through V (0)

`m and T`m) is also known.
That frequency can be obtained by solving either Eq. (4)
or Eq. (19) as eigenvalue problems.3 One can solve
Eq. (18) by imposing that U`m satisfies ingoing boundary
conditions for r∗ → −∞ and outgoing ones for r∗ →∞.
The solution can be explicitly found by using the ‘varia-
tion of parameters’-method [46]. For this purpose, let us
consider two linearly independent solutions U (1)

`m (r∗) and
U

(2)
`m (r∗) of the homogeneous part of Eq. (18), going to

zero respectively at the horizon/infinity, i.e.

U
(1)
`m (r∗) ∼ eiω`mr∗ for r∗ → −∞ , (20)

U
(1)
`m (r∗) ∼ A eiω`mr∗ +B e−iω`mr∗ for r∗ → +∞ , (21)

U
(2)
`m (r∗) ∼ e−iω`mr∗ for r∗ →∞ , (22)

U
(2)
`m (r∗) ∼ C eiω`mr∗ +D e−iω`mr∗ for r∗ → −∞ , (23)

where A, B, C and D are constant complex coefficients.
The absence of the first derivative term dU`m/dr∗ in
Eq. (18) implies that the Wronskian (dU

(2)
`m/dr∗)U

(1)
`m −

(dU
(1)
`m/dr∗)U

(2)
`m is a constant W 6= 04. Then, we can

write a solution as

U`m(r∗) =U
(1)
`m (r∗)

∫ r∗,2

r∗

U
(2)
`m (x)

W
T`m(x) dx

+ U
(2)
`m (r∗)

∫ r∗

r∗,1

U
(1)
`m (x)

W
T`m(x) dx , (24)

with r∗,1 and r∗,2 constants. Note that from Eq. (14),
it follows that if the functions α`′m and β`′m remain fi-
nite as r∗ → ±∞, the source T`m diverges at most as
exp(±iω`′mr∗), with `′ 6= `, for r∗ → ±∞.5 Using the
behavior of U (1,2)

`m given in Eqs. (20)–(23) and integrating
by parts, it therefore follows that for r∗ → ±∞ one has
U`m ∼ exp(±iω`′mr∗)A±, where A± depends linearly on
the asymptotic values of α`′m and β`′m as r∗ → ±∞.

3 The two estimates for ω`m would differ only by O(ε), and because
Eq. (18) appears already at linear order in ε, this difference only
affects the equations at O(ε)2.

4 Note that the Wronskian is not zero, as the two solutions are
linearly independent. Should one choose instead the two so-
lutions to satisfy ingoing/outgoing boundary conditions at the
horizon/infinity, the Wronskian would vanish [if ω`m is obtained
from Eq. (4)] or be ∼ O(ε) [if ω`m is obtained from Eq. (19)].
This explains why it is more convenient to choose U(1,2)

`m satisfy-
ing Eqs. (20)–(23).

5 These possible divergences are simply an artefact of working in
the frequency domain. Once the time dependence exp(−iω`′mt)
is restored [c.f. Eq. (4)], it becomes clear that T`m is finite at
future null infinity and on the future event horizon.
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These behaviors are sensible as they correspond to out-
going/ingoing boundary conditions for the (`′ 6= `,m)
modes, which also appear in Eq. (16) due to the mode
mixing term on the right-hand side. Note, however, that
the explicit form of U`m(r∗) is not needed to solve for the
QNM spectrum from our master equation in Eq. (19),
but only if one wants to reconstruct the scalar eigen-
functions. For more details we refer the reader to Ap-
pendix B, where we provide more algebraic details on
our method.

Let us end this section with a brief summary of the
methodology presented above. Given any stationary, ax-
isymmetric BH metric gµν , see Eq. (1), perturbatively
connected to the Kerr BH metric, we are interested in
studying the scalar QNM modes of the spacetime. We
start by expanding the scalar field Ψ in scalar spheroidal
harmonics in Eq. (3), and manipulate the Klein-Gordon
equation gµν∇µ∇νΨ = 0 into an inhomogeneous differ-
ential equation with a known source term, c.f. Eq. (8)
and Eq. (9). Then, the right hand side of Eq. (8) can it-
self be decomposed in spheroidal harmonics as described
below Eq. (9). This reduces the perturbation equation
to Eq. (15), with the potential V (0)

`m matching that of
the Kerr case [c.f. Eq. (6)]. Note that the right hand
side of Eq. (15) depends on the various radial eigenfunc-
tions Z`′m (with `′ = `, `± 1, `± 2, . . . ) and their deriva-
tives. Further simplifications can be made by absorbing
terms proportional to Z`m and its derivative into a rede-
fined potential V`m. Readers are referred to Eq. (16) and
Eq. (17) for more details. However, the equation thus
obtained still constitutes a coupled systems of differen-
tial equations, due to the presence of couplings between
various `-modes [via the source term in the right hand
side of Eq. (16)]. These differential equations can be de-
coupled by introducing a field redefinition, which leads
to Eq. (19). The equation in this final form can be used
to compute the QNM frequencies ω.

III. APPLICATION AND RESULTS

To illustrate the method outlined in Sec. II, let us con-
sider some examples where the ε = 0 metric g(0)µν is that of
either a Schwarzschild or a Kerr BH. For Schwarzschild,
we need to set a = 0 and replace eimφ S`m(θ)→ Y`m(θ, φ)
in the expressions derived above.

A. Slowly rotating Kerr BH

Let us consider the evolution of a scalar field Ψ in a
slowly rotating Kerr spacetime. In this case, g(0)µν is a
Schwarzschild metric of mass M and the deviation met-
ric g(1)µν has only two non-zero components, g(1)tφ = g

(1)
φt =

−2M2 sin2 θ/r, with the expansion parameter ε = a/M .
The horizon remains at the same location as that of the
background Schwarzschild BH, i.e., at r = 2M . There-

fore, the near horizon boundary condition also remains
unchanged. Using Eq. (9), we obtain the source term as
J[Ψ] = 4M2ωm

r2(r−2M) Ψ, and the final QNM equation takes
the form,

d2Z`m
dr2∗

+ V`m(r)Z`m = 0 , (25)

with the master potential

V`m(r) = V Sch
` (r)− 4 ε M2ωm

r3
, (26)

where

V Sch
` (r) = ω2 − `(`+ 1) f(r)

r2
− 2M f(r)

r3
(27)

and f(r) = 1−2M/r. This matches exactly the potential
given in Refs. [47, 48]. One then needs to solve Eq. (25)
to get the QNM frequencies for slowly rotating Kerr BHs.

B. Schwarzschild-quadrupole metric

Due to the celebrated ‘no-hair’ theorem [9, 10], a vac-
uum BH solution of GR is characterized only by two
parameters, namely the mass M and spin a. In other
words, all higher multipole moments [49, 50] of the vac-
uum BH solutions of GR are specified uniquely by M
and a. As a consequence of this theorem, other station-
ary, axisymmetric and asymptotically flat vacuum GR
solutions cannot represent a regular spacetime on and
outside the event horizon. See e.g. Ref. [51] for a spe-
cific example. However, if there are modifications to GR,
the no-hair theorem can be violated and BHs can have
extra hairs, which will in turn change the relation of var-
ious multipole moments (in particular, the quadrupole
moment) with mass M and spin a. Interestingly, such
deviations from the Schwarzschild/Kerr metric have al-
ready been considered quite extensively in literature, and
constraints on them from various (existing or future) as-
trophysical observations have been worked out (see e.g.
Ref. [40, 52–59])

Here, we perform the QNM analysis of a Schwarzschild
BH with an anomalous (i.e. non-GR) quadrupole mo-
ment. For this purpose, let us first construct a BH met-
ric that has Schwarzschild-like structure near the hori-
zon and reduces to the non-rotating Hartle-Thorne met-
ric, which represents the exterior vacuum spacetime of a
static body of massM and dimensionless quadrupole mo-
ment q = ε as r → ∞ [60–62]. The leading-order fall-off
of the metric components for r → ∞ can also be ob-
tained from the Hartle-Thorne metric given in Eq. (2.6)
of Ref. [63], with the spin set to zero. We are interested
in studying the effect of the quadrupole correction on the
QNMs. Up to linear order in ε, the non-zero covariant
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metric components are

gtt = −f(r)
[
1 + ε f1(r)P2(cos θ)

]
,

grr = f(r)−1
[
1− ε f1(r)P2(cos θ)

]
, (28)

gθθ = (sin θ)−2 gφφ = r2
[
1− ε f1(r)P2(cos θ)

]
,

where f1(r) = 2 f(r) (M/r)3, and P2(cos θ) is the Leg-
endre polynomial of second order. Note that by con-
struction, the event horizon location (and hence the cor-
responding boundary condition) remains the same as in
the Schwarzschild metric.

Because of the presence of the Legendre polynomial
P2(cos θ) in the metric, the source term J will contain the
product P2(cos θ)Y`m(θ, φ), i.e., a coupling between vari-
ous angular momentum components and the quadrupole,

J[Ψ] =
4M3 ω2

r3
P2(cos θ) Ψ . (29)

As it was shown in the Methodology section, we can de-
compose the radial and the angular dependency in terms
of Y`′m′(θ, φ), by using recursively the relation [48]

cos θ Y`m = Q`+1mY`+1m +Q`mY`−1m, (30)

where we define Q`m and two symbols that will appear
later as

Q`m =

√
`2 −m2

4`2 − 1
, (31)

A`m = Q2
`m +Q2

`+1m, B`m = Q`−1mQ`m. (32)

Following the method prescribed in Sec. II, one finally
gets the master equation,

d2Z`m
dr2∗

+ V`m(r)Z`m =

3ε ω2f1(r) (B`+2mZ`+2m +B`mZ`−2m) ,

(33)

where dr∗ = dr/(1− 2M/r), the potential reads

V`m = V Sch
` − ε f1(r)ω2 (3A`m − 1) , (34)

with V Sch
` being the effective potential for the

Schwarzschild BH defined in Eq. (27). Then, following
Sec. II (for more details see Appendix B), we can reduce
the coupled system of equations to a single equation in
the form of Eq. (19). We have calculated the QNM fre-
quencies from this equation using two methods, namely
the method of continued fraction [64, 65] and a linear
expansion in ε along the lines of Refs. [28, 31]. The two
methods agree well, as shown in Fig. 1. We have also
checked the validity of the decoupling technique that we
used (see Sec. II and Appendix B) by calculating QNM
modes from Eq. (33), i.e., without removing the right
hand side, and these modes matches well with the QNMs
after decoupling Eq. (33). The coupled system was solved
with the continued fraction code described in Ref. [31].
We computed numerically frequencies of the spectrum for

FIG. 1. Relative difference (absolute value) between the
` = m = 2 scalar mode on top of a Schwarzschild BH with
quadrupolar correction ε and its GR correspondent. Solid
lines refer to the real part of the mode, dashed lines to the
imaginary part. We computed the modes with either a con-
tinued fraction method (blue line) or a linear expansion in ε
(orange line).

a given ` and m, by truncating the system at some `max.
By comparing different `max, one can study the numerical
convergence of the QNMs until they achieve the desired
accuracy. We found, for the cases considered, that the
difference between the modes found with `max = ` + 2
and those with `max = ` + 4 was smaller than the er-
ror in ε given by the linear approximation. In addition,
we have compared different modes of the Schwarzschild-
quadrupole BH with Schwarzschild QNMs. In Fig. 1, we
plot the relative differences between the real and imagi-
nary parts of these modes, for ` = m = 2 and as a func-
tion of the anomalous quadrupole moment. As expected,
the effect of ε on the QNMs is always small reflecting the
fact that we are in the linear approximation regime.

As another test, we will now discuss the ‘eikonal limit’
of the QNM frequencies that we obtain. This is mo-
tivated by the fact that the eikonal limit of the QNM
equation in Schwarzschild/Kerr BH spacetimes has an
interesting correspondence with the circular photon or-
bit. In particular, one finds that in the eikonal limit
the real part of the Schwarzschild/Kerr QNMs is propor-
tional to the orbital frequency of the circular photon or-
bit, and the imaginary part is related to the Lyapunov ex-
ponent of the perturbed motion near the circular photon
orbit [66–71]. We want to check whether such correspon-
dence is present for the case of Schwarzschild-quadrupole
metric under consideration. One expects this correspon-
dence to hold for the following reason. In the eikonal
limit, we can write the perturbation as Ψ = A exp(iS),
where S is a phase factor that changes rapidly. Replac-
ing this ansatz in the Klein-Gordon equation, we get the
Hamilton-Jacobi equation gµν∂µS ∂νS = 0 for photons
under the assumption of rapidly varying phase. This im-
plies the geodesic equation for photons [72, 73].

For this check, we focus on equatorial photon orbits.
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Note that because of the equatorial symmetry of the met-
ric, initial conditions (θ = π/2, θ̇ = 0) yield orbits con-
fined in the equatorial plane. A subtle point is that the
eikonal QNM equation takes the same form as the null
geodesic equation when both are expressed in terms of
the same tortoise coordinate. In our case, however, the
QNM equation contains the Schwarzschild tortoise coor-
dinate r∗, which is different from the new tortoise co-
ordinate r̄∗ of the Schwarzschild-quadrupole metric. On
the equatorial plane, these two coordinates are related
by dr̄∗ = dr∗ (1 + ε f1(r)/2). By using r∗, the eikonal
limit (obtained for ` = m � 1) of Eq. (33) is given by
d2X`m/dr

2
∗ + V eik

`m (r)X`m = 0, where

V eik
`m (r) ' ω2

[
1 + ε f1(r)

]
− `2 f(r)

r2
. (35)

Here, we used the fact that Q`m → 0 in the eikonal
limit. When expressed in terms of new tortoise coor-
dinate r̄∗, the above equation generates a first derivative
term dX`m/dr̄∗, which can then be absorbed in a rede-
fined variable X`m → X̃`m exp

[
− ε/4

∫
dr̄∗ f(r) f ′1(r)

]
.

For more details see Eq. (C6) in Appendix C. Thus, the
final eikonal-limit QNM equation in the new r̄∗ coordi-
nate becomes d2X̃`m/dr̄

2
∗ + Ṽ eik

`m (r) X̃`m = 0, with the
potential

Ṽ eik
`m '

[
1− ε f1(r)

]
V eik
`m (r) '

ω2 − `2 f(r)

r2
[
1− ε f1(r)

]
,

(36)

where V eik
`m (r) is given by Eq. (35). Now, the equato-

rial potential for null orbits can instead be calculated as
V (r) = E2 − L2f(r)

[
1 − ε f1(r)

]
/r2, with L and E the

photon’s angular momentum and energy, respectively.
This potential thus matches the QNM potential in the
eikonal limit (see Eq. (36)) provided the energy E and
the angular momentum L of the photon are identified
with the eikonal QNM frequency ω and angular momen-
tum quantum number `.

The correspondence derived above between null
geodesics and QNMs is non-trivial, but it is only valid
for ` � 1. One can also check whether the eikonal ap-
proximation yields qualitatively correct results also for
moderate `. This would have implications for previous re-
sults employing the eikonal approximation in that regime
(e.g. Refs. [36, 40]). To this purpose, we have numeri-
cally computed the QNMs in the eikonal limit from the
circular photon orbit’s frequency Ωp and its Lyapunov
exponent λp as

ωln ≈ `Ωp − i

(
n+

1

2

)
|λp| , (37)

following standard procedures (see, e.g., Ref. [36, 40]). As
expected, we find very good agreement with our results
for large `, but also the correct trend for moderate `.

C. Kerr-quadrupole metric

In the same spirit of the static quadrupole metric con-
struction of the previous section, we may design a ro-
tating BH metric with Kerr-like structure near the event
horizon at r+ = M +

√
M2 − a2, and the same lead-

ing asymptotic structure as that of the metric given in
Eqs. (2.13-2.16) of Ref. [63] at r � r+, which is nothing
but the Hartle-Thorne metric that represents the exterior
vacuum spacetime of a rotating axisymmetric and sta-
tionary body of mass M, spin a, and quadrupole moment
q [60, 61]. The perturbative parameter in this metric is
ε = q− (a/M)2, where q is the dimensionless quadrupole
moment of the BH which is not uniquely specified by
mass and spin unlike Kerr. Note that by construction,
the event horizon location remains same as in a Kerr
spacetime.

The non-zero metric components of the metric, up to
O(ε), are therefore

gtt = gKerr
tt

[
1 + ε f2(r)P2(cos θ)

]
,

grr = gKerr
rr

[
1− ε f2(r)P2(cos θ)

]
,

gθθ = gKerr
θθ

[
1− ε f2(r)P2(cos θ)

]
,

gφφ = gKerr
φφ

[
1− ε f2(r)P2(cos θ)

]
,

gtφ = gKerr
tφ ,

(38)

where f2(r) = 2F (r) (M/r)3 with F (r) = ∆(r)/r2. Note
that in the limit a → 0, we obtain the Schwarzschild-
quadrupole metric given by Eq. (28). Let us now study
the effect of the anomalous quadrupole moment on the
QNM spectrum, at leading (linear) order in ε.

To get the source term J[Ψ], one can directly follow
the general prescription given in Sec. II. However, for
simplicity, we make one more approximation and expand
the source term in the product aω. Such expansion, while
linear in ε, is valid unless the spin is not close to the
extremal Kerr limit. In this way, we can express the
spheroidal harmonics S`m(θ) as a combination of gener-
alised Legendre polynomials P`m(θ) as follows

S`m(θ) =

∞∑
n=0

(aω)2n
N∑

k=−2n

K
(N)
` kmP`+km(θ) (39)

where the coefficients K(N)
` km can be easily found within

the Black Hole Perturbation Toolkit [74]. Under this ap-
proximation, one gets the following perturbation equa-
tion,

d2Z`m
dr2∗

+ V`m(r)Z`m = ε
∑
`′ 6=`

j`′m + εO(aNωN ) . (40)

The term
∑
`′ 6=` j`′m contains Z`′m and their derivatives

with `′ = {` ± 2, . . . , ` ± N}. Then, following Sec. II
(for more details see Appendix B), we can reduce the
above coupled system to the decoupled equation given by
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Eq. (19), which for the case N = 2 one gets the potential,

V`m = V
(0)
`m (r)

+ 3 ε a2ω4 f1(r)
(
K

(1)
` 2mB`+2m +K

(1)
`−2mB`m

)
− ε f2(r)(a2 + r2)−2 f3(r) + εO(a3ω3) , (41)

where V (0)
`m is given in Eq. (6) and

f3(r) = r
[
ω2 r3 − 2maωM + a2ω2(r + 2M)

]
(3A`m − 1)

+ a2ω2 ∆(r)
[
(3A`m − 1)A`m + 3(Bm`+2)2 + 3(B`m)2

]
.

(42)
Note that

{
f1, f2, A`m, B`m, K`m

}
are defined in

Secs. III B and III C.
The results of our QNM analysis are shown in Fig. 2

and Fig. 3. The relative difference between the ` = m = 2
scalar QNMmodes between the Kerr-quadrupole BH and
a Kerr BH of same mass and spin is shown in Fig. 2 as
a function of the anomalous quadrupole moments ε for
different values of spins a. Though the relative differ-
ences in both real and imaginary parts of QNM modes
increase for larger values of a and ε, it always remains
small reflecting the fact that we are working under the
linear approximation. In Fig. 3 the solid lines compare
the QNMmodes for the potential given in Eq. (41), where
the approximation of the source term was truncated at
N = 1, with those where terms up to N = 2 in the aω
expansion were included, whereas the dashed lines show
the absolute difference between truncation at N = 4 and
N = 2. Note that the size |∆ω| of the relative differ-
ence between the ` = m = 2 mode obtained considering
the quadratic and quartic expansions in aω of Eq. (42)
is smaller than the same obtained using the linear and
quadratic expansions for any fixed values of (a, ε).

In general, it is non-trivial to demonstrate the ex-
plicit correspondence between QNMs and the unsta-
ble photon orbit in the eikonal limit for arbitrary
spacetimes, as we did in the previous section for the
Schwarzschild quadrupole case. The correspondence for
the Kerr-Newman BH has been demonstrated recently
[75]. In order to test our analytic framework for the Kerr
quadrupole case, we numerically computed the QNMs
in the eikonal limit via Eq. (37), as we did for the
Schwarzschild quadrupole metric, and compared to our
results. Again, we found very good agreement for large
`, as expected, but also the correct trend for moderate `.

IV. CONCLUSIONS

In this work, we outlined a procedure that allows one
to compute BH QNMs in cases where the separability
of the perturbation equations is not achievable exactly,
but the background spacetime’s deviation from the Kerr
solutions is small. The underlying idea, which has also
been used in the case of rotating BHs in higher-derivative

FIG. 2. Relative difference between the ` = m = 2 scalar
mode on top of a Kerr BH with anomalous quadrupole mo-
ment ε and its GR correspondent, for different values of the
spin a. Solid lines refer to the real part of the mode, dashed
lines to the imaginary part. We computed the modes with
the continued fraction method.

FIG. 3. Comparison of the absolute difference for the ` =
m = 2 scalar mode on top of a Kerr BH with anomalous
quadrupole moment ε and spin a. Solid lines compare the
modes obtained with a N = 1 and N = 2 truncation in a for
the right-hand side of Eq. (42), whereas dashed lines show the
difference between N = 2 and N = 4 approximations. The
colors respect the same legend of Fig. 2.

gravity in Ref. [43], is to rewrite the perturbation equa-
tions in an approximate fashion by making use of the
spheroidal harmonics basis. While the resulting system
of equations shows couplings between radial functions
with different quantum numbers, as a result of the devi-
ations from Kerr, we find that the system can be diago-
nalized (i.e. decoupled) via a suitable redefinition of the
radial functions. As implicit in our perturbative treat-
ment, we find that the corrections to the QNM spectrum
of Kerr/Schwarzschild BHs are small, which allows for
mapping our results into the parameterized QNM frame-
work of Refs. [28, 29, 31].

The consistency of our method has been checked in
several ways. We verified that when applied to a slowly
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rotating Kerr BH, one obtains the known analytic result
for the (scalar) perturbation equation. We also quan-
tified the accuracy of the QNM frequencies when com-
puted at different orders when expanding the spheroidal
harmonics into spherical harmonics, and find good agree-
ment. Furthermore, we computed the QNM frequencies
with a continued fraction method, and verified that the
results agree with the linear order of the parametrized
QNM framework of Refs. [28, 29, 31]. Finally, we also
used the eikonal approximation relating the orbital fre-
quency at the photon ring and its Lyapunov exponent to
the QNMs. We have found very good agreement for large
`, and the correct trend also for moderate `.

In this paper, we have focused on scalar perturbations
on top of non-Kerr/non-Schwarzschild metrics as a non-
trivial toy problem. The extension to the full gravita-
tional case requires one to choose a specific theory of
gravity, compute the background metric, and then de-
rive the set of perturbation equations. We will tackle
this extension in future work.
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Appendix A: The source term

In this section of the appendix, we provide the explicit
form of the coefficients a, b and c`m appearing in Eq. (11).
The modification to the metric g(1)µν is chosen to be the
most general stationary and axisymmetric configuration

(not necessarily circular) [76]. We have

a(r, θ) = ∂θ

[
v2 − u

a2r2 sin2θ

ρ2∆

]
+ 2ftθ, (A1)

b(r, θ) = ∆ ∂r

[
v1 − u

a2r2 sin2θ

ρ2∆

]
+ 2ftr, (A2)

c`,m(r, θ) = r ω w10

[
K

∆
+ rω

]
+ a2ω2w02 cos2θ

− 4MaruF

ρ2∆

[
m
(
ρ2 − r

)
+ arω sin2θ

]
+
m2w23

sin2θ
+ w12λ`m + ∂rftr

+ amw13
2Mrω − am

∆
+

1

sin θ
∂θ (sin θftθ) , (A3)

where we defined

u(r, θ) =
1

2

(
ftt − 2ftϕ + fϕϕ

)
, (A4)

v0(r, θ) =
1

2

(
−ftt + frr + fθθ + fϕϕ

)
, (A5)

v1(r, θ) =
1

2

(
ftt − frr + fθθ + fϕϕ

)
, (A6)

v2(r, θ) =
1

2

(
ftt + frr − fθθ + fϕϕ

)
, (A7)

v3(r, θ) =
1

2

(
ftt + frr + fθθ − fϕϕ

)
, (A8)

and wij = vi − vj . The functions are defined as

ftt(r, θ) = g
(1)
tt /g

(0)
tt , frr(r, θ) = g(1)rr /g

(0)
rr , (A9)

fθθ(r, θ) = g
(1)
θθ /g

(0)
θθ , fϕϕ(r, θ) = g(1)ϕϕ/g

(0)
ϕϕ, (A10)

ftϕ(r, θ) = g
(1)
tϕ /g

(0)
tϕ , ftr(r, θ) = ∆Fg

(1)
tr , (A11)

ftθ(r, θ) = Fg
(1)
tθ , F = i

(
ω +

rK

ρ2∆

)
. (A12)

Appendix B: Decoupling the wave equation

In Sec. II, we have discussed a general method to de-
couple a system of coupled QNM equations of the form
given in Eq. (16). Thus, one may directly use this method
to deal with the QNM equations as given by Eq. (33) and
Eq. (40).

However, in this appendix, we will use a slight variation
of the method presented in Sec. II, in order to show that
our results reduce to those of Ref. [48] for some limiting
cases. For this purpose, consider a system of coupled
wave equations of the form

d2Z`m
dr2∗

+ V`m(r)Z`m = ε
[
f
(1)
`m (r)Z`+2,m

+ f
(2)
`m (r)Z`−2,m

]
. (B1)
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Note that the right hand side is a special case of the
more general situation shown in Eq. (16). Now, let us as-
sume that the ratio

(
f
(1)
`m/f

(2)
`m

)
is r-independent, which

is the case for Eq. (33). This motivates us to introduce a
field redefinition, X`m(r∗) = Z`m(r∗) + ε Z̃`m(r∗)/n(r) +
ε U`m(r∗), where r∗ is the background tortoise coordi-
nate defined by dr/dr∗ = h(r) and Z̃`m = c`m Z`+2,m −
d`m Z`−2,m. We want to choose the r-independent coeffi-
cients (c`m, d`m) and the function U`m in such a way that
X`m satisfies the standard wave equation in decoupled
form when O(ε2) quantities are neglected, see Eq. (19).
One such choice is given by

c`m =
f
(1)
`m (r)n(r)

V
(0)
`+2,m − V

(0)
`m

, d`m =
f
(2)
`m (r)n(r)

V
(0)
`m − V

(0)
`−2,m

; (B2)

d2U`m
dr2∗

+ V
(0)
`m (r)U`m = ∂r∗

(n′(r)h(r)

n2(r)

)
Z̃`m

+
2n′(r)h(r)

n2(r)

dZ̃`m
dr∗

. (B3)

where Z̃`m in the right hand side of the above equa-
tion must be considered as Z̃`m(ε = 0) and V

(0)
`m is the

Schwarzschild (Kerr) QNM potential given in Eq. (27)
(Eq. (6)). To check our result, one can readily see that
the choice n(r) = 1 and Ulm = 0 agrees with the case
presented in Ref. [48] for massless scalar perturbations of
a slowly rotating Kerr BH.

Few comments are in order here. First, we should
choose n(r) is such a way that (c`m, d`m) are r-
independent. Given that the ratio

(
f
(1)
`m/f

(2)
`m

)
is r-

independent, that is only possible if the ratio
(
V

(0)
`+2,m −

V
(0)
`m

)
/
(
V

(0)
`m −V

(0)
`−2,m

)
is also r-independent. In fact, this

is the case for the Schwarzschild metric with an anoma-
lous quadrupole moment which we considered in this pa-
per, see Eq. (33). In that case, it is easy to see that n(r) =
r, d`m = −3M3ω2Bm` /(2`− 1), and c`m = d`+2,m repre-
sent a valid solution. In contrast, if at least one of the
ratios

(
f
(1)
`m/f

(2)
`m

)
and

(
V

(0)
`+2,m − V

(0)
`m

)
/
(
V

(0)
`m − V

(0)
`−2,m

)
depends on r, the coefficients of Z`+2,m and Z`−2,m in
the field redefinition cannot both be set proportional to
n−1(r).

After finding
(
n(r), c`m, d`m

)
, we can substitute their

values in the differential equation for U`m given in
Eq. (B2), where both the source and the frequencies ap-
pearing in the potential are in principle known. There-
fore, we can always solve for U`m, c.f. Eq. (24) and re-
lated discussion. As a result, the final equation takes the
form given in Eq. (19), which can be solved to find the
QNM frequencies ω.

One can use the above method repeatedly
for decoupling an equation with higher order
mode couplings too, where ` mode is coupled to

{`− ¯̀, . . . , `−2, `−1, `+1, `+2, . . . , `+ ¯̀} modes, see for
example Eq. (40) in the Kerr-quadrupole case discussed
in Sec. III C. By symmetry, it is easy to see that higher
multipole perturbations (such as quadrupole, octupole
and so on) of the background BH metric may give rise
to such couplings. Therefore, from a phenomenological
point of view, one may directly start with a potential
V`m = V

(0)
`m +

∑
i εiV

i(1)
`m in Eq. (19), where the back-

ground V
(0)
`m has been perturbed by contributions V i(1)`m

coming from various higher multipoles. This motivates
the work presented in Ref. [31]. It is not hard to
concoct a similar method for decoupling an equation
with a source term containing derivatives of Z`′m as well.

Appendix C: Wave equation in terms of r̄∗

In this appendix, we want to address one more issue
that may arise. In Eq. (19), the derivatives are with re-
spect to the Kerr/Schwarzschild tortoise coordinate r∗
which may differ from the tortoise coordinate r̄∗ of the
metric given by Eq. (1). However, if the horizon loca-
tion remains the same, we may still choose to work with
the old tortoise coordinate, as the near-horizon (ingoing)
boundary condition remains unaltered [44, 48]. However,
for a general scenario where this is not the case, we have
to tackle the problem of incorporating the QNM bound-
ary conditions properly.

For this purpose, let us assume that the new and old
tortoise coordinates are related by dr̄∗ = dr∗ [1 + ε g(r)],
where g depends on the radial coordinate only. Note
that one can always put the function g in such a form
by writing the metric in coordinates in which the radial
coordinate is constant on the horizon. Using this relation,
we can express the derivatives in Eq. (19) with respect
to r̄∗, to get

d2X`m

dr̄2∗
+ ε h(r) g′(r)

dX`m

dr̄∗
+ V`m(r)

(
1−2 ε g(r)

)
X`m

+O(ε2) = 0 , (C1)

where dr/dr∗ = h(r). We can omit the first derivative
term in the left-hand side by a field redefinition, X`m →
X̃`m exp

[
− ε/2

∫
dr̄∗ h(r) g′(r)

]
. Then, the final master

equation becomes d2X̃`m/dr̄
2
∗+Ṽ`m(r) X̃`m = 0, with the

redefined potential as

Ṽ`m(r) = V`m(r)
[
1− 2 ε g(r)

]
− 1

2
ε h(r)

d
[
h(r) g′(r)

]
dr

.

(C2)
As a demonstration of the method above, let us discuss
a suggestive example, where we consider the effect of a
small charge on the Schwarzschild scalar QNMs. In other
words, the spacetime is Reissner-Nordström (RN) with a
small charge |Q| � M , and the location of the horizon
is different from Schwarzschild. We will consider ε =
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Q2 as our perturbative parameter. In this case, g(r) =

−
[
r2 f(r)

]−1 and h(r) = f(r). Then, Eq.(17) gives the
potential6

V`(r) = V Sch
` (r)−ε 2M2 + 2 r4 ω2 − r2 f(r) (`2 + `− 1)

r6 f(r)
.

(C3)
Therefore, using Eq. (C2) the master QNM equation be-
comes

d2X̃`m

dr̄2∗
+ Ṽ`(r) X̃`m = 0 , (C4)

where the master potential is

Ṽ`(r) = V Sch
` (r)− ε 6M + (`+ 2)(`− 1) r

r5
, (C5)

which can be verified by a direct calculation of QNM
equation for a RN spacetime.

Another interesting conclusion follows directly from
Eq. (C2). Note that in the eikonal limit (` = m� 1), the
last term (which is `-independent) in the right hand side
of Eq. (C2) can be neglected and the eikonal potential
takes a very simplified form:

Ṽ eik
`m (r) ' V eik

`m (r)
[
1− 2 ε g(r)

]
, (C6)

where V eik
`m (r) is the eikonal limit of the potential V`m(r)

given in Eq. (17). We shall use this equation in Sec. III B
(see Eq. (36)) to derive the eikonal QNM potential in the
Schwarzschild-quadrupole case.
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