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Abstract

When the universe is treated as a quantum system, it is described by a wave
function. This wave function is a function not only of the matter fields, but
also of spacetime. The no-boundary proposal is the idea that the wave function
should be calculated by summing over geometries that have no boundary to the
past, and over regular matter configurations on these geometries. Accordingly,
the universe is finite, self-contained and the big bang singularity is avoided.
Moreover, given a dynamical theory, the no-boundary proposal provides proba-
bilities for various solutions of the theory. In this sense it provides a quantum
theory of initial conditions.

This review starts with a general overview of the framework of quantum
cosmology, describing both the canonical and path integral approaches, and
their interpretations. After recalling several heuristic motivations for the no-
boundary proposal, its consequences are illustrated with simple examples, mainly
in the context of cosmic inflation. We review how to include perturbations,
assess the classicality of spacetime and how probabilities may be derived. A
special emphasis is given to explicit implementations in minisuperspace, to
observational consequences, and to the relationship of the no-boundary wave
function with string theory. At each stage, the required analytic and numerical
techniques are explained in detail, including the Picard-Lefschetz approach to
oscillating integrals.
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1. Introduction

The principles of quantum theory are the most basic physical principles un-
covered to date. They have been tested over the past century in numerous
experiments, and form the basis of modern electromagnetic and nuclear tech-
nology. What has not been achieved so far is a direct experimental verification
of the quantisation of the fourth fundamental force, namely gravity. The reasons
for this are easily understood to lie in the relative weakness of the gravitational
force compared to electromagnetic and nuclear interactions.

So even though we are not compelled by experiment to assume that gravity
is quantised, there are good arguments that indicate that it must be. One
such argument, based on the internal consistency of the laws of physics, will be
provided in the next section. Once we contend that gravity is indeed quantised,
and that the laws of quantum theory apply to all interactions, it is clear that
the entire universe must also be considered to be a quantum system. As such,
it must be described by a wave function. This wave function is then not only a
function of the matter fields, but also of spacetime itself. But how should one
calculate the wave function of the universe?

Note that if the wave function includes a description of space and time, then
it will necessarily also tie in with the question of boundary and initial conditions
of the universe, since these are the conditions at the ends of space and time. In
other words, a wave function of the universe links together the laws of dynamical
evolution and the specification of initial conditions. This is in stark contrast
with a laboratory setting, where initial conditions are carefully prepared by the
experimenter.

But then what should the conditions be at the ends of space and time? Here
J. Hartle and S. Hawking made a suggestion that is as radical as it is elegant
[1, 2]: they proposed that there should be no such ends! In other words, they
proposed that space and time should have no boundary to our past. And if there
is no boundary, then there is no need for further boundary conditions – hence
(the hope is that) this fully specifies the initial conditions for our universe, and
it indicates how to calculate the wave function of the universe.

The idea that the universe is entirely self-contained, both in space and in
time, sounds almost like a tautology. What it means is that if there was a
boundary, then one would have to specify conditions at that boundary and they
would link to an evolution on the other side of the boundary – put differently,
if there was a boundary then outside information would be required. But there
is more: in ordinary classical general relativity, the no-boundary condition is
plainly impossible. This is because under reasonable assumptions on the matter
content of the universe, the celebrated singularity theorems [3] imply that in our
past there must have existed a curvature singularity, the big bang. Such a sin-
gularity would be an end point of spacetime. Therefore one cannot impose the
no-boundary condition in classical physics. It is a true quantum gravitational
condition. And it eliminates the big bang singularity. As will be discussed in
detail, the no-boundary condition in fact has similarities with quantum tun-
nelling. Thus one possible interpretation of the no-boundary proposal is that it
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eliminates the big bang singularity, and replaces it by describing the origin of
the universe as a tunnelling event from nothing, i.e. from the absence of not
just matter, but also the absence of spacetime.

big bang no-boundary

Ψ(�elds)

Figure 1: Left panel: A cartoon of the evolution of a classical, expanding universe with closed
1-dimensional spatial sections. Space is horizontal and time vertical. Going back in time,
one reaches a singularity, the big bang. Right panel: By contrast, the no-boundary proposal
suggests that one should consider geometries that are (smoothly) rounded off in the past, and
that contain no boundary there. Such a condition automatically eliminates the big bang.

A cartoon of the no-boundary idea is shown in Fig. 1. The figure should
make it clear that no-boundary geometries, though they have no boundary to
the past, do actually have a boundary (but a single one): this boundary may be
thought of as a spatial slice of our universe, either a current slice or a spatial slice
in the early universe. The no-boundary wave function then has as arguments
the field values (or momenta) on this “final” hypersurface. It is not a transition
amplitude in the usual sense, since this would depend on field values or momenta
on two separate hypersurfaces. However, one may at least heuristically think of
it as a transition from nothing to today.

It should be clear by now that the no-boundary proposal assumes a fully
quantum view of spacetime: actual spacetime does not exist when not measured,
i.e. when not in interaction with either itself or matter. It is the interactions
between the different constituents of the universe that result in our perception of
classical spacetime, and of large scale classical laws of evolution. And vice versa,
going back in time towards the putative big bang, one will necessarily encounter
departures from the classical evolution. A significant part of this review will be
concerned with making these ideas, which may sound rather vague at first, more
precise.

There is an immediate concern that should be mentioned from the outset.
Let us assume we are given a wave function for the universe. Then it will imply
probabilities for different histories of the universe, or one could say that it will
provide probabilities for different universes. Yet we live in a single universe, so
how can we talk about probabilities for different universes? It should be said
that this issue is not fully resolved. Certainly, inside of the universe probabilities
for the outcomes of experiments make sense, and we will show in some detail
how this comes about. But probabilities are inherently linked to a classical
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notion of time (think about any operational definition of probabilities). And
in quantum cosmology, time itself is not a priori classical, it is not fixed from
outside. There is no overarching concept of spacetime in which universes reside
– rather, each universe has its own spacetime. Hence it may not make sense to
compare probabilities for different universes. Nevertheless the common practice
has been to do just that [4, 5], and to ask, given a set of dynamical laws, whether
the no-boundary wave function implies that a universe like ours is typical or
highly unlikely. We will return to this question at various points, and mention
ways in which the interpretation of the wave function might be elucidated. Let
us emphasise though that even within a given universe the no-boundary wave
function can make post- and predictions for observations.

Besides such conceptual issues, the first challenge in fact is to find a con-
vincing mathematical implementation of the no-boundary proposal. This will
be a central focus of this review, and it is probably also the area in which
most progress has been made in recent years. As we will see, this is directly
linked to an understanding of gravitational path integrals quite generally, and
many connections with string theory have emerged. These connections are now
providing a two-way flow of insights: string theory provides clues regarding
the mathematical implementation of the no-boundary proposal, and the no-
boundary wave function provides a framework in which to address some of the
landscape/swampland-related puzzles of string theory. These connections pro-
vide promising starting points for further research, and one aim of this review
is to provide the necessary background for undertaking such research.

In brief, the outline of the review is as follows: we will start with a general
overview of quantum cosmology in section 2. This will serve to introduce the
basic concepts one is led to, both in the canonical and path integral quantisa-
tion schemes. Section 3 then introduces the no-boundary proposal, starting from
heuristic motivations and building up in mathematical rigour. Both analytic and
numerical methods for finding no-boundary solutions will be described in detail.
The crucial question of how to extract probabilities from the no-boundary wave
function, and to derive predictions for observations, will be tackled in section 4.
More recent topics, and in particular the above-mentioned connections with
string theory, will be the topic of section 5. To end, we will list a number of
outstanding questions in the discussion section 6. Finally, three appendices fill
in a few details about canonical and path integral quantisation, as well as some
perhaps lesser known mathematical methods, in particular Picard-Lefschetz the-
ory. This review aims to be self-contained, but it assumes prior knowledge of
general relativity, quantum mechanics, and the basics of cosmology and string
theory, with the latter only being required in section 5.

Notation and conventions: Greek indices run over space and time, lower case
Latin indices only over space, while capital Latin indices run over fields. For
Lorentzian metrics, the signature is taken to be mostly plus, and the conventions
for gravity are Rλµσν = ∂σΓλµν − ∂νΓλµσ + ΓτµνΓλτσ −ΓτµσΓλντ with Rµν = Rλµλν .
We set 8πG = 1, but mostly retain ~ explicitly.
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2. Quantum Cosmology

Quantum cosmology is, simply put, the application of quantum principles to
the whole universe. No less. Despite this highly ambitious mission statement,
this task is, at least to some extent, already within reach of current physics. In
practice, there are two main simplifications that are helpful: the first is based
on the observational fact that the early universe was comparatively simple, in
the sense that it was spatially highly isotropic and homogeneous. This sug-
gests an approximation scheme where one starts with geometries and matter
configurations that are exactly isotropic and homogeneous on spatial slices, and
then includes perturbations as a small correction. A second simplification that
is typically made use of is the semi-classical approximation, i.e. one considers
an expansion in Planck’s constant ~ (or, rather, in the dimensionless inverse
Planck mass) and works to leading or first sub-leading order. Of course, at the
end of the calculations, one has to check whether the approximations used were
justified. As we will see, with these approximations at hand, one may actually
get quite far in describing quantum effects in the early universe.

S

R

1

2 S

R

1

2

n

Figure 2: Left panel: The double slit experiment: a source S emits particles that are detected
on a recording surface R. When two slits are present in the intermediate screen, an interference
pattern is observed, as indicated on the right. Right panel: By opening successively more slits,
one arrives at the picture that the amplitude should be calculated by summing over all possible
paths.

2.1. The Need for Quantum Gravity

We will start by recalling the famous double slit experiment. This exper-
iment highlights the most striking features of quantum mechanics. Moreover,
it provides a direct motivation for the path integral and, as we will argue, the
quantisation of gravity. Fig. 2 shows the setup. Consider a source S sending
particles, e.g. electrons, through slits 1 and 2, and a recording plane R that
measures the impact of the particles. We call the flux of particles measured at
R, or equivalently the probability of detecting particles, P1 when only slit 1 is
open, P2 when only slit 2 is open, and P when both slits are open. Classically,
we expect P = P1 +P2. However, this is famously not what is observed. Rather,
the probability distribution at R when both slits are open is given by a formula
that is akin to having waves emanating from S, passing through the slits, and
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interfering before reaching R,

P = |Φ1 + Φ2|2 , (1)

leading to the interference fringes shown in the figure. The crucial point is that
this formula remains valid even when the source is dimmed so much that only
a single particle is emitted during a time interval that is at least as long as
the crossing time. This experiment then directly illustrates the superposition
principle: amplitudes that correspond to the same outcome, but to different
evolutions, are summed. The two possible trajectories of the particle interfere
with each other.

Above we did not specify how the amplitude is numerically determined. One
guideline is that the amplitude should recover classical physics when ~ is small.
First note that ~ has dimensions of action, namely [energy] × [time]. Second,
recall that classical solutions are given by extrema of the action S (δS = 0).
Then one may guess that the amplitude should be an oscillating function of
S/~. The appropriate choice turns out to be [6]

Φ = e
i
~S . (2)

With this choice, whenever S/~ is large, nearby trajectories cancel each other
out, as eiS/~ varies rapidly, except near extrema where δS = 0. That the ex-
ponent is linear in the action can be derived from the additional requirement
that the amplitude leads to the correct composition property of paths. With the
choice above, for two paths in succession, with actions S1, S2, we get a combined
amplitude that factorises, e

i
~ (S1+S2) = e

i
~S1e

i
~S2 , as it should. Moreover, one

may show [6] that for this choice one recovers the standard Schrödinger equation
by splitting up paths into small intervals.

Now it is just a small step to the path integral. This step is illustrated in the
right panel of Fig. 2. Imagine adding additional slits to the screen, say n slits
in total. Then the amplitude will be given by a sum over trajectories passing
through all of the slits,

Φ =

i=n∑
i=1

e
i
~Si , (3)

and new interference patters will be generated. In fact, we could have added
more screens in between the source and the recording plane, and then opened
slits in all of these intervening screens. By imagining a dense array of screens,
with infinitesimal slits, one arrives at the conclusion that the amplitude should
be given by the sum over all possible trajectories, each trajectory being weighted
by a phase that is the action divided by ~,

Φ =

∫
Dx e i~S[x] , (4)

where x denotes the position of the particle and Dx is an appropriate measure
over paths. This is Feynman’s path integral approach to quantum theory [6]. In
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field theories, one would integrate over matter configurations. But what about
gravity?

Let us go back briefly to the case with just two slits. Then the amplitude is
well approximated by the contributions from the saddle points

Φ ≈ N
(
e
i
~Ssaddle,1 + e

i
~Ssaddle,2

)
, (5)

where N is a normalisation factor. Here Ssaddle,1 corresponds to the classical
action for the trajectory that passes through slit 1, and similarly for slit 2. When
gravity is taken into account, this means that it is the action for the trajectory
of particle 1 including the backreaction on the spacetime, as it is the action of a
classical solution to the full equations of motion. In other words, the amplitude
is a superposition not just of two particle paths, but of two spacetimes that each
contain a particle path (for a similar argument, see [7]).

Note that it would not make sense to assume that there is just one under-
lying spacetime: if we imagine adding more slits, then the backreaction due to
the mass of the particle taking various paths would add up. Considering mul-
tiple slits, finely spaced, one could make the backreaction arbitrarily large, an
absurd conclusion considering that the limit of infinitely many slits corresponds
to having no screens at all, i.e. corresponds to free propagation. Thus we cer-
tainly cannot assume that the various trajectories together lead to a combined
gravitational effect. It makes equally little sense to assume that there is a fixed
background spacetime, maybe given by the “average” backreaction. After all,
classical motions of particles follow geodesics, which depend on the curvature of
the spacetime. And this curvature depends on the trajectory itself, and hence
must be different for the two trajectories we are considering. Basically, the
gravitational force exerted on other objects would be ill defined if there was a
fixed background spacetime.

The only interpretation that makes sense is that we have a superposition of
spacetimes-with-matter. In other words, conceptually it makes sense to think
of the double slit experiment as a quantum gravity experiment. It is only the
relative weakness of the gravitational force which implies that one can ignore
the gravitational backreaction in laboratory experiments (so far). But concep-
tually, requiring internal consistency of the physical laws implies that gravity
and spacetime must be quantised along with matter.

The path integral then provides an obvious framework to attempt such a
quantisation: it simply implies that we must also sum over geometries, so that
heuristically a wave function Ψ should be calculated as

Ψ =

∫
DgµνDφ e

i
~S[gµν ,φ] . (6)

See also Fig. 3 for an illustration. In the following, the rather schematic formula
above will be made much more precise1.

1The path integral quantisation of gravity can however not represent the full theory of
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A

B hij(t=1)

hij(t=0)

Figure 3: Left panel: when calculating the amplitude for a particle to propagate from A to
B, we sum over all paths that connect the end points. Right panel: the analogous situation
in quantum cosmology is to sum over all geometries and matter configurations that connect
two 3−dimensional boundary surfaces (here illustrated as 1−dimensional circles located at
coordinate values t = 0, 1) with metrics hij . In this picture, the connecting geometries are
cylinders, and only two are shown so as not to overload the picture. Each is its own spacetime,
and one should not think of them as existing in an ambient spacetime.

2.2. An Example: Transitions in a de Sitter Universe

We have just given arguments for why gravity should be quantised, and how
one is naturally led to a path integral quantisation scheme. To illustrate this
approach, it is useful to study an example. We will specialise to the simplest,
yet physically relevant, setting, namely that of gravity coupled to a (positive)
cosmological constant Λ, with action (setting 8πG = 1)

S =

∫
M

d4x
√
−g
(
R

2
− Λ

)
+

∫
∂M

d3y
√
hK . (7)

This theory is a first approximation to the current, dark energy dominated, uni-
verse, and it may also be a good approximation to the early universe, if inflation
took place. The action is integrated over a 4−manifoldM, with 3−dimensional
boundaries ∂M and induced 3−metric hij . If one wants to keep the metric fixed
on the boundaries, then one has to include the Gibbons-Hawking-York (GHY)
[8, 9] surface term, which involves the determinant h = det(hij) and the trace
of the extrinsic curvature K, defined in (A.3). It has the effect of eliminat-
ing second derivatives in the action. The GHY term thus allows for so-called
Dirichlet boundary conditions, where one keeps the boundary metric fixed. If
one does not include any surface term, one obtains a Neumann condition in-
stead, meaning that one can keep the momentum conjugate to the metric fixed
on the boundary [10]. This will become clear in the example below.

quantum gravity. This is because gravity is not renormalisable, which implies that when loop
corrections are taken into account effective higher order curvature terms are generated. Only
when the spacetime curvature remains well below the Planck scale can such corrections be
ignored. In the applications we will consider this will always be the case.
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At first, we will restrict our analysis to the simplified context of closed
Friedmann-Lemâıtre-Roberston-Walker (FLRW) universes with metric

ds2 = −Ñ2(t)dt2 + a2(t)dΩ2
3 , (8)

where Ñ is the lapse function and dΩ2
3 the metric on the unit three-sphere2.

This symmetry reduced setting is an example of minisuperspace. Not only does
this reduction greatly simplify the analysis, it is also expected to be a good
approximation when describing the universe on the largest scales, and at early
times. The reason for taking the spatial section to be closed is that this prevents
a divergent volume integral. One could for instance also take flat sections, and
assume the topology of a torus.

With these choices, the action simplifies to

S = 2π2

∫ 1

0

dtÑ

(
−3a

ȧ2

Ñ2
+ 3a− a3Λ

)
, (9)

where an overdot stands for a derivative w.r.t. the time coordinate. We are
free to choose the time coordinate such that the integral interpolates between
fixed 3−geometries at coordinate values t = 0, 1; the proper time elapsed is
then determined by the lapse Ñ . Note that the kinetic term for the scale factor
a is negative; this is due to the attractive nature of gravity [11] – it reflects
the inherent instability of gravitational systems. Sometimes, this feature is
referred to as the “conformal mode problem”, though it seems more reasonable
to consider it a characteristic of gravity rather than a problem.

The path integral was heuristically defined in (6) as a sum over all geometries
with given boundary conditions. In making this expression precise, one has to
face a number of issues: for one, we have not specified contours of integration
yet, and moreover we have not dealt with diffeomeorphism invariance. This
is important, as in the sum over geometries we would like to include only in-
equivalent ones, and thus have to eliminate those that are related by changes of
coordinates. The way this is done requires techniques that lie somewhat outside
of the main thrust of this section, and these techniques are outlined separately
in Appendix B. The end result is surprisingly simple: the path integral is given
by

G[a1; a0] =

∫
C

dÑ

∫ a=a1

a=a0

Da eiS(Ñ,a)/~ , (10)

where the functional integral over the lapse has been reduced (due to the gauge
fixing) to an ordinary integral. We have yet to specify contours of integration, an
issue we will return to shortly. The expression above has a simple interpretation:

The path integral over the scale factor
∫
DaeiS(Ñ,a)/~ represents the amplitude

for the universe to evolve from scale factor value a0 to the value a1, in a fixed

2Explicitly, one can take dΩ2
3 = dχ2 + sin2 χ

(
dθ2 + sin2 θ dφ2

)
, with 0 ≤ (χ, θ) ≤ π,

0 ≤ φ ≤ 2π. The unit 3−sphere has volume 2π2.
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proper time Ñ . Then the integral over the lapse implies that we sum over all
possible proper durations that this transition can take. Defined in this way,
the path integral corresponds essentially to a gravitational propagator (Green’s
function), hence the nomenclature G[a1; a0].

In order to proceed, it turns out to be useful to redefine our variables some-
what, and to write the metric in the following form [12]:

ds2 = − N2

q(tq)
dt2q + q(tq)dΩ2

3 . (11)

That is to say, we call the square of the scale factor q(tq), and rescale the lapse.
This is perhaps a rather unfamiliar writing of the metric, and the new time
variable tq does not have a particular physical meaning, but it has the great
advantage that the action becomes quadratic in q, since one obtains

S = 2π2

∫ 1

0

dtq

(
− 3

4N
q̇2 +N(3− Λq)

)
, (12)

where now ˙≡ d/dtq. Here we have again chosen the range of the time coordinate
to be 0 ≤ tq ≤ 1, that is to say tq = 0 on the “initial” 3−dimensional boundary,
and tq = 1 on the “final” one, see also Fig. 3. In deriving the action, the

GHY surface terms
∫

d3y
√
hK = 2π2 3

2N qq̇|
tq=1
tq=0 have been incorporated, and

they have eliminated second derivatives on q, making use also of integration by
parts.

Varying the action w.r.t. q and N results in

δS = 2π2

∫
dtq

[
δq

(
3

2N
q̈ −NΛ

)
+ δN

(
3

4N2
q̇2 + 3− Λq

)]
− 3π2

N
q̇δq|tq=1

tq=0

(13)

This confirms that we can indeed keep q fixed on the boundaries (δq = 0). We
set q(0) = q0 and q(1) = q1. The equation of motion and constraint are then
respectively given by

q̈ =
2Λ

3
N2;

3

4N2
q̇2 + 3 = Λq . (14)

The equation of motion can be solved easily, and with the chosen boundary
conditions the solution is

q̄ =
Λ

3
N2t2q +

(
−Λ

3
N2 + q1 − q0

)
tq + q0 . (15)

Note that this is just a solution of the equation of motion, and not necessarily
of the constraint.

Now we employ a trick to evaluate the path integral over q, which consists
in shifting the variables of integration such that a general history is written as
a departure from a classical solution,

q(tq) = q̄(tq) +Q(tq) . (16)
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For consistency with the boundary conditions, we must set Q(0) = Q(1) = 0,
but otherwise Q is not restricted (in particular Q is not required to be small).
With this shift (which is only a change of variables, and not an approximation),
the path integral becomes

G[q1; q0] =

∫
C

dNe2π2iS0/~
∫ Q[1]=0

Q[0]=0

DQe2π2iS2/~ , (17)

with

S0 =

∫ 1

0

dtq

(
− 3

4N
˙̄q2 + 3N −NΛq̄

)
, S2 = − 3

4N

∫ 1

0

dtq Q̇
2 . (18)

No terms linear in Q have appeared, precisely because q̄ solves the equation of
motion. But now the integral over Q is a Gaussian, which can be evaluated
exactly [13] (with a uniquely determined contour of integration), yielding∫ Q[1]=0

Q[0]=0

DQe2π2iS2/~ =

√
3πi

2N~
. (19)

The time integral in (18) can be evaluated explicitly, so that in the end we are
left with an ordinary integral over the lapse function,

G[q1; q0] =

√
3πi

2~

∫
C

dN

N1/2
e2π2iS0/~ , (20)

with

S0 = N3 Λ2

36
+N

(
−Λ

2
(q0 + q1) + 3

)
+

1

N

(
−3

4
(q1 − q0)2

)
. (21)

We will analyse this integral by performing a saddle point approximation.
The proper tool for doing this systematically is Picard-Lefschetz theory, which
is reviewed in Appendix C. First, we must determine the saddle points, defined
by ∂S0/∂N = 0. There are four of them, located at

Nσ = c1
3

Λ

[(
Λ

3
q0 − 1

)1/2

+ c2

(
Λ

3
q1 − 1

)1/2
]
, (22)

with c1, c2 ∈ {−1, 1}. Moreover, the action at the saddle points is found to be

Ssaddle0 = −c1
6

Λ

[(
Λ

3
q0 − 1

)3/2

+ c2

(
Λ

3
q1 − 1

)3/2
]
. (23)

The question we are faced with now is whether all of these saddle points ac-
tually contribute to the integral. This turns out to depend both on the boundary
conditions, and on the integration contour C.
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Figure 4: This sketch shows the placement of the steepest descent (J ) and ascent (K) contours
associated with the four saddle points of the integral (20), in the complexified plane of the
lapse function N. Regions where the integral converges (asymptotically) are shown in green,
and regions of asymptotic divergence in red. (The lines delineating red and green regions
have constant weighting.) The boundary conditions are such that the initial and final scale
factors are larger than the Hubble radius, q1 > q0 >

3
Λ
. The positive real line contour can be

deformed into the sum J2 +J1, or equivalently the dashed orange contour. Figure reproduced
from [14].

Classical boundary conditions
We will first look at classical boundary conditions, where q0, q1 > 3

Λ and
consequently the saddle points (22) are real. We will also assume that q1 > q0.
As for the contour C, it makes sense to look back at the definition of the metric
(11): the lapse determines the proper time separation between events. If we want
the propagator to correspond to causal evolution, where time moves forward,
then we can do this by fixing the sign of N, say to be positive. Moreover, at zero
lapse the metric degenerates, and thus zero should be excluded. This suggests
that we should take the positive real half-line as integration contour [15],

C = (0+,∞) . (24)

Note that (20) contains an essential singularity at N = 0, which reflects the
physical intuition that a non-trivial transition cannot occur in zero proper time,
and supports the exclusion of zero from the contour.

Along the real N line, the integral (20) is only conditionally convergent. Us-
ing Picard-Lefschetz theory, we would like to rewrite it as a sum over absolutely
convergent integrals,

C = (0+,∞) =
∑
σ

nσJσ . (25)

where Jσ are steepest descent contours (thimbles) emanating from the saddle
points and the nσ can be ±1 for contributing thimbles, depending on the chosen
orientation of the thimbles. In the present case, the two saddle points on the
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Figure 5: Saddle point geometries for classical boundary conditions. For this example, Λ =
3

100
, q0 = 200, q1 = 500, so that N2 = 100, N1 = 300. Saddle 2 is purely expanding, while

saddle 1 first shrinks to the de Sitter radius (with qmin = 3
Λ

= 100) and then re-expands.

positive real axis clearly contribute to the integral, and one can indeed rewrite
(0+,∞) = J2 + J1, where the thimbles are oriented in the increasing Re[N ]
direction, see Fig. 4. Thus the propagator can be approximated as a sum of two
phases,

G[q1; q0] ≈ e−i
π
4 e

i
~S(N2) + ei

π
4 e

i
~S(N1) (26)

≈ cos

(
12π2

~Λ

(
Λ

3
q0 − 1

)3/2

− π

4

)
e−i

12π2

~Λ ( Λ
3 q1−1)

3/2

. (27)

In this approximation, we have also included factors of e±i
π
4 , which arise from

the angle of the Lefschetz thimbles at the saddle points (and are straightfor-
wardly determined by looking at the change in Re(iS0) near the saddle points
[14]).

A number of questions now arise, foremost: What is the meaning of this
mathematical expression? We will address this quite generally in sections 2.3
and 2.4. For now, we can make progress by recalling the intuition behind the
path integral. All possible histories contribute to the transition, but the saddle
points represent the dominant ones. Hence it is useful to look at the saddle
points in more detail.

As a consequence of satisfying ∂S0/∂N = 0, the saddle points correspond to
geometries that satisfy not only the equation of motion, but also the constraint
in (14); they are solutions of the full Einstein equations. We may then find the
geometry that they describe by plugging the saddle point values (22) into the
expression for the scale factor (15). The resulting expression is lengthy and not
worth writing out in full. However, it is useful to look at the expansion rate at
t = 0 :

dq̄

dtq
(tq = 0) = −Λ

3
N2
σ + q1 − q0 = 2

(
−q0 +

3

Λ

)
± 2

√(
q0 −

3

Λ

)(
q1 −

3

Λ

)
.

(28)
Since q1 > q0, we can infer that saddle point 2 corresponds to an initially ex-
panding geometry, while saddle 1 is contracting. Explicit examples are shown
in Fig. 5. The classical, maximally symmetric solution to the Einstein equations
with a positive cosmological constant is de Sitter spacetime. In the closed slicing,
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where the spatial sections are 3−spheres, it is well known that de Sitter space-

time can be viewed as a hyperboloid (with minimal radius
√

3
Λ ) when embedded

in a higher-dimensional space. The saddle points correspond to portions of this
hyperboloid, with saddle 2 corresponding to a portion of the hyperboloid on
one side of the minimal radius, while saddle 1 includes the region with minimal
radius and thus contains a classical bounce.

These geometries provide the dominant contribution to the transition from
q0 to q1. Since we fixed only the initial and final sizes, and since two possible
classical solutions exist which link q0 to q1, it is natural that in (26) we ob-
tained a sum over the two contributions, in complete analogy with the double
slit experiment. In a more realistic model, one would also include matter and
fluctuations of the geometry – such interactions would then cause decoherence
and would therefore lead to separate, non-interfering evolutions of the two sad-
dle points.

Non-classical boundary conditions
What we discussed above were transitions between large, classically allowed,

scale factor values. But it is interesting to see what happens when we set one
of the scale factors, say q0, to a small, classically forbidden value, i.e. q0 <

3
Λ .

Then the saddle points become complex, with

Nσ = c1
3

Λ

[
i

(
1− Λ

3
q0

)1/2

+ c2

(
Λ

3
q1 − 1

)1/2
]
, (29)

again with c1, c2 ∈ {−1, 1}. The action at the saddle points also becomes
complex,

Ssaddle0 = c1
6

Λ

[
i

(
1− Λ

3
q0

)3/2

− c2
(

Λ

3
q1 − 1

)3/2
]
. (30)

Now the steepest ascent/descent contours look quite different, see Fig. 6 for an
illustration.

As the figure shows, the integration contour C = (0+,∞) can be deformed
into the steepest descent contour J1 associated with saddle point 1, with positive
real and imaginary parts. Thus in this case only a single saddle point contributes
significantly to the path integral, and the amplitude can be approximated by

G[q1; q0] ≈ e i~ 2π2S0(N1) (31)

≈ e−
12π2

~Λ (1−Λ
3 q0)

3/2

e−i
12π2

~Λ ( Λ
3 q1−1)

3/2

. (32)

An example of the associated geometry is shown in Fig. 7. Apart from the end
points, the geometry is now complex, reflecting the fact that this transition is
classically impossible, and rather represents quantum tunnelling between the
two specified scale factor values. In line with this interpretation, note that the

amplitude (32) is suppressed as e−
12π2

~Λ (1−Λ
3 q0)

3/2

, indicating that this transition
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Figure 6: A sketch of the steepest ascent/descent lines for boundary conditions where the first
scale factor is smaller than the de Sitter radius (q0 <

3
Λ

), and the second larger (q1 >
3
Λ

). In
the yellow regions, the weighting is in between the weightings of the adjacent saddle points.
The orange integration contour (0+,∞) can be deformed into the dashed orange line, which is
the thimble J1 associated with saddle point 1. Thus this is the only saddle point contributing
significantly to the transition. Figure reproduced from [14].

is less likely than classical evolution. Also, the smaller q0 is, the stronger the
suppression. Meanwhile, the classically allowed part of the transition, related
to q1, leads to an oscillating factor in the amplitude (32). This setting is thus
very much in analogy with standard barrier penetration problems in ordinary
quantum mechanics.

Let us highlight what may be a surprising feature: even though the saddle
points are solutions to the classical equations of motion, they can describe quan-
tum effects. This is because the boundary conditions are classically impossible
here, forcing upon us a complex solution to the classical field equations.

Wheeler-DeWitt equation
The transition amplitudes that we derived above satisfy an important equa-

tion, called the Wheeler-DeWitt (WdW) equation. Later on, we will derive it
formally, but it is already useful to see how it arises for the specific examples
we have just studied.

The Lagrangian of our system can be inferred from the action (12), and
reads

L = 2π2

[
− 3

4N
q̇2 + 3N −NΛq

]
. (33)

Thus, the canonical momentum associated with q is

p =
∂L

∂q̇
= −3π2

N
q̇ , (34)
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Figure 7: Saddle point geometry for a transition from non-classical to classical boundary
conditions. For this example, Λ = 3

100
, q0 = 75, q1 = 500, so that N1 = 200 + 50i. Note that

the scale factor starts and ends with real values, but is complex in between.

so that the Hamiltonian can be written as

H =q̇p− L = − N

6π2

[
p2 + 12π4(3− Λq)

]
= NĤ . (35)

In phase-space the action can thus also be written as

S =

∫ (
q̇p−NĤ

)
dtq =

∫ (
q̇p+

N

6π2

[
p2 + 12π4(3− Λq)

])
dtq . (36)

Here we can see that the lapse N is a Lagrange multiplier, and implies the
classical constraint

Ĥ = 0 . (37)

But now we can also quantise the theory directly, in the field representation,
by promoting the momentum to its operator equivalent, p 7→ p̂ = −i~ ∂

∂q . This
results in the Wheeler-DeWitt equation

ĤΨ = 0→ ~2 ∂
2Ψ

∂q2
+ 12π4(Λq − 3)Ψ = 0 , (38)

with Ψ(q) the wave-function of the universe. The corresponding propagator G
satisfies [16]

ĤG = −i6π2δ(q0 − q1) , (39)

where the Hamiltonian operator acts either on q0 or on q1 (the factor 6π2 is also
sometimes absorbed into the definition of Ĥ). This last equation is referred to
as the inhomogeneous Wheeler-DeWitt equation.

Now we can go back to the path integral and explicitly show that it satisfies
this equation. Starting from (20) and (21), one can take successive derivatives
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(momentarily setting ~ = 1)

∂G

∂q1
=

√
3πi

2

∫
dN

N1/2
2π2iS0,q1e

2π2iS0

=

√
3πi

2

∫
dN

N1/2
2π2i

[
−N

2
Λ− 3

2N
(q1 − q0)

]
e2π2iS0 , (40)

and analogously

∂2G

∂q2
1

=

√
3πi

2

∫
dN

N1/2

[
2π2iS0,q1q1 − 4π4S2

0,q1

]
e2π2iS0

=

√
3πi

2

∫
dN

N1/2

[
−4π4

(
N

2
Λ +

3

2N
(q1 − q0)

)2

− 3π2i

N

]
e2π2iS0 . (41)

Using first the properties of the thimbles, and then integration by parts, one
can obtain the relation[

N−
1
2 e2π2iS0

]∞
0

=

∫
dN

d

dN

[
N−

1
2 e2π2iS0

]
=− 1

2

∫
dN

N
3
2

e2π2iS0 + 2π2i

∫
dN

N
1
2

S0,Ne
2π2iS0 . (42)

This is now substituted into (41) to obtain

∂2G

∂q2
1

=

√
3πi

2

[∫
dN

N1/2

[
−12π4 (Λq1 − 3k)

]
e2π2iS0 + 6π2i

[
N−

1
2 e2π2iS0

]∞
0

]
=− 12π4 (Λq1 − 3)G+ 6π2i

√
3πi

2

[
N−

1
2 e2π2iS0

]∞
0
, (43)

which is almost the WdW equation already. The Lefschetz thimble we are
integrating over is precisely such that the contribution from N → ∞ vanishes.
But near the origin, we have to work a little harder: given that the thimble
there approaches the origin along the imaginary axis, it helps to write N = in,
leading to

lim
N→0

e2π2iS0

√
N

=

√
2π

i
lim
n→0

e−3π2 (q1−q0)2

2n

√
2πn

=

√
2

3πi
δ(q0 − q1) . (44)

Hence, with ~ reinstated, we indeed recover the WdW (propagator) equation

~2 ∂
2G

∂q2
1

+ 12π4 (Λq1 − 3)G =− 6π2iδ(q0 − q1). (45)

For future reference, let us point out that if we had integrated over a contour
from N = −∞ to N = +∞ (passing around the singularity at N = 0), the right
hand side would have been zero and we would have obtained the homogeneous
WdW equation.

18



The WdW equation is the quantum equivalent of the Friedmann equation
in cosmology. In some sense, it is the equivalent of the Schrödinger equation
when gravity is included. (Later on, we will see that it actually contains the
Schrödinger equation.) Here we see that, by construction, the path integral
automatically satisfies this equation. We will discuss it in more detail in the
coming sections.

Neumann boundary conditions
Before proceeding with more formal developments, it is useful to give an

example of the path integral where instead of fixing the scale factor on both
sides of the transition, we fix its conjugate momentum instead (on one side).
This means that we will consider a Neumann, rather than a Dirichlet, condition.
For definiteness, we will impose a Neumann condition on the t = 0 boundary.
This can be achieved by not adding a GHY surface term to the action there.
That is to say, the minisuperspace action is now given by

S = 2π2

∫ 1

0

dtq

[
3

2N
qq̈ +

3

4N
q̇2 +N(3− Λq)

]
− 3π2

N
qq̇|tq=1 (46)

If we now use integration by parts in order to get rid of the second derivative
term in the action, then this will cancel the GHY boundary term at tq = 1 but
instead it will generate a surface term at tq = 0,

S = 2π2

∫ 1

0

dtq

[
− 3

4N
q̇2 +N(3− Λq)

]
− 3π2

N
qq̇|tq=0 (47)

Varying w.r.t. the scale factor q, we obtain the same equation of motion as
before, Eq. (14), together with the boundary conditions

−3π2

N
qδ(q̇) = 0|tq=0 , −3π2

N
q̇δq|tq=1 , (48)

confirming that we can specify the momentum p0 = − 3π2

N q̇(tq = 0) and the
scale factor q1 = q(tq = 1). With these boundary conditions, the solution to the
equation of motion is

q̄ =
Λ

3
N2t2q −

p0N

3π2
tq + q1 −

Λ

3
N2 +

p0N

3π2
. (49)

We can now employ the same trick as before, namely we can shift the integration
variable q = q̄ + Q(tq). This time, the fluctuation integral satisfies the bound-

ary conditions Q̇(tq = 0) = 0 and Q(tq = 1) = 0, and with these boundary
conditions it simply evaluates to a constant (independent of the lapse) [17],∫

DQe− i
~
∫ 1
0
dtq

3π2Q̇2

2N =

√
3πi

2~
. (50)
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Figure 8: Saddle points and their steepest descent/ascent lines in the complex plane of the
lapse function, for the situation where we have a transition with mixed Neumann-Dirichlet
boundary conditions. Here Λ = 3

100
, p0 = −6π2, q1 = 500, so that N∓ = (−300,+100).

To leading order, this factor is unimportant and we will ignore it. We are then
left again with an ordinary integral over the lapse,

G[p0; q1] =

∫
C

dN e
i
~ 2π2

[
Λ2

9 N3− p0Λ

6π2 N
2+(3+

p2
0

12π4−q1Λ)N+
p0q1
2π2

]
, (51)

where we have not specified the integration contour C yet. There are significant
differences with the pure Dirichlet case. For one, the integrand is regular at
N = 0. This makes sense, as we fix the initial momentum and not the initial
size. Hence the path integral sums over a range of initial sizes, and this can
include a transition where the initial size is already equal to the final size –
precisely the N = 0 case, cf. also (49). Moreover, the integral (51) admits only
two saddle points now, located at

N± =
p0

2π2Λ
± 3

Λ

√
Λ

3
q1 − 1 , (52)

and with action

S(N±) =
3p0

Λ
+

p3
0

36π4Λ
∓

12π2
(

Λ
3 q1 − 1

)3/2
Λ

. (53)

To proceed, it is again useful to look at examples. For definiteness, let us
use initial momenta p0 that correspond to the momenta for the saddle point
geometries encountered above for pure Dirichlet boundary conditions. That is
to say, we are choosing initial momenta such that at least one saddle point must
be equal to the one from the Dirichlet case. For the example shown in Figs. 4
and 5, the momenta at t = 0 are real. For saddle 2, which corresponded to an
expanding geometry, we have from (28) that p0 = −3π2q̇/N2(t = 0) = −6π2.
The corresponding thimbles and saddle point geometries are shown in Fig. 8.
We can see that indeed the saddle point N+ corresponds to the expanding
geometry. But what is more surprising is the saddle N−, which is again the
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Figure 9: Same as Fig. 8, but with Λ = 3
100

, p0 = +6π2, q1 = 500, so that Nσ =
(−100,+300).

bouncing geometry that we also encountered in the Dirichlet case. How can
this saddle point be present, given that we fixed the initial momentum? The
resolution is that it has a negative lapse, so that the combination of an initially
contracting geometry with a negative lapse can yield the same momentum as an

expanding universe with positive lapse, given that p = − 3π2

N q̇. The integration
contour for the lapse is essentially unique: the real lapse line can be deformed
into a sum over the two thimbles associated with N±,

C = (−∞,∞) = J− + J+ . (54)

Note that because of the absence of a singularity at N = 0 we must integrate
over the full lapse line in order to obtain an invariant definition of the path
integral. Thus, with this integration contour and with these classical boundary
conditions, we recover the analogous semi-classical amplitude as for the pure
Dirichlet case, namely a sum over two saddles with phases given by (53).

When we choose an initial momentum that corresponds to the bouncing
saddle (saddle 1) in Figs. 4 and 5, we obtain a very similar situation, but this
time it is the expanding geometry that arises with negative lapse, see Fig. 9. In
fact, the saddles in Figs. 8 and 9 combined reproduce the four saddles of the
Dirichlet case.

The case with non-classical boundary conditions is however a little different.
In the pure Dirichlet case (cf. Fig. 6), there was a single saddle point that
contributed to the amplitude. Its geometry was complex, though starting and
ending with real values. Combining (28) and (29), we can infer that the initial
momentum is then pure imaginary. For an example, see Fig. 10. In the mixed
Neumann-Dirichlet case, we recover the same saddle as before, but in addition
we get a second saddle with negative real part of the lapse. The two saddle
points correspond to geometries that are complex conjugates of each other. In
terms of integration contour, a surprise is that we cannot choose the real lapse
line as fundamental contour – the integral simply diverges when integrated over
real lapse values. Thus we must define the integration directly on the thimbles.
Here we have several choice in principle: we could integrate over J−, J+ or
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Figure 10: Same as Fig. 8, but with an imaginary initial momentum. Here Λ = 3
100

, p0 =

3π2i, q1 = 500, so that N± = ±200 + 50i. The real lapse line, shown in orange, cannot serve
as integration contour in this case, as it runs into the red, asymptotically divergent regions at
both large negative and positive values.

a linear combination J− ± J+. If we sum over both thimbles, we obtain the
approximate amplitude

G[p0, q1] ≈ e
i
~

(
3p0
Λ +

p3
0

36π4Λ

)(
e−

i
~

12π2( Λ
3
q1−1)

3/2

Λ ± e i~
12π2( Λ

3
q1−1)

3/2

Λ

)
, (55)

which contains a suppression factor (keeping in mind that p0 is imaginary), in
line with this describing a sort of tunnelling process from a classically impossible
scale factor value to a large value. The no-boundary wave function will turn
out to be rather closely related to this amplitude.

The examples provided in this section serve to illustrate the general frame-
work of quantum cosmology. To be more rigorous, one would also have to
include perturbations and see if the minisuperspace approximation was actually
justified. We will do this once we get to the main topic of interest, namely
the no-boundary wave function. However, there are some general properties of
quantum gravity amplitudes that are useful to derive first. Plus we will see how
amplitudes such as those shown here may best be interpreted. These will be
the topics of the next two subsections.

2.3. Formal Developments: Canonical and Path Integral Quantisations

The observed homogeneity and isotropy of the early universe imply that for
a broad brush analysis, it is useful to start with metrics that already admit
these symmetries in their spatial sections. Later on, one can then extend the
range of metrics considered, and also add small general perturbations. But such
a restriction to symmetric metrics is also technically very useful, as it leads to
models that are (at least in part) solvable. This minisuperspace context leads

22



one to consider actions of the following general structure,

S =

∫
dtN

(
1

2
GAB

1

N

dqA

dt

1

N

dqB

dt
− U(qA)

)
. (56)

Here qA are fields that depend solely on time. These could be functions that
form a part of the metric, or these could be matter fields. A field that is always
present is the scale factor, which determines the size of the universe. This field
has the characteristic that it enters with a negative sign kinetic term, cf. (12).
Thus GAB always contains a negative component. One case that is of particular
interest is where one considers the scale factor of the universe, plus a scalar field,
so that qA = (a, φ). Then with the metric (8) the action is given by

S = 2π2

∫ 1

0

Ñdt

[
− 3

Ñ2
aȧ2 +

1

2Ñ2
a2φ̇2 + 3a− a3V (φ)

]
, (57)

where V (φ) is the scalar potential, and Gaa = −12π2a, Gφφ = 2π2a3. We will
mostly focus on this case when exhibiting examples.

In the present section we will perform the canonical quantisation directly
at the level of the minisuperspace action (56). For readers interested in the
general case, without symmetry reductions, appendix Appendix A provides an
overview. To the action (56) is associated a Hamiltonian

H =
1

2
GABpApB + U , (58)

with the canonical momenta pa = −12π2aȧ/N, pφ = 2π2a3φ̇/N, and where the
effective potential is given by

U = 2π2
(
−3a+ a3V

)
. (59)

The Hamiltonian is classically zero and corresponds to the Friedmann equa-
tion. If one quantises the theory canonically, by replacing pA → −i~ ∂

∂qA
≡

−i~∂A, one obtains the quantum version of the Hamiltonian constraint, namely
the Wheeler-DeWitt (WdW) equation

ĤΨ =

(
−~2

2
2 + U

)
Ψ = 0 , (60)

where Ψ = Ψ(a, φ) is the wavefunction of the universe. For the second-derivative
operator, there is an ambiguity in terms of the precise placement of the deriva-
tives – a sensible choice is to fix this “factor ordering” issue by writing the
operator as 2 = GAB∇A∇B , since then it is covariant under field redefinitions.
However, if one is only interested in results to leading order in ~, then the or-
dering is unimportant. As this will be the case for us, we will simply choose a
convenient ordering when the situation arises. For the model (57), the WdW
equation explicitly reads[

~2

48π4

(
1

a

∂2

∂a2
− 6

a3

∂2

∂φ2

)
− 3a+ a3V (φ)

]
Ψ(a, φ) = 0 . (61)
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Mathematically, the WdW equation looks just like the Klein-Gordon equa-
tion for a scalar particle. As such, it admits a conserved current, defined as

JA = − i~
2

(
Ψ?∇AΨ−Ψ∇AΨ?

)
. (62)

One can easily check that ∇AJA = 0 subject to using the WdW equation. This
conserved current will play an important role in the interpretation of the WdW
equation, in section 2.4. For now, let us just observe that it is this current, and
not Ψ?Ψ, that is conserved. Hence the standard assignment of probabilities,
familiar from quantum mechanics, cannot automatically be recovered.
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Figure 11: The effective potential −U with constant potential Λ.

In simple cases the WdW equation can be solved directly. For now, let us
just give a qualitative argument as to the nature of solutions, in the context of
inflation. A first approximation to inflation is to consider a constant potential
V (φ) = Λ. Then one can neglect ∂φ in (61). The effective potential looks as
shown in Fig. 11. It is reminiscent of a tunnelling problem. And indeed, for
large a, we obtain the approximate solutions

Ψ ≈ e±i 4π2

~

√
Λ
3 a

3

. (63)

Note that these solutions oscillate, and roughly corresponds to free propagation
(in this case classical expansion of the universe). Meanwhile, at small a the
solution is exponentially growing or damped,

Ψ ≈ e±
12π2

~Λ

(
(1− a2Λ

3 )3/2−1
)
. (64)

This is the regime where the scale factor takes non-classical values, smaller than

the classical minimum radius amin =
√

3
V of a de Sitter universe. One might try

to interpret such a regime as describing the quantum tunnelling of a universe
from zero size to a = amin. Later on, we will see that the no-boundary proposal
provides a framework to make this much more precise. For now, let us simply
point out that a difficulty with solving the WdW equation is that one typically
does not know how to fix the integration constants that arise in the solutions.
This issue, as we saw, is much clearer in the path integral approach.
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In section 2, we saw with the help of an explicit example that the path
integral satisfies the WdW equation. We can also provide a formal argument
showing that this must be the case generally (see e.g. [18, 16]). The argument
is surprisingly quick. The propagator/wave function can be decomposed into
the lapse integral, plus an amplitude with fixed lapse,

G[q1; q0] =

∫ ∞
0

dNG[q1; q0;N ] . (65)

For definiteness, we assumed the pure Dirichlet case, with an integration domain
consisting of positive real values of the lapse. The integrand

G[q1; q0;N ] =

∫ q=q1

q=q0

Dqe i~S(N,q) (66)

is then the amplitude to evolve from q0 to q1 in “time” N . Just like in ordinary
quantum mechanics, this amplitude then satisfies the Schrödinger equation

i
∂G[q1; q0;N ]

∂N
= ĤG[q1; q0;N ] . (67)

The only subtlety is that we must take into account the coincidence condition
that

lim
N→0

G[q1; q0;N ] = 6π2δ(q0 − q1) . (68)

Again, the factor of 6π2 simply depends on conventions. It then immediately
follows that the total propagator of minisuperspace models satisfies the inho-
mogeneous WdW eqution,

ĤG[q1; q0] =

∫ ∞
0

dNĤG[q1; q0;N ]

=i

∫ ∞
0

dN
∂G[q1; q0;N ]

∂N

=iG[q1; q0;N ]
∣∣N=∞
N=0

=− i6π2δ(q0 − q1) . (69)

Had the integration domain for the lapse been the entire lapse line, the right
hand side would have been zero above and we would have obtained a solution
to the homogeneous WdW equation.

In discussing the WdW equation, we encountered the issue of factor ordering,
leading to a potential ambiguity at sub-leading orders in an expansion in ~. Can
the path integral resolve this? From the point of view of the path integral, the
corresponding question is which integration measure one should choose (note
that changes in measure are also sub-leading in a saddle point approximation).
This could lead to progress, cf. the gauge fixing procedure outlined in appendix
Appendix B, where one uses the Liouville measure on the full path integral,
including all ghost fields. For further discussion of this question, see also [16].
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2.4. How to Reconstruct the Universe from the Wave Function

We just derived the Wheeler-DeWitt equation, and showed that the path
integral satisfies it. An obvious and important question is however how the
equation should be interpreted. In some sense the WdW equation is the ana-
logue of the Schrödinger equation in quantum mechanics, but the presence of
gravity changes a few things significantly. Most crucially, time cannot, and does
not, appear explicitly. This is because space and time are quantised now, and
must emerge from the solutions, rather than being outside constructs. Never-
theless, we will see that the WdW equation contains the Schrödinger equation
under appropriate circumstances.

But let us start with something more basic. Both the path integral and
the WdW equation, as we have formulated them, concern transitions between
3−dimensional hypersurfaces. But that is not really what we observe. When
we look out into the world, we actually receive information about our past light
cone. So, strictly speaking, quantum gravity should deal with this past light
cone and not with spacelike domains. However, if we take a spacelike boundary
at some finite time in our past light cone, then the enclosed spacelike region
has the light cone ending at our brain in its causal future, see the left panel of
Fig. 12. When we look back further and further, ever larger spacelike regions
are encapsulated. But since, to a good approximation, we may assume spatial
isotropy and homogeneity, this presents no complication and nothing physical
is lost by dealing with spacelike hypersurfaces – mathematically however, this
formulation is much more tractable.
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Figure 12: Left panel: When we observe the universe, we obtain information about our past
light cone (in purple). In this sketch time is vertical and space horizontal. It is however
equivalent (and mathematically easier) to deal with spacelike hypersurfaces whose causal
development would include this light cone. Right panel: We can imagine a succession of
transitions from a given initial condition q0 to a series of final conditions q1(i). When the
wave function is of WKB form, one can infer the physically relevant spacetime from this
succession, as indicated by the dotted green line.

Still, having an amplitude for a transition between two spacelike hypersur-
faces is not the same as having a full spacetime manifold. So why do we perceive
a continuous evolution in time? In other words, what holds the world together
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from one instant to the next, and why does this appear seamless?3

It turns out that the answer is already included to a large extent in the
saddle point approximation to the path integral. Let us assume that the wave
function can be written in the following suggestive form,

Ψ = e
1
~ (W+iS) , (70)

whereW,S are real functions of the fields qA, W being the weighting and S the
phase. We can then expand the WdW equation (60) as a series in ~ (assuming
W and S to be O(~0)), finding to leading and sub-leading orders respectively

−1

2
(∇W)2 +

1

2
(∇S)2 + U = 0, ∇W · ∇S = 0, (71)

2W = 0, 2S = 0, (72)

where e.g. ∇W ·∇S ≡ GAB∇AW∇BS. There are two equations at each order,
one for the real part and one for the imaginary part of the equation. It is also
useful to write out the conserved current (62),

JA = e
2
~W ∇AS . (73)

Vilenkin then developed the following interpretation [19]: if we look at the
left equation in (71), we may notice that ifW varies slowly compared to S, then
we recover the classical Hamilton-Jacobi equation,

(∇W)2 � (∇S)2 → 1

2
(∇S)2 + U ≈ 0 , (74)

with S being identified with the classical action, and the canonical momentum
assignment

pA =
∂S
∂qA

. (75)

This is in fact the Wentzel-Kramers-Brillouin (WKB) semi-classical approxima-
tion often used in standard quantum mechanics, namely that the amplitude of
the wave function varies slowly, and the phase fast. The right equation in (71)
then expresses the conservation of the current (73) to leading order, while (72)
ensures conservation at sub-leading order as well.

Several implications immediately follow. The classical action S describes a
congruence of (classical) trajectories. One can for example think of this congru-
ence as being foliated by constant-S surfaces. Then one can choose trajectories
along a normal vector nA to these surfaces, such that ∇nS > 0 (the locus

3The even harder question is: why is our consciousness connected to a particular (small
patch of a) hypersurface, but always only one and only for an instant, with a succession of
such quasi-instantaneous connections unfolding?
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∇S = 0 describes the breakdown of the semi-classical approximation) and de-
fine relative probabilities as

P = e
2
~W ∇nS . (76)

How an overall normalisation can be implemented in a mathematically precise
way is an open question, hence the probabilities are only relative. But these
relative probabilities are then positive and conserved along classical trajecto-
ries, and for small ~ approximately correspond to the standard probabilities in
quantum mechanics, P ≈ e

2
~W = Ψ?Ψ (up to normalisation). Also, different

foliations give the same probabilities, as long as the foliations are chosen so as to
intersect each trajectory only once (the foliations must be spacelike with regard
to the minisuperspace metric GAB).

When the WKB approximation holds, the wave function (70) satisfies

pAΨ = −i~ ∂AΨ ≈ ∂AS Ψ (77)

to a good approximation, in agreement with the assignment (75). The wave
function is thus peaked on solutions described by the first order relation pA =
∂AS. This should be contrasted with standard classical solutions, which are de-
termined by solving a second order differential equation. In this sense, even
without further specifications of boundary conditions, quantum cosmology al-
ready leads to predictions, as only (roughly4) half of all classically possible
solutions may arise.

Note that in all these relations, we are comparing wave functions at different
final boundary conditions. This is how one can verify that the amplitude varies
much more slowly than the phase, (∇W)2 � (∇S)2. Thus one should really
think of a family of transitions, from fixed initial conditions to a series of final
conditions, cf. the right panel in Fig. 12. When this series of transitions is
such that the WKB conditions hold, then one can assign a relative probability
P ≈ Ψ?Ψ to the associated evolution. The physical spacetime should then be
identified with the collection of such final boundaries, and to leading order in
~ this sequence of 3−dimensional hypersurfaces will follow a solution of the
Einstein equations (but only for as long as the WKB condition holds). In this
vein, it is also sometimes said that quantum cosmology provides probabilities
for “histories” [5].

There is another interesting consequence that arises for sub-systems [19]. If
we assume that there is a small sub-system characterised by the Hamiltonian
H2, with negligible backreaction on the universe as a whole, then the WdW gets
augmented by a term, (

−~2

2
2 + U +H2

)
Ψ = 0 . (78)

4The classical space of solutions is (2n−1)−dimensional for n degrees of freedom, as there
is also a constraint that must be satisfied.
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If we now expand the WdW again in powers of ~, then at sub-leading order we
get the additional equation

i~∇S · ∇ψ2 = H2ψ2 , (79)

where we factorised Ψ = ψ0ψ2 into a product of ψ0, depending only on the
background variables, and ψ2, depending also on the perturbations. Now comes
the crucial observation: If one identifies

∇S · ∇ ≡ ∂

∂t
(80)

then one obtains an effective time variable, and one recovers the Schrödinger
equation

i~
∂

∂t
ψ2 = H2ψ2 . (81)

This is remarkable. From the space- and timeless WdW equation we thus recover
the Schrödinger equation for sub-systems, as long as the WKB approximation
is applicable. The background wave function itself provides the time. Let us
briefly check that this definition of time makes sense, for a simple case: in
a de Sitter universe, we saw in (63) that at large scale factor the solution is

S ≈ −4π2
√

Λ
3 a

3. With Gaa = −12π2a, we obtain

∇S · ∇ = Gaa∂aS ∂a =

√
Λ

3
a ∂a

!
=

∂

∂t
, (82)

in agreement with the classical de Sitter solution expressed in physical time t,

a =
√

3
Λe
√

Λ
3 t.

A few more comments are in order. Once one adds matter and perturba-
tions to the universe, then additional classicalisation occurs due to decoherence.
This arises from the interactions present in the system [20, 21], with short
wavelength modes acting as an environment that decoheres the long wavelength
“background”. Thus the WKB classicality which we have used above is pre-
sumably mostly relevant for the very early universe. Especially if there was
an early phase of evolution when no matter was present yet, or if we want
to consider the simultaneous emergence of spacetime and matter from a fully
quantum state, then WKB classicality is absolutely crucial in guaranteeing a
classical background.

In general, the wave function is approximated not just by a single saddle
point, but by a collection thereof,

Ψ ≈
∑
i

e
1
~ (Wi+iSi) . (83)

In such a case, decoherence also plays an important role, as it effectively isolates
the different saddle points into separate universes [22]. For each such universe,
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the above treatment of relative probabilities and sub-systems then separately
applies.

It is important to realise that the notion of probability derived above is only
approximate, valid semi-classically, to leading order in ~. Thus unitarity is also
only an approximate concept [19]. This is directly related to the fundamental
role that time plays in quantum mechanics and quantum field theory. Here
time is just part of another quantum field, the metric, and hence our standard
intuition cannot be taken for granted. That said, it is clear that it would be
desirable to further clarify the definition of probabilities in quantum cosmology
– it seems clear that much more can be found out about this topic [23], and we
will mention a few ideas later on.

Now, given the crucial importance of the WKB approximation, we may ask
under what circumstances we can expect the wave function to take this form. In
fact, at the moment only two early universe scenarios are known to automatically
lead to WKB classicality. They can be determined by noting that, in order for
the WKB approximation to be valid, to leading order the wave function must
be an oscillating function. Then, if we go back to the WdW equation in the
presence of a scalar field, Eq. (61), we can identify the following two regimes:

• Inflation [24, 25, 26] (for a review see [27]): V (φ) > 0 and
|V,φ|
V <

√
2.

A good approximation to inflation is that the scalar field changes little

while the universe expands fast, so we can assume 1
a2

∂2

∂φ2 � ∂2

∂a2 . Then at
large scale factor a we are left with the equation(

~2

48π4a

∂2

∂a2
+ a3V

)
Ψ = 0 (84)

which admits an oscillating solution, Ψ ∼ eia3/~.

• Ekpyrosis [28] (for a review see [29]): V (φ) < 0 and
|V,φ|
|V | >

√
6.

An ekpyrotic phase is essentially the complement to inflation. In this case
the universe is slowly contracting, and the scalar field races down a steep,

negative potential. Thus the first approximation is now that 1
a2

∂2

∂φ2 � ∂2

∂a2 ,
but since the potential is negative we again get an effective equation with
oscillating solutions, (

~2

8π4a3

∂2

∂φ2
− a3V

)
Ψ = 0 . (85)

Thus, rather surprisingly, the two dynamical models that can potentially explain
the homogeneity, isotropy and flatness of the early universe, while also providing
mechanisms for amplifying quantum fluctuations into seeds of structure, have
the additional property of rendering the universe classical [30]. This can be
traced to the fact that both mechanisms act as dynamical attractors, and we
will discuss this property in more detail in the next section, when discussing
no-boundary solutions.
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The concepts and formalism developed in this section can now be used, and
arguably find their most intriguing application, in the no-boundary proposal –
the main topic of this review, whose exploration we now begin.

3. The No-Boundary Proposal

3.1. Heuristic Motivations

The no-boundary proposal is a theory of initial conditions for the universe.
It is a complement to our theories of dynamics, such as quantum field theories
or general relativity, which can be seen as describing what kinds of dynamics
are possible. Rather, given a theory of dynamics, the no-boundary proposal has
as its aim to provide a theory for what kind of dynamics is likely, and what is
unlikely. It is a theory for the quantum state of the universe, and it involves
gravity in a crucial way – thus it can only be formulated in quantum gravity.
We built up the necessary background in the previous section, but before pro-
ceeding to a more technical discussion, it is useful to provide several heuristic
motivations that explain rather intuitively what the no-boundary proposal is
about.

Avoiding an infinite regression
Why did the apple fall from the tree? Physics is built on cause and effect.

Thus we might have noticed that a bird tried to grab the apple, and inadver-
tently knocked it out of the tree. But why did the bird try to grab the apple?
Because it was hungry. And why was it hungry? This kind of questioning, taken
sufficiently far, typically ends up with the question: how did the universe begin?

today

what happened here?

South Pole

Figure 13: Left panel: When we investigate the history of our universe, then we have to supply
boundary conditions at ever earlier times. Right panel: The no-boundary proposal cuts off
the potentially infinite regression by stipulating that there was no boundary in the past. This
in itself then provides initial conditions for the evolution of the universe.

In cosmology, we know that before the current dark energy era, there was
a period of matter domination. And before that one of radiation dominance.
Going back in time, at each transition from a prior phase of evolution, we have
to supply “initial” conditions, which we can think of as being specified on the
boundary of that period of evolution, cf. Fig. 13. This potentially leads to an
infinite regression, where we go to earlier and earlier phases, without end. The
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no-boundary proposal may be seen as a way of cutting the Gordian knot, by
stipulating that there was no boundary in the past [1]. Then there is no need to
specify initial conditions at the “beginning” – the fact that there is no boundary
already supplies the required condition.

An immediate consequence is that the universe is self-contained, both in
space and in time. This is because, if there was a boundary, we could meaning-
fully ask what is on the other side. But if there is no boundary, the universe
can be finite and yet entirely self-contained, just like the surface of a ball. The
analogy with the surface of a ball is in fact rather accurate: in Lorentzian
(pseudo-Riemannian) geometry, it is not possible to round off the geometry of
the universe in such a manner. If one tried, one would run into a spacetime
singularity, which would again constitute a boundary. But if one allows the
geometry of the universe to become Euclidean, then such a smoothing out is
indeed possible. Thus we may foresee that the no-boundary proposal will induce
us to go beyond Lorentzian geometry.

Ground state of the universe and quantum creation
The way in which the no-boundary proposal is motivated in the seminal

paper [2] by Hartle and Hawking is by drawing an analogy with ground states in
quantum mechanics. Ground states can be defined by considering a Euclidean
path integral, and integrating from configurations of vanishing action in the
infinite (Euclidean) past,

ψ0(x, 0) =

∫
Dx e− 1

~ IE [x(τ)] , (86)

where we ignored an overall normalisation factor and where Euclidean time τ is
related to physical time via t = −iτ. The Euclidean action IE is related to the
Lorentzian one via IE = −iS. To see that this defines the ground state, consider
the amplitude for a particle to propagate from (x = 0, t = t′) to (x, t = 0),

〈x, 0 | 0, t′〉 =
∑
n

ψn(x)ψ̄n(0) eiEnt
′

(87)

=

∫
Dx eiS[x(t)] . (88)

In the first line we inserted a complete set of energy eigenstates ψn with energy
En, and the second line is the definition of the amplitude as a path integral.
Then if we Wick rotate t′ = −iτ ′ and take the limit τ ′ → −∞, then only
the lowest energy eigenstate will be left, and consequently (88) becomes (86).
Thus an integral from the infinite Euclidean past defines the ground state of the
system.

We would now like to propose an analogous definition when gravity is in-
cluded. The question then becomes: what should play the role of the infinite
Euclidean past? As discussed by Hartle and Hawking [2], there are two natural
choices that come to mind. One is Euclidean flat space, and the other are com-
pact Euclidean metrics. Euclidean flat space would be more appropriate for a
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scattering amplitude, where particles are modelled to come in from infinity and
fly out to infinity again. But in cosmology we are only measuring the universe
at late (finite) times, and we are measuring from the inside of the universe. This
means that the second option, namely summing over compact metrics, is more
appropriate for cosmology, and this is the proposal of Hartle and Hawking.

As we saw in section 2, the wave function is a function of three-dimensional
spatial slices. The path integral over compact metrics may then be seen as an
amplitude from a slice where the 3−dimensional volume goes to zero, to a final
slice with metric hij ,

ΨHH [hij ] = N
∫
C
Dgµν e−IE [gµν ] , (89)

where the integral is over all (inequivalent) compact metrics C that contain
a surface with metric hij . N here is a normalisation factor. This definition
has the interpretation of a transition amplitude from zero size to a given final
size, i.e. it has the interpretation of being the amplitude for the universe to
tunnel from nothing (for early incarnations of this idea, see [31, 32, 33]). This
nothing should be thought of as an absolute nothing, i.e. as the absence of space,
time and matter. Incidentally, when matter is included, then the integral is to
be performed over compact metrics and regular field configurations on these
geometries – if the matter configurations were not regular, they would induce
spacetime singularities, which are explicitly avoided here.

Note that, comparing with (86), the definition (89) cannot be interpreted
as the lowest energy state of the universe. This is because in a closed universe,
energy cannot be defined unambiguously (in general relativity, energy is usually
defined asymptotically, with respect to a fixed reference metric [34]). Rather, the
definition (89) should be seen as defining a state of minimum excitation. Thus
we would expect, and we will see that this is in fact true, that spacetimes with
fewer wrinkles in them come out as preferred over more crumpled spacetimes.
Thus there is the hope that the no-boundary proposal might be able to explain
why the early universe was in such a simple state.

The idea of describing the origin of the universe as tunnelling out from
nothing was also proposed independently by Vilenkin, and goes by the name
of tunnelling proposal [35, 36, 37]. Conceptually, the two proposals are very
similar, but there are some technical differences that we will discuss in later
sections. Interestingly, the idea that the ground state might be enough to explain
the structure of the universe was also mentioned already by Dirac as early
as 1939, in a lecture5. Dirac’s observation was that the quantum mechanical
ground state is not empty, and might ultimately account for all the structure we

5Here are Dirac’s words, delivered on presentation of the James Scott prize in 1939 [38]:
“Let us now return to dynamical questions. With the new cosmology the universe must have
been started off in some very simple way. What, then, becomes of the initial conditions
required by dynamical theory? Plainly there cannot be any, or they must be trivial. We
are left in a situation which would be untenable with the old mechanics. If the universe were
simply the motion which follows from a given scheme of equations of motion with trivial initial
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see in the universe. This is very close to the modern point of view. The ground
breaking contribution of Hartle and Hawking was to specify how to include
gravity in this scheme.

We should point out a few immediate consequences of the definition (89),
which at this point remains rather schematic. The first is that the wave func-
tion is real valued, as the integral is, at least formally, over Euclidean compact
metrics. We will later discuss how this can nevertheless lead to an operational
definition of probabilities, in the vein of section 2.4. The second is that, even
though the formal definition describes a sum over Euclidean metrics, somehow
our Lorentzian universe must come out. As we will see, this is because the
saddle points of the path integral (89) will turn out to be complex. Third, by
definition the big bang singularity is avoided. This is possible because the ge-
ometry is not forced to remain Lorentzian in regions where the universe shrinks
to zero size – rather, the origin of the geometry is viewed more like a point on
the surface of a ball, and sometimes this point is referred to as the “South Pole”
of the geometry, cf. the right panel in Fig. 13.
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Figure 14: If the initial state were taken to be Euclidean flat space, then in addition to
geometries directly connecting our current universe to that state, there would be topologically
non-trivial configurations in which the early phase pinches off and a new universe forms
from nothing. The conjecture is that such configurations would dominate the path integral,
effectively recovering a sum over purely compact metrics without boundary [39].

The path integral is effectively of no-boundary type anyway
What if we had chosen a different initial state in the definition (89)? In par-

ticular, what if we had chosen asymptotically Euclidean flat space as “in” state?
Then, apart from geometries that would connect this asymptotic region directly
to the final hypersurface with metric hij , there would also be geometries that
are disconnected, i.e. for which the initial asymptotic Euclidean region would
round off and come to an end, combined with a configuration where a new uni-
verse is nucleated and this then connects to the final hypersurface. In fact, there

conditions, it could not contain the complexity we observe. Quantum mechanics provides an
escape from the difficulty. It enables us to ascribe the complexity to the quantum jumps, lying
outside the scheme of equations of motion. The quantum jumps now form the uncalculable
part of natural phenomena, to replace the initial conditions of the old mechanistic view.”
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would be many more such topologically non-trivial geometries contributing to
the path integral, and they would in all likelihood vastly dominate over the
configurations directly connected to infinity. Hence, there is a conjecture that
effectively this path integral would again reduce to the one where one sums over
compact metrics [39]. This idea is illustrated in Fig. 14.

Finite action
In physics, the action plays a central role, since for just about all theories

of physical interest the action provides the definition of the theory. It encodes
the classical equations of motion upon variation of the fields and it provides
the weighting for quantum amplitudes, in Feynman’s path integral approach.
Thus a natural requirement on any physically sensible theory might be to ask
for the action to be well defined and, in particular, finite (at least at the saddle
points) [40, 41, 42]. This is a crucial condition in ensuring that the theory
makes sense at the semi-classical level. However, such a requirement is far from
trivial. In particular, it immediately rules out the standard hot big bang model,
once quantum corrections are taken into account. Let us briefly review this
argument [42]. We can focus on the best case scenario, where spatial sections
are homogeneous and isotropic, i.e. we can consider a Robertson-Walker (RW)
metric

ds2 = −Ñ2dt2 + a(t)2

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
, (90)

where k ∈ (−1, 0, 1) parameterises the spatial curvature (respectively open,
flat, closed). When quantising gravity, we expect that loop corrections lead to
additional terms in the action, proportional to higher powers of the Riemann
tensor [43] (there can also be terms involving derivatives of the Riemann tensor,
but for simplicity we will ignore these here). In a RW background, such terms
simplify greatly, as there are only two independent non-trivial components of
the Riemann tensor, namely (for i 6= j, and with no summation over repeated
indices)

Rij ij =
ȧ2 + kÑ2

a2Ñ2
≡ A1 , R0i

0i =
ä

aÑ2
≡ A2 . (91)

The action will be a function f of (positive) powers of these terms only, more
specifically

S =

∫
d4x
√
−gf(Riemann) = 2π2

∫
dtÑa3

∑
p1,p2

cp1,p2
Ap1

1 A
p2

2 , (92)

where cp1,p2
are coefficients, and the power of the Riemann terms is given by

p1+p2. Now the point is that for a big bang type model, we have in physical time
Ñ = 1 that the scale factor goes to zero as some power of time, a(t) ∝ ts with

s > 0. But then A1 = s2

t2 + k
t2s , A2 = s(s−1)

t2 . Given that quantum corrections
arise at arbitrarily high order, i.e. p1, p2 can be arbitrarily large, the integral
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in (92) will diverge (some terms can be eliminated by using a constraint, but
not all [42]) and the action will not be finite. At the semi-classical level, a
Lorentzian big bang is thus ruled out.

There are few ways known that render the action well defined and finite.
One possibility is quadratic gravity. In the quantisation of quadratic gravity, no
further higher derivative terms appear [44], and hence it is potentially protected
from the problem mentioned above. In fact, inflationary solutions, starting
from zero size, arise with finite action [45]. However, that theory is potentially
plagued by ghosts [46]. Another possibility is to have an emergent phase, that
is to say a phase of asymptotic flatness out of which the universe arose, see e.g.
[47, 48]. However, the previous motivating paragraph has provided a counter
argument, by conjecturing that in such a situation the quantum amplitude would
in fact be dominated by no-boundary geometries.

This then leads us to the best understood example that ensures finite action,
namely the no-boundary proposal itself. The smooth rounding-off of the geom-
etry, combined with regular matter fields, is the most robust example known to
lead to finite action solutions. Technically, this is due to the Euclidean nature
of the geometry near the South Pole at t = 0 : there, as we will derive in below,
the solution for the scale factor is of the form a(t) = ±it+O(t3) with k = +1,
leading to ȧ2 + k = O(t2) and consequently regularity of the Riemann terms
A1 ∼ A2 ∼ O(t0) as t→ 0. This will be discussed in detail in section 5.1.

All the above motivations lend an air of inevitability to the no-boundary
proposal in semi-classical gravity. That said, a physical theory should not only
be intuitive and offer good explanations, but must first of all be in agreement
with observations. Thus, we should analyse the no-boundary proposal in detail
before passing judgment.

3.2. Simple Inflationary Examples

We just discussed a series of intuitive arguments suggesting that the wave
function of the universe might be given by a path integral over compact metrics.
Defining such a path integral in general and in detail is rather complicated, and
we will discuss progress that was made towards this goal later on. From the
discussions in section 2 and Appendix C we know that path integrals can be
well approximated by their saddle points, so we may ask a much more tractable
question first: do compact and regular saddle point solutions actually exist?

The most relevant context for answering this question is that of gravity
coupled to a scalar field φ with potential V (φ), with action

S =

∫
M

d4x
√
−g
(
R

2
− 1

2
gµν∂µφ∂νφ− V (φ)

)
+

∫
∂M

d3y
√
hK . (93)

We will again specialise to FLRW backgrounds (8) and a time dependent scalar
field only. It is useful to redefine the time coordinate, via Ñdt = −idτ. This
means that when τ takes real values, it will correspond to Euclidean time. But
it will be useful to consider τ to be complex valued in general. The metric

36



ansatz is then very simple,

ds2 = dτ2 + a2(τ)dΩ2
3 , (94)

and the Euclidean action IE = −iS becomes

IE = 2π2

∫
dτ

(
−3aa′2 − 3a+ a3

(
1

2
φ′2 + V

))
, (95)

where ′ ≡ d/dτ . The equations of motion are

φ′′ + 3
a′

a
φ′ − V,φ = 0 , (96)

a′′ +
a

3

(
φ′2 + V

)
= 0 , (97)

while the constraint, arising from time reparameterisation invariance, is

a′2 − 1 =
a2

3

(
1

2
φ′2 − V

)
. (98)

In cosmology this equation is usually called the Friedmann equation. Using this
equation, we can simplify the action when it is evaluated on a solution of the
equations of motion (this is called the “on-shell” action)

Ion−shellE = 4π2

∫
dτ
(
−3a+ a3V

)
. (99)

The no-boundary wave function, for now loosely defined via the formal path
integral (cf. (89))

Ψ(b, χ) =

∫
C
DaDφ e−IE(a,φ) ∼

∑
e−IE(b,χ) , (100)

depends on b and χ, the (late-time) values of the scale factor and scalar field on
the final hypersurface. As indicated, we assume that it can be approximated by
(a sum of) saddle point contributions. Concretely, we must therefore find out if
there exist solutions (a(τ), φ(τ)), satisfying the following conditions [49, 5]:

• The solution must be compact, so somewhere we must have a(0) = 0. Here
we have shifted the time coordinate such that τ = 0 corresponds to the
South Pole of the solution, cf. again Fig. 13. At this point, the solution
must also be regular, by which we mean that the fields and their derivatives
must take finite values. The Friedmann equation (98) then implies a′(0) =
±1, expressing the fact that the geometry must be Euclidean at the South
Pole. The choice of sign for a′ is important – we will show later on that
for physical consistency we must choose

a′(0) = +1 . (101)
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The equation of motion (97) then implies that a = τ +O(τ3). Meanwhile,
the equation of motion for φ, Eq. (96), shows that regularity implies
the condition φ′(0) = 0. This means that no-boundary solutions can be
characterised/labelled by the value of the scalar field at the South Pole,
φSP = φ(0). This value will be complex in general.

• There must exist a point τf in the complex τ plane where the fields take
their specified values b, χ ∈ R, that is to say that on the final hypersurface
we must have

a(τf ) = b and φ(τf ) = χ, (102)

with b, χ being the arguments of the wave function. The non-trivial re-
quirement is that the fields must take the specified values simultaneously.
If this cannot occur, no solution exists.

Let us add three remarks: first, note that the action IE(b, χ) will be evaluated
along a path starting at τ = 0 and ending at τ = τf . The choice of path
is irrelevant, due to Cauchy’s theorem, as long as there are no singularities
or branch points present in the complex τ plane. Second, the complex time
path we are talking about here has nothing to do with the complex integration
contours (which are contours over the fields) used to define path integrals using
the Picard-Lefschetz method discussed in Appendix C. Rather, we are talking
about a saddle point of such integrals. But this saddle point itself is complex,
and can be represented in different ways using different complex time paths.
These different representations are physically equivalent, since the action is
invariant under changes of path. And third, a note on nomenclature: solutions
of the type specified above, satisfying the no-boundary conditions, are often
called no-boundary instantons. This is a slight abuse of notation, as instantons
usually refer to purely Euclidean (finite-action) solutions. Here the instantons
are typically complex, and for this reason they have also sometimes been called
“fuzzy instantons”.

a = sin(⌧)

a = sin(
⇡

2
+ it)

= cosh t

⇡/2

t plane

0

Figure 15: The simplest example of a no-boundary instanton corresponds to a section of
complexified de Sitter spacetime, which can be seen as half of a 4−sphere, in purple, glued at
the Hubble radius to half of the Lorentzian de Sitter hyperboloid, in green. The corresponding
path in the complex time plane is shown on the left; here we have set the Hubble radius to
unity.
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Let us start with the simplest example of a no-boundary solution, which
arises when the scalar potential is constant, V = 3H2. In this case the scalar field
is constant, and the solution for the scale factor corresponds to the maximally
symmetric, constant-curvature de Sitter spacetime, with Hubble radius 1/H. In
terms of Euclidean time, the solution is given by

a(τ) =
1

H
sin(Hτ) . (103)

Note that this indeed satisfies a(0) = 0 and a′(0) = 1. The 4−sphere reaches
maximum radius at τ = π/(2H), where the scale factor attains the Hubble
radius a = 1/H. This is the equator of the 4−sphere, onto which we can glue
half of the Lorentzian de Sitter solution by continuing in the Lorentzian time
direction, τ ≡ π/(2H) + it, with t ≥ 0, so that the scale factor evolves as

a =
1

H
sin(π/2 + iHt) =

1

H
cosh(Ht) . (104)

The chosen complex time path is illustrated in Fig. 15. Along this path the scale
factor takes real values, and thus we can extend the instanton arbitrarily far
into the future, until the desired final value b of the scale factor is reached. The
corresponding final time is explicitly given by τf = π/(2H) + i arcosh(Hb)/H.
This is the famous Hartle-Hawking instanton, whose “shuttercock” shape is
shown in Fig. 15. It is the prototype for all no-boundary solutions.

We can also calculate the action of this solution, using Eq. (99). The result
is straightforwardly found to be6

IE =
4π2

H2

[
−1 + i (H2b2 − 1)3/2

]
, (105)

so that the no-boundary wave function becomes approximately

Ψ ≈ e
4π2

~H2 [1−i (H2b2−1)3/2] . (106)

If we now think about a series of instantons with successively larger scale factor
values, we see that the phase of the wave function grows roughly in proportion
to the spatial volume b3, while the amplitude remains constant. Thus, using
the results of section 2.4, we can assign a relative probability

Ψ?Ψ ≈ e
8π2

~H2 (107)

to the corresponding classical history. Of course, in the present case this is
a rather trivial statement, as there is only a single history, corresponding to

6The easiest way to represent the solution, and to calculate the action, is to use the
complex time path which combines a Euclidean and a Lorentzian segment. But if one prefers
a smoother representation, without the 90 degree turn in the complex time plane, then one is
in principle free to choose a path that links τ = 0 to τf in a smooth, infinitely differentiable,
manner.
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the expanding de Sitter spacetime. However, we could imagine a potential
with several approximately flat regions at different potential heights V = 3H2,
i.e. we could imagine that H could vary. Wherever the potential is very flat,
solutions such as the one above would exist, with their corresponding classical
histories. Then we can see an important feature of the no-boundary proposal:
smaller potential values come out as preferred. The implications of this will be
discussed in section 4.

New features enter when we include a non-trivial scalar potential. The
simplest potential to consider is that of a mass term, V (φ) = 1

2m
2φ2. Current

observations [50] disfavour this model of inflation, but it remains very useful
as an example of no-boundary solutions that can be approximated analytically.
This was first done in [51] (see also the generalisation to generic slow-roll models
in [52]). To understand the nature of solutions, it is useful to first work out
a series expansion near the South Pole, imposing the no-boundary conditions
a(0) = 0 and a′(0) = 1. This yields

a(τ) = τ − 1

36
m2φ2

SP τ
3 +O(τ5) , (108)

φ(τ) = φSP +
1

8
m2φSP τ

2 +O(τ4) , (109)

which shows that the entire solution depends on a single parameter, namely
the scalar field value at the South Pole, φSP . As we will see momentarily, this
must typically be taken to be complex. However, the analytic approximation
is most accurate when φSP is almost real and large, hence we will assume
|φISP | � 1 � |φRSP |, where we are denoting real and imaginary parts by the
superscripts R, I.

Near the South Pole, φ remains approximately constant, and thus Eq. (97)
implies that the corresponding solution for a is given by a sinus function,

a ≈
√

6

mφRSP
sin

(
mφRSP√

6
τ

)
φ ≈ φRSP . (110)

This is again approximately the solution for a 4−sphere with radius determined
by the location of the scalar field on the potential. The equator of the 4−sphere

is reached at time τRmax =
√

6
mφRSP

π
2 . In fact, the series expansion (109) shows that

φ remains constant up to this point with fractional error 1/(φRSP )2.
We can also find an approximate solution when a is large. This is noth-

ing other than the usual slow-roll approximation for inflationary solutions, but
expressed in Euclidean time,

a(τ) ≈ a0e
−imφSP√

6
τ+m2

6 τ2

, (111)

φ(τ) ≈ φSP + i

√
2

3
mτ . (112)

The scalar field slowly rolls down the potential, to good approximation linearly
with time, while the scale factor expands exponentially when evolving in the
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imaginary τ direction (that is to say, in Lorentzian time). This approximate
solution is valid until the second term in the exponent for a overtakes the first
term, i.e. until τ I ∼ φRSP /m.

There is an important feature to the scalar field solution (112), which is that
when we move in the imaginary τ direction, then the imaginary part of φ does
not change anymore. We can use this property to match onto a desired real
value χ at late times. Also, the late time solution for a will remain approxi-
mately real, when matched to the equator of the 4−sphere solution at small a.
Thus, matching at τR = τRmax, we obtain a (approximately) real solution at late
Lorentzian times if we choose (cf. (110) and (112))

a0 ≈
i
√

6

mφRSP
, φISP = −

√
2

3
mτRmax = − π

φRSP
, (113)

which refines the expression for φ in (110). One obvious lesson of this is that the
scalar field must be complex at the South Pole in order for it to reach real values
at a late time. This demonstrates explicitly the earlier claim that no-boundary
instantons are typically complex.

We can also approximate the action of these solutions, by using (99). The

integral from τ = 0 to τRmax yields a real value IRE ≈ − 24π2

m2χ2 for the Euclidean
on-shell action. For the integral along the Lorentzian direction up to τf , one can
neglect the term linear in a in (99), since the scale factor becomes exponentially
large. Then one may approximate it as follows,

2π2

∫ τf

τRmax

dτ m2φ2a3 = 2π2

∫
dτ mφa2

√
6a′ = 2π2

√
2

3

∫
dτ mφ

d

dτ
(a3)

≈ 2π2

√
2

3
mχb3 , (114)

where we assumed slow-roll in the last step. The total contribution of this
instanton to the wave function is thus

Ψ(b, χ) ≈ e
12π2

~V (χ)
−i 2π2

√
2
3mχb

3

. (115)

We find again that low values of the potential come out as preferred, and that
the phase grows in proportion to the spatial volume.

Note that the wave function is of WKB form, which we recall is a prerequisite
for a probabilistic interpretation, as discussed in section 2.4. It is fairly obvious
by inspection, as the weighting does not depend on the scale factor b while the
phase grows very fast as the universe expands. Nevertheless, we may calculate
this more precisely, using (∇I)2 = GAB∂AI∂BI and Gbb = −12π2b, Gχχ =
2π2b3,

(∇IRE )2

(∇IIE)2
∼ 1

m6χ8b6
, (116)

which is indeed driven to tiny values.
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The histories implied by the wave function, i.e. the sequences of (b, χ) values
with constant weighting, are in fact those classical solutions that the instantons
approach at late times. Explicitly, they can be obtained by eliminating τ from
(111) and (112), resulting in

b ≈ i
√

6

mφRSP
e

1
4 (φ2

SP−χ
2) , (117)

and they correspond to an approximately fixed scalar field value φSP = φRSP −
i π
φRSP

at the South Pole. What is important to point out here is that these

histories are parameterised by a single real parameter, namely φRSP , whereas
general classical solutions would have been parameterised by two real param-
eters. This shows one aspect of the predictivity of the no-boundary proposal,
namely that it restricts the possible solutions to a theory. In other words, not
all (b, χ) combinations may arise, only those that can be related as in (117).

Having analytically demonstrated the existence of no-boundary saddle points
in a simple inflationary model, we will end this section with a few remarks
regarding the consistency of the no-boundary framework. An obvious point is
that no-boundary solutions actually exist. They have finite action, as seen in
(115), and lead to the prediction of classical expanding universes. These saddle
point solutions are everywhere regular, but what is more, the curvature does
not become large. In fact the spacetime curvature is roughly constant, as these
solutions are close to pure de Sitter spacetime. This means that the curvature

radius is given by the Hubble radius, ∼
√

3/V (φRSP ) =
√

6/(mφRSP ). Hence if

the potential energy is well below the Planck scale, then the curvature radius
RH of the instantons is correspondingly larger than the Planck length lPl. This
means that the expected higher curvature corrections, arising from quantum
corrections to the action, will be suppressed by positive powers of lPl/RH � 1.

A final point of importance is the sign choice that we made in (101). If we
had chosen the opposite sign, then we would have found essentially the same
solutions, but the Euclidean action would have come out with the opposite sign
(this alternative sign choice is the one made in the tunnelling proposal [35]).
This would have flipped the relative probabilities, e.g. in (107) we would have

obtained Ψ?Ψ ≈ e−
8π2

~H2 . Then high values of the potential would have been
preferred instead of low values. We will discuss this further in section 4, and
derive the statements that we make here. For now, let us just state the result,
which is that with the alternative choice of sign, perturbations around these
solutions are unstable, in the sense that solutions with large perturbations are
more likely than solutions with small perturbations. Thus, the whole approxi-
mation framework of starting with FLRW metrics becomes inconsistent. With
the choice of sign that we made here, and which was advocated for these rea-
sons by Hartle and Hawking from the inception of the no-boundary proposal,
perturbations are suppressed and the framework is consistent.

42



3.3. Numerical Techniques

In the previous section we demonstrated the existence of (inflationary) no-
boundary saddle points, by using analytic approximations in a simple model
containing a massive scalar field. For general potentials, it is however impossible
to find explicit no-boundary solutions by analytic methods. In such cases, we
have to resort to numerical methods. We will describe these here, and show
that they can easily produce large numbers of no-boundary solutions. Moreover,
they have the advantage of being able to access parameter regions that were not
reachable by the approximations made in the previous subsection.

The strategy for finding numerical no-boundary solutions is as follows [53, 5].
First we can choose a value for the scalar field at the South Pole,

φSP = φRSP + iφISP = |φSP |eiθ , (118)

where we will sometimes use a polar representation with argument θ. It is useful
to start with a value of φRSP or |φSP | that lies in a region of the potential where
inflationary solutions may be expected to be found, i.e. in a relatively flat region
of the potential – this will make it easier to find the first solution. Then one
should integrate the equations of motion (97) and (96) from the South Pole,
along a chosen contour in the complexified τ plane. The South Pole is a regular
singular point, hence one cannot integrate directly from it, but rather from
somewhere close by. This can be done to arbitrary numerical precision, using
the series expansion of no-boundary solutions near the South Pole,

a(τ) = τ − V

18
τ3 +

8V 2 − 27V 2
,φ

8640
τ5 +O(τ7) , (119)

φ(τ) = φSP +
V,φ
8
τ2 +

2V V,φ + 3V,φV,φφ
576

τ4 +O(τ6) . (120)

This series expansion is derived by imposing the regularity conditions at τ = 0
that were described in section 3.2. In practice, it is useful to start the integration
at τ = ε, with |ε| of order 10−5 or even smaller. The integration contour should
be chosen for convenience. One choice that works well is to integrate first in the
imaginary τ direction, followed by a segment in the real τ direction, see Fig. 16.
A contour of this shape typically allows one to cross the locus where the scale
factor takes real values, let us denote this point as τr. However, the scalar field
will in general not be real at this location, but will take a complex value. The
idea now is to tune the four real parameters φSP , τr such that one reaches
Re(a) = b, Im(a) = 0, Re(φ) = χ, Im(φ) = 0 to the desired accuracy. The
tuning can be done by using a Newtonian algorithm, which can straightforwardly
be implemented in such a higher-dimensional parameter space. However, some
trial and error is typically required at first, in order to already find oneself in
the basin of attraction of the solution. Here it is useful to choose target values b
and χ that are close to the values a(τr) and Re[χ(τr)]. The result of a successful
optimisation is shown in Fig. 17, where the endpoint, at which the fields reach
the real values b, χ, is now denoted as τf .
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Figure 16: These figures show the complexified τ plane, on the left for the scale factor
and on the right for the scalar field. The dark lines show the locus where the fields take real
values (more precisely, the figures show a density plot of log |Im(a(τ), φ(τ))| for a dense grid of
values of τ). The red arrows indicate a useful contour of integration, used in the optimisation
procedure needed to find numerical no-boundary solutions. The present figures show what
this looks like when the desired solution has not been reached yet: the dark lines, where scale
factor and scalar field are real, are located in different regions of the complex τ plane. For
this example, V (φ) = 1

2
m2φ2, m = 1/10, and we used the trial value φSP = 6.5 − 0.3i. The

values reached at τr ≈ 6.58 + 22i are a ≈ 376 and φ ≈ 4.99 + 0.25i.
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Figure 17: Now we show the same model, but with optimised values φSP ≈ 6.451− 0.5037i.
The real a and real φ lines now (asymptotically) overlap and a no-boundary solution is ob-
tained. More precisely, the real values b = 300 and χ = 5 are obtained at τf ≈ 5.943 + 21.34i.
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Figure 18: Here we show the field values of the optimised instanton from Fig. 17, along the
path indicated by the dotted line in that figure. The path first evolves from the South Pole in
the Euclidean direction to Xopt ≈ 5.943, and then in the Lorentzian direction up to τf . λ is
a parameter along the path. The left panel shows the real and imaginary values of the scale
factor, while the right panel is for the scalar field. The imaginary parts have been enhanced
for better viewing. Note that the fields become real at the final time, and reach the desired
values b = 300, χ = 5.

In Fig. 18 we also plot the field values for the optimised solution, but now
following the more standard contour where we evolve in the Euclidean direction
first, up to Xopt ≡ Re(τf ), and then in the Lorentzian direction up to τf . Note
that the imaginary parts of the fields quickly decay along the Lorentzian part
of the contour. We can also compare the optimised values with the analytic
estimates of the previous section. There we had found that φISP = −π/φRSP .
Here we would thus expect φSP = 5− π

5 i ≈ 5−0.63i, whereas the optimised value
we obtained was φSP ≈ 6.451 − 0.5037i. The discrepancy can be attributed to
the fact that the scalar field value is not very large here, whereas an assumption
in section 3.2 was that φRSP � 1. But this is the advantage of the numerical
method, that one can find solutions in regions of the potential where analytic
estimates don’t work well.

Optimised no-boundary solutions typically exhibit another feature, clearly
visible in Fig. 17: there exist lines at constant X along which the scale factor
and the scalar field remain approximately real when evolving in the imaginary
(Lorentzian) time direction. This is due to the inflationary attractor, which has
pulled one close to a classical solution of the equations of motion. However,
strictly speaking, if the scalar field is not residing at an extremum of the po-
tential (where the instanton is pure de Sitter spacetime), the scale factor and
the scalar field only take the real values b and χ simultaneously at one location
τf , and not along a line segment. Still, due to the inflationary attractor, values
of b, χ that are related by classical evolution will correspond to instantons with
essentially the same optimised φSP , X = Re(τf ) values, and will only differ in
the Lorentzian time location Im(τf ) where the final field values are reached.
Also, quite generally, once one has found the first such no-boundary solution,
one can usually easily find nearby solutions with slightly different b, χ values,
even when they belong to different classical histories. This allows us to gain a
more global understanding of the existence of solutions.

Before embarking on this task, let us note a simplification: in order to
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perform the numerical calculations, we can scale the potential to an arbitrary
overall normalisation. Indeed, starting from the Euclidean action

SE = −
∫

d4x
√
g

(
R

2
− 1

2
gµν∂µφ∂νφ− V (φ)

)
, (121)

we can perform the scalings (with constant V0)

φ ≡ φ̄ , V ≡ V0V̄ , gµν ≡ V −1
0 ḡµν , (122)

which result in a new action

SE = − 1

V0

∫
d4x
√
ḡ

(
R̄

2
− 1

2
ḡµν∂µφ̄∂ν φ̄− V̄

)
. (123)

Now the overall scale of the potential appears out front. In fact, this scaling is
not only useful for the numerics, but it also explains the functional dependence
of the wave function on the potential, cf. Eqs. (107) and (115). We will make
use of this scaling freedom below.
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Figure 19: Left panel: A toy inflationary landscape potential of the form (124). It contains a
plateau region at small field values, and a power law region at large field values. It is normalised
here such that V (0) = 1. This potential serves to illustrate general features of (inflationary)
no-boundary solutions in a potential landscape. Right panel: For the no-boundary solutions in
Fig. 20, we show here the weighting of the action, i.e. the logarithm of the relative probability,
again as a function of |φSP |. The dotted lines represent the approximation of the instanton
by a pure de Sitter solution. Low values of the potential come out as preferred. Figures
reproduced from [54].

A model that serves well to illustrate the properties of inflationary no-
boundary solutions is a toy model for a potential energy landscape, with poten-
tial [54]

V (φ) =
1

v4
(φ2 − v2)2 . (124)

The potential is illustrated in the left panel of Fig. 19. It consists of two inequiv-
alent inflationary regions, one of plateau type at small φ, and an approximately
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quartic potential at large φ, with a potential minimum in between. This poten-
tial admits no-boundary solutions in both inflationary regions. The optimised
scalar field values at the South Pole are shown in Fig. 20. Perhaps the most
important thing to note about this figure is that no-boundary solutions do not
exist everywhere on the potential. Rather, when the potential becomes too steep
to support a prolonged inflationary phase, no-boundary solutions cease to exist.
This occurs near the potential minimum at φ = 20, and arises because there
is no dynamical attractor at play there, which could drive the solution towards
a classical solution of the equations of motion. In other words, when there is
no attractor, it becomes impossible for the scale factor and scalar field to si-
multaneously become real valued, while also satisfying the regularity conditions
at the South Pole (which, we should recall, require the scalar field to start out
with a complex value, cf. (113)). We will discuss the attractor in more detail
in section 3.5.
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Figure 20: For no-boundary solutions in the potential in Fig. 19, we show plots of the
optimised phase θ at the South Pole (left panel) and the location X where real values are
reached at late times (right panel), both as a function of |φSP |. Here we chose v = 20 while

X is expressed in terms of Htop ≡
√
V (φ = 0)/3 = 1/

√
3. All results can be scaled to any

overall scale of the potential using Eqs. (122). Figures reproduced from [54].

For these solutions, one can also calculate the action. The most interesting
part is the weighting, i.e. the imaginary part of the action (or equivalently
minus the real part of the Euclidean action), and this is shown in the right
panel of Fig. 19. Note that the approximation

ln Ψ?Ψ = −2

~
SRE =

24π2

~V (|φSP |)
, (125)

adapted from the pure de Sitter case in (107) and indicated by the dotted
lines, works very well. As one can see, lower values of the potential come out
as preferred. This means that the plateau region of the potential (at small
φ) is preferred over the power law region at large φ. This is in good qualitative
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agreement with observations of the cosmic microwave background [55]. However,
we should also point out that within each inflationary region, starting lower on
the potential is again preferred, so that short inflationary phases come out as
preferred over long ones, which leads to some tension with observations. A
detailed comparison with observations will be the subject of section 4.

3.4. Ekpyrotic Examples

The numerical techniques that we just described can also be used to find
no-boundary instantons of a very different type, namely in ekpyrotic theories
containing a steep and negative potential for the scalar field. In such models, the
ekpyrotic phase, during which the universe slowly contracts, plays an analogous
role to the inflationary phase and replaces it [28, 56]. A contracting phase
with high pressure (in fact with pressure larger than the energy density) has the
effect of rendering the universe homogeneous, isotropic and flat. Moreover, if one
adds a second scalar field, such models can also generate density perturbations
in agreement with observations of the cosmic microwave background [57, 58].
The least understood aspect of these models is how they link the contracting
phase with a subsequent hot expanding phase, but for progress on this issue see
[59].

It may sound surprising to look for no-boundary solutions when the universe
is supposed to contract rather than expand – how can a contracting universe
arise from nothing? But one has to keep in mind that the South Pole region of
no-boundary solutions does not correspond to a classical spacetime. The idea,
roughly speaking, is that Euclidean space is generated from nothing and then
turns into a Lorentzian spacetime as the universe contracts [60].
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Figure 21: Representative shapes of ekpyrotic (left) and cyclic (right) scalar field potentials.
In the cyclic case, the ekpyrotic part of the potential is sandwiched between a bounce phase
at more negative φ values, and a dark energy plateau at positive φ.

A simple example of an ekpyrotic potential is a negative exponential,

V (φ) = V0e
−cφ , (126)

where we take V0 < 0 and c >
√

6. The latter condition ensures that the
contracting solution is an attractor, cf. section 3.5. Using analogous techniques
to those of the previous section, one may then tune the values of the scalar field
at the South Pole in order to obtain simultaneously real b, χ values of the scale
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factor and scalar field as the universe contracts. An example is shown in Fig. 22,
taken from [54]. Note that one has to use a somewhat different contour in the
complex time plane to find such solutions (the field values along the indicated
contour are shown in Fig. 23): from the South Pole, the contour first has to
run in the negative imaginary direction. Along this part of the contour, the
solution corresponds to a portion of a large 4−sphere, with a(λ) ≈ −iλ. Then
the contour runs in the Euclidean direction, and the fields are fully complex
there. Finally, the contour runs in the Lorentzian time direction, and it is along
this segment that the fields become real valued. As one can see from Fig. 23, the
scale factor is shrinking there while the scalar field rolls down the potential fast.
In this simple model, no bounce is included, and hence the evolution necessarily
ends in a crunch. This is also the reason why one cannot see a long vertical
time segment in Fig. 22 along which both the scale factor and scalar field are
real to high precision: the crunch occurs shortly after the fields have reached
real values.
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Figure 22: An example of an ekpyrotic instanton. The coloured arrows indicate a contour of
integration that proves useful in finding solutions of this type. Here c =

√
8 and the optimised

South Pole value is φSP = 0.000− 1.481i. Dark lines again show the locus of real field values,
cf. Figs. 16 and 17. Figures reproduced from [54].

The action for these solutions can be calculated numerically, and is found to
take a functional form that is very closely related to the one in the inflationary
case, in particular one finds for the weighting that

Ψ?Ψ ≈ e
s

~|V (φSP )| , (127)

where s is a positive numerical factor that depends on the steepness of the
potential [60]. This implies that ekpyrotic instantons receive a very high proba-
bility if they start high up on the potential. Thus, in contrast to the inflationary
case, a large number of e-folds of ekpyrosis comes out as preferred.

The overall shape of ekpyrotic no-boundary solutions is shown in Fig. 24,
and it takes the shape of a decanter. In the figure, it is imagined that a bounce
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Figure 23: The evolution of the scale factor and scalar field for the ekpyrotic instanton shown
in Fig. 22, along the contour indicated in that figure. Note that along the final segment (in
red), the fields become increasingly real as the universe contracts and the scalar rolls down
the potential. Figures reproduced from [54].

into an expanding phase actually takes place. In [61] a ghost condensate model
of a bounce was included, because it is a simple example of how to model a
classical bounce. In this case, no-boundary instantons with this shape indeed
arise. However, the ghost condensate model is known to contain instabilities
[62], and thus is not consistent on a quantum level. This is in fact the main
problem with classical bounces. In all cases that are known to date, they occur in
theories that also allow for unstable solutions (even if the bounce solution itself
is stable). It remains unclear whether one may consistently treat such theories
as quantum theories, since fluctuations away from the solution of interest might
be able to reach unstable solutions. Thus it remains unknown whether quantum
gravity allows cosmic bounces or not. Note that this question is also important
in assessing whether one of the heuristic motivations given in section 3.1 holds
up, namely whether the quantum wave function is effectively of (inflationary)
no-boundary type even when the universe has an asymptotic flat region to the
past, cf. again Fig. 14.

If bounces do make sense, then there exists another possibility for no-boundary
solutions, this time in cyclic extensions of the ekpyrotic model [63]. In those
extensions, there exists a positive plateau region in the potential, where the
current dark energy phase takes place. In the far future, the dark energy decays
and the universe contracts in a renewed ekpyrotic phase. Then the universe
bounces again into a hot big bang phase, followed by dark energy, and another
cycle starts. For a potential of this type, it is possible to find no-boundary
solutions that start in the dark energy phase [54]. This has the advantage of
leading to vastly higher probabilities, since the potential is very low there, cf.
(107). However, this possibility, in the same way as all the other possibilities
discussed in this section, hinges on the viability of cosmic bounces in quantum
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SP

Figure 24: A cartoon of the shape of ekpyrotic instantons. A large Euclidean space is created
from nothing, starting from the South Pole. Then, as the universe contracts, the spacetime
and scalar field become classical and real valued. In the figure, a bounce into the expanding
phase of the universe is indicated. Figure reproduced from [54].

gravity.
The examples of this section highlight an important point, which is that the

no-boundary proposal is a theory of initial conditions that is independent of
the dynamics, in particular it is logically independent of inflation. Rather, it
can be applied to any dynamical model of the universe. However, as we will
discuss in more detail now, whether no-boundary saddle points exist depends
rather crucially on whether or not the dynamical theory in question exhibits an
attractor.

3.5. Classical Histories from the No-Boundary Wave Function

We have encountered two separate classes of no-boundary solutions so far,
those of inflationary and those of ekpyrotic type. In both cases, satisfying both
the no-boundary conditions and the late-time reality conditions on the fields
depended crucially on the presence of a dynamical attractor. Since this is such
a basic requirement, it is useful to make it somewhat more precise.

We can proceed analytically by focusing on models with constant equation
of state. Such models arise when the scalar potential is of exponential form

V (φ) = V0e
−cφ . (128)

Assuming a flat Robertson-Walker background ds2 = −dt2 + a(t)2dx2, the
equation of motion and constraint read

φ̈+ 3Hφ̇− cV = 0 , 3H2 =
1

2
φ̇2 + V , (129)
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where H = ȧ/a. They admit a scaling solution, given by

a(t) = a0|t|
2
c2 , H =

2

c2t
, (130)

φ(t) =
1

c
ln

(
c4V0

12− 2c2
t2
)
, V =

12− 2c2

c4t2
. (131)

In the above relations, we have combined two cases: when V0 > 0, we assume
t > 0 and this corresponds to an expanding, inflationary, accelerating solution
when c2 < 2. Meanwhile, when V0 < 0, we take t < 0 and then this corresponds
to a contracting, ekpyrotic solution where we will momentarily see that we must
take c2 > 6. These solutions are called scaling solutions since all the terms in
the equation of motion and constraint scale in the same way, as t−2. If we had
added a spatial curvature term ±1/a2 to the constraint in (129), then it would
have become increasingly subdominant, which justifies our neglect of this term
from the start. The equation of state w is given by the ratio of pressure to
energy density,

w =
p

ρ
=

1
2 φ̇

2 − V
1
2 φ̇

2 + V
=
c2

3
− 1 , (132)

and it is indeed constant, as advertised above. In the inflationary case w < − 1
3 ,

while for ekpyrosis we have w > 1.
We can now perturb this solution to assess its stability. In what should be

obvious notation, we obtain

δ̈φ+ 3φ̇ δH + 3H ˙δφ+ c2V δφ = 0 , 6H δH = φ̇ ˙δφ− cV δφ , (133)

which can be combined into

δ̈φ+ 3H(1 +
φ̇2

6H2
) ˙δφ+

c2

2
V δφ = 0 . (134)

This equation is solved by

δφ ∝ t−1, t1−
6
c2 . (135)

The first solution simply corresponds to a shift in initial conditions, cf. (131),
so only the second solution is relevant. From (133), it implies that the fractional

change in the scale factor also evolves as δa
a ∼ t

1− 6
c2 . Hence the scaling solution

is an attractor if either the universe is expanding and c2 < 6, or if the universe
is contracting and c2 > 6 [64]. Thus it is an attractor in both the inflationary
and ekpyrotic cases. This is the important property that allows one to reach
real values for the scale factor and scalar field simultaneously, and thus allows
for classicality at late times.

We can even be a little more precise, and derive just how fast the wave
function reaches WKB form [54, 30]. For this it is helpful to realise that, when
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the potential is exponential, the action transforms in a simple manner under
shifts of the scalar field. Taking the Euclidean action as the starting point,

SE = −
∫

d4x
√
g

(
R

2
− 1

2
gµν∂µφ∂νφ− V0e

−cφ
)
, (136)

one can shift the scalar and perform a related scaling of the metric, thereby
extending the scaling (122),

φ ≡ φ̄+ ∆φ , gµν ≡
ec∆φ

|V0|
ḡµν , (137)

to find that the action has transformed into

SE = −e
c∆φ

|V0|

∫
d4x
√
ḡ

(
R̄

2
− 1

2
ḡµν∂µφ̄∂ν φ̄∓ e−cφ̄

)
, (138)

where the ∓ sign in front of the potential corresponds to the inflationary resp.
ekpyrotic case. To avoid cluttering due to absolute value signs, we will now
continue the calculation for the inflationary case only, but the ekpyrotic case
works analogously.

We will set V0 = 1, so that the transformed theory retains the same potential,
i.e. the transformation leaves us in the same theory. Then the relations (137)
imply that the field equations are invariant under

ā(t̄) = ec∆φ/2 a
(
e−c∆φ/2t̄

)
, (139)

φ̄(t̄) = φ
(
e−c∆φ/2t̄

)
+ ∆φ , (140)

where overbars denote the transformed quantities. Under this transformation,
the scaling solution (130), (131) morphs into

ā = ā0 (t̄)2/c2 , ā0 = exp

(
(c2 − 2) ∆φ

2c

)
a0 , V (φ̄) =

12− 2c2

c4
1

t̄2
, (141)

which shows that a0 is a constant of motion,

a0 = a

(
c4

12− 2c2
V

)1/c2

. (142)

This means that we can label different solutions by their value of a0.
As argued above, at late Lorentzian times, the attractor pulls the solution

close to a real classical solution, and thus the imaginary part of the Euclidean
action scales as (with dτ = idt)

SIE ∼ i
∫

dt a3 V ∼ i a3
0 (t)−1+ 6

c2 ∼ i a3
0 V

1
2−

3
c2 . (143)
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Using the constant of motion (142), one can thus determine the dependence on
the final values b, χ to be

SIE ∼ i b3 V (χ)1/2 . (144)

Meanwhile, the scaling of the real part of the Euclidean action is governed by
the scaling/shift symmetry, and from (138) we obtain

S̄RE = ec∆φSR =

(
ā0

a0

) 2c2

c2−2

SRE , (145)

so that

SRE ∼ a
2c2

c2−2

0 ∼ b
2c2

c2−2V (χ)
2

c2−2 . (146)

Now it becomes straightforward to work out the WKB condition (74), which
says that the amplitude of the wave function should vary slowly compared to its
phase. Recalling that (∇I)2 = GAB∂AI∂BI with Gbb = −12π2b, Gχχ = 2π2b3,
we obtain

(∇SRE )2

(∇SIE)2
∼ b

4c2

c2−2
−3
V

4
c2−2

b3V
∼ bc

2−6 . (147)

Thus we see a confirmation that classicality is reached under the same conditions
under which we had found a dynamical attractor, namely either for an expanding
universe with c2 < 6, or for a contracting one with c2 > 6. Given that during
inflation the scale factor expands exponentially fast, we may also infer that
classicality is obtained exponentially quickly.

What is interesting is that this is a purely dynamical way of obtaining classi-
calisation. The usual procedure in quantum mechanics is to invoke decoherence
[65, 66], i.e. the loss of quantum coherence due to interactions of a system with
its environment. Such a process is highly relevant on Earth, where interactions
are extremely common. But it is not available at the creation of the universe, for
two reasons: on the one hand, there is no environment as the universe contains
everything by definition, and is still empty. And on the other hand decoherence
is a process that happens over time, while here we must first address the clas-
sicalisation of space and time. In other words: once time has become classical,
decoherence can take place. Here we have just seen how time (and space) can
become classical in the first place, purely due to cosmological dynamics. In this
way, the no-boundary proposal can explain the classicality of the early universe.

3.6. Implementations in Minisuperspace

So far we looked only at saddle points, i.e. at (usually complex) solutions
of the classical equations of motion satisfying the no-boundary conditions (101)
and (102). It is reassuring that such saddle points exist, but can we do better?
What exactly are the saddle points approximating? Can we refine the heuristic
definition (89) and define the no-boundary path integral more precisely? In
doing so, there are a number of issues that must be faced:
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• Gravity is not renormalisable, which means that we expect an infinite
number of correction terms involving ever higher powers of the Riemann
tensor and ever higher numbers of derivatives. This might however still
be fine, as long as the curvature remains well below the Planck scale.
At least for the saddle points we looked at so far, this happened to be
true: they all had curvatures on the order of the Hubble scale in the early
universe, which for inflationary examples is constrained by observations
to be H/MPl . 10−5 [50]. Under such circumstances, we may expect the
path integral to yield reliable semi-classical results (see e.g. [67] and also
section 5.1).

• The path integral involves the action, which is integrated over ranges of
coordinates. Hence, even though the idea of the no-boundary proposal
consists of the notion that there should be no boundary to the past, we
must still integrate from somewhere, i.e. we must still impose some form
of boundary conditions. The (somewhat Zen-flavoured) question then is:
which boundary conditions correspond best to no-boundary conditions?

• The no-boundary condition that we imposed for saddle points cannot be
imposed as a condition on the full path integral, as it is in conflict with the
uncertainty principle. This is because it is a condition on both the field
value a(τ = 0) = 0, ensuring compactness, and on the velocity/expansion
rate a′(τ = 0) = 1, ensuring regularity. Thus we cannot define a path
integral that sums over metrics that are both compact and regular. It has
to be one or the other, or perhaps a condition on a linear combination
of field value and momentum. Note that imposing compactness will not
guarantee that the saddle points turn out to also be regular, and vice
versa. We will have to check this at the end of the calculation.

• In the action for gravity coupled to matter, the kinetic term for the scale
factor of the universe enters with a different sign than all of the other
kinetic terms, both those of anisotropic components of the metric and
those of matter fields,

S ∼
∫
dt

[
− 3aȧ2 +

1

2
a3φ̇2 + · · ·

]
(148)

This is known as the conformal mode problem, so-called because the scale
factor can be seen as the conformal mode of spatial sections. If the path
integral is defined as a Euclidean integral, then the integrand will thus
be unbounded above and below, regardless of the overall choice of sign.
Hence it is doubtful that the Euclidean path integral might make sense.
A Lorentzian path integral seems more promising as it would not have
this problem (by being a sum over phases), but there we have the issue
that the integral is only conditionally convergent and it has to be defined
carefully to make its meaning unambiguous.
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• In situations where several no-boundary saddle points exist, is the defi-
nition of the path integral unique [68]? Does it uniquely specify which
saddle points contribute to the wave function, and which do not?

• Finally, it should be expected that the general sum over 4-manifolds is very
difficult to make precise. One has the freedom to sum over metrics that
can differ at all spacetime points. Moreover, in analogy with the paths
integrated over in quantum mechanics (see e.g. [6]), one might expect the
required manifolds in general not to be differentiable anywhere. What is
more, even the topology of 4−manifolds remains ill understood. Hence
it seems difficult at present to properly define a sum over 4−manifolds.
We will take a more pragmatic approach, and restrict to metrics that have
certain symmetries, in particular cosmologically relevant symmetries. This
is the framework of minisuperspace, where the metric is parameterised by
a finite number of functions of time. One may object to this on the basis
that we are neglecting infinitely many degrees of freedom, and what is
worse, we are setting both these degrees of freedom and their conjugate
momenta to zero simultaneously. Nevertheless, we know from observations
that the early universe was highly symmetric. Hence, we should expect a
realistic theory of initial conditions to predict high probability for precisely
these minisuperspace kinds of metrics. What is crucial then is to check
at the end of our calculations whether or not metrics that are perturbed
around the minisuperspace representation come out as suppressed. If so,
then we may have confidence in our calculations, and justifiably refer to
minisuperspace as an “approximation”.

Dirichlet boundary condition
In their original paper [2], Hartle and Hawking envisioned the no-boundary

proposal as corresponding to a Euclidean path integral over compact metrics.
This then implicitly provides no-boundary conditions: we will take them to
mean that we keep the scale factor fixed at zero size on the initial hypersurface.
We will try to see to what extent such an integral can be realised in a simple
setting, namely gravity with a cosmological constant, with action

S =

∫
M

d4x
√
−g
(
R

2
− Λ

)
±
∫
∂M0,1

d3y
√
hK . (149)

The GHY surface terms are essential as we intend to keep the field values fixed
both on the initial (∂M0) and on the final (∂M1) hypersurface, i.e. we are
imposing Dirichlet conditions at both ends. This is the setting first studied
by Halliwell and Louko in [12]. For closed Robertson-Walker (RW) metrics,
parameterised again with an especially useful definition of the time coordinate
tq,

ds2 = − N2

q(tq)
dt2q + q(tq)dΩ2

3 , (150)
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the action simplifies and becomes quadratic in the scale factor squared q,

Sq = 2π2

∫ 1

0

dtq

(
− 3

4N
q̇2 +N(3− Λq)

)
. (151)

Details of this calculation were already presented in section 2.2, so we will not
repeat all of them here. However, it may be useful to recall that we can choose
the time coordinate to run over the values 0 ≤ tq ≤ 1, with tq = 0 being the
initial hypersurface on which we fix the scale factor to zero, q(tq = 0) = 0. On
the final hypersurface we will fix q(tq = 1) = q1, with the scale factor being
larger than the Hubble radius, q1 >

3
Λ . The total time elapsed between initial

and final hypersurfaces is determined by the integral
∫ 1

0
dtq

N√
q , and will thus

depend on the lapse N.
The no-boundary wave function (with Dirichlet conditions at both ends) is

thus given by the path integral

ΨDD(q1) =

∫ q1

0

Dq
∫
C

dN e
i
~Sq , (152)

where the contour C for the lapse integral remains to be determined. With the
above boundary conditions, the equation of motion q̈ = 2Λ

3 N
2 is solved by

q̄(tq) =
Λ

3
N2t2q +

(
−Λ

3
N2 + q1

)
tq . (153)

As described in section 2.2, the path integral over q can then be performed by
shifting variables q(tq) = q̄(tq) +Q(tq), with the result that

ΨDD(q1) =

√
3πi

2~

∫
C

dN

N1/2
e
i
~ 2π2S0 , (154)

with

S0 = N3 Λ2

36
+N

(
3− Λ

2
q1

)
− 3

4N
q2
1 . (155)

Note that the lapse integral contains an essential singularity at N = 0. This
can be understood physically from the impossibility of evolving from size zero
to size q1 6= 0 in vanishing time.

We will analyse this integral by performing a saddle point approximation,
using the tools made available by Picard-Lefschetz theory and reviewed in Ap-
pendix C. There are four saddle points, determined by ∂S0/∂N = 0, located
at

Nσ = c1
3

Λ

[
i+ c2

(
Λ

3
q1 − 1

)1/2
]
, (156)

with c1, c2 ∈ {−1, 1}. The action at the saddle points is given by

Ssaddle0 = c1
6

Λ

[
i− c2

(
Λ

3
q1 − 1

)3/2
]
. (157)
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Figure 25: Saddle points and their associated steepest ascent (Ki) and descent (Ji) paths, in
black, shown in the complexified plane of the lapse function N. Arrows indicate the direction
of descent. Blue lines are lines of equal weighting. In the upper panel, green regions have
lower weighting than the saddles, red regions have higher weighting and yellow regions have
a weighting that is in between those of the adjacent saddle points. Asymptotically, i.e. either
at infinity or near N = 0, the integral converges in green regions and diverges in red regions.
In the lower panel, we exhibit the integration contours described in the main text.
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The first thing to note is that the saddle points, as well as the corresponding
actions, are complex. This was to be expected, as they describe a combina-
tion of quantum nucleation and classical evolution. The presence of the term
containing i in (157) implies that two saddle points will have a suppressed

weighting e−12π2/(~Λ) (those with c1 = +1) and two will have an enhanced

weighting e+12π2/(~Λ) (those with c1 = −1). The four saddle points and their
associated steepest descent (Ji) and ascent (Ki) lines in the plane of the lapse
function are shown in Fig. 25. The suppressed saddle points are located in the
upper half plane, and the enhanced ones in the lower half plane. Here we must
recall an important point mentioned at the end of section 3.2 and derived in
detail in section 4.1: the saddle points with suppressed weighting are associ-
ated with enhanced fluctuations, and vice versa. More precisely, if we add a
(linear) gravitational wave perturbation with amplitude h1 and wave number

(frequency) k, then the total weighting becomes e−12π2/(~Λ)+3π2h2
1/(~Λ). This

means that larger fluctuations, i.e. more lumpy universes, come out as pre-
ferred. In other words, these saddle points are unstable when perturbations are
included, and thus do not warrant the use of minisuperspace. By contrast, the
saddle points in the lower half plane admit a Gaussian distribution of perturba-
tions e+12π2/(~Λ)−3π2h2

1/(~Λ), and are stable. It is these that we must hope the
path integral will pick up.

This brings us to the crucial question of contours of integration for the lapse
N, see also Fig. 25. Let us first discuss the Euclidean contour, i.e. a contour
along imaginary values of the lapse function. This contour was originally pro-
posed by Hartle and Hawking. However, as we can see immediately from Fig. 25,
there are regions of asymptotic divergence both at large positive imaginary lapse
values, and at small negative imaginary lapse. This means that the Euclidean
contour, whether defined in the upper or lower half planes, leads to a divergent,
mathematically meaningless, integral. Thus, this simple example shows that
a Euclidean contour is not actually viable. The root of the obstruction is the
conformal mode problem discussed at the beginning of this section.

If we cannot use a Euclidean contour, then could we use a Lorentzian one?
After all, physics as we know it takes place in Lorentzian spacetime, and thus
a Lorentzian contour would seem to be the physically most sensible choice [69].
Given the singularity of the integrand at N = 0, we can either define it over
positive or negative real values of the lapse, but these two choices are just a
matter of convention. If we choose the positive real line, then we can see from
Fig. 25 that it is crossed by a single steepest ascent contour, namely K1. Thus
the Lorentzian integration contour can be deformed to the thimble J1 passing
through saddle point 1. The arc at infinity linking J1 to the real line gives a
vanishing contribution to the integral, as ensured by Picard-Lefschetz theory
and as one can verify explicitly [14]. Thus the Lorentzian integral picks up a
single saddle point, though unfortunately it is one of the unstable ones,

ΨDD,Lorentzian ≈ e−
12π2

~Λ −i
12π2

~Λ ( Λ
3 q1−1)

3/2

. (158)

As argued above, the inclusion of perturbations enhances the weighting, and
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signals the breakdown of the minisuperspace “approximation”. This signals
an inconsistent calculation – certainly, this choice of integration contour does
not lead to a ground state wave function, as was intended. It is in fact rather
surprising that what appears to be the most sensible contour on physical grounds
ends up giving entirely non-physical answers.

To circumvent this problem, and based on early considerations in [68], it was
suggested in [70] that one should take the contour labeled “real” in Fig. 25. This
contour may be seen as an integral over the entire real lapse line, but passing
below the singularity at N = 0. The contour is crossed by all four steepest ascent
lines, and thus all four saddle points contribute to the resulting path integral,

ΨDD,real ≈ e−
12π2

~Λ −i
12π2

~Λ ( Λ
3 q1−1)

3/2

+ e+ 12π2

~Λ −i
12π2

~Λ ( Λ
3 q1−1)

3/2

+ c.c. , (159)

where the sum over all saddles renders the wave function real and thus explains
the name given to the contour. This contour was chosen explicitly so that
the desired saddle points in the lower half plane are picked up. It should be
emphasised that this contour, even though it superficially appears to sum mainly
over real lapse values, actually obtains its largest contribution from the large-
weighting region just below N = 0. This explains how the wave function can
obtain the enhanced weighting manifest in (159), even though one must always
flow down from the original integration contour to saddle points that are relevant
(cf. appendix Appendix C). The trouble with the real contour is that it also
picks up the unstable saddle points in the upper half plane. Thus it leads to a
competition of weightings as the fluctuations become large, of the form

e+ 12π2

~Λ −
3π2

~Λ h2
1 + e−

12π2

~Λ + 3π2

~Λ h2
1 , (160)

and it is simply unknown what happens to the integral when h1 becomes large
(for discussions of this issue see [69, 71]). At some point backreaction on the
geometry can no longer be neglected, yet a full understanding would be required
to see what happens for large perturbations. This would be necessary in order
to assess whether this contour gives physically sensible results. In the absence of
a reliable non-perturbative calculation, we cannot trust this contour to provide
us with the definition of the sought-after no-boundary wave function.

At this point, one may realise that it is pointless to explore different con-
tours in this setting. This is because the steepest descent lines J3,4 emanating
from the desirable saddle points 3 and 4 directly lead to the undesirable saddle
points 1 and 2. This arises because the action (155) is a real function of N , and
thus complex saddle points arise in complex conjugate pairs which lead to the
same phase (and inverse weightings) in the wave function. Since steepest as-
cent/descent lines are defined by having constant phase, the stable and unstable
saddle points are necessarily linked. Thus any contours picking up the stable
saddle points will also include the unstable saddles, leading to the identical
problem with large fluctuations discussed above [69]. Thus in the end we must
conclude that the sum over compact metrics, at least in this simple setting, does
not lead to a trustworthy no-boundary (ground state) wave function.
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Neumann boundary condition
If a sum over compact metrics is problematic, then how can we define the

no-boundary wave function? Heuristically, a possible solution was suggested
above [72]: the uncertainty principle says that we can either put a condition on
the initial size, or on the initial expansion rate. But the initial expansion rate is
Euclidean, and in fact requires a choice of sign, cf. (101). This choice of sign is
precisely what distinguishes the stable from the unstable saddle points that we
just discussed. One may also think of this choice of sign as the choice of Wick
rotation, i.e. do we define t = +iτ or t = −iτ? Only one sign assignment leads
to stable, Gaussian distributed fluctuations, and this is the choice a′(0) = +1.
So can we define a path integral with this boundary condition?

A related issue is that when we defined the path integral with fixed initial
size, for consistency we had to include the GHY surface term in (149). But the
spirit of the no-boundary proposal is that there should be no boundary. Hence
why should one include a boundary term? And where should it be placed, if the
intention is that there should be no boundary? From this point of view it seems
much more natural not to include a boundary term. If we do this, it changes
the variational problem, and in fact leads to a Neumann problem, as shown in
section 2.2, allowing us precisely to fix the initial momentum.

We will now see how this works for the simple setting of gravity plus a
cosmological constant, with closed RW metrics considered above [73]. We will
not add any surface term on the initial hypersurface, yet we will again include
a GHY term on the final boundary, as we wish to keep the metric fixed there,

S =

∫
M

d4x
√
−g
(
R

2
− Λ

)
+

∫
∂M1

d3y
√
hK . (161)

We will specialise to the metric (150). Using integration by parts in the action,
the surface term at tq = 1 is eliminated by the GHY term, while a surface term
is then generated at tq = 0,

S = 2π2

∫ 1

0

dtq

[
− 3

4N
q̇2 +N(3− Λq)

]
− 3π2

N
qq̇|tq=0 . (162)

As shown in section 2.2, variation of this action leads to the equation of motion
q̈ = 2Λ

3 N
2 and the boundary condition that we can fix q̇/N at tq = 0. Recall

that N dtq/q
1/2 = dt, so that consequently q̇/N = 2da/dt implying that we

should fix

q̇

2N
= +i . (163)

This is the no-boundary regularity condition (101) expressed in our currently
used variables. On the final hypersurface we will again set q(tq = 1) = q1 > 3/Λ.
With these boundary conditions, the solution to the equation of motion reads

q̄(tq) =
Λ

3
N2t2q + 2Nitq + q1 −

Λ

3
N2 − 2Ni . (164)
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Evaluating the path integral over q in the same manner as before, we then obtain
the following expression for the Neumann-Dirichlet wave function,

ΨND(q1) =

∫
C

dN e
i
~ 2π2

[
Λ2

9 N3+iΛN2−q1ΛN−3iq1
]
, (165)

where once again the contour of integration C for the lapse integral remains
to be specified. But before discussing contours, we may already notice some
important differences with the Dirichlet action (155). There is no singularity
at N = 0, since it is now possible (even if unlikely) that the initial geometry,
satisfying q̇ = 2Ni, already coincides with the final geometry, satisfying q = q1.
Also, the action now contains explicit factors of i, due to the boundary condition
(163). Thus we do not expect saddle points to come in complex conjugate pairs
anymore. In fact, there are only two saddle points this time, and they are
located at

N± =
3

Λ

[
−i± 3

Λ

√
Λ

3
q1 − 1

]
. (166)

The corresponding field evolutions are shown for an example in Fig. 26. Note
that the saddle points are not only regular, which they are by design, but
also compact: at the saddle points, one may see and verify that q(tq = 0) =
0. Also note that the fields are only becoming real right at the end of the
time evolution, as this now does not correspond to a Euclidean-plus-Lorentzian
contour in the complex time plane, but rather to a solution with fixed (complex)
lapse. Comparing to (156), we see that in fact only the two saddle points in the
lower half plane are left. That is to say, the unstable saddle points have been
eliminated, and we are left purely with the stable saddle points!

We still have to figure out which integration contour to take. For this, see
Fig. 26, in which the saddle points and their steepest descent paths are shown.
We can now proceed again with an examination of suitable contours. We may
notice right away that the Euclidean contour once again does not work. Since
there is no singularity at N = 0, it would have to be defined over the entire
imaginary lapse line in order to yield an invariant result. However, we can see
that there is again a divergence at large positive imaginary values, and again
the Euclidean definition does not make sense.

By contrast, the Lorentzian contour works [73]. The integral converges both
at negative and positive infinity and since there is no singularity at N = 0,
we must integrate over the entire real N line in order to obtain an invariant
definition. Note that the Lorentzian contour is crossed by both steepest ascent
paths, and hence both saddle points contribute to the integral. In fact, the real
lapse line can be deformed into the sum of both thimbles C = J+ + J−, with
orientations chosen in the direction of increasing real parts of the lapse. The
wave function then becomes approximated by

ΨND(q1) ≈ e+ 12π2

~Λ −i
12π2

~Λ ( Λ
3 q1−1)

3/2

+ e+ 12π2

~Λ +i 12π2

~Λ ( Λ
3 q1−1)

3/2

, (167)
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Figure 26: Left panel: an example of the evolution of the scale factor squared for the saddle
points of the no-boundary wave function defined with an initial Neumann/momentum condi-
tion, with Λ = 3/100, q1 = 1000, so that the saddle points are at N± = ±300−100i. One can
see that the saddle points are compact, as they start at zero size. Right panel: The saddle
points and their associated steepest ascent/descent lines in the complex plane of the lapse.
The Lorentzian integration contour may be deformed into a sum of the 2 thimbles J±.

Note that it is real, as it is the sum of two complex conjugate contributions,
even though the integral is not defined over a Euclidean contour. This is due to
the symmetry between negative and positive real parts of the lapse. One further
remark: Picard-Lefschetz theory implies that relevant saddle points must have
a lower weighting than that of the defining contour. One may thus wonder how
it is possible to obtain an enhanced weighting from a Lorentzian integral. This
is because even though the starting action (161) is real, the boundary condition
(163) is complex, and this results in a positive weighting in (165), even at real
values of the lapse.

In fact, there are only a few other contours we could contemplate. One
possibility is to sum over the two thimbles, but with opposite orientations C =
J+ − J−, i.e. to sum from negative imaginary infinity up to negative real
infinity, plus an integral from negative imaginary infinity to positive real infinity.
This choice would give a pure imaginary wave function – however, since we are
ignoring the prefactor, which could be imaginary too, this must be seen as
equivalent to a real wave function. At the semi-classical level, the implications
are however largely unaffected by this choice of orientation of the thimbles.
This is because the two saddle points behave effectively independently, as soon
as perturbations and the resulting decoherence is taken into account. Indeed,
as shown in [22], perturbations quickly decohere the two saddles as the universe
grows, already separating their evolutions when the universe is only a little
larger than the Hubble radius.

The only remaining contours we could envision are to single out one of the
thimbles J±, by summing from negative imaginary infinity either to positive
or negative real infinity. In this case, we would have no need to talk about
decoherence, as the integral would be approximated by a single saddle point.
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However, the wave function would not be real. Still, one attraction of such
contours is that they would constitute a kind of compromise between a Euclidean
and a Lorentzian one.

N- N+

+-

- +

N+N-

Figure 27: For the no-boundary wave function with a Neumann initial condition, cf. Fig. 26,
this graph shows the location of singular geometries in which the scale factor passes through
zero (indicated by the red dashed lines) in the plane of the lapse function. The insets show a
zoom of the regions near the saddle points, and demonstrate that the thimbles intersect the
lines of singular geometries. Figure reproduced from [73].

Let us now focus our attention a little more on the thimbles. Since the path
integral is redefined by integrals over thimbles, we may wonder what kind of
geometries are actually summed over. In general, there is no particular distin-
guishing feature to these complex geometries. However, a few special locations
in the lapse plane may be singled out. For instance, at large negative imag-
inary values of the lapse, the geometries may straightforwardly be seen to be
essentially very large Euclidean 4−spheres with their North Pole cap removed
at radius squared q1. The asymptotic regions at large |Re(N)| are similar, but
the radius of the sphere is complex there. We may also wonder whether singular
geometries are included. For this, we can ask whether q̄(tq) passes through zero
at some tq (with 0 ≤ tq ≤ 1). The locus of such geometries is shown in Fig. 27.
As seen there, and calculated in [73], the thimbles actually pass through this
locus, i.e. the thimbles also contain a singular geometry. It is not clear that
this should be considered pathological. In general, one may expect gravitational
path integrals to contain geometries that are not differentiable anywhere, so this
may not be problematic. Also, such singular geometries most likely obtain a
divergent action once perturbations are included, and may thus eliminate them-
selves automatically by virtue of having zero weighting. These considerations
also raise the question of whether it is problematic when q changes sign, sig-
nalling a signature reversal in the metric. This is a question of ongoing research,
and we will return to this issue in section 5.4. The quick answer is that this is
not known yet.
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Having found a minisuperspace path integral implementation of the no-
boundary wave function, we may also study its relation to the WdW equation
[74]. For this purpose, recall from (34) and (35) that the Hamiltonian is given
by

H = − N

6π2

[
p2 + 12π4(3− Λq)

]
= NĤ , (168)

with the canonical momentum p = − 3π2

N q̇. The WdW equation then corresponds
to the operator version of this equation,

ĤΨ = 0 , (169)

with Ψ being the wave function of the universe. Now we have to pay attention to
the boundary conditions we imposed, namely Dirichlet on the final hypersurface
and Neumann on the initial one. The canonical commutation relation [q, p] = i
must be implemented correspondingly. On the final hypersurface, where we
work in field space, so we replace the momentum by a derivative operator p 7→
p̂ = −i ∂∂q , leading to

Ĥ(q)Ψ = 0→ ∂2Ψ

∂q2
+ 12π4(Λq − 3)Ψ = 0 . (170)

By contrast, on the initial hypersurface we impose a momentum condition, so
as to obtain the WdW equation in momentum space we substitute q 7→ q̂ = i ∂∂p ,
leading to

Ĥ(p)Ψ = 0→ (p2 + 36π4)Ψ + 12π4Λi
∂Ψ

∂p
= 0 . (171)

There is one subtlety here: because we are imposing this equation on the initial
boundary, we had to flip the sign ∂

∂p → −
∂
∂p [74].
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Figure 28: The no-boundary wave function as an Airy function, see (172). Here the wave
function Ψ, which is real, is plotted as a function of the final radius a1 =

√
q1. The cosmological

constant is set to Λ = 1. Figure reproduced from [74].

The momentum space equation (171) is of first order and yields an essentially
unique solution, the exponential of a cubic in p0. Meanwhile, the position
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space equation (170) can be identified as an Airy equation, with two linearly
independent solutions, the Ai and Bi functions. Choosing a particular linear
combination is directly related to the choice of contour in the path integral
approach [17], for instance the Lorentzian contour yields the Ai function and
the contour summing both thimbles from negative imaginary infinity yields the
Bi function. Explicitly, if we stick to the Lorentzian integration contour, then
the equivalent, exact, solution to the WdW equation is

Ψ(p0, q1) = e
3

~Λ ip0+ 1
36π4~Λ

ip3
0 Ai

[(
18π2

~Λ

)2/3(
1− Λ

3
q1

)]
. (172)

with initial momentum given by (163), that is to say

p0 = −3π2

N
q̇(0) = −6π2i . (173)

The wave function is shown in Fig. 28 as a function of the final size q1 = a2
1. As

one can see there, the wave function rises exponentially (from a non-zero value)
at q1 = 0 and then starts to oscillate once the universe has become larger than
the Hubble radius. These two regimes correspond to quantum tunnelling from
nothing, and subsequent classical evolution, respectively. Note that it remains
unclear how to interpret the fact that the wave function is non-zero at zero size.
In [2] it was suggested that this could be due to the contribution of non-trivial
topologies, but the present calculation did not contain additional topologies.
This question thus deserves further study.

For the particular value of the initial momentum (173), which was chosen to
ensure regularity, we find from (171) that at the no-boundary point, the wave
function satisfies the additional relation [74]

i
∂

∂p
Ψ = q̂Ψ = 0 no-boundary condition . (174)

This is particularly suggestive: it says that the no-boundary wave function
satisfies the momentum space equivalent of the zero size condition, that is to
say the regularity condition we imposed on the wave function turns out to be
equivalent to the operator expression for the zero size condition! This certainly
conforms well with the spirit of the no-boundary proposal. It also means that at
the nucleation of the universe, there is no momentum transfer into the universe.
In other words, this condition also expresses the notion that the universe is
self-contained.

A final comment: a priori, one might think that field space and momentum
space definitions might be equivalent, as they can be Fourier transformed into
each other. However, the Fourier transform would sum over all possible initial
momenta, and would thus also include momenta that correspond to unstable
Wick rotations. This argument also implies that the results obtained so far
are mutually consistent. It might however be interesting to see if a viable field
space wave function could be obtained from a partial Fourier transform of the
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momentum space wave function, where only initial momenta of the appropriate
sign are included. This does not seem to have been explored so far.

A model with anisotropies – biaxial Bianchi IX spacetimes
From the simplest dynamical model above, we learned that a path integral

from zero size gives us saddle points that come in two kinds, with stable (Gaus-
sian distributed) perturbations, and those with unstable (inversely Gaussian)
perturbations. This is a general feature, and it makes the definition of the no-
boundary wave function as a path integral from zero size questionable. However,
we also saw that a definition in which we impose a regularity condition instead
works rather well. The regularity condition is a condition on the momentum
conjugate to the spatial metric, and is obtained when we do not add any sur-
face terms to the action. It is instructive to see how this prescription may be
implemented in more complicated models, with anisotropic metrics and, later,
with a scalar field added.

In fact, only a handful of minisuperspace models are known, which are
tractable in the sense that all integrals except for that over the lapse can be done
easily (and in some cases fully analytically) [75, 76, 77, 78, 79, 71, 80]. Here
we will focus on two representative examples, the first with biaxial Bianchi IX
metrics, and the second with an inflationary scalar field. The techniques used
to analyse these models are analogous to the techniques exhibited above, so we
will be much briefer, and leave some details to the original references.

First we will stick to the action consisting of gravity with a positive cosmo-
logical constant Λ, but now consider metrics of the form

ds2 = −N
2

q
dt2 +

p

4
(σ2

1 + σ2
2) +

q

4
σ2

3 , (175)

where p(t), q(t) are time dependent scale factors and σ1 = sinψdθ−cosψ sin θdϕ,
σ2 = cosψdθ+sinψ sin θdϕ, and σ3 = dψ+cos θdϕ are differential forms on the
three sphere with coordinate ranges 0 ≤ ψ ≤ 4π, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π.
This metric describes Bianchi IX spacetimes on the axes of symmetry (in the
notation of Misner [81] this would correspond to pure β+ perturbations with
β− = 0). This is also known as the Taub spacetime. Locally it can be seen as a
product of a 2−sphere with radius squared p and a circle with radius squared q.
Globally, the metric describes a fibration of S1 over S2, and when p = q we
recover the round 3−sphere. When p 6= q, we may think of it as a squashed,
anisotropic 3−sphere (see [82]).

We have to be slightly more specific with regards to the action that we are
considering. We would like to sum over manifolds with the metric held fixed on
the final boundary, hence we must add the GHY surface term there. But on
the initial “no-boundary” surface, we will not add any surface term. Thus the
action reads

S =
1

2

∫
d4x
√
−g (R− 2Λ) + (pΠp + qΠq) |t=1 , (176)
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where we expressed the GHY term in terms of the scale factors and their con-
jugate momenta

1

2π2
Πp = − 1

2N

(
q̇ +

q

p
ṗ

)
,

1

2π2
Πq = − 1

2N
ṗ . (177)

When the action is varied (see e.g. [78, 79, 71]), one obtains the following
boundary terms at t = 0

pδΠq = 0 , q

(
δΠq −

Πq

p
δp

)
= 0 . (178)

These must be set to zero in order to obtain a consistent variational problem.
Note that we cannot set both a variable and its conjugate momentum to zero
simultaneously, as this would be in conflict with the commutation relations. But
we see that we also cannot set both momenta to zero. Thus the geometrical
Neumann condition that we imposed translates into a combination of Dirichlet
and Neumann conditions on the variables used. There are two appropriate
combinations of interest [71]: we can either choose p0 = 0,Πq(t = 0) = −2π2i
(NUT, S2 shrinks to zero) or q0 = 0,Πp(t = 0) = −2π2i (Bolt, S1 shrinks
to zero), where in both cases the signs of Πq,p(t = 0) are again fixed so as to
correspond to the usual, stable sign for the implied Wick rotation.
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Figure 29: Saddle points (in orange), steepest ascent (K) and descent (J ) contours for Taub-
NUT metrics, with lapse action (179). The saddles numbered 1 and 2 are physically relevant.
Figure reproduced from [79].

The first choice leads to a Taub-NUT-dS spacetime, in which the 2−sphere
is shrunk to zero size initially. When the equations of motion for p and q are
solved with these boundary conditions, one is left with an action that depends
purely on the lapse

1

2π2
SNUT (N) = −p1q1

N
+ iq1 +N

(
4− Λ

3
p1

)
− iΛ

3
N2 . (179)
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This action admits three saddle points, see Fig. 29. One of these is purely
Euclidean, and does not lead to a classical spacetime. The other two saddle
points are of physical interest (they yield a complex action, with a real part
that grows rapidly with increasing p1, q1), and are simply related by a reflection
in the real part of N. They are picked up by the path integral if one chooses a
contour of integration for the lapse that contains their thimbles, i.e. we must
sum over J1±J2. Note that a Lorentzian integration contour, as we had in the
isotropic case, is not possible this time as the integral simply diverges along such
a contour. If one chooses the contour J1 +J2, then note that it can be deformed
into a closed, circular contour around the singularity at N = 0. Whether a
closed contour makes sense is debatable [79]: if we imagine performing the lapse
integral first, before doing the integrals over p and q, then there is no singularity
at N = 0 and the contour can be shrunk to zero, leading to a vanishing result.
This argument indicates that there can be no fundamental meaning to a closed
contour, and thus it might be preferable to sum from negative Euclidean infinity
to the origin along both thimbles. However, in that case we also rely on the fact
that there is a singularity at N = 0 on which the thimbles end. Hence we see
from this example that one cannot claim at present that it is understood how
to define integration contours from first principles. We will take a pragmatic
approach here, and assume that the saddles 1 and 2 are picked up, with the
expectation that a better justification for the required integration contour will
be found in future work.
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Figure 30: The weightings of different saddle points of interest for Taub metrics. The NUT
case is shown in the left panel, the Bolt case in the middle, and a superposition of these two
cases (with the same colouring) in the right panel. In all cases, we set Λ = 1 and q1 = 12. For
a detailed description, see the main text.

When these saddle points are relevant, then we may look at their weighting,
which is the same for both – an example is shown in the left panel of Fig. 30, with
q1 fixed and as a function of p1. Here we can see that the isotropic case p1 = q1

comes out as favoured, while more anisotropic configurations are suppressed.
This supports the notion that the no-boundary wave function describes a state of
minimum excitation. It also confirms the choice of sign in the initial momentum
Πq(t = 0). A comment regarding normalisability: the weighting approaches zero
for p1 → ∞. Thus at this level of approximation, we cannot yet say whether
an integral over all p1 values (or perhaps an integral over all configurations
with fixed volume) would yield a convergent result, as this will depend on a
prefactor. But the prefactor depends on the exact measure in the path integral,
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and this measure is not known (the related ambiguity in the WdW equation is
the question of factor ordering). This is an issue that deserves further work -
for more discussion of this point see [71].
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Figure 31: Saddle points and associated thimbles (steepest descent contours, in green) for
Bolt boundary conditions, for the action (180). Also shown are the steepest ascent contours
associated with saddles 1 and 2 (in red). Arrows indicate downwards flow. The left panel
shows an isotropic example (p1 = q1 = 12), and the right panel one with much smaller
p1 = 5. The middle panel shows the cross-over between these two regimes. This is described
by a Stokes phenomenon, where the downwards flows from saddles 2 and 3 link up with the
upwards flow from saddles 1 and 4 (this is shown by the black line). The dashed orange line
is located parallel to the real N line in the lower half plane, and represents the preferred
integration contour.

But as we saw above, a second set of boundary conditions is also possible,
q0 = 0,Πp(t = 0) = −2π2i, for which the initial circle is shrunk to zero. This
gives rise to so-called Taub-Bolt-dS spacetimes. One can again solve the equa-
tions of motion for p and q with these boundary conditions [71], and perform
the integrations over the scale factors. This time the resulting lapse action is
more complicated, and reads (for Λ = 1)

1

2π2
SBolt(N) =

p1

(
N4 − 18N2q1 − 36iNq1 + 9q2

1

)
12N2(N + 3i)

− N3 + 3iN2 + (p1 − 12)p1N

3p1
. (180)

This action admits 7 saddle points. Examples of the associated thimbles are
shown in Fig. 31. Three saddles are Euclidean and not of physical interest. The
other four are however of potential physical relevance. They arise again in pairs,
with equal weighting. The imaginary parts of the actions of saddles 1 and 2
are shown in the middle panel in Fig. 30. We can see that there is a cross-over
in likelihoods, with the transition between dominance of the two saddles taking
place when p1 is a little smaller than q1. Also, the weighting diverges at small
p1, for saddle number 1. Thus, the predictions depend rather crucially on which
saddles are picked up in the path integral.

The thimbles are shown in Fig. 31, both for q1 fixed and various values of
p1. Let us first start with the case where the scale factors are equal, see the left
panel in the figure. The obvious contour of interest is the one running parallel
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to the real N line, in between the two singularities at N = 0 and N = −3i (in
fact, for convergence, the contour must run below N = −i). This contour can
be deformed into a sum of the four thimbles associated with saddles 1 to 4, and
thus all four saddle points are picked up. The ones with the highest weighting
will dominate the path integral, in this case saddles 2 and 3.

Now comes a crucial point: if it remains true that all 4 complex saddles
contribute to the path integral, then at small p1 (for fixed q1) saddles 1 and 4
will dominate, and in fact their weighting grows unboundedly at small p1, cf.
again Fig. 30. Thus we would predict that these highly anisotropic spacetimes
would be much more likely than the (nearly) isotropic ones, and this would cause
a blatant disagreement between the predictions of the no-boundary proposal
and observations. However, a topological change in the steepest ascent/descent
paths occurs happens as p1 shrinks below a critical value (in our numerical
example, for p1 ≈ 7.8), which is near the point where the dominance of the two
saddles switches. This is known as a Stokes phenomenon7. At the critical p1

value, the steepest descent contour from saddle 2 coincides with the steepest
ascent contour passing through saddle 1, i.e. the actions at both saddles have
the same real part (and similarly for saddles 3 and 4), though the weightings of
saddles 2, 3 are still higher than those of saddles 1, 4. Below this critical value,
the thimbles of saddles 2 and 3 run directly to infinity, and the integration
contour for the lapse that we considered before can now simply be rewritten as
the sum of the thimbles associated with the saddles 2 and 3. In other words,
saddles 1 and 4 do not contribute anymore (their steepest ascent paths do not
cross the integration contour, see the right panel in Fig. 31) after this Stokes
phenomenon has occurred. For this to be true, we must however stick to the
same defining contour of integration we had for larger p1. This shows that,
despite the misgivings expressed in the analysis of the NUT case, we can see
clearly that the integration contour is of paramount importance in figuring out
the predictions of gravitational path integrals.

We can draw two lessons from this analysis: the first is that in general we
must expect to sum over “no-boundary” boundary conditions, as with the NUT
and Bolt cases above. In fact, when both cases are summed, the weighting of
the various saddle points is shown in the right panel of Fig. 30. As one can see
there, for small p1 and up until p1 comfortably exceeds q1, the NUT geometry
dominates (since, for small p1, the saddle represented by the blue line is not
picked up). Then for larger p1 saddles 1 and 4 of the Bolt geometry come to
dominate, and at very large p1 it is saddles 2 and 3 of the Bolt geometry that
give the largest contribution to the path integral. Thus, even in a fairly simple
model, interesting phase transitions may occur [71]. And the second lesson is
that, even though there is no understanding yet of how to define gravitational
integration contours from first principles, they are of clear relevance in elucidat-
ing the consequences of these integrals.

7The analysis of this Stokes phenomenon represents original work by the author.
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A model with a scalar field
The realisation that one must sum over boundary conditions is made even

more manifest when considering a model that includes a scalar field. A tractable
model is obtained if one chooses [77]

V (φ) = α cosh

√
2

3
φ . (181)

This model is of inflationary type, with a de Sitter minimum at φ = 0. The
model is not realistic in the sense that the potential is too steep over most of
its range to lead to viable primordial perturbations, and it does not include a
reheating phase. However, it is useful as a toy model for quantum cosmology.
This is because for closed Robertson-Walker metrics of the form

ds2 = − N2

a(t)2
dt2 + a(t)2dΩ2

3, (182)

one can perform a redefinition of the fields [77],

x(t) ≡ a2(t) cosh

(√
2

3
φ(t)

)
, y(t) ≡ a2(t) sinh

(√
2

3
φ(t)

)
, (183)

which renders the action quadratic

S = 2π2

∫ 1

0

dtN

[
3

4N2

(
ẏ2 − ẋ2

)
+ 3− αx

]
+

3π2

N
(yẏ − xẋ) |t=0 . (184)

Here, in line with prior discussions, we did not include a GHY surface term
at t = 0, but did include one at t = 1. Integrations by parts then actually
remove the boundary term at t = 1 and generate one at t = 0, resulting in
the action written above. The original fields can be recovered from the inverse
transformations

a(t) =
[
x2(t)− y2(t)

]1/4
, φ(t) =

√
3

2
artanh

(
y(t)

x(t)

)
. (185)

The momenta conjugate to the new variables x, y are given by

Πx = −3π2

N
ẋ , Πy =

3π2

N
ẏ . (186)

Our boundary conditions are such that we will impose conditions on these mo-
menta at t = 0, while we will fix the final values x(t = 1) = x1, y(t = 1) = y1

on the final hypersurface. To determine which conditions should be imposed on
the initial momenta, we should consider the constraint that will be satisfied by
the saddle points. For the action (184), it is given by

1

12π4

(
Π2
x −Π2

y

)
+ 3 = a2V (φ) . (187)

72



We would like to obtain saddle points that are not just regular, but also closed,
i.e. we would like the saddle points to satisfy a(t = 0) = 0. Thus we should
impose the following regularity condition [80]

Π2
x −Π2

y = −36π4 at t = 0 (regularity) (188)

with in addition Im(Πx) < 0 for stability.
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Figure 32: Examples of closed and unclosed saddle points for fixed initial momenta, in a
scalar field model with an inflationary potential. The numerical values used here are Πx ≈
0.0566−59.2i, Πy ≈ −2.26+1.48i, x1 = 10, y1 = 0.5, α = 1 implying a1 ≈ 3.16, φ1 ≈ 0.0613.

Note that the unclosed saddle has φSP = −
√

3
2
π
2
i, a value indicated by the green line.

Perhaps surprisingly, what is found is that two types of saddle points exist.
The first type is the expected compact and regular no-boundary geometry, see
the left graphs in Fig. 32 for an example. In this case the scale factor starts
at zero size and reaches the desired final value, while the scalar field starts
at a complex value and also reaches the desired final, real value. This saddle
point is completely analogous to the numerical examples we discussed in section
3.2. However, we should note that it only exists for precisely tuned values
of the initial momenta Πx,y(t = 0). But it is found that, for the same initial
values of the momenta, there can be saddles of a second type, which are in
fact not closed at t = 0, i.e. they start with a non-zero, complex scale factor,
see the right graphs in the figure for an example. This is made possible not
by a becoming zero at t = 0, but rather by the potential V (φSP ) becoming
zero, cf. the constraint equation (187) [80]. That such saddles can exist is
implied by Picard’s little theorem, which roughly speaking implies that a non-
constant entire function assumes all possible values, hence somewhere (or in fact
at multiple locations) the potential vanishes when analytically continued. For

our potential (181) this occurs when
√

2
3φSP = (2n+ 1)π2 i with n ∈ Z.
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It was found in [80] that the weighting of the unclosed saddle is subdomi-
nant to that of the closed, no-boundary, saddle. Hence the unclosed saddle is
unimportant in this example – however, it is not known whether this occurs for
other potentials too.

This brings us to a conceptually important point. The South Pole values of
Πx,y must be tuned in order for a saddle point to exist, which is compact at t = 0
and reaches the desired final values x1, y1. This is analogous to the tuning of φSP
performed in section (3.2). But how does the late universe know which values
the initial momenta had to have at nucleation? Simply fixing this value by hand
is highly non-local, and does not seem plausible. It would be much more natural,
and in the spirit of the Feynman sum over histories, to sum over all possible
initial values of Πx,y, subject to the regularity condition (188). In some sense,
locality implies that we really must sum over initial conditions. Such a sum
would then automatically include the closed and regular no-boundary saddle.
But, as we saw above, it would also include other saddle points, that are regular
but not closed. There is no guarantee that these will all be subdominant. Hence
it is not at all clear that the wave function, so defined, will be of no-boundary
type.

At this point, let us look ahead somewhat to see how this issue might be
resolved. There are two arguments that suggest that the unclosed saddles ul-
timately do not contribute. The first is that when one performs the same cal-
culation, but with a negative potential, i.e. with α < 0 in (181) (where it is
arguably better defined in light of AdS/CFT [83]), then the unclosed saddles
are found to be singular in the sense that the scale factor passes through zero
[80]. This means that when perturbations are added, the action will become
infinite and such “saddles” remove themselves from the path integral. Hence, if
the wave function can be analytically continued in α, then one might also expect
the unclosed saddles to be spurious when α > 0. A second argument is that the
scalar field has to become highly complex, in the sense that the imaginary part
must become very large, to reach V (φ) = 0. This might simply not be allowed
at a fundamental level, as such large imaginary parts can lead to divergences in
the path integral for the full theory (when including other matter contributions)
[84, 85]. Thus it seems possible, if not plausible, that a proper definition of the
full path integral will remove such unclosed saddle points. We will return to
this issue in section 5.4.

3.7. No-Boundary Saddles with Anisotropies and Black Holes

In the previous section, we discussed definitions of the path integral in the
context of minisuperspace models. This was made possible by the simplifications
that arose from using restricted classes of metrics, and special parameterisations
of the fields. For more general models, such simplifications are not known to
occur, and the best we can do is analyse potential saddle points of the path
integral, i.e. try to figure out the properties of compact and regular (typically
complex) solutions of the equations of motion and constraints. This is however
a good starting point in elucidating the consequences of the no-boundary wave
function, and in many situations it seems plausible that the saddle points thus
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found are also in fact the dominant ones.

Anisotropies – full Bianchi IX
Our universe is highly isotropic on the largest scales, but less and less so as

we probe smaller scales. It is thus of interest to study anisotropic models, as
they provide a more realistic description of the universe. The Bianchi IX metric
stands out for several reasons [81]. Locally, it provides a generic description
of spacetime geometry. This is used in the proof that in the approach to a
spacelike (big bang-like) singularity the metric (locally) becomes ever closer
to Bianchi IX form [86]. Hence it is of interest to see what the no-boundary
proposal implies for such metrics, and in particular whether the no-boundary
wave function favours more or less isotropic universes. This topic was explored
in a number of papers over the years, see in particular [87, 88, 89, 90, 91, 92, 93].

For our analysis, we will again consider a gravity-scalar model with an ex-
ponential potential V (φ) = V0e

cφ, with c <
√

2 in order to obtain inflationary
dynamics. The Bianchi IX metric can be written as [81]

ds2
IX = −N2dt2 +

a(t)2

4

(
eβ+(t)+

√
3β−(t)σ2

1 + eβ+(t)−
√

3β−(t)σ2
2 + e−2β+(t)σ2

3

)
,

(189)

where the 1-forms σi were defined below (175). The scale factor a thus de-
termines the spatial volume, while the β± parameterise shape change. When
β± = 0 one recovers the isotropic case, while β− = 0 is the biaxial case discussed
in section 3.6. The Lorentzian action then reduces to

S = 2π2

∫
dtNa

[
1

N2

(
−3ȧ2 + a2

(
1

2
φ̇2 +

3

4
β̇2

+ +
3

4
β̇2
−

))
−
(
a2V (φ) + U(β+, β−)

)]
, (190)

where a potential arises for the anisotropy parameters,

U(β+, β−) =− 2
(
e2β+ + e−β+−

√
3β− + e−β++

√
3β−
)

+
(
e−4β+ + e2β+−2

√
3β− + e2β++2

√
3β−
)
. (191)

This potential has a minimum at U(0, 0) = −3 and at large β± exhibits a
triangular symmetry in β±−space.

Varying with respect to the lapse N yields the Friedman equation

3ȧ2 = a2

(
1

2
φ̇2 +

3

4
β̇2

+ +
3

4
β̇2
−

)
+N2

(
a2V (φ) + U(β+, β−)

)
, (192)

while the equations of motion for β± and φ are given (in constant N gauge) by

β̈± + 3
ȧ

a
β̇± +

2

3

N2

a2
U,β± = 0 , (193)

φ̈+ 3
ȧ

a
φ̇+N2V,φ = 0 . (194)
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Figure 33: An anisotropic instanton, optimised to reach the real values b = 10000, χ =
−2, b+ = 1, b− = 1 on the final boundary, for V0 = 1, c = 1/3. These values are reached
at τf = 2.33 + 18.0 i, with the South Pole values φSP = 0.942 − 0.554 i, β′′SP+ = −0.926 +

0.173 i, β′′SP− = −0.00373+0.000697 i. Note the presence of branch points and associated cuts
in the lower right parts of the figures. The style of the figures coincides with that of Figs. 16
and 17. Figures reproduced from [93].

No-boundary solutions must be compact and regular. We may again solve
the equations of motion and constraint perturbatively around the South Pole,
imposing compactness and regularity. The result, in terms of Euclidean time
(N = i), is [93]

a = τ − 1

18
V0e

cφSP τ3

+
1

8640
((−216(β′′SP+)2 − 216(β′′SP−)2 + (8− 27c2)V 2

0 e
2cφSP )τ5 + · · ·

(195)

φ = φSP +
c

8
V0e

cφSP τ2 +
c(2 + 3c2)

576
V 2

0 e
2cφSP τ4 + · · · (196)

β+ =
1

2
β′′SP+τ

2 +
1

144
(45(β′′SP−)2 + β′′SP+(−45β′′SP− + 7V0e

cφSP ))τ4 + · · ·
(197)

β− =
1

2
β′′SP−τ

2 +
1

144
β′′SP−(90β′′SP+ + 7V0e

cφSP )τ4 + · · · , (198)

where we used a prime to denote derivatives w.r.t. Euclidean time τ = it.
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These expansions are needed to form a well-defined numerical problem, cf. the
discussion in section 3.2. This time there are three free parameters, which
characterise solutions. They are

φSP , β′′SP+, β′′SP− , (199)

which can all three assume complex values. Note that the regularity condition
forces the anisotropy parameters, as well as their first derivatives, to vanish at
the South Pole. Thus all instantons are created isotropically, but subsequently
anisotropies can grow, as the second derivative can be non-zero.
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Figure 34: The evolution of the fields a, φ, β± along the magenta contour drawn in Fig. 33.
The contour is parameterised by λ, and the dashed lines indicate the changes of direction of
the contour. All fields become real on the final hypersurface. Note that the anisotropies start
out at zero and then grow to reach the desired final values. Figures reproduced from [93].

A numerical example of an anisotorpic no-boundary instanton is presented
in Figs. 33 and 34. Obtaining such solutions requires again an optimisation
procedure to tune the South Pole values of the scalar field and of the anisotropy
parameters. This can be done using a higher-dimensional Newtonian algorithm.
Compared to the numerical solutions discussed in section 3.2, a new feature
arises here, namely that singularities appear in the complex time plane, see
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Fig. 33. These imply that one cannot use a Euclidean-plus-Lorentzian contour to
reach the final hypersurface. If one tried, one would in fact not reach coincident
real field values at all, but one would end up on the wrong sheet of the solution
(sticking to such a contour would put a limit on how large anisotropies can be
[92]). It proves useful to use a contour that is Lorentzian first, then Euclidean,
and followed by a further Lorentzian segment. The field evolutions along such
a contour are shown in Fig. 34. A sketch of this situation is presented in the
left panel of Fig. 35. When using this alternative contour, arbitrarily large
anisotropies can be obtained.

SP

τ

τ f

x
x
x

x

Figure 35: Left panel: The presence of singularities (marked by purple crosses) prohibits
the use of a standard “Hawking” contour (in red). Rather, one must use a contour that
stays to the left of the singularities, such as the contour marked in green. Right panel:
The imaginary part of the Lorentzian action, as a function of final anisotropy values b±, for
b = 100, χ = −1/2. Since the weighting scales as Exp[−Im(S)/~], isotropic solutions have
higher weighting. Figures reproduced from [93].

One can also calculate the action of these no-boundary solutions numerically.
The right panel in Fig. 35 shows the imaginary part of the action as a function
of the final anisotropy parameters, for fixed values of the final scale factor b and
final scalar field χ. This graph shows that isotropic solutions receive a higher
weighting e−Im(S)/~, and are hence preferred. In a sense, this result confirm the
minisuperspace approach pursued previously, as anisotropic deviations are seen
to be suppressed. It also means that the no-boundary proposal assigns expo-
nentially higher probability to an isotropic than to an anisotropic beginning of
the universe.

Black holes
The question of primordial black holes has recently come into renewed focus

– due to the observations of black hole collisions of various masses, as dark
matter candidates, and because of the existence of supermassive black holes in
the centers of very early galaxies. Primordial black holes could play a central
role in explaining these phenomena [94]. For such an explanation to be viable,
a reliable formation mechanism has to be discovered. Many current works focus
on specific dynamics during inflation, such as a phase of ultra-slow roll (for an
overview, see e.g. [95]). Such scenarios operate when the universe as a whole
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is already very classical, and the predictions of such scenarios will be largely
unchanged by the no-boundary framework. However, another possibility might
be that black holes have been formed directly by quantum nucleation at the
creation of the universe. This is the question we will be concerned with here. In
other words, does the no-boundary wave function predict a significant quantum
creation of primordial black holes?

This question was considered in a series of works by Bousso and Hawking
[96, 97, 98] and extended in [99, 100, 101, 102]. To start, it is helpful to look
at the relevant solution describing black holes in the presence of a cosmological
constant, i.e. the Schwarzschild-de Sitter (Kottler) solution

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2 , (200)

with f(r) = 1 − 2M
r −

Λ
3 r

2. There are two horizons, sitting at the positive so-
lutions to the equation f(r) = 0. The smaller horizon is the black hole horizon,
and the larger one the cosmological horizon. When M = 0, the black hole hori-
zon disappears and the solution describes a portion of de Sitter spacetime. Its
Euclidean version, as we have seen, is just the 4−sphere – in the Euclidean ver-
sion, the cosmological horizon becomes a regular point, as long as the Euclidean
time coordinate is made periodic with a suitable period [103]. The 4−sphere
is rounded off, and thus naturally satisfies the no-boundary requirements of
compactness and regularity at the South Pole.

What if M 6= 0? In that case there are two horizons, and in trying to form
a regular Euclidean solution, one is faced with the problem of specifying the
periodicity of the Euclidean time coordinate. At best one can render one of the
horizons smooth, but then at the location of the second horizon there will be a
conical deficit. If we insist on having an entirely smooth solution, then, apart
from pure de Sitter spacetime, we are only left with the possibility of making
the two horizons equal in size, by increasing the black hole parameter M to its
maximal value MN = 1/(3

√
Λ). This is known as the Nariai spacetime [104].

Interestingly, even though the two horizons are equal in size, the space between
them does not vanish, as shown in detail in [105]. The resulting Euclidean
metric can be written as

ds2 = dτ2 +
1

Λ
sin(
√

Λτ)2dx2 +
1

Λ
dΩ2

2 . (201)

This is simply the product of two 2−spheres, each with radius 1/
√

Λ. Again
this spacetime is appropriately compact and rounded off, and hence may serve
as a no-boundary instanton, with the no-boundary South Pole identified with
the South Pole of one of the two spheres.

The reason for writing the metric in the above form is that one can see
that if τ is analytically continued back to Lorentzian time, the first 2−sphere
turns into a two-dimensional de Sitter line element. In analogy with the simplest
no-boundary solutions, cf. Eqs. (103) and (104), one performs this analytic con-
tinuation at the equator of the sphere containing the no-boundary South Pole.
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Thus the Lorentzian spacetime that results from this instanton is a product
of two-dimensional de Sitter spacetime with a constant 2−sphere. The spatial
sections have topology S1 × S2, which can be regarded as a 3−sphere with
holes punched through the North and South Poles, describing a pair of black
holes [96].

Since we are interested in the probability for creating such black holes, we
must calculate the Euclidean action, which will determine the rate of creation.
It arises from one 2−sphere, plus one hemisphere of the second 2−sphere. A
general result for spacetimes with multiple horizons is that it is given by a
quarter of the sum of horizon areas (reinstating 8πG momentarily) [98, 99, 100],

IE = − 1

4G
(Ab.h. horizon +Acosm. horizon) . (202)

For a product of two 2−spheres, one obtains, with 8πG = 1, IE = −2π · 2 · A =

− 16π2

Λ . Since for Nariai black hole pair creation we only include one hemisphere
of one of the spheres, we must halve this result to obtain

IE,N = −8π2

Λ
. (203)

Hence the rate ΓN of nucleating regions of spacetime containing Nariai black
holes, compared to creating the universe as a purely de Sitter spacetime, is

ΓN =
Ψ?
NΨN

Ψ?
dSΨdS

=
e−2IE,N

e−2IE,dS
= e

16π2

~Λ −
24π2

~Λ = e−
8π2

~Λ . (204)

When the vacuum energy scale Λ is a few orders of magnitude below the Planck
scale, then this rate is heavily suppressed.

We may also ask what happens if we allow for the creation of smaller mass
black holes. As discussed above, these have conical deficits at least at the
location of one horizon. But they have actions that are perfectly regular, and
again given by the general formula (202); the actions interpolate between the
Nariai and pure de Sitter cases. These solutions have been argued to arise as
constrained instantons, i.e. as saddle points not of an ordinary path integral,
but of one in which an additional constraint has been put on the mass [101, 102].
One may then integrate over all masses, to find that the total rate of nucleation
of black holes in de Sitter spacetime can be approximated as (see [102] for the
details of this calculation)

Γ ≈ MN

IE,N − IE,dS

(
1− e2(IE,dS−IE,N )

)
=

√
Λ

24π2

(
1− e− 8π2

Λ

)
. (205)

Interestingly, this rate contains a perturbative contribution, which significantly
enhances the result. Still, for inflationary models in agreement with data, we
expect the vacuum energy to have been many orders of magnitude below the
Planck scale, and thus the rate of quantum formation of black holes from noth-
ing remains small. In a way, this may be seen as further confirmation that the
no-boundary wave function prefers the nucleation of homogeneous and isotropic
universes.
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4. Link to Observations

The simple models that we considered up to now were particularly suitable to
a detailed, and in many parts exact, treatment. However, when we make contact
with observations, we must include perturbations describing the actual distri-
bution of matter in the early universe. The most obvious point of contact of the
no-boundary wave function with observations occurs for the cosmic microwave
background radiation (CMB), which provides us with the earliest electromag-
netic picture of the universe. A specific and crucial question is whether the
no-boundary wave function, in combination with a suitable dynamical model,
can explain not only the homogeneous, isotropic and flat background spacetime,
but also the distribution of temperature fluctuations in the CMB. In order to
discuss this question, we will first review how perturbations are included in the
no-boundary framework. Then we will analyse the implications for observa-
tions, and confront no-boundary probabilities with what we know about the
early universe.

4.1. Perturbations

We wish to extend our analysis to include cosmological perturbations. The
most important ones are scalar and tensor perturbations, leading respectively to
density perturbations and gravitational waves. We will treat perturbations at
leading order, which means that we must consider their action up to quadratic
order in perturbations. For definiteness, we will write out the analysis for tensor
perturbations below – these are always present, as they form a part of the
metric. The analysis of scalar perturbations proceeds in close analogy, and we
will simply quote the results at the end. The standard theory of cosmological
perturbations is discussed in numerous references, see e.g. [106].

Tensor perturbations arise as transverse, traceless perturbations of the spa-
tial metric,

δgij with δgii = 0, Diδgij = 0 , (206)

where Di denotes a covariant derivative formed from the spatial background
metric, which is the metric on a 3−sphere here. Tensor perturbations arise in
two polarisation states +,×, each of which may be decomposed in terms of har-

monics on the 3−sphere, δg+,×
jk = h(t)G

(l)
jk = h(t)

∑l
n=2

∑n
m=−n c

l
nm(Gjk)lnm,

satisfying the eigenvalue equation

DiDiG(l)
jk = −[l(l + 2)− 2]G

(l)
jk , l ≥ 2 , (207)

where l is the principal quantum number on the sphere and clnm are Fourier
coefficients [107]. We will consider a single such mode, with amplitude h(t),
as at leading order these modes evolve independently. The treatment can be
extended straightforwardly to include a collection of modes, with the total wave
function becoming a product of the individual wave functions for all modes.
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Thus our aim is to calculate the no-boundary wave function including a
single tensor harmonic

Ψ(a1, h1) =

∫
C

dN

∫ a1

Da
∫ h1

Dh e
i
~S , (208)

where h1 denotes the (real valued) amplitude of the tensor perturbation on the
final hypersurface. This type of calculation was first performed by Halliwell and
Hawking [108]. The total action S = S(0)[a,N ] + S(2)[a,N, h] now consists of
the background part we had before, plus a term for the tensor perturbation

S(2)[a,N, h] =
1

2

∫
Ndt

a3

(
ḣ

N

)2

− a l(l + 2)h2

 , (209)

where we assumed the background metric ds2 = −N2dt2 + a(t)2dΩ2
3 and where

the spatial term arises from the eigenvalue equation (207) combined with a
curvature term [109]. The equation of motion that follows from this action
reads

ḧ+ 3
ȧ

a
ḣ+

N2

a2
l(l + 2)h = 0 . (210)

We will assume that the backreaction of the perturbations on the background
is negligible. This means that the background part of the path integral can be
performed independently, and moreover will be approximated by a collection of
saddle points. The path integral over tensor perturbations is then performed
with the background fields taking their saddle point values. That is to say, the
path integral for tensor modes is a quadratic integral in perturbations, and can
thus be performed exactly. All that is required is the saddle point solution. In
other words, we must solve the perturbation equation (210) on no-boundary
saddle point geometries.

With a cosmological constant Λ ≡ 3H2, the no-boundary saddle point is
given by a(τ) = 1

H sin(Hτ), cf. section 3.2. Here τ denotes Euclidean time, i.e.
N = i and τ = it. The equation for the tensor perturbations then becomes

h,ττ + 3H cot(Hτ)h,τ −
H2l(l + 2)

(sin(Hτ))2
h = 0 . (211)

This equation possesses two solutions,

F1(τ) =
(1− cos(Hτ))l/2(cos(Hτ) + l + 1)

(1 + cos(Hτ))(l+1)/2
, (212)

F2(τ) =
(1 + cos(Hτ))l/2(cos(Hτ)− l − 1)

(1− cos(Hτ))(l+1)/2
, (213)

so that the general solution is a linear combination of these. Note that these
solutions behave very differently near the South Pole τ = 0. Most importantly,
F2(τ) diverges as τ → 0, and regularity at the South Pole forces us to eliminate
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this solution and retain only F1(τ). In fact, near τ = 0, we have F1(τ) ∝ τ l, i.e.
this mode vanishes at the South Pole and grows away from there. Moreover,
the shorter the mode, the more suppressed it is near the South Pole. Thus the
correct solution, satisfying regularity at the South Pole and reaching the value
h(τ = τf ) = h1 is given by

h(τ) =
F1(τ)

F1(τf )
h1 . (214)

For a numerical example see Fig. 36. In the example, the mode function is
plotted along the usual Hawking contour, i.e. following a Euclidean time path
until the background 4−sphere has grown to its equator, followed by Lorentzian
evolution along the de Sitter hyperboloid. In the Euclidean regime, the mode
function is growing monotonically, while in the Lorentzian region it is oscillating.
For completeness, let us also write out the relevant solution in physical time,

F1(t) =

(
1 +

i

sinh(Ht)

) l
2
(

1− i

sinh(Ht)

)− l+2
2
(

1− i(l + 1)

sinh(Ht)

)
. (215)

This way of writing the solution makes it clear that at late times F1 → 1. This
solution represents the Bunch-Davies vacuum [110], for a closed spatial slicing.
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Im[h(t)]
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Figure 36: An example of a tensor perturbation mode, with H = 1/10, l = 15, h1 = 1. The
solution is plotted along the standard Euclidean-plus-Lorentzian contour, parameterised by
a parameter λ. The transition from Euclidean to Lorentzian is indicated by the thin vertical
line at λ = 5π.

We are also interested in the action of the perturbations. On-shell, we may
use the equation of motion (210) in the action (209), which turns it into a surface
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term

S
(2)
on-shell[a,N, h] =

1

2N

∫
dt
(
a3ḣ2 + a3hḧ+ 3a2ȧhḣ

)
=

1

2N
a3hḣ |t=tf

=
ia2

1

2

l(l + 2)

l + 1− i
√
H2a2

1 − 1
h2

1 (216)

= − l(l + 2)a1

H
h2

1 + i
l(l + 1)(l + 2)

2H2
h2

1 +O(a−1
1 ) , (217)

where we used the fact that the perturbation vanishes on the initial hypersurface,
and where we expanded at large final scale factor a1 to obtain the last line. This
implies that, for a1 � l/H, the wave function receives the following factors at
the saddle points, for each wave number and polarisation,

Ψ(2) ≈ e−
l(l+1)(l+2)

2~H2 h2
1−i

l(l+2)a1
~H h2

1 . (218)

Note that the weighting is a Gaussian, and independent of a1. The dependence
on l3/H2 implies that the spectrum is scale invariant (because the background
is exact de Sitter space here), and the amplitude of perturbations scales as the
inverse of the square of the Hubble rate. The phase grows with the scale factor
a1, as a reflection of the approximate classical behaviour of perturbations on
super-Hubble scales. Thus we recover standard results in inflationary cosmology.
But there is a crucial difference: here we did not have to assume the initial
Bunch-Davies vacuum state (214) or (215) – rather, regularity at the South
Pole forced us to choose this solution. Thus the no-boundary wave function
automatically implies the Bunch-Davies state for perturbations.

We are now in a position to explain a result that we have used repeatedly
in this review, and which concerns the distinction between stable and unstable
saddle points. Above, we calculated the wave function for tensor perturbations
on a Hartle-Hawking saddle point geometry. This geometry may be specified
by a combination of Euclidean and Lorentzian parts, as detailed in Eqs. (103)
and (104). The geometry we focused on corresponds to one of the saddle points
in the lower half plane of the lapse function in section 3.6. However, because
the Einstein equations are real, the complex conjugates of these geometries are
also solutions to the equations of motion. Moreover, since the final scale factor
is real, they also obey the imposed final boundary condition (and in fact, these
saddle points are picked out in the tunneling proposal [35, 36, 37]). The only
thing that changes is the regularity condition at the South Pole, which changes
from ȧ = +i to ȧ = −i (in physical time). This seemingly innocent change has
profound consequences [111]: it changes the mode function (215) and the action
(217) to their complex conjugate values (note that the South Pole then resides
at t = −i π2H rather than t = i π2H ). Then, for perturbations, we would obtain
factors of the form

Ψ
(2)
unstable ≈ e

+
l(l+1)(l+2)

2~H2 h2
1−i

l(l+2)a1
~H h2

1 . (219)
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Thus, the distribution of perturbations would be given by an inverse Gaussian.
It might appear that this is not problematic per se, as the path integral converges
and leads to a final result. However, the physical implications point to an
inconsistency: larger perturbations are more likely than smaller perturbations.
The most likely outcome would then be the largest fluctuations for which we
still trust our calculation, for all perturbation modes. This is completely at odds
with observations: fields would be in the opposite of their ground state – all fields
would be predicted to fluctuate wildly, which is simply not seen. An isotropic
universe would be the least likely outcome. Furthermore, a wave function of
this form is not normalisable, so that no plausible probability distribution can
in fact be obtained. One might speculate that the problem arises by the choices
made near the South Pole, and that different UV-physics (e.g. in the guise of
modified dispersion relations) might cure the problem, but this option has also
been shown to be unlikely to work [112]. For these reasons, we term such saddle
points unstable, and they must be avoided if we are to trust our calculations.

The last point can also be turned around: in the no-boundary wave function
perturbations are predicted to be in their ground state, and as such perturba-
tions are likely to be small. This provides a physical justification for the minisu-
perspace simplification we used before, since it implies that highly symmetric
spacetimes are in fact favoured and this renders the results of minisuperspace
calculations believable.

Analogous results can be obtained for other perturbations, in particular
scalar perturbations. These give rise to density perturbations in the early uni-
verse. They can be described rigorously in terms of a gauge-invariant curvature
perturbation ζ (see in particular [109, 113, 114]) with action

Sζ =

∫
dtε
(
a3ζ̇2 − a(n2 − 1)ζ2

)
, (220)

where ε = −Ḣ/H2 = φ̇2/(2H2) is the slow-roll parameter and with mode
numbers n ∈ N?. The action for scalar perturbations is suppressed by the
slow-roll parameter ε [115, 27] (in the exact de Sitter limit, ε = 0, the scalar
perturbation is pure gauge). The analysis proceeds entirely in parallel with that
of tensor fluctuations, and leads to the following approximate weighting factors
in the wave function (at large scale factor values)

|Ψζ | ≈ e−
εn3

~H2 ζ
2
1 . (221)

Compared to the tensor fluctuations, the main difference is that the amplitude
of scalar fluctuations is enhanced when the potential is suitably flat, i.e. when
ε is small. But apart from that difference, we obtain the same consequences,
namely fluctuations that start with zero amplitude at the South Pole, in the
Bunch-Davies vacuum state, and that subsequently grow to reach real values ζ1
(with a Gaussian probability distribution) at late times.

The analysis of perturbations can be generalised to situations in which the
background itself is not isotropic, see for example [71]; in a sense one is then
dealing with small perturbations superimposed on larger perturbations.
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Moreover, fermions can be included [116] (see also the briefer description
in [117]), and it is again found that they start out being zero at the South
Pole. This is a very general feature of the no-boundary proposal, namely that
it implies that quantum fields start out in their vacua.

Up to now, we analysed perturbations evaluated at the saddle points of the
background. Can we also say something about the perturbations off-shell? For
this, we take another look at the simplest minisuperspace model, which is that
of section 3.6 containing a cosmological constant and considering RW metrics.
We will specialise to the case where we impose an initial momentum condition8.
Off-shell in the lapse, the scale factor is given by (cf. Eq. (164))

q̄(tq) = H2N2(t2q − 1) + 2Ni(tq − 1) + q1 , (222)

and in these variables, the perturbation equation (210) reads

ḧ+ 2
˙̄q

q̄
ḣ+

N2

q̄2
l(l + 2)h = 0 , (223)

with a dot denoting a derivative w.r.t. tq here. The solution to this equation is
given in terms of Legendre functions,

h(tq) = q̄−1/2 (c1 LegendreP[1, γ, x] + c2 LegendreQ[1, γ, x]) (224)

γ =

√
1− l(l + 2)

(H2N + i)2 −H2q1
, x =

H2Nt+ i√
(H2N + i)2 −H2q1

,

where c1,2 are integration constants that need to be fixed to satisfy the bound-
ary conditions. We are only concerned here with the question of whether such
perturbations are well behaved, or whether they can be singular. Clearly, the
solutions above blow up when q̄ passes through zero, unless the Legendre func-
tions vanish suitably fast at those events. But this happens only at the saddle
points, where from the results above we know that perturbation modes vanish

as hsaddle ∼ tl/2q .
Further, it is known that the Legendre functions have branch points at x =

±1. In fact, it can be seen straightforwardly that the condition for having branch
points is equivalent to the condition that q̄ passes through zero. Thus, off-shell,
the perturbation modes are well behaved unless the background passes through
zero. The locus of such points was already discussed in section 3.6, with the
results shown in Fig. 27. Thus, the red dashed lines in this figure correspond
to locations where the perturbations blow up, and where we cannot trust our
analysis. In defining integration contours, it would therefore be prudent to
circumvent those singular curves. In the present example, this can be done
without changing the asymptotic regions of the contours of integration, i.e.
without changing the results obtained at background level. Note however that

8The case with an initial Dirichlet condition was discussed in [69, 71]. The results discussed
here are original work.
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the saddle points themselves sit right on the boundary of the singular curves.
We will encounter a closely related phenomenon in section 5.4, where we will
discuss further criteria that geometries might have to satisfy to be considered
reliable. We should also remark that studies of off-shell perturbations have
been rather few in number so far, and that this topic provides opportunities for
further research.

4.2. Probabilities

In section 2.4 we saw how one may define relative probabilities in quan-
tum cosmology. A requirement is that the wave function becomes of WKB
form, which we saw occurs for the no-boundary wave function under certain
conditions. The two examples we encountered are an inflationary phase and an
ekpyrotic phase, in both cases lasting at least a few e-folds, cf. also section 3.5.
No-boundary saddle point solutions then receive a significant weighting, which
is conserved for a series of instantons with final boundaries following a classical
history. These weightings lead to relative probabilities which, in the presence
of a scalar field with an appropriate potential, we recall are given by

Pinf ≈ e
24π2

~V (φSP ) , Pekp ≈ e
s

~|V (φSP )| , (225)

where s > 0 is a numerical factor depending on the slope of the potential. The
probabilities are relative since the overall normalisation of the wave function is
unknown, and presumably depends on the UV completion of the theory under
consideration. If several such saddle points contribute to the wave function,
then once perturbations are amplified these have the characteristic that they
decohere the saddle points [21], which from then on evolve as essentially separate
universes [22]. We may thus focus on individual saddle points at this stage. We
will discuss the implications for inflation and ekpyrosis in turn, and at the end
compare them.

The most striking feature of the expressions in (225) is that they favour low
values of the potential. For inflationary models, this leads to two immediate
puzzles. The first is that it would be vastly preferable for the universe to nucleate
in the current dark energy phase, rather than at a much higher, inflationary
value of the potential [118], see also Fig. 37. The current dark energy phase
is equally suitable in bringing about a classical universe, as it entails the same
kind of attractor behaviour as an inflationary phase, only with a vastly lower
expansion rate. This would however result in an essentially empty universe.
One might object that the thermal fluctuations [103] implied by a quasi-de
Sitter phase would eventually produce conscious observers (so-called Boltzmann
brains), and that the combined probability of nucleating a vast empty universe
and then forming Boltzmann brains would still be higher than nucleating a
small, inflationary universe [118]. However, serious doubts as to the long-term
stability of de Sitter spacetime have arisen in recent years, in particular the
issues codified in the corresponding swampland conjectures [119, 120]. From
these it seems plausible that the current dark energy phase will simply not last
long enough to make the presence of Boltzmann brains a realistic prospect. This
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is in fact something that can be tested, in the sense that this hypothesis implies
that the dark energy equation of state cannot be constant. Future dark energy
surveys will eventually be able to tell.

Given that we are not directly interested in the bare probability for nu-
cleating a universe, but rather in the conditional probabilities for nucleating
universes that may include observers (this could be weakened to the require-
ment of containing large, durable structures such as galaxies) [121, 122, 39], we
should thus focus on no-boundary instantons that start out on the inflation-
ary part of the potential. Here we encounter the second puzzle: the preference
for low values of the potential means that, amongst inflationary histories, the
favoured ones appear to be those that last only a few e-folds. The most likely
histories in fact would be those lasting the bare minimum of e-folds required to
satisfy the conditions for e.g. the occurrence of galaxies. Yet our observations
are not compatible with such a short inflationary phase, they indicate that a
minimum of about 60 e-folds is required to explain the observations of the CMB
[27]. There currently exists no consensus on how this second puzzle may be
resolved, or whether it in fact invalidates the no-boundary proposal. We will
discuss a few possible resolutions.
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Figure 37: Left panel: An inflationary potential. Why should the universe start high up on
the potential, when, at least naively, the probability to nucleate at lower values appears to be
higher? Right panel: A cyclic potential. The highest likelihood is to nucleate at low absolute
values of the potential, meaning either at the onset of the ekpyrotic phase or during the dark
energy phase.

The first is to resort to strong anthropic reasoning [122]: if it happens to
be the case that conscious observers require an old universe, that is roughly
spatially flat and contains many galaxies, then a long inflationary phase is es-
sentially required by fiat. In such a case, the main purpose of the no-boundary
proposal would be to explain other features of the universe, such as correlations
in the fluctuations of the CMB. Such strong anthropic reasoning can never be
logically ruled out, yet (and to some extent because of this) it closes the road
to finding deeper, and more useful, explanations. There is a clear risk that
the road block is simply due to our lack of imagination. Also, if the anthropic
argument really were true, we should expect to be living right at the edge of
possible existence. This does not appear to be the case: the universe could
have developed more galaxies, or fewer, and the spatial curvature could have
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been more positive, or more negative, yet this would hardly have affected the
emergence of life on Earth.

It has also been suggested that, because we are interested in the conditional
probability of us observing the universe to be in a particular state, we should
allow for the fact that we could be in any possible location in the universe. Put
differently, if there is a certain likelihood for observers to come into existence,
then if the universe is larger then the total probability ought to be higher,
precisely in proportion to the spatial volume. This is known as volume weighting
[53, 5]. Let us see what the consequences would be for inflationary predictions. If
there are Ne e-folds of inflation, the probability measure should thus be adjusted
according to

Pvolume weighted = e3NeΨ?Ψ = e
3Ne+

24π2

~V (φSP ) . (226)

For small Ne the probability decreases with increasing potential, but we may
hope that for large Ne it will increase again. Thus we may ask where on the
potential the minimum probability occurs. This can be estimated as follows,

0 = P,φ ≈
(

24π2

V
+ 3

∫
V

V,φ
dφ

)
,φ

= −24π2V,φ
V 2

+ 3
V

V,φ

→
V 2
,φ

V 3
=

1

8π2
. (227)

In terms of the slow-roll parameter the last condition can also be written as
V ∼ ε, and in fact it corresponds to the onset of eternal inflation. Thus we
obtain the result that it is only in the regime of eternal inflation where the
volume weighted probability starts going up again. But in eternal inflation
the spatial volume in fact becomes infinite. If one took this seriously, after
normalization there would be zero probability for non-eternal inflation, and all
the probability would be concentrated in the eternal regime, without a clear
preference for different parts of the potential. In fact assigning probabilities in
the eternal inflation regime is a notoriously intractable problem. The underlying
reason for this might simply be that eternal inflation is not physical. It leads
to ill-defined semi-classical amplitudes [42], and in fact is also conjectured to
conflict with quantum gravity consistency conditions [123, 124].

Though volume weighting did not produce the expected turn-around in prob-
abilities, it could still be that we do not understand the total probability mea-
sure well enough yet. This might be due to oversimplifying the model. Infla-
tion is a dynamical attractor, and many originally slightly inhomogeneous and
anisotropic universes would lead to essentially the same final outcome. Hence,
it might be that many more histories are effectively indistinguishable from the
Robertson-Walker background we assumed in calculations. These would en-
hance the total probability for a long inflationary phase. Another effect is that
a higher potential also leads to more structure formation, i.e. more galaxies.
It is conceivable, though this is plain conjecture at the moment, that when all
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these effects are taken into account, the probability for a long inflationary phase
could become very significant, especially near a broad maximum in the potential
(a broader maximum would allow for more histories with quasi-indistinguishable
outcomes). Performing this calculation will however require us to go beyond the
minisuperspace framework, and this is currently an open problem.

Let us mention one by-product: if there exist several regions in the scalar
potential that could all lead to long inflationary phases and viable universes,
then the lowest such region would seem to come out as preferred, due to the
basic preference for low potential values [117]. This would imply that plateau
models of inflation would be preferred over power-law potentials, and in fact one
would then also expect the tensor-to-scalar ratio to be small. From this point of
view, the present non-detection of primordial scale-invariant gravitational waves
is not surprising.

All this being said, let us mention however that inflationary models are quite
generally in tension with string theory, in the sense that no unambiguous em-
bedding of inflation into string theory has been found to date. Simple string
compactifications, and their swampland codifications [119, 120], certainly seem
to be in conflict with the inflationary no-boundary wave function [125]. Most
likely, one will therefore have to go beyond the simplest framework, and include
non-perturbative effects as well as typical string theory objects such as orien-
tifolds and various branes, to obtain realistic inflationary vacua [126]. This is
an active research area.

Turning our attention to ekpyrotic models, we can see from (225) that the
situation is reversed. The preference for a low initial absolute value of the
potential translates into a preference for a long ekpyrotic phase [60]. If there
is a potential landscape with several ekpyrotic regions, this preference for low
values would however not easily distinguish between different regions, as the
predictions of ekpyrotic models are determined by what occurs further down
the potential. In cyclic models, there is also the possibility of nucleating a
universe in the dark energy phase [54], see Fig. 37. Though this universe would
again be empty at first, just as in inflationary models, it would not remain so,
as the universe would collapse and at the bounce matter and radiation would
be produced for the subsequent expanding phase. Let us mention that with
simple effective models for the bounce, one can extend the quantum cosmology
framework to include the bounce phase, and obtain instantons that contain
the phases of nucleation, contraction, bounce and expansion [61]. However,
as discussed previously, it remains an open question whether bounce models
can be consistently quantised in general, i.e. whether they are also consistent
and instability-free away from RW backgrounds. Unfortunately, this attaches a
question mark to all bounce models. Moreover, ekpyrotic potentials may be just
as hard to obtain in string theory as inflationary potentials, due to the extreme
steepness they require [127]. But if both ekpyrotic and inflationary models turn
out to be possible, then the basic preference for low potential values expressed
in (225) would give the edge to ekpyrotic, bouncing cosmologies.
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4.3. Taking Stock: What Does the No-Boundary Proposal Explain?

It seems like a good point now to take stock, and crystallise the main ex-
planations that the no-boundary wave function may offer. Here we will focus
on the achievements of the no-boundary proposal in a 4−dimensional effective
approach to cosmology. A more detailed discussion of links to string theory and
open questions will follow in sections 5 and 6. The list is rather impressive:

• The no-boundary proposal specifies a single quantum state for the entire
universe, and as such provides a theory of (probabilistic) initial conditions.

• In fact, it provides a unification of quantum gravity dynamics and initial
conditions, expressed in the path integral approach to quantum theory,
[128]

Ψ(φf ) =

∫ φf

C
e
i
~S . (228)

The dynamics is encoded in the action S, and the state in the boundary
conditions and integration ranges C of the integral. Thus a single mathe-
matical object combines the dynamics and the specification of the state.
This is why it is so important to understand the proper definition of grav-
itational path integrals. Moreover, the wave function depends on the final
field values φf , and this dependence of the wave function on spatial hyper-
surfaces in some sense makes the integral also an intrinsically holographic
object. This property will be discussed further in section 5.2.

• The no-boundary wave function explains how space and time became clas-
sical at the early stages of evolution of the universe. This classicalisation
moreover requires the presence of a dynamical attractor, such as inflation
or ekpyrosis. The attractor drives spacetime to classicality, and allows for
the definition of probabilities for different classical histories of the universe.

• Once spacetime has become classical, one naturally obtains the framework
of quantum field theory in curved spacetime.

• The big bang singularity is resolved. No-boundary instantons are finite
and regular, and simply do not contain a big bang singularity. We can
only say things with confidence about the universe in the regime where
spacetime has already become effectively classical. Going back in time,
there is no operational way of saying something about the phase when
the radius of the universe was smaller than the primordial Hubble scale.
The latter phase is better thought of as a quantum tunneling/nucleation
event, which was required to produce space and time in the first place.

• Two immediate implications of the no-boundary idea are that the universe
is finite in spatial extent, and that the overall average spatial curvature is
positive. However, the spatial curvature might very well have been diluted
to such an extent as not to be measurable today.
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• Quantum fields are predicted to initially have been in their vacua. The
dynamics of the universe may then excite certain fields.

• Homogeneous and isotropic initial conditions are favoured over less sym-
metric ones. The initial state of the universe is thus one of relative sim-
plicity. Combined with the previous item stating that quantum fields start
out in their vacua, this provides appropriate low entropy initial conditions
for the universe. This also provides an appropriate starting point for the
2nd Law of thermodynamics.

• At the nucleation of the universe, only scalar fields may have a non-zero
energy density. Other matter fields are not permitted. This follows from
the equation of continuity ρ̇ + 3 ȧa (ρ + p) = 0. At zero scale factor this
equation remains regular only if the sum of energy density and pressure
ρ+p vanishes, which in turn only a scalar field can (momentarily) achieve,
when its kinetic energy is zero, cf. (132). Thus no initial radiation or
ordinary matter are allowed – these must be created later, for example
during reheating. This setting fits well with cosmological models that use
scalar fields as their main dynamical matter ingredient.

Some potential additional explanations that the no-boundary proposal may offer
should still be considered to be works in progress. This concerns the predictions
regarding inflation in particular. As we saw, it is not yet clear whether the no-
boundary wave function assigns high probabilities to long inflationary phases or
not, or to which particular type of inflationary background. Tied to this is also
the question of whether or not the observed near-flatness of the current universe
is explained, i.e. whether the positive spatial curvature of no-boundary solutions
is sufficiently diluted. These important questions will require more work.

5. Link to String Theory

The no-boundary proposal is formulated in 4 dimensions, with the theory of
gravity being general relativity. However, it is widely expected that quantum
gravity will require further, or different, fundamental ingredients. In the present
section, we will ask whether the no-boundary proposal is compatible with quan-
tum gravity, and with string theory in particular. Is it perhaps even required
under some circumstances? And what do we learn by applying no-boundary
ideas to string theory?

Before embarking on this, let us make a comment of principle. In string
theory, one starts with the quantisation of a string. Classically, the world sheet
admits a conformal/Weyl symmetry, which must be preserved under quantisa-
tion. This leads to non-trivial requirements, specifically that the spacetime in
which the string moves must satisfy the equations of motion of certain super-
gravity theories (plus corrections thereof at higher orders in the string length
α′) [129]. One may now wonder whether it is consistent to consider a path in-
tegral of this effective higher-dimensional supergravity theory, since one is then
in some sense quantising the theory again. In well-known examples (meaning
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examples with significant amounts of preserved supersymmetry) this procedure
is known to be consistent, for a striking example see [130]. However, as quite
generally in string theory, not much is known in non-supersymmetric situations.
We will proceed with optimism.

5.1. Robustness

When gravity is quantised, effective terms with higher derivatives are gener-
ated from graviton loops at higher orders in ~ [43]. These terms typically arrange
themselves as higher powers of the Riemann tensor, and derivatives thereof. A
pertinent question, even when sticking to an effective 4−dimensional descrip-
tion of gravity, is thus whether no-boundary solutions are still good (regular,
finite action) solutions of the corrected theory. In other words, are no-boundary
solutions robust to the inclusion of quantum corrections? In string theory, such
higher order terms also arise, now accompanied by coefficients that contain
powers of the string tension α′. Thus, the analogous question arises there too.

The most crucial aspect of this question is to see whether the rounded-off
region near the South Pole of no-boundary instantons remains an acceptable
solution. We analysed this question briefly in section 3.1, and in fact used it to
motivate the no-boundary proposal. We will fill in a few more details here.

As we discussed in section 4.1, perturbations with wave number l decay near
the South Pole as tl. Hence we may actually focus on homogeneous and isotropic
backgrounds, knowing that perturbations may arise away from the South Pole,
but that they play no crucial part in the question of whether such solutions
exist at all. As stated in section 3.1, see Eqs. (91) and (92), once we restrict to
closed RW universes (90), with lapse N , the only non-zero components of the

Riemann tensor are given in terms of A1 = ȧ2+N2

a2N2 and A2 = ä
aN2 . An action

which is a function of the Riemann tensor may be expanded in terms of these
combinations as

S =

∫
d4x
√
−gf(Riemann) = 2π2

∫
dtNa3

∑
p1,p2

cp1,p2
Ap1

1 A
p2

2 , (229)

where cp1,p2
are coefficients, and the power of the Riemann terms is given by

P = p1 +p2. The constraint equation can be found by taking a derivative of the
action with respect to the lapse function, with the result [131]

0 =
δS

δN
= 2π2

∑
p1,p2

cp1,p2

[
2p1(p2 − 1)

aȧ2

N2
Ap2

2 A
p1−1
1 + (1− p2)a3Ap2

2 A
p1

1

+ p2(p2 − 1)
aȧa(3)

N4
Ap2−2

2 Ap1

1 − p2(2p1 + p2 − 3)
aȧ2

N2
Ap2−1

2 Ap1

1

]
.

(230)

The equation of motion for the scale factor follows from taking a time derivative
of the constraint, and hence we do not need to consider it separately. The
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constraint is in fact invariant under the following transformation,{
t→ −t,
a→ −a,

⇒ a(−t) = −a(t) , (231)

which implies that the scale factor is odd in t. The no-boundary ansatz, with
its Euclidean rounding off at a = 0 then corresponds to a series expansiona(t) = a1t+

a3

6
t3 +

a5

120
t5 +O(t7) ;

a2
1 = −N2 .

(232)

In physical time, we have a2
1 = −1 i.e. a1 = ±i. For any solution, there exists a

time-reversed solution obtained by sending t→ −t, and moreover the solutions
come in complex conjugate pairs. Hence there are always four related solutions
(two of which can be eliminated by fixing the initial expansion rate). With this
ansatz, the components of the Riemann tensor read

A1 = −a3

a3
1

+

(
a2

3 − a1a5

)
12a4

1

t2 +

(
a3a5 − a1a7

)
360a4

1

t4 +O(t6) ;

A2 = −a3

a3
1

+

(
a2

3 − a1a5

)
6a4

1

t2 −
(
10a3

3 − 13a1a3a5 + 3a2
1a7

)
360a5

1

t4 +O(t6) .

(233)
Importantly, the series expansions start at order t0, and not t−2 as naively
expected, and this is the main reason why no-boundary solutions can have
finite action. Solving the constraint equation leads to the following expressions
at the leading orders,

Order t :
∑
p1,p2

cp1,p2

N2P
a4−P

1 aP−1
3

(
p2 − p1

)
= 0 ; (234)

Order t3 :
∑
p1,p2

cp1,p2

N2P
a3−P

1 aP−2
3

(
a2

3 ·G3[p1, p2] + a1a5 ·G5[p1, p2]
)

= 0 ,

(235)

with

G3[p1, p2] =
1

6

(
p2

1 − 15p1 + 6− 4p2
2 + 12p2

)
, (236)

G5[p1, p2] =
p1(1− p1)

6
− 2p2(1− p2)

3
. (237)

Again it is a consequence of the no-boundary ansatz that there are no non-
trivial conditions at negative powers of t. The order t condition is most easily
solved by cp1,p2 = cp2,p1 , which turns out to be satisfied quite generally, in
particular for all terms that are powers of the Ricci scalar R = 6(A1 +A2) and
all terms involving the quadratic combinations RµνρσR

µνρσ = 6
(
A2

1 +A2
2

)
and
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RµνR
µν = 12

(
A2

1 +A1A2 +A2
2

)
[132, 133]. The condition at order t3 then fixes

a5 in terms of a3, [131]

a5 ·
∑
p1,p2

cp1,p2

N2P
a3−P

1 aP−2
3 G5[p1, p2] = −a

2
3

a1
·
∑
p1,p2

cp1,p2

N2P
a3−P

1 aP−2
3 G3[p1, p2] .

(238)
At higher orders, the next coefficients a7, a9, etc. are then fixed in turn. Thus,
a full solution, with manifestly finite action, is obtained, with free parameter a3.
This parameter specifies the early expansion rate and, in the case where a scalar
field is added, is linked to the initial value of the scalar field.

In string theory, additional terms appear, in particular with derivatives act-
ing on Riemann tensors. It is not possible to analyse such terms in full generality,
but it was shown in [131] that the first few correction terms, both in heterotic
and type IIB string theory, still admit no-boundary solutions with finite ac-
tion. This indicates a basic compatibility of string theory with the no-boundary
proposal.

5.2. Link to AdS/CFT and Holographic Definition

The best understood example of quantum gravity is the AdS/CFT corre-
spondence [83]. In this correspondence, quantum gravity with fields that asymp-
totically approach Anti-de Sitter (AdS) spacetime is related to a conformal field
theory (CFT) that lives on a spacetime that is given by the conformal geome-
try of the asymptotic boundary. The manifold that the conformal field theory
lives on has one dimension fewer than the bulk gravitational theory, which is
why this setting is holographic. The great advantage is that conformal field
theories are very well understood, so that one can use this knowledge to learn
about quantum gravity. The drawback is that this only works for asymptoti-
cally AdS spacetimes, which do not correspond to our universe. Nevertheless,
it seems plausible that quantum gravity contains universal features which one
can uncover in this setting.

There are two approaches that have been pursued in connection with quan-
tum cosmology: the first is to study AdS/CFT in order to gain insight into
gravitational path integrals. One can then try to translate this knowledge into
a cosmological context. And the second is to try to directly define the wave
function holographically, by linking it to AdS/CFT. We will describe both ap-
proaches in turn.

Gravitational path integrals in AdS
Gravity in asymptotically AdS spacetimes is generally better understood

than gravity in dS-like spacetimes. To some extent this is due to the fact that
in asymptotically AdS spacetimes there exists a clear (timelike) boundary, and
it is straightforward to fix the asymptotic geometry9. Connected to this is

9In dS this is conceptually more complicated due to the presence of a (observer dependent)
horizon, which shields observers from far-away regions.
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the conjecture that one may describe the physics of such spacetimes by a dual
quantum field theory that lives on the (fixed) asymptotic geometry, and thus
does not involve gravity at all. In this way arose the realisation that a quantum
field theory can encode the same physics as a theory containing gravity and
describing dynamical spacetime of one dimension higher [83, 134]. This can be
used in some situations to check gravitational calculations by comparing with
known quantum field theory results. These considerations motivate us to look
at path integrals in the presence of a negative cosmological constant. In this
way we may hope to learn general lessons for quantum cosmology [17].

Specifically, we will analyse two setups: one in which we perform the ana-
logue of the Robertson-Walker calculation of the wave function in section 3.6,
and one in which we will add black holes. These calculations turn out to support
the implementation of the no-boundary wave function as a path integral with
a momentum condition. We will be brief here – full details were presented in
[17, 74]. As in [17], we will keep Newton’s constant explicit here and write the
cosmological constant Λ ≡ − 3

l2 in terms of the radius of curvature l (not to be
confused with the wave number of perturbations in section 4.1).

We will once again look at the path integral (89) in minisuperspace, with
RW metrics of the form (150). We will impose a final Dirichlet condition q(t =
1) = R2

3 (i.e. the “final” radius of the 3−sphere is fixed to be R3) and an initial
momentum condition which we will parameterise by

p0 = − 3π

4G
α , (239)

intentionally leaving α arbitrary at first. Then, in complete analogy with the
calculations surrounding Eq. (165) in section 3.6, one may derive that the saddle
points are located at

N± = αl2 ± il
√
R2

3 + l2 , (240a)

4G

π
S0(N±) = α(3 + α2)l2 ± 2i

l

(
R2

3 + l2
)3/2

, (240b)

where we also wrote out the action at the saddle points. It is instructive to look
at the saddle point geometries, which are given by

q̄(tq) |N±= −
(
αl ± i

√
R2

3 + l2
)2

t2q + 2α

(
αl2 ± il

√
R2

3 + l2
)
tq − l2(1 + α2) .

(241)

We can immediately see that if we would like to have saddle point geometries
that close at t = 0, then we should choose α = ±i. This is necessary, as otherwise
we do not include the entire bulk spacetime. With α being imaginary, note that
the saddle points reside on the Euclidean lapse axis, and as a consequence t
has become a spatial coordinate. The saddle point geometries are then purely
Euclidean geometries.
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Figure 38: Left panel: Saddle points and steepest descent lines, for the case of AdS spacetimes
(all q1 = R2

3) or for dS (small universes with q1 <
3
Λ

), in the complexified plane of the lapse

N . Green regions indicate asymptotic convergence at angles 0 < θ < π
3
, 2π

3
< θ < π and

4π
3
< θ < 5π

3
. When Λ < 0, the upper saddle point is N+ and the lower N−, and vice versa

for Λ > 0. Right panel: Geometry of the saddle points for Λ < 0. As the final scale factor
q1 = R2

3 is increased, the saddle points move apart. Figures reproduced from [74].

We can restrict α further. When α = +i, the saddle point N− corresponds
to Euclidean AdS space. The second saddle point, N+, also describes a sec-
tion of complexified AdS space, but this time it includes a piece of reversed-
signature Euclidean AdS glued onto a part of Euclidean AdS. In other words,
this geometry contains a point where the scale factor passes through zero. Once
perturbations are included, we expect them to blow up at this point. Therefore,
this saddle point can actually be treated as being singular. Meanwhile, when
α = −i the situation is reversed and the two geometries are exchanged. The
flow lines in Fig. 38 indicate that N− is always the dominant saddle point. Thus
we find that we must choose α = +i in order for the dominant geometry to be
regular and closed. This is in fact the same condition that we imposed in the
no-boundary case, with positive cosmological constant, in (173) (and it is the
choice that leads to stable perturbations). Thus we see that the momentum
condition is vindicated by the AdS calculation.

But there is more. The only integration contour for the lapse function that
completely projects out the singular saddle point is the combination of contours
C2 − C1, see Fig. 38. This combination in fact results in an Airy Bi function, of
the form [17]

Ψ(R3) ∝ Bi

[(
3π

4G~l

) 2
3 (
R2

3 + l2
)]

. (242)

In AdS one has to add counter terms to regulate the volume divergence (since
the volume contributes to the weighting of the wave function rather than to
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the phase, as in the dS case). When these terms are added, one finds complete
agreement with the CFT result, which is known [135, 136], and is also given
by an Airy function. Since this takes us away from the cosmological context of
interest, we refer to [137, 17] for detailed discussions.

For us, two things are worth noting: the first is that the required contour
of integration is neither Lorentzian nor Euclidean, but fully complex. The “av-
erage” of the two paths C2, −C1 is the Euclidean contour, but the individual
contributions are fully complex. Thus, even though the wave function is real,
we are forced to sum over complex metrics. The second point is that we can use
the AdS result and analytically continue it to positive values of the cosmological
constant. A priori, it is not clear that this is justified, as there is no understand-
ing what the intermediate complex values of the cosmological constant might
mean. However, mathematically we can simply perform the continuation to see
what we obtain. Reinstating Λ, we can use the following formula

Bi

[(
18π2

−~Λ

)2/3(
1− Λ

3
q1

)]
=
√

3Ai

[(
18π2

~Λ

)2/3(
1− Λ

3
q1

)]
, (243)

which shows that for positive Λ the wave function is better thought of as being
proportional to an Ai rather than a Bi function. When this calculation is done
in full [74], one recovers precisely the result (172).

Figure 39: This graph shows the geometry of the saddle points when Λ > 0. At small scale
factor q1 ≤ 3

Λ
they are Euclidean, but then turn complex for q1 >

3
Λ

, with increasingly large
Lorentzian dS sections. Figure reproduced from [74].

Let us mention a few more properties of the Airy function, which may clarify
some aspects of the calculation performed in section 3.6. When the final radius
of the universe is small, q1 <

3
Λ , then the saddle points are Euclidean (we are

still in the nucleation phase), and the flow lines are essentially identical to the
AdS case in Fig. 38. But to obtain the Ai result rather than Bi, the contour
must be different, and this time the required contour is C0, which picks up the
upper saddle point only. In the dS case, this is the geometry that is regular
and does not have the scale factor passing through zero, see also Fig. 39. Note
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that this means that at the nucleation of the universe, when q1 = 0, only the
vanishing geometry contributes and not the full sphere. In a sense this indicates
that non-trivial topologies do not contribute to the no-boundary wave function,
even though the wave function is non-zero when q1 = 0 – the latter property
was originally interpreted as suggesting that non-trivial topologies must be the
reason why Ψ(0) 6= 0 [2]. Here we see that an explicit calculation does not
support this interpretation, and a better explanation should be searched for.

Figure 40: Saddle points and steepest descent lines when q1 = 3
Λ

(left panel) and when q1 >
3
Λ

(right panel). A Stokes phenomenon occurs, and for large scale factors there are two saddle
points contributing to the path integral. This Stokes phenomenon is related to the appearance
of time. Figure reproduced from [74].

As the universe grows, the saddle points approach each other until they
coalesce at q1 = 3

Λ , see Fig. 40. At larger values of the final scale factor, q1 >
3
Λ ,

this degenerate saddle point splits into two saddles, which are now both relevant
to the path integral. Thus a Stokes phenomenon has occurred, and from having
a single Euclidean relevant saddle point we have gone to having two complex
geometries that are equally dominant. These complex saddle points contain a
Lorentzian section near the final boundary, that is to say time has emerged.
The wave function still remains real, as it is a sum over two complex conjugate
contributions, one from each complex saddle point. Thus, the overall wave
function remains timeless, yet the two complex saddles each contain time –
in a sense time flows in opposite directions in both saddles. It remains an
open question whether there could have been any significant interference effects
between these two saddle points in the very early stages of the universe.

More insights can be learned by including black holes in the AdS calculation.
The calculation is relatively lengthy and we will simply mention the results here
– for details see [17]. Euclidean Schwarzschild-AdS black holes are described by
the line element

ds2 =
dρ2(

ρ2

l2 + 1− 2M
ρ

) +

(
ρ2

l2
+ 1− 2M

ρ

)
dτ2 + ρ2dΩ2

2 , (244)

where M denotes the mass of the black hole. The horizon radius r+ is given by

the real root of ρ3

l2 + ρ − 2M = 0. One can then invert this relation to obtain
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the mass as a function of the horizon size

M =
1

2
r+

(
1 +

r2
+

l2

)
. (245)

The Euclidean manifold contains a conical singularity at ρ = r+ unless one
periodically identifies the τ coordinate, with period [138]

β =
4πl2r+

3r2
+ + l2

. (246)

AdS/CFT then relates the mass M in (245) to the expectation value of the
Hamiltonian of a conformal field theory in a thermal state at an inverse tem-
perature β [139].

The path integral can be performed by using a suitable choice of metric.
The appropriate variables were found in [76], and read

ds2 =
c(r)

b(r)
dτ2 − b(r)

c(r)
N2dr2 + b2(r)dΩ2

2 . (247)

There is a radial direction r with 0 ≤ r ≤ 1, and the spatial slices have the
topology S1 × S2. As “outer” boundary conditions, we must fix the size of the
spatial slices to be

b(r = 1) ≡ R2 ,

√
c(r = 1)

b(r = 1)
∆τ ≡ R1 . (248)

On the inner boundary one can impose a regularity condition ω (which is a
condition on ċ/(Nb)(r = 0)) that implements the periodicity (246).

The path integral/partition function then becomes

Z(R1, R2) =

∫
ω

∫
dNe

i
~ (SND(N)−SEAdS) , (249)

where the background Euclidean AdS action is subtracted to regulate the vol-
ume divergence. The path integral admits five saddle points, whose nature and
locations depend on the final boundary conditions [17]. An illustrative example
is given in Fig. 41. Two of the saddle points describe black holes, one large
and one small. There are three additional saddle points that describe Euclidean
geometries – these are subdominant, or irrelevant, depending on the contour of
integration. Their CFT counterpart is currently unknown. A possible integra-
tion contour for the lapse is shown in the figure. As one can see, it is again
necessarily complex, and to obtain a real wave function (as expected in the
CFT) one should sum this contour with its reflection across the imaginary lapse
axis. The large black hole is always found to dominate over the small black
hole, which agrees with thermodynamic expectations [138].

The partition function is interpreted as representing the canonical ensemble
at fixed temperature 1/β, given that the size of the outer boundary is kept fixed.
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N

Large b.h.

Small b.h.

Figure 41: Saddle points and steepest descent contours for R1 = 12, R2 = 10, l = 1. Arrows
indicate directions of descent. There are two singularities indicated by the small circles, one
at the origin and one on the positive imaginary axis. The dashed orange line is a possible
contour of integration, capturing the large black hole saddle, but also including the small
black hole and a further subdominant saddle point. Figure reproduced from [17].

One obtains

lnZ =
R2

T l2P

√1 +
R2

2

l2
− 2M

R2
−
√

1 +
R2

2

l2

+
πr2

+

l2P
. (250)

where lP =
√

G~
c3 is the Planck length. Using standard thermodynamic relations

[140] one can calculate the expectation value of the energy

〈E〉 = kBT
2 ∂ lnZ

∂T
=
kBR2

l2P

√1 +
R2

2

l2
−

√
1 +

R2
2

l2
− 2M

R2

 (251)

as well as the entropy

S = kB lnZ +
〈E〉
T

=
kB

l2P
πr2

+ =
kB

l2P

Area

4
. (252)

These relations satisfy the Quantum Statistical Relation [9]

−kBT lnZ = 〈E〉 − TS . (253)

Now comes a crucial point: if we had imposed a Dirichlet condition at r = 0,
instead of the regularity condition ω, then we would have obtained an additional
surface term of magnitude πr2

+ at the horizon r+, and the partition function
would have come out as

−kB lnZ ≈ 〈E〉
T
− S + S =

〈E〉
T

. (254)
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This would have corresponded more closely to the microcanonical ensemble, in
which one considers states at fixed energy. However, this does not agree with
the fact that we kept the size of the outer boundary fixed, which corresponds to
fixing the temperature. Hence, a proper physical interpretation of the AdS black
hole calculation requires the absence of a surface term on the inner boundary.
By direct analogy, this provides further support for the implementation of the
no-boundary wave function with a momentum condition.

To summarise, we have found that AdS path integrals share many common
features with the no-boundary proposal, in particular the absence of a surface
term and the ensuing regularity/momentum condition at the “no-boundary”
point; the sign of the momentum condition corresponding to the standard Wick
rotation of quantum field theory; a sum over all field values implementing the
momentum condition; and a sum over complex (that is to say neither Lorentzian
nor Euclidean) metrics.

A Holographic Definition
The previous discussion was rather conservative in that it tried to compare

no-boundary path integrals with similar integrals performed in the context of
AdS/CFT, and this showed that surprisingly similar features arise in the two
settings. However, there has also been a program, initiated by Hertog and Hartle
in [141] and developed in [142, 143, 144, 145, 146], to define the no-boundary
wave function more directly in terms of AdS/CFT (earlier ideas in this direction
include [147, 148, 149]). We will review this proposal here.

SP

fτ

τ

x

y

π/(2H)

yh

yf

a

h

d

Figure 42: Time contours used to represent the de Sitter instanton: the standard Euclidean-
plus-Lorentzian contour in red, and the “holographic” contour in green.
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To understand the proposal, we must return to the de Sitter saddle point
geometry, as described at the beginning of section 3.2. In terms of Euclidean
time τ and with Λ = 3H2, the dS solution is given by

ds2 = dτ2 +
1

H2
sin2(Hτ)dΩ2

3 . (255)

The usual contour used to represent this solution runs from the South Pole in
the Euclidean direction to the equator of the 4−sphere at τ = π/(2H), followed
by a segment in the Lorentzian direction defined by τ = π/(2H) + iy with
0 ≤ y ≤ yf along which the metric is that of Lorentzian dS

ds2 = −dy2 +
1

H2
cosh2(Hy)dΩ2

3 . (256)

The scale factor then reaches the final value b = 1
H cosh(Hyf ) at time τf =

π/(2H) + iyf , cf. also Fig. 42.
But the physical consequences are unchanged if we deform the time contour,

as long as no singularities are present. In particular, the value of the action of the
saddle point (which is the quantity that enters the semi-classical wave function)
does not change. Consider then the contour marked in green in Fig. 42, and
which we will refer to as the holographic contour. The first segment, labelled
“a”, starts at the South Pole in a Lorentzian direction, for τ = iy with 0 ≤ y ≤
yh. Along this contour the metric reads

ds2 = −dy2 − 1

H2
sinh2(Hy)dΩ2

3 . (257)

This is the metric of Euclidean AdS (EAdS) spacetime, with cosmological con-
stant −Λ, except that there is an overall minus sign in the metric, i.e. the
signature has been reversed. The scale factor reaches a final value that is imag-
inary, with magnitude bh = 1

H sinh(Hyh). The second segment, labelled “h”,
then interpolates horizontally between the EAdS region and the Lorentzian dS
region along τ = x + iyh with 0 ≤ x ≤ π

2H . The metric is fully complex along
this segment. Finally, on the last segment marked “d”, the metric is that of
Lorentzian dS spacetime, see Eq. (256). The final value of the scale factor is
b = 1

H cosh(Hyf ). It is larger than the magnitude of the scale factor bh reached
along the EAdS part of the contour.

It is straightforward to evaluate the action along the various segments. For
this we may use the action (9) with Ñ appropriately chosen along the different
segments, to find

Sa = −i4π
2

H2

[
1− cosh3(Hyh)

]
, (258)

Sh = −i4π
2

H2

[
cosh3(Hyh)− i sinh3(Hyh)

]
, (259)

Sd =
4π2

H2

[
sinh3(Hyh)− sinh3(Hyf )

]
. (260)
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The sum of these actions of course recovers the standard result for dS saddle
points, cf. Eq. (105),

Stotal = Sa + Sh + Sd =
4π2

H2

[
−i− sinh3(Hyf )

]
. (261)

But the holographic contour suggests a new interpretation based on the actions
along the different segments.

First consider the action along the first segment. It diverges in the large yh
limit, but since the geometry along this part of the contour is EAdS, this is in fact
expected. In AdS/CFT one adds counter terms to cancel the volume divergence.
These counter terms are constructed from geometrical quantities involving solely
the boundary metric. In 4 dimensions, these are given by [139, 150]

Sct(yh) = i

∫
d3y
√
−h
(

2H +
1

2H
R(3)

)
= i

4π2

H2

[
sinh3(Hyh) +

3

2
sinh(Hyh)

]
(262)

These cancel the volume divergence and keep the action finite in the yh → ∞
limit. In fact, if we define the regulated action via IregAdS(bh) ≡ 4π2

H2 , then the
result along the a contour can be rewritten as

Sa = −iIregAdS + Sct(yh) +O(e−Hyh) . (263)

Next note that the total weighting is given precisely by the regulated EAdS
weighting

Im(Stotal) = −IregAdS . (264)

Thus one can say that the requirement to reach the classical part d of the
contour regulates the divergence automatically, as the horizontal connecting
part precisely implements the counter terms, up to terms that vanish in the
large volume limit,

iIm(Sh) = −Sct(yh) +O(e−Hyh) . (265)

In the end, one can write the total action as

Stotal = −iIregAdS(bh) + iSct(yf ) +O(e−Hyf ) , (266)

where the counter terms are now evaluated at the final point τf = π
2H + iyf .

As seen from the final dS part of the contour, the counter terms in fact provide
the phase of the wave function, which is responsible for the classical evolution.
By contrast, the weighting, which remains constant as yf evolves to ever later
times, is determined by the EAdS part of the contour alone.

This rewriting of the action now suggests a new definition of the no-boundary
wave function. The idea is to use the EAdS part of the contour to relate the
wave function to the partition function of a dual quantum field theory. (It is
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not a conformal field theory as the boundary resides at a finite value). From
the Euclidean version of AdS/CFT one expects that in the supergravity limit

e−I
reg
AdS(bh,χh) = ZQFT (bh, χh) , (267)

where the correspondence can be extended to include matter fields, here indi-
cated in the form of a scalar field with boundary value χh. (The precise definition
of the dual quantum field theory depends on the matter content of the gravita-
tional theory, see [146] for an example.) Putting (266) and (267) together, we
arrive at the proposal for a holographic no-boundary wave function [141],

Ψ(b, bh, χ, χh, ζ) =
1

ZQFT (bh, χh, ζ)
e
i
~Sct(b,χ) . (268)

It is implicitly understood that the final EAdS scale factor bh and the final
dS scale factor b are related via the asymptotic equations of motion, at the
saddle point. When a scalar field is added, the contour is slightly shifted to
smaller Euclidean times, in analogy with the examples described in section 3.2.
However, the general analysis proceeds in complete analogy with that of pure
dS [141], and thus we will not spell it out here.

The definition (268) is semi-classical in nature, as it builds on the supergrav-
ity limit of the gravitational side of the theory, and moreover implicitly assumes
the validity of the saddle point equations of motion. Related to this is the fact
that the definition naturally includes a cut-off labelled ζ above. Consider for
instance linearised perturbations around the cosmological backgrounds, as de-
scribed in section 4.1. There we saw that these only behave classically when
they have been stretched to super-Hubble scales, the requirement on the wave
number is roughly l / Hb. This suggests that there is a length scale ζ ∼ 1/(Hb)
below which we simply do not treat the spacetime as classical. Put differ-
ently, the spacetime is coarse-grained on those scales. When the universe is still
small, the coarse-graining is significant. As it grows, ζ shrinks and more and
more modes have become classical. In the infinite b limit we obtain the most
fine-grained description. In the dual QFT, ζ becomes a high energy cut-off,
specifying the energy scale above which modes are to be integrated out. In this
way, the cosmological evolution becomes related to (inverse) renormalisation
group flow of the QFT, realising an idea suggested in [151, 152].

The main advantage of the holographic definition is that it provides a direct
implementation of the no-boundary proposal in string theory. It relies on the
expectation that the no-boundary condition is “universal”, applying generally in
gravitational theories, and being implied by dual quantum field theories. Several
nice properties emerge, in particular that the counter terms need not be put in
by hand, but rather arise from the requirement for classicality. Also, as we have
just described, cosmological evolution and renormalisation group flow become
linked.

Many open questions remain, which offer multiple avenues for further anal-
ysis. A general question is whether the proposal is not only conceptually at-
tractive, but whether the dual quantum field theory leads to new observational
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predictions for early universe cosmology. Another general question is whether
signature reversal of metrics is admissible in quantum gravity. We will discuss
this issue in a little more detail in section 5.4. Somewhat related to this is the
question of how to include generic matter fields. For vector fields, for example,
it seems that the sources on the QFT side must be complex [153, 144]. Is this
consistent from the QFT point of view? Also, the EAdS part of the gravita-
tional theory has the inverse potential to the potential in the dS part. Thus,
when the AdS potential contains additional fields with positive, stable poten-
tials, these turn into unstable directions in the cosmological part. Even if such
unstable modes are set to be zero at background level, do their fluctuations and
couplings to other fields cause instabilities [144]? Another question concerns the
fact that the EAdS and dS parts of the contour are separated (in the example
above, these were the a and d segments, respectively). Is this separation guar-
anteed, and unique? Should the wave function not depend solely on measurable
quantities, and thus not depend on the (fiducial) EAdS part of the contour?
This concern would be eliminated if one could show how to uniquely determine
the EAdS part (bh, χh) from the arguments (b, χ), in general. And how does
this proposal work for non-inflationary potentials, for example for ekpyrotic ones
for which, as we saw in section 3.4, no-boundary solutions also exist, yet are
markedly different? Opportunities for further research abound.

5.3. A Filter on the Landscape

String theory predicts the existence of additional spatial dimensions. In or-
der to be compatible with observations, these extra dimensions should either
be sufficiently small in volume [154], or be highly curved [155, 156], so that
gravity appears 4−dimensional at observationally accessible scales. The volume
and shape of the additional dimensions determine the features of the observ-
able universe, in particular the nature of fundamental forces and their coupling
constants. Since coupling constants have not been measured to vary over the
currently probed history of the universe [157], a further requirement is that the
additional spatial dimensions must be stable and essentially non-evolving over
the last 13.8 billion years. This leads to immediate questions of cosmological
relevance: what determines the size and shape of extra dimensions? How are
compactified spacetimes created in the first place? Can the compactification
change over time?

Added to these questions is the obvious question of whether suitable com-
pactifications, giving rise both to realistic particle physics and cosmological evo-
lution, exist. This turns out to be a far harder question than initially thought.
Even though myriads of solutions of string theory were conjectured [158], it
turned out that constructing concrete examples is severely hampered by gen-
eral quantum gravitational consistency conditions, known as swampland con-
straints [159]. In particular, it is thought to be impossible to find de Sitter
solutions in perturbative string theory [119]. A more realistic goal is to search
for inflationary potentials, but even those are hard to find [120, 160] (and like-
wise, ekpyrotic potentials may be just as difficult to construct [127]). The most

106



promising examples to date require a careful balancing of perturbative and non-
perturbative effects [126], with many approximations that remain debated (for
recent criticism, see e.g. [161]).

Still, it seems plausible that non-perturbative string theory contains solu-
tions that undergo accelerated expansion (in fact, it is necessary if string theory
is to be compatible with the current era of dark energy domination that we find
ourselves in). We will proceed on the assumption that this is the case. Then, in
these solutions, the shape and volume of the extra dimensions will be described
by many so-called moduli fields, which can be thought of as the parameters of
the solutions. These must be stabilised, which can be achieved for example with
the inclusion of non-trivial flux fields in the internal dimensions [162, 163].

If we then ask which compactifications are preferred, we are really asking
which values of the moduli fields are preferred. In turn, this corresponds to
searching for a probability distribution over the ingredients of the compacti-
fications, i.e. over fluxes, branes, orientifolds etc. In this section, we would
like to analyse whether the no-boundary wave function could provide precisely
such a probability distribution. In other words, we are asking whether the no-
boundary wave function can act as a vacuum selection principle, determining
which kinds of universes are likely to be created from nothing, and which are
unlikely [39, 164]. In addition, we must keep in mind the possibility of tran-
sitions within an existing universe, to another vacuum/compactification, e.g.
via nucleation of membranes [165]. This certainly seems possible, but is always
suppressed since it is a non-perturbative process. We will restrict our attention
here purely to the creation phase of space, time and matter.

In fact, since not much detailed knowledge exists about the landscape of
realistic string theory solutions, all we can do is study a toy model [166]. Still,
this serves to illustrate how a probability distribution over compactifications
might ultimately arise.

3.0 3.5 4.0 4.5 5.0 5.5 6.0
χ

0.002
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0.008

0.010

Figure 43: The potential (272) for α̃ = 1 and n4 = 13. Left panel: Two-field potential, with
V = 0 indicated in blue for reference. Right panel: A slice of the potential at φ = 6. One can
see that there is the possibility for χ to be stabilised at χmin ≈ 2.8. Figures reproduced from
[166].

We will use a toy model that is defined in 8 dimensions, and includes a non-
perturbative R4 correction term [167, 168]. This term leads to an inflationary
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potential, very much in analogy to the Starobinsky model in 4 dimensions [169].
Moreover, the model includes 4−form flux. Both features are known to arise in
11−dimensional supergravity [170, 130]. The action is given by

S =
1

2

∫
d8x
√
−ĝ
(
R̂+ αR̂4 − 1

2 · 4!
e2F 2

(4)

)
, (269)

where e is a coupling constant. We then perform two steps: the first is to
redefine the metric via a conformal transformation in order to go to Einstein

frame. Specifically, we define ĝµν ≡ e
2√
42
φ
gµν with e

√
6
7φ = 1 + 4αR̂3. The

second is to dimensionally reduce on a 4−sphere, with 4−form flux wrapping
the sphere, in order to land in 4 spacetime dimensions,

ds2
8 = e

− 2√
3
χ
ds2

4 + e
1√
3
χ
dΩ2

4 , F(4) = 2n4vol(S4) . (270)

The resulting theory in 4 dimensions contains gravity with 2 scalars and a
potential,

S =
16π4

3

∫
dt

(
−3

aȧ2

N
+

a3

2N

(
φ̇2 + χ̇2

)
+ 3Na−Na3V (φ, χ)

)
+

[
3
a2ȧ

N
− a3χ̇√

6N

]
surface

, (271)

V (φ, χ) = α̃
(

1− e−
√

6
7φ
) 4

3

e
− 2√

3
χ

+ n2
4e
−2
√

3χ − 6e−
√

3χ . (272)

where α̃ is a constant. The surface term on the final boundary is removed by
the inclusion of a GHY boundary term. On the initial boundary, we do not add
a surface term, as discussed several times in this review. However, it vanishes
in any case when the saddle point geometry is compact, a(t = 0) = 0. In the
above, it is important that the flux on the 4−sphere is quantised [171], and thus
n4 is proportional to an integer,

n4 =
2π

2e vol(S4)
z =

3

8πe
z , z ∈ Z . (273)

The shape of the potential is shown in Fig. 43 for an interesting example of
parameter values. One can see that it contains a valley at χ ≈ 2.8, where χ and
thus the size of the 4−sphere can be stabilised. In the orthogonal φ direction,
inflation can occur. The model is not fully realistic, as the inflationary phase
eventually ends when the potential drops to negative values. However it is
realistic enough to address the nucleation of universes.

As we saw in section 3.2, it is imperative that a dynamical attractor exists
in order for no-boundary solutions to exist. Here the inflationary valley can
play precisely this role. Thus no-boundary solutions are expected to exist, with
χ stabilised and φ slowly rolling down the valley floor. Using the numerical
techniques described in section 3.3, this expectation is borne out – an example
is shown in Fig. 44, with the field values in Fig. 45. It has all the usual no-
boundary characteristics, with the fields reaching a quasi-Lorentzian evolution
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Figure 44: An example of a no-boundary instanton in the potential (272), with χ stabilised
on the valley floor at χ ≈ 2.8. The dark lines show the locus of real a and φ values, and the
red dot indicates the final time τ = 53.185 + 83.538i, at which the fields reach the designated
real values a1 = 200, φ1 = 6. For this, the scalar field value has been tuned at the South Pole
to the value φSP = 6.1104− 0.09991i. Figures reproduced from [166].
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Figure 45: Field evolutions along the dashed line path indicated in Fig. 44. The real parts
are shown in blue, and the imaginary parts (magnified for better visibility) in orange. Figures
reproduced from [166].

at late times. Closely related solutions, with inflation lasting more or less long,
can then be constructed with the same techniques [166]. In this potential, there
also exist no-boundary solutions at large χ, cf. the inflationary slope shown in
the right panel of Fig. 43. However, for these solutions the sphere size modulus
χ rolls to large values, and consequently the solutions decompactify and are not
of phenomenological relevance.

What is interesting about this model is not just that inflationary no-boundary
instantons, with stable internal dimensions, exist at all. The point is that they
only exist for a range of values of the flux parameter n4. When n4 is larger, the
inflationary valley floor rises until the valley actually disappears, and only de-
compactifying solutions are left. And when n4 is too small, the valley floor sinks
to negative values of the potential, eliminating the possibility of an inflationary
solution. In the present example, the viable range is found to be [166]

11.7 / n4 / 15.1 (α̃ = 1) . (274)

Note that the no-boundary solutions that exist in this range have the property
that the 4−sphere is present from the outset, i.e. the universe nucleates as a
product of a fixed 4−sphere with a geometry that starts at zero size and then
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grows into a Lorentzian quasi-dS spacetime. (This is a higher-dimensional ana-
logue of the Nariai instanton described in section 3.7.) As usual, no-boundary
solutions that exist for lower potential values come out as preferred. This means
that in the present toy model, the no-boundary wave function implies a proba-
bility distribution of initial conditions, where the initial conditions include the
parameters of the 8−dimensional compactification [166]. This translates into a
probability distribution over the fluxes, as sketched in Fig. 46.

No-boundary solution
&

stable internal 
dimensions

Negative potential
No solution

No-boundary solution,
but decompactifying 

extra dimensions

Probability

Flux (quantised)

Figure 46: The no-boundary wave function implies a probability distribution over compact-
ifications, linked here to a probability distribution over fluxes. In this example [166], no-
boundary instantons with stable internal dimensions are only possible for a narrow range of
fluxes. Figure reproduced from [166].

In more realistic compactifications, we expect many more parameters to be
present. Once a better understanding of realistic compactifications becomes
available, including both particle physics and cosmological aspects, it will be in-
teresting to see how these different facets of the solutions influence each other.
A crucial question will be whether universes like ours come out as being rather
likely or unlikely. In particular, one will be able to investigate which kinds of
effective lower-dimensional laws of physics are likely, and which not. Only those
tied to a universe that can actually come into existence by virtue of its cosmo-
logical dynamics stand a chance of being assigned a high probability. In this
way, as one can already see in embryonic form in the example described above,
the micro and macro properties of the universe become intimately linked, and
the no-boundary proposal can act as a filter on the possible higher-dimensional
worlds.

5.4. Allowable Metrics

Throughout this review, we have seen that the no-boundary proposal is
intimately connected with complex metrics. The usefulness of complex metrics
became appreciated through the study of complex black hole metrics, which
provide the quickest way of deriving (and to some extent, understanding) the
thermodynamic properties of black holes [9]. However, not all complexified
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metrics make sense. Witten gives the example of zero-action wormholes, which
would render tunnelling via wormholes just as likely as classical evolution, if they
were permitted [84]10. Hence, there must be some kind of criterion that tells us
which complex metrics should be included, and which not. This is important,
as in our examples in sections 3.2, 3.4 and 3.6 in particular, we saw that it is
not only the saddle points that are complex, but the integration contours are
typically also over complex metrics. Thus the definition of gravitational path
integrals is potentially sensitive to any such allowability criterion.

Louko and Sorkin analysed this question in a simplified two-dimensional
context in [172], allowing complex metrics only when they admit a well-defined
(that is to say, convergent) scalar field theory on them. In a similar vein,
though independently, Kontsevich and Segal proposed to define quantum field
theories on fixed complex backgrounds under the condition that the complex
backgrounds allow for well-defined theories of arbitrary p−form matter fields
[173]. The reason for highlighting p−forms of arbitrary rank is that these lead
to local covariant stress-energy tensors [174], and as such provide a rather gen-
eral description of matter suitable for local quantum field theories. Let us briefly
review the criterion here: the idea is to require a path integral over real val-
ued p−form matter fields, with field strengths Fj1j2···jp+1 , to converge. It is
enough to focus on the kinetic terms, which already provide all of the necessary
conditions. Thus, we require

|e i~S | < 1 or |e− 1
~ IE | < 1 implying (275)

Re
[√
ggj1k1 · · · gjp+1kp+1Fj1···jp+1

Fk1···kp+1

]
> 0 . (276)

Pointwise, one can always write the metric in diagonal form

gjk = δjkλj (277)

where the λj are now complex numbers. As an example, for p = 0 and in 4
dimensions, the condition (276) becomes

−π < Arg(λ1) +Arg(λ2) +Arg(λ3) +Arg(λ4) < π . (278)

For higher p, some of the signs are flipped. Writing these conditions out for all
p, i.e. for all possible sign combinations, leads to the concise condition [173]

Σ ≡
∑
j

|Arg(λj)| < π , (279)

which must hold everywhere in spacetime.

10These are easy to construct. Take flat space in polar coordinates ds2 = dR2 + R2dΩ2
3

and promote R→ R(u) for a real parameter u. Now if R(u) interpolates between asymptotic
regions R → ±∞ while avoiding R = 0 by passing around the origin in the complexified R
plane, then this solution interpolates between two asymptotically flat regions of spacetime
and describes a complex wormhole in between. But since the metric is simply obtained by a
coordinate change from flat space, the Ricci curvature remains zero and so does the action.
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When dynamical gravity is included, it is not clear that this is the correct
condition. However, Witten observed that it indeed eliminates known patho-
logical metrics, while allowing many useful ones [84]. Thus, it makes sense to
investigate the consequences that this criterion would have on no-boundary path
integrals. This question was studied in some detail in [84, 175, 176, 85] and we
will review the main results below.

First note that standard Lorentzian metrics saturate the bound (279) (they
have Σ = π), and thus reside right on the edge of the allowed domain of metrics.
This is reasonable, as Lorentzian path integrals are only conditionally conver-
gent, and the bound expresses the condition for absolute convergence. Any
Lorentzian metric can be easily regulated to satisfy the bound, e.g. for RW
metrics we may write

ds2 = −(1∓ iε)dt2 + a(t)2dΩ2 , (280)

for a small real number ε. One can then imagine taking the limit ε → 0 at the
end of calculations. However, it is crucial that ε must not change sign. Thus,
in a sense, the bound (279) already divides the space of metrics into two.
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Figure 47: Left Panel: A no-boundary saddle point solution, interpolating between an initial
hypersurface H0 (South Pole) and a final one H1, via two different paths in the complex time
plane. The paths are described in the main text. Right panel: the sum of arguments Σ, as
defined in (279), along the two time contours. Figures reproduced from [175].

What can we say about no-boundary geometries? The saddle points in
section 3.6 were obtained in a gauge where the lapse is constant, cf. Eq. (166).
These may be transformed to physical time by defining N√

qdt ≡ dT, which leads
to √

Λ

3
T (t) = 2i arsinh

(√
ΛNt

6i

)
− π

2
. (281)

In Fig. 47 the resulting path in the complex T plane is plotted in blue in the
left panel. In the right panel, we plot the sum Σ of absolute values of arguments
of the metric components, as defined in (279). What may come as a surprise
is that the bound is seen to be violated. Thus, in the constant lapse gauge,
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the saddle points appear to violate the allowability bound (279). However, as
we discussed previously, the action, and thus also the physical consequences,
are unchanged when the path is deformed. In fact, the original Euclidean-
plus-Lorentzian contour gives Σ = 0 along the Euclidean segment, and Σ = π
along the Lorentzian one, and thus implies that no-boundary saddle points
actually saturate the allowability bound. But one may worry that this contour
is non-smooth. Let us therefore consider a smooth family of paths, obtained by
specifying T = θ(t) with

θ(t) = −π
2

(1− t)n + T (1) tn , 0 ≤ t ≤ 1 . (282)

In Fig. 47 an example with n = 3 is plotted in orange. There we can see that
now the bound is indeed satisfied, and saturated only at the end point.
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Figure 48: Allowable metrics (in light blue) in the plane of the complex lapse function;
disallowed metrics are shown in red. Left panel: with an initial Neumann condition. Right
panel: with an initial Dirichlet condition. The saddle points and steepest descent contours
are also shown. Here Λ = 3, q1 = 10. Figures reproduced from [176].

The previous example should make it clear that it is in general difficult to
assess whether a metric is allowable or not, if we permit such changes of time
path. Techniques were developed in [176] to deal with this situation, and we
refer to this paper for details. The results for no-boundary integrals, both with
a Neumann initial condition and for a Dirichlet initial condition, are shown in
Fig. 48. Both cases share the characteristic that the real lapse line constitutes
a boundary that cannot be traversed. And in both cases, the steepest descent
contours run into regions that are not allowed. This means that, if this allowa-
bility criterion is strictly enforced, then we can no longer define the sums over
metrics along thimbles. It is unclear at present what this implies.

One interesting feature in the Neumann case is that, as seen in the plane
of the lapse function, the saddle points reside right at the edge of the allow-
able domain. This can be understood analytically: for the path integral with
Neumann initial conditions, the initial size of the geometries is not fixed. In
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fact, this initial size can become complex off-shell, and by itself it can cause the
allowability bound to be violated. Indeed, near the saddle point let us write
N = N± + ∆, and work to linear order in ∆. Then from (164) we obtain

q(0) ≈ ±2∆(
Λ

3
q1 − 1)1/2 , (283)

where we assume that q1 > 3
Λ . This implies that for N− we get the condi-

tion 3|Arg(∆)| < π. Consequently, starting from the saddle point, the allowed
directions are limited to −π3 < Arg(∆) < π

3 . For N+ one analogously finds
2π
3 < Arg(∆) < 4π

3 . Hence the saddle points, even though they are fully com-
plex, are at the edge of the allowed domain, and thus the steepest descent
contours are cut in “half” by the allowability criterion, with only the lower
portion remaining.

For the case with Dirichlet initial conditions, the fact that the upper half
plane gets separated from the lower half plane of the lapse function may be
interesting. As we saw in section 4.1, the unstable saddle points are in the
upper half plane, while the stable ones are in the lower half plane. Therefore, if
one is not allowed to cross the real lapse line, then a definition of the integral in
terms of exclusively stable metrics becomes a possibility. This is an idea worth
pursuing.

The bound (279) was derived with the assumption that the matter fields take
real values. However, we saw in sections 3.2 and 3.4 that when a scalar field is
added, it is typically required to take complex values at the South Pole. Might
this lead to a conflict? It has been observed in [85] that there are situations in
which it may be natural to allow for complex scalars. In particular, when there
are additional dimensions that are compactified, then the lower-dimensional
theory contains scalar fields (moduli) that arise from the higher-dimensional
metric. We saw an example in section 5.3. In this case, if the bound (279)
is imposed in the higher-dimensional parent theory, then it is clear that it will
allow for the lower-dimensional scalars to be complex, to a certain extent. What
one finds is that the imaginary part of the scalar is bounded. The precise
bound depends on the situation; we will just give one example, focusing on
the scalar field φ that determines the volume of the internal manifold. The
compactification ansatz reads [177]

gMNdx
MdxN = e2aφgµνdx

µdxν + e2bφgijdx
idxj , (284)

with Latin indices running over the (D−d)−dimensional internal manifold, and
Greek indices over the d-dimensional external manifold. To obtain a canonically
normalised scalar, we must choose

a = −D − d
d− 2

b , b =

√
d− 2

(D − d)(D − 2)
. (285)

We can immediately see from (284) that it will be the imaginary part of φ,
rather than its argument, that will contribute to Σ.
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Now, as an example, if we look near the South Pole of putative no-boundary
solutions, and assume that gµν , gij are Euclidean there, then we get

Σ =

[
d

√
D − d

(D − 2)(d− 2)
+

√
(D − d)(d− 2)

D − 2

]
2|Im (φ)| . (286)

For instance, if we compactify from D down to 4 dimensions, we get the bound

6
√

2

√
D − 4

D − 2
|Im (φ)| < π , or |Im (φ)| <

√
D − 2

D − 4

π

6
√

2
≈ π

10
. (287)

Meanwhile, no-boundary solutions require (see section 3.2 and [52])

Im(φSP ) ≈ −V,φ
V

π

2
. (288)

which then translates into
|V,φ|
V / 1

5 . Hence only sufficiently flat potentials
would allow for no-boundary solutions in this example [85]. Note that we have
only analysed what happens near the South Pole in this example, the full no-
boundary geometry might very well lead to a stronger condition on the potential.
This is for future work.

What the example shows is that the requirements from allowability criteria
may well turn out to be highly non-trivial, and it is worthwhile working them out
in full. Since this affects the existence of no-boundary solutions, it may affect
probabilities and hence have consequences regarding observational predictions.

6. Discussion and Open Questions

According to our current understanding, the fundamental principles for phys-
ical laws are the principles of quantum theory. When they are applied to the
universe as a whole, it follows that the universe must admit a quantum state.
If we knew this state, we could infer probabilities for different initial condi-
tions and for subsequent evolutions of the universe. The no-boundary proposal
provides a prescription for calculating this quantum state.

The prescription combines quantum theory, gravity, and what one may term
a containment principle, namely the idea that the universe is entirely self-
contained in space and time. When formulated in terms of gravitational path
integrals, the idea is that the dominant geometries, i.e. the saddle points of
the path integral, consist of closed and regular spacetimes, with regular mat-
ter configurations on them, admitting as their only boundary the present-day
configuration of the universe. In other words, there is no boundary to the past
at which “outside” conditions might come into relevance. This may be inter-
preted as describing the emergence of the universe out of nothing – or, perhaps,
one should rather say that it describes the existence of the universe in a self-
consistent manner.
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The no-boundary condition appears as a very natural, almost inevitable,
condition to put on path integrals. This is also confirmed by studies of anal-
ogous integrals in a non-cosmological, asymptotically AdS, setting. That said,
the precise mathematical implementation of the no-boundary condition can be
tricky and has so far been studied only on a case by case basis, and only in simple
minisuperspace models. These studies have suggested that instead of summing
over closed metrics, as initially advocated by Hartle and Hawking, it might be
more appropriate to impose a regularity condition on the geometries that are
summed over. However, a general prescription is still lacking, and this is one of
the outstanding open questions related to the no-boundary wave function.

But before discussing open issues, let us briefly recap what the no-boundary
wave function already manages to explain (a fuller discussion was already pre-
sented in section 4.3). The most important feature of the no-boundary wave
function is that it can explain the emergence of space and time, and how space-
time becomes classical. In doing so, the big bang singularity is automatically
avoided, as only initially regular geometries enter the path integral. A further
consequence is that matter fields are predicted to have been in their ground
states at the nucleation of the universe. All these features explain aspects of
our universe that, without clear justification, were simply assumed to hold. But
according to the no-boundary wave function, not every type of universe can
emerge from nothing. In fact, a dynamical attractor is required in order for
no-boundary solutions to exist. Two such attractors are currently known, infla-
tion and ekpyrosis, and we discussed the corresponding no-boundary solutions
in sections 3.2 and 3.4. The requirement of an attractor shows that the no-
boundary proposal also leads to vacuum selection, by strongly restricting the
possible early universe dynamics.

What is currently less well understood are the precise predictions for cosmo-
logical observables. Naively, the no-boundary measure favors short inflationary
phases at low values of the potential, and long ekpyrotic phases. However, as
discussed in section 4.2, these probabilities have so far only been inferred from
highly simplified models, and may still be subject to revision. Also, in the ekpy-
rotic case, the transition from contraction to expansion remains ill understood
at the quantum gravitational level. These are certainly important topics for
future work.

The remarks above lead us to the many opportunities for further research
that the no-boundary framework brings into the open. Let us begin with more
mathematical questions. A basic one is whether a general prescription may be
found that would determine the integration contours over fields, in particular
the integrations over the lapse function. As we saw in section 5.4, if there
exist physical restrictions on the complex metrics that are summed over, then
this will have important consequences for the possible contours of integration.
A related open question is which kinds of singularities ought to be allowed
in the off-shell geometries, and whether or not such singularities play a role.
An evident long-term goal is to extend the treatment of path integrals beyond
minisuperspace. This is a topic that unfortunately has not seen much progress
over several decades.
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And then there is a host of questions that are more conceptual in nature. For
example, what is the meaning of the fact that the no-boundary wave function
does not vanish at zero size? The simplest non-trivial topologies do not seem
to contribute to the wave function (see section 5.2), thus reinforcing the puzzle.
Also, saddle points typically come in pairs, which may be thought of as time re-
verses of each other. Can there be interesting interference effects between these
saddles when the universe is still very small? And can the definition of proba-
bilities be refined? So far, it is based on mathematical/WKB properties of the
wave function. But can it be made more physical, highlighting the importance
of interactions between sub-systems in the universe? Very generally, what is the
meaning of probability when we only get to observe a single universe? Another
very general question is whether there can be any other dynamical attractors,
besides inflation and ekpyrosis, that allow for no-boundary solutions. If so, then
this might yet again significantly affect our thinking about the early universe.

A final set of questions concerns the interplay of the no-boundary proposal
and string theory. For instance, can the effects of winding modes be included?
How does one describe no-boundary solutions containing branes and orien-
tifolds? Can one construct models with at least semi-realistic particle physics
and cosmological dynamics, to see how these features affect each other – in par-
ticular, it would be interesting to see which vacua receive high probability and
which are excluded. Can a bounce be included in a consistent manner? And
two very general questions to end: first, is the holographic definition, described
in section 5.2, correct? And second, if the cobordism conjecture (which states
that all possible asymptotic field configurations can be related by interpolating
spacetimes [178]) is correct, then how does it affect the no-boundary frame-
work? At least naively, it would seem to imply the existence of no-boundary
saddles with arbitrarily large numbers of transitions between various cosmologi-
cal epochs. Will the simple examples that have been studied so far end up being
good approximations to the preferred route to our present day conditions?

One can look forward to the insights that will be gained from pursuing these
questions.
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Appendix A. Canonical Quantisation

In the main text, we concentrated on minisuperspace models where spatial
isotropy and homogeneity is assumed from the outset. This was the most rel-
evant example, but some readers may be interested in seeing the more general
framework, where such a symmetry reduction is not made. We will focus on
the gravitational part of the action, with the matter content being left implicit.
Thus the action is taken to be (setting 8πG = 1)

S =
1

2

[∫
M

d4x
√
−g(R− 2Λ) + Sboundary

]
+ Smatter (A.1)

The choice of boundary term determines which boundary conditions can be con-
sistently imposed. It is then useful to write the metric in (1 + 3) decomposition
[34],

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (A.2)

whereN is the lapse andNi the shift. A useful quantity is the extrinsic curvature

Kij =
1

2N

[
−∂hij

∂t
+ 2D(iNj)

]
, (A.3)

where Di is the covariant derivative on the three-surface. The aim is to rewrite
the action in terms of N,N i, hij and Kij . This can be done using the Gauss-
Codazzi relation between 4-curvature and 3-curvature, yielding

S =
1

2

∫
d3x dt N

√
h
[
KijK

ij −K2 + 3R− 2Λ
]

+ Smatter . (A.4)

The Hamiltonian form of the action is given by [34]

S =

∫
d3x dt

[
ḣijπ

ij −NH−N iHi
]

(A.5)

where πij = δL
δḣij

= −
√
h

2

(
Kij − hijK

)
are the momenta conjugate to hij .

The Hamiltonian is a sum of constraints, with the lapse N and shift N i being
Lagrange multipliers. There is the momentum constraint,

Hi = −2Djπ
ij +Himatter = 0 , (A.6)

and the Hamiltonian constraint

H = 2Gijklπ
ijπkl − 1

2

√
h(3R− 2Λ) +Hmatter = 0 , (A.7)

where Gijkl is the DeWitt metric [179]

Gijkl =
1

2
√
h

(hikhjl + hilhjk − hijhkl) . (A.8)
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These constraints are essentially equivalent to the 0i and 00 components of the
classical Einstein equations. The constraints play a central role in the canonical
quantisation procedure.

Canonical quantisation amounts to imposing the constraints as operator
equations, in the field representation with the substitution

πij → −i δ

δhij
(A.9)

and similarly for the matter momenta. This results in four equations: the
momentum constraint

HiΨ = 2iDj
δΨ

δhij
+HimatterΨ = 0 , (A.10)

and the Wheeler-DeWitt equation [179, 180]

HΨ(hij ,Φmatter) =

[
−Gijkl

δ

δhij

δ

δhkl
−
√
h(3R− 2Λ) +Hmatter

]
Ψ = 0 .

(A.11)

We should point out that there is an ambiguity in factor ordering, as the precise
placement of the functional derivatives is not fixed. In explicit examples, sensible
choices can often be found, e.g. by requiring invariance under field redefinitions
[16].

Since the constraints are so central, it is worthwhile investigating their mean-
ing. To understand the momentum constraint better [181], consider a change
of coordinates on the three-surface, xi → xi − ξi. Then

Ψ[hij +D(iξj)] = Ψ[hij ] +

∫
d3x D(iξj)

δΨ

δhij
(A.12)

Integrating by parts in the last term, and dropping the boundary term (assuming
the three-manifold is compact), one finds that the change in Ψ is given by

δΨ = −
∫

d3x ξjDi

(
δΨ

δhij

)
= − 1

2i

∫
d3x ξiHiΨ (A.13)

This will be zero when the momentum constraint is imposed. Hence it expresses
spatial diffeomorphism invariance.

The Wheeler-DeWitt equation (A.11), due to its association with the lapse
function, is similarly related to time reparameterisation invariance. It combines
spacetime geometry and matter into a single quantum equation, as expected in
quantum gravity. One variable stands out: the scale factor (or size) of the uni-
verse, given by the appropriate power of det(hij): it enters with a negative sign
in the DeWitt metric, as we also saw in explicit examples, see e.g. (9). Other
metric deformations, as well as matter fields, enter with a positive sign. Note
that the Wheeler-DeWitt equation does not contain any explicit dependence
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on coordinates, in particular on time. This is different from ordinary quantum
mechanics, where time plays a privileged role. It makes sense here, since we do
not measure time directly, but rather correlations between field configurations
(e.g. the arrow on the watch points towards the 12 and the sun is high in the
sky).

The Wheeler-DeWitt equation should be solved at every point in spacetime.
For general metrics this is technically impossible. The general configuration
space consists of spatial metrics and matter configurations, up to diffeomor-
phisms (this is called superspace). One then typically restricts to homogeneous
spatial metrics, containing just a few time-dependent functions and fixed spatial
dependence. This is known as minisuperspace. One drawback is that one has
set all other metric deformations to zero, including their momenta (which is in
conflict with the uncertainty principle). However, we know that our universe is
rather homogeneous, hence one may hope to obtain a self-consistent “approxi-
mation”. In practice one has to see if perturbations around the minisuperspace
geometries are suppressed, and above we found that for no-boundary saddle
points this was always the case.

Appendix B. Gravitational Path Integrals

When gravity is included, the path integral includes a sum over geometries.
Defining this requires some care, because of diffeomorphism invariance. One has
to make sure not to overcount, as geometries might be related to each other via
changes of coordinates. Hence it is important to properly fix the gauge. The
general procedure was first worked out by Teitelboim in [182, 183], and applied
to minisuperspace models by Halliwell in [16]. Here we will outline how this is
done; additional details can be found in the original papers.

For simplicity, we will consider a minisuperspace action with a single degree
of freedom, namely the scale factor a of the universe (and its conjugate momen-
tum p). Models with more degrees of freedom can be dealt with analogously.
The action is thus given by

S =

∫ 1

0

dt (pȧ−NH) (B.1)

with the Hamiltonian H = 1
2p

2 + U(a). Classically, the Hamiltonian would
vanish. The metric is of the form ds2 = −N(t)2dt2+a(t)2dΩ2

3, and overcounting
may arise due to time reparameterisation invariance. Hence we must fix a gauge.
This gauge must be chosen such that any history can be deformed into one that
satisfies the gauge condition, and the gauge must be fixed completely. An
appropriate choice is [182]

Ṅ = f(a, p,N) , (B.2)

where f is an arbitrary function of the fields, but not of their time derivatives.
Such a gauge choice can be implemented with a Lagrange multiplier Π(t), by
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adding the following term to the action

Sgf =

∫ 1

0

dtΠ
(
Ṅ − f

)
. (B.3)

This term fixes the gauge, but this is not enough yet. We also have to make
sure that the path integral is actually independent of the choice of gauge fixing
function f. This at first seems rather tricky to establish, but can be achieved
using the formalism developed by Batalin, Fradkin and Vilkovisky [184, 185]
(based on [186]). The idea is first to add ghost fields. More specifically, one
adds the anticommuting fields C, C̄ and their conjugate momenta P, P̄ . Then one
uses the extended action to define a new symmetry, a so-called BRS symmetry,
which will help establish invariance under changes of gauge. Some educated
guesses are required at this step, see e.g. [16]. It turns out that if the action for
the ghosts is taken to be

Sgh =

∫ 1

0

dt

(
P̄ Ċ + C̄Ṗ − P̄P + C{f,H}C̄ + P

∂f

∂N
C̄

)
, (B.4)

where {f,H} = ∂f
∂a

∂H
∂p −

∂f
∂p

∂H
∂a is the Poisson bracket, then the total action is

invariant under a BRS transformation with anticommuting parameter λ,

δa = λC
∂H

∂p
, δp = −λC ∂H

∂a
, δN = λP , δΠ = 0 ,

δC = 0 , δP = 0 , δC̄ = −λΠ , δP̄ = −λH , (B.5)

subject to the boundary conditions that Π, C and C̄ vanish at the end points
t = 0, 1. Now the path integral is defined by using the Liouville measure and
integrating over the total action, including the gauge fixing and ghost terms,

Ψ =

∫
DaDpDNDΠDCDPDC̄DP̄ e i~ (S+Sgf+Sgh) . (B.6)

The punch line now is that this path integral is indeed independent of the choice
of gauge fixing function f. This can be shown explicitly by performing a BRS
transformation with the special choice of parameter

λ =
i

~

∫ 1

0

dt(f − f̃) . (B.7)

The total action is evidently invariant, since the transformations (B.5) were
chosen specifically for this to be the case for any λ. And when calculating the
(super-)Jacobian J of this transformation, one obtains a factor [187]

J = e
i
~
∫

dt
(
C{f̃−f,H}C̄+P

∂(f̃−f)
∂N C̄

)
, (B.8)

which has the effect of replacing f by f̃ in the ghost action (B.4). Thus the
path integral is indeed independent of the choice of f. Note that this greatly

121



simplifies the analysis. Not only can one perform the path integral with N fixed
for metrics of the form (8), but also for more involved choices such as the useful
version in (11).

For now, we may make use of this freedom and choose f = 0 to further
evaluate the integrals. With this choice, the ghost integrals factorise out, and
one can see immediately that they must yield a purely numerical factor, as they
have become independent of the other fields. The integrals over anti-commuting
variables can be evaluated straightforwardly [16], resulting in a factor of unity∫

DCDPDC̄DP̄ e
i
~
∫ 1
0

dt(P̄ Ċ+C̄Ṗ−P̄P) = e[C̄(1)−C̄(0))(C(1)−C(0)] = 1 , (B.9)

where one has to make use of the boundary conditions that C(0) = C(1) =
C̄(0) = C̄(1) = 0. Meanwhile, the integral over the lapse and its conjugate
momentum also simplifies drastically,∫

DNDΠ e
i
~
∫ 1
0

dtṄΠ =

∫
DNδ(N) =

∫
dN , (B.10)

that is to say, the path integral over the lapse reduces to an ordinary integral
over N. This is a huge simplification, which is at the root of the tractability of
minisuperspace models. In the end, we are therefore left with the expression

Ψ =

∫
dNDaDp e i~

∫ 1
0

dt(pȧ−NH) . (B.11)

One can of course also switch from this phase space integral to one purely in
field space, as is used in the main text.

Appendix C. Picard-Lefschetz theory

At various instances in this review, we have to evaluate an oscillating integral
(usually for the lapse), of the form

I =

∫
C

dx e
i
~S[x] . (C.1)

We take S[x] to be a real function, ~ is a real parameter and C is the domain
of integration, typically the positive real line, or the full real line. Such an
integral is only conditionally convergent, as the integrand has modulus 1 ev-
erywhere, in particular there are no regions where the modulus drops off and
where convergence could be guaranteed. Still, intuitively one might guess that
the oscillations lead to cancellations, and that many integrals of this type might
in fact lead to sensible results.

The problem with such integrals is best illustrated by an example using
a discrete version of an oscillating integral, e.g. the series

∑∞
n=0(−1)n. The

value of such a sum depends on how we define the order of summation, e.g.
[1 + (−1)] + [1 + (−1)] + · · · = 0, or 1 + [−1 + 1] + [−1 + 1] + · · · = 1. And some
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sums and integrals of this sort do not converge at all. Picard-Lefschetz theory is
a useful tool in dealing with such integrals [188]. Its main idea is to rewrite the
conditionally convergent integral as a sum of absolutely convergent integrals. It
also shows when a rewriting of this kind is possible, and when not. When it is,
this procedure defines the integral unambiguously. We will give an elementary
overview here (based on [14]), sufficient for our purposes. For a more in depth
treatment, see [189]. A few additional aspects are discussed in [14, 69].

The first step is to let the variable x become complex, x ∈ C, and to view
S[x] as a holomorphic function of x. We will also write x = u1 + iu2 for real
u1, u2. Then one can try to deform the integration domain C, using Cauchy’s
theorem, into a complex contour such that the integral becomes manifestly con-
vergent. Ideal integration contours are steepest descent contours, along which
the modulus of the integrand falls off as fast as possible. Such contours are also
called “Lefschetz thimbles”. They are associated with critical points (in fact
saddle points11) of S[x], i.e. they fall off from saddle points. (If a neighbour-
hood of a critical point is like a horse’s saddle, then the thimble is made of the
legs of the rider.)

As a simple example, consider S[x] = x2, which has a critical point at x = 0.
Then Re[iS[x]] = −2u1u2. The magnitude of the integrand decreases most
rapidly along the contour u1 = u2, and this is the Lefschetz thimble. Conversely,
the modulus of the integrand increases most rapidly along u1 = −u2, and this
is the steepest ascent contour. We denote thimbles by J and steepest ascent
contours by K.

J

J

σ

σ

Kσ

Kσ

σ

Jσσ

eW

Figure C.49: Left panel: A sketch of the complex x plane. A saddle point σ is shown, with
its steepest descent (Jσ) and ascent Kσ) contours. Arrows indicate the direction of descent.
Regions in which the weighting is smaller than at the saddle point are shown in green, and
regions with higher weighting in red. These regions are separated by blue lines, along which
the weighting equals that of the saddle point. Right panel: Sketch of the weighting along a
Lefschetz thimble (steepest descent contour).

11For a complex function f(x), critical points are necessarily saddle points: expanding near
a critical point xc one finds f(x) ≈ f(xc) + 1

2
f ′′(xc)[(u1)2 − (u2)2 + 2iu1u2], i.e. there is

always at least one direction along which the function increases, and at least one along which
it decreases.
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Now in more detail: decompose the exponent as I = iS/~ = W + iP, where
W determines the weighting and P is the phase. Mathematically, W is also
known as the Morse function. Then downward flow is defined by

dui

dλ
= −gij ∂W

∂uj
, (C.2)

where λ is a parameter along the flow and gij is a (Riemannian) metric on the
complex plane. To verify that W indeed decreases along such a flow, consider
dW
dλ =

∑
i
∂W
∂ui

dui

dλ = −
∑
i

(
∂W
∂ui

)2
< 0. To proceed, it is useful to choose a

metric. One may choose this for convenience, in our case we will simply take
it to be the flat Cartesian metric, ds2 = |dx|2. With complex coordinates,
(u, ū) =

(
u1 + iu2, u1 − iu2

)
, the metric is guu = gūū = 0, guū = gūu = 1/2.

Then W = (I + Ī)/2 and the flow equations (C.2) become

du

dλ
= −∂Ī

∂ū
,

dū

dλ
= −∂I

∂u
. (C.3)

From these a most useful property immediately follows,

dP

dλ
=

1

2i

d(I − Ī)

dλ
=

1

2i

(
∂I
∂u

du

dλ
− ∂Ī
∂ū

dū

dλ

)
= 0 . (C.4)

That is to say, the phase P is constant along a steepest descent flow. This
provides both a useful way of finding thimbles numerically (just plot the locus
of points with the same phases as those of the saddle points), and it leads to
a huge simplification of the integral, because now along a thimble it does not
oscillate anymore! Rather, it is maximally convergent, see Fig. C.49. In fact,
the integral along a thimble is convergent if∣∣∣∣∫

Jσ
dxeiS[x]/~

∣∣∣∣ ≤ ∫
Jσ
|dx|

∣∣∣eiS[x]/~
∣∣∣ =

∫
Jσ
|dx|eW (x) <∞ . (C.5)

If we denote the length along the curve as l =
∫
|dx|, then we will get convergence

if W (x(l)) < − ln(l) +A, for some constant A, as l→∞. Thus only fairly weak
assumptions must be made to guarantee convergence.

In an analogous manner to downwards flows, one can define upwards flows,

dui

dλ
= +gij

∂W

∂uj
, (C.6)

and along such flows the phase P is consequently also fixed. Hence we arrive
at the picture that from saddle points σ emanate equal numbers of thimbles Jσ
and steepest ascent contours Kσ.

We should discuss a subtlety: it can happen that what departs from one
saddle point as a steepest descent contour arrives at another saddle point with
lower weighting (and thus looks like a steepest ascent contour from the point of
view of the second saddle point). Such a degeneracy can arise for example when
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saddle points occur in complex conjugate pairs. To deal with such a situation
unambiguously, one can add a symmetry breaking term to S[x], multiplied by
a parameter ε. This will break the degeneracy, and then one can let ε → 0 at
the end of the calculation. Note that all thimbles then run as far as they can,
meaning W → −∞ and the integrand always falls off to zero along thimbles.
Likewise, steepest ascent contours reach W → +∞.

One important question remains to be addressed: it is not clear yet which
saddles, and thus which thimbles, contribute to the integral and which do not.
Do they all contribute, or only some? If possible degeneracies are resolved as
described above, then we can associate a single saddle point to every thimble,
and to every steepest ascent contour. As an equation, we can express this as an
intersection

Int(Jσ,Kσ′) = δσσ′ , (C.7)

where we have implicitly chosen a direction for the contours. Our goal is to
write the integration contour as a sum of thimbles,

C =
∑
σ

nσJσ , (C.8)

where the coefficients nσ take the values 0 or ±1 (the sign depends on the
relative orientation of C and the thimbles). Now it is easy to determine these
coefficients, we just intersect both sides of the above equation with Kσ′ , to
obtain

nσ = Int(C,Kσ) . (C.9)

In words, this means that a saddle point contributes if its steepest ascent con-
tour intersects the original integration contour. This makes complete sense: we
have an oscillating integral along the original contour; this will contain many
cancellations. Now we want to deform this into a non-oscillating integral. Along
the new contour, the modulus of the integrand must be smaller, because there
will be no cancellations along this new integration domain. Hence, from the
original integration contour, we must be able to flow down towards a saddle
point, if it is to be relevant. Or, equivalently, from the saddle point we must be
able to flow up to the original contour.

Usually, an invariant definition requires that C runs between singularities,
either at finite locations or at infinity. But then it may happen that the thimbles
approach the singularities, or infinity, at different angles than C. Hence one must
make sure that in addition, the arcs either near a singularity or at infinity, linking
C to the appropriate thimble, give zero contribution to the integral. In fact, this
is easy to verify in simple models. The reason is simply that the weighting runs
to minus infinity along the thimbles, and if these are to be relevant then they
must directly link up to C, without an intervening region of divergence. For a
more detailed treatment of this point, see [14].

Using the rewriting of the integration domain, we can now express the orig-
inal, conditionally convergent integral as a sum over absolutely convergent in-
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tegrals along thimbles,

I =

∫
C

dx e
i
~S[x] =

∑
σ

nσ

∫
Jσ

dx e
i
~S[x] . (C.10)

This is the result we wanted to arrive at. It defines the original integral in
a precise and unambiguous manner. For higher-dimensional integrals, this is
especially important, as it guarantees that one can use Fubini’s theorem, which
states that the order of performing the integrals does not matter, as long as they
are all absolutely convergent. (This justifies the procedure done repeatedly in
the main text, namely to perform the integral over the scale factor first, and
then that over the lapse.)

It can occur that when the parameters of the integral are varied, different
thimbles become relevant, i.e. the nσ can change. This important effect is
called a Stokes phenomenon, and it can have interesting consequences as saddle
points that are unimportant for some parameters can become dominant in other
parameter ranges. We will encounter examples of this effect in the main text.

But there is more: the rewriting (C.10) also allows for a useful approximation
scheme, called the saddle point approximation. This is because the integral
along each thimble is strongly peaked around the saddle point xσ. And this the
more so, the smaller ~ is. Since in physical applications ~ is indeed very small,
this approximation is typically highly accurate. Furthermore, we can pull out
the phase from each integral along thimbles, since it is constant there. Putting
all this together, we obtain

I =

∫
C

dx eiS[x]/~ =
∑
σ

nσ e
i P (xσ)

∫
Jσ
eWdx (C.11)

≈
∑
σ

nσ e
iS(xσ)/~ [Aσ +O(~)] . (C.12)

Here Aσ is a factor that one can get by integrating over fluctuations around the
saddle point, i.e. by performing a Gaussian integral over the action expanded to
second order. Further sub-leading terms can be calculated perturbatively, but
in fact very often the leading, saddle point contribution is all we will require.

Thus Picard-Lefschetz theory provides a highly useful tool for defining and
evaluating oscillating integrals.
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