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In recent years, methods for Bayesian inference have been widely used in many different problems
in physics where detection and characterization are necessary. Data analysis in gravitational-wave
astronomy is a prime example of such a case. Bayesian inference has been very successful because
this technique provides a representation of the parameters as a posterior probability distribution,
with uncertainties informed by the precision of the experimental measurements. During the last
couple of decades, many specific advances have been proposed and employed in order to solve a
large variety of different problems. In this work, we present a Markov Chain Monte Carlo (MCMC)
algorithm that integrates many of those concepts into a single MCMC package. For this purpose,
we have built Eryn, a user-friendly and multipurpose toolbox for Bayesian inference, which can
be utilized for solving parameter estimation and model selection problems, ranging from simple
inference questions, to those with large-scale model variation requiring trans-dimensional MCMC
methods, like the LISA global fit problem. In this paper, we describe this sampler package and
illustrate its capabilities on a variety of use cases.

I. INTRODUCTION

In physics, and in science in general, one of the most
encountered problems is the one of model calibration and
comparison. We test our models of the physical world
against the measured data, to estimate their parameters
and to robustly determine the most suitable model that
describes our observations. A crucial first step in this
direction, is to efficiently explore the posterior distribu-
tion of the parameters given the measured data. Markov
Chain Monte Carlo (MCMC) algorithms have proven to
be very successful in this regard [1–4], being one of the
few methods which can efficiently perform Bayesian in-
ference when the posterior is not analytically tractable
and without solving exactly for the marginal likelihood.
This is compared to, for example, grid methods, which
are often computationally unfeasible. This is especially
true in the field of Gravitational-Wave (GW) astronomy,
where MCMC methods have been extensively used in or-
der to find physical parameters for signals buried in the
data (see e.g. [5–10]), as well as to hierarchically infer
the properties of the underlying astrophysical popula-
tions (e.g. [11–13]). MCMC approaches can also com-
pute the marginal likelihood or evidence (see section II),
by using techniques such as Thermodynamic Integration
(see section II D). In a Bayesian framework, the evidence
difference between two models can be used to compute
the Bayes Factor, which is used to select between differ-
ent models that could describe the observations.

Thermodynamic integration (or other approximations,
see section II E or [14, 15]), is ideal for cases where the
number of competing models is small. However, in situa-
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tions where the number of potential models becomes too
large, the task of iteratively and hierarchically comput-
ing the marginal likelihood can become computationally
inefficient, or even practically unachievable. Such is the
case for future signal-dominated GW observatories, such
as the Laser Interferometer Space Antenna (LISA) [16]
or other proposed space-borne GW observatories [17–
19]. LISA will observe different types of GW sources,
the most numerous of them being the Ultra Compact Bi-
naries (UCBs) within the Milky Way [16, 20–27]. Those
are mostly comprised of a population of Double White
Dwarfs (DWD), although a small fraction of neutron star
- white dwarf (NS-WD) or double neutron stars (NS-
NS) binaries are expected [28, 29]. In fact, LISA is
going to detect GWs from the complete population of
O(107) sources simultaneously, but only a small fraction
of them are going to be individually resolvable (O(104)).
The large majority of signals will generate an anisotropic
and non-stationary “confusion” type of signal, which will
dominate the LISA band between 0.05 and ∼ 0.2 mHz.

In the above context, computing the marginal likeli-
hood for such a large parameter space and for all possible
numbers of events that could be in the population be-
comes computationally prohibitive. Instead, we can em-
ploy dynamical trans-dimensional MCMC methods [30].
This family of methods can be quite challenging to tune,
but it has proven to yield satisfactory results, even for
such demanding problems as the LISA data [21, 23].
There are also implementation challenges, which arise
from technical aspects of the algorithm; one example be-
ing the dimension matching requirement when proposing
moves between models with different dimensionality. In
terms of algorithm efficiency, it is also crucial to choose
proposal distributions that allow smooth transitions on a
dynamical parameter space, a task which in many cases
requires substantial effort. For these technical reasons,
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all the available software tools of this kind have been
specifically developed for the particular problem they in-
tend to solve.

In this work, we present Eryn, a reversible jump
MCMC algorithm, capable of efficiently sampling dynam-
ical parameter spaces, while remaining generic and usable
by a large community. We build upon various ideas from
statistics, astronomy, etc., in order to develop an efficient
statistical toolbox that can be applied to the majority of
problems involving detection and characterization of sig-
nals. Our primary goal, however, is to utilize Eryn as a
basic ingredient for a data analysis pipeline [31] to per-
form the LISA Global Fit [21, 23]. The Global Fit is a
data analysis strategy required to tackle the problem of
multiple source detection, separation, and characteriza-
tion in LISA data. For demonstration purposes in this
work, we use Eryn to analyze a “reduced” scenario of the
LISA data in section IV.

This paper is organized as follows: in section II, we
begin with explaining the foundations of the MCMC al-
gorithm, as well as some of the relevant methods that
we have adopted for our implementation. In section III,
we describe how the methods introduced in section II
are combined into the actual toolbox implemented in
Eryn. In section III C, we demonstrate the capabilities
of Eryn through some toy examples, while in section IV
we apply our machinery to more demanding applica-
tions in Gravitational-Wave astronomy. In particular,
we demonstrate Eryn by performing model selection on
a simulated population of Ultra Compact Galactic Bi-
naries (UCBs) as measured by the future LISA obser-
vatory. Finally, in section V, we summarize our work
and discuss future applications. We should state again
here, that Eryn is available as open source software in
https://github.com/mikekatz04/Eryn.

II. MARKOV CHAIN MONTE CARLO
ALGORITHMS

Nowadays, MCMC methods are considered to be a cor-
nerstone of Bayesian Inference, being very effective in
finding solutions to problems encountered across wide-
ranging disciplines [e.g. 5, 6, 32–35]. These include the
sampling of the posterior densities of parameters of inter-
est, the numerical marginalisation over nuisance parame-
ters, and providing a framework to compute the marginal
posterior distributions (or evidences) that can be used
for model selection. The Bayesian framework is based
around Bayes’ Theorem:

p(~θ|y,M) =
p(y|~θ,M)p(~θ|M)

p(y|M)
, (1)

where y is the measured data and M our chosen model

of analysis. The p(~θ|y) term is the posterior distribution

of the parameter set ~θ, which is related to the likelihood

function of the data p(y|~θ,M) and the prior densities

of the parameters p(~θ|M). The evidence p(y|M) is the

marginal posterior over the parameter space ~θ ∈ Θ:

Z ≡ p(~y|M) =

∫
Θ

p(~θ, ~y|M)d~θ

=

∫
Θ

p(~y|~θ,M)p(~θ|M)d~θ. (2)

For parameter estimation purposes, the evidence acts as
a normalization constant and can be ignored. However,
it is really important if one wants to perform model se-
lection over the measured data. We shall describe in
detail how one can numerically approximate the integral
of eq. (2) in section II E.

MCMC algorithms work be constructing a Markov

Chain sequence, whose elements, ~θ(ti), for i = 0, 1, . . .,
are independent samples from the target distribution,

f(~θ). Under fairly general assumptions, the distribution
of samples in the chain will converge to the target distri-
bution provided the algorithm satisfies detailed balance:

f(~θ)p(~θ → ~θ′) = f(~θ′)p(~θ′ → ~θ). (3)

Here p(~θ → ~θ′) is the probability that the Markov chain

moves from point ~θ to point ~θ′. The most widely-used
MCMC algorithm is Metropolis-Hastings [1, 2], which is
explained in algorithm box 1. The first step of the algo-

rithm is to define an initial state, ~θ(t0). Then, at each
subsequent step i, a new state is proposed, by randomly

drawing from a given proposal distribution q(~θ′|~θ(ti)).
The newly proposed state is then accepted with a certain
probability, given by eq. (4). If the move is accepted we

set ~θ(ti+1) = ~θ′, otherwise we set ~θ(ti+1) = ~θ(ti). Any
reasonable choice of the proposal density will generate
a Markov chain with the correct stationary distribution.
However, a good choice of q is critical for its efficiency, i.e.
achieving the convergence of the MCMC chains within a
reasonable computational time. For the special case of a
symmetric proposal distribution, such as the widely used
multivariate Gaussian distribution, the ratio of eq. (4)
in algorithm box 1 becomes simply the ratio of the tar-

get densities at the current ~θ(tn) and proposed ~θ′ points.
For high-dimensional problems, the multivariate Gaus-
sian proposal can be tuned during the burn-in period of
sampling to improve efficiency [15, 36–38], or even scaled
according to the Cramer-Rao bound, estimated from the
Information matrix [39].

Although the MH algorithm has been quite successful
in tackling inference problems, there are practical imple-
mentation issues to overcome. Improving acceptance rate
is crucial for convergence, and sometimes improvements
in the proposal distribution are not sufficient to efficiently
sample the parameter space. To tackle these issues, vari-
ous MCMC enhancements have been proposed. A prime
example is the Hamiltonian Monte Carlo (HMC) algo-
rithms that utilize local gradients in order to generate
proposal points [40, 41]. One variant of HMC is the No-
U-Turn sampler which automates part of the required
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Algorithm 1: The Metropolis-Hastings
algorithm [1, 2]. f is the target density to be

sampled.

1: Set the initial state of chain: ~θ(t0) ≡ ~θ.
2: At each subsequent step n, draw a new state ~θ′

from a proposal distribution q(~θ′|~θ(tn−1)).
3: Take

~θ(tn) =

{
~θ′ with probability α(~θ(tn−1), ~θ′)
~θ with probability 1− α(~θ(tn−1), ~θ′)

,

where

α(x, y) = 1 ∧
{
f(y)q(x|y)

f(x)q(y|x)

}
. (4)

4: Go to 2 and repeat until equilibrium is reached,
and enough independent samples have been drawn
from the target distribution.

tuning of the HMC [42] sampler. Another alternative
to the “standard” MH is the Gibbs sampling algorithm,
which is particularly useful if the conditional distribu-
tions of the parameters of the model are known [43–45].
All of the above developments have been shown to be
useful in various disciplines [33, 46–55]. Finally, there
have recently been numerous proposals that aim to en-
hance sampling with machine learning techniques. At
their core, many of these methods optimize the explo-
ration of the likelihood surface, either by learning it di-
rectly (see for example [56]) or by sampling it in a simpler
latent space (for example [57]).

In this work, we introduce Eryn, which is built around
the emcee package [58], enhanced with a variety of sam-
pling mechanisms that allow us to perform inference on
dynamical parameter spaces with minimal tuning. We
expand on the most important features in the sections
below.

A. Affine-invariant samplers

An affine transformation is one of the form ~θ → ~ζ =

A~θ + b, where A and b are a constant matrix and vector
respectively. Under an affine transformation a probabil-

ity density p(~θ|y) transforms to

pA, b(~ζ|y) = p(A−1(~ζ − b)|y)/det(A). (5)

Such transformations can help to transform difficult-to-
sample distributions into easier-to-sample ones. A sim-
ple example is a multi-variate Normal distribution. If
the dynamical range of the eigenvalues of the covari-
ance matrix is very large, then sampling can be difficult,
but any multi-variate Normal distribution can be trans-
formed into a spherical distribution via an affine trans-
formation.

Affine-invariant MCMC is a class of samplers that are
designed to have equal sampling efficiency for all distribu-
tions that are related by an affine transformation [58, 59].
The sequence of samples in a Markov chain, {X(t)}, can
be written deterministically as a function of a sequence
of random variables, ξ(t), which represent the random
draws used to propose new points and evaluate the ac-
cept/reject decision. Specifically we can always write

X(t+ 1) = R(X(t), ξ(t), p) (6)

where p denotes the target density. An affine-invariant
sampler has the property

R(AX(t) + b, ξ(t), pA,b) = AR(X(t), ξ(t), p) + b, (7)

i.e., the sequence of points visited when sampling an
affine-transformed density are the affine transformations
of the states visited when sampling the original density.
If an affine transformation exists that maps the given
target density to one which is more straightforward to
sample from, an affine-invariant sampler should sample
it as efficiently as it could the simpler distribution, so the
convergence of affine-invariant samplers is less affected by
correlations between the parameters [58].

In practice, this goal is achieved by following an en-
semble of points, called walkers, and basing proposed
moves on the distribution of other points in the ensemble.
In [58], the primary update move is the so-called stretch-
move proposal. Each walker at state Xi(t) is updated
by randomly selecting another walker j and proposing a
new value Y = Xj(t) + Z[Xi(t) − Xj(t)], where Z is a
random variable drawn from the distribution [59]

g(z) ∝
{ 1√

z
z ∈

[
1
a , a
]

0 otherwise
. (8)

The parameter a can be tuned to improve convergence,
but a = 2 works well in the majority of applications [58].
The proposed point is accepted with probability

α(Xi(t), Y ) = 1 ∧
{
zd−1 p(Y )

p(Xi(t))

}
(9)

where p is the target density and d is the dimension of
the parameter space. This acceptance probability is spe-
cific to the stretch proposal distribution given by Eq. (8).
For other stretch proposals, the term zd−1 must be re-
placed by zd−2g(1/z)/g(z). Following this scheme, de-
tailed balance is maintained, and it can be proven that
affine-invariant samplers converge faster to their target
distribution [58]. Below in section III we discuss the ex-
tension of the stretch-move proposal to Reversible-Jump
MCMC methods. The benefits of running MCMC chains
in parallel, combined with a proposal distribution that re-
quires almost no tuning, have contributed to an increas-
ing popularity of affine-invariant samplers. In particular,
the emcee package [58], has been used widely in Astro-
physics and Cosmology [60–63, e.g.].
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B. Delayed Rejection

The Delayed Rejection (DR) scheme of sampling was
devised in order to improve two aspects of MCMC al-
gorithms. First, it allows for improvements in the ac-
ceptance rate of the proposals, yielding “healthier” pa-
rameter chains, with better mixing. Secondly, it is more
robust against becoming trapped in local maxima of the
posterior surface [64–67]. The strategy, as the name sug-
gests, is, at each iteration, instead of immediately re-
jecting the newly proposed point based on algorithm 1,
we keep proposing new points while maintaining detailed
balance by computing both the forward and backward

transition probabilities. Suppose we are at a point ~θ0

and use a proposal q(~θ1|~θ0) to propose a new point ~θ1.
The usual acceptance probability, following the notation
of eq. (1), is

α1(~θ0, ~θ1) = 1 ∧
{
p(~θ1|y)q(~θ0|~θ1)

p(~θ0|y)q(~θ1|~θ0)

}
, (10)

as per eq. (4). If ~θ1 is rejected, then instead of going
back to step 1 of algorithm 1, we propose a new point,
~θ2, drawn from a proposal distribution q(~θ2|~θ1, ~θ0). This

proposal distribution may depend only on ~θ1, but we
write it more generally here to allow for the case that
the proposal is adapted based on the sequence of steps
that have been rejected. The acceptance probability for
~θ2, α2(~θ0, ~θ1, ~θ2), is computed using

α2(~θ0, ~θ1, ~θ2) =

1 ∧

p(
~θ2|y)q(~θ1|~θ2)q(~θ0|~θ1, ~θ2)

[
1− α1

(
~θ2, ~θ1

)]
p(~θ0|y)q(~θ1|~θ0)q(~θ2|~θ1, ~θ0)

[
1− α1

(
~θ0, ~θ1

)]
 .

(11)

If ~θ2 is rejected, further steps can be included and each
step adds additional proposal and rejection-probability
terms to the numerator and denominator of the accep-
tance probability. For example, the three step acceptance

probability, α3(~θ0, ~θ1, ~θ2, ~θ3) is the minimum of one and

p(~θ3|y)q(~θ2|~θ3)q(~θ1|~θ2, ~θ3)q(~θ0|~θ1, ~θ2, ~θ3)

p(~θ0|y)q(~θ1|~θ0)q(~θ2|~θ1, ~θ0)q(~θ3|~θ2, ~θ1, ~θ0)

×

[
1− α1

(
~θ3, ~θ2

)] [
1− α2

(
~θ3, ~θ2, ~θ1

)]
[
1− α1

(
~θ0, ~θ1

)] [
1− α2

(
~θ0, ~θ1, ~θ2

)] (12)

The proposal q can be different at each step, as long as
the relevant proposal density is used in eq. (11). For
example, in [64] the proposal is built upon a Gaussian
mixture model that tries further points in the parameter
space with the aim of efficiently exploring multiple modes
of the posterior distribution. As the number of steps in
the DR scheme becomes arbitrarily large the acceptance
probability slowly approaches zero. This algorithm is

also limited in practice by high computational require-
ments, since at every delayed rejection step we need to
evaluate a new likelihood and compute the backwards

probability (the α1(~θ2, ~θ1) from eq. (11)). Nevertheless,
the DR scheme offers many advantages, and despite the
computational cost, it is very useful when the posterior
surface exhibits high dimensionality, and when accelera-
tion techniques are available. These, for example, might
include the use of Graphical Processing Units (GPUs),
and/or heterodyned likelihoods [68]. In our implementa-
tion here, we follow closely the one in [64], for improving
the acceptance rate of the between-model step of the Re-
versible Jump algorithm (see section II F). As already
mentioned, the Reversible Jump MCMC allows for sam-
pling dynamical parameter spaces. In the special case
of nested models, such as the case of searching multiple
signals in the LISA data, proposing the ‘birth’ of a sig-
nal out of a very wide prior can be very inefficient. A
delayed rejection scheme alleviates this problem, by ef-
fectively performing a small search around the first set of
rejections, increasing the chances of finding a good signal
candidate, and thus improving the mixing of the chains.

C. Multiple Try Metropolis

The Multiple Try Metropolis (MTM) [69–72] is a sub-
class of the implementation of the MH algorithm, which
is based on the idea of generating a number of proposals
for each individual current state, and then selecting one
of them based on their importance weight. In proposing

a move from ~θt−1, a set of N possible new points, {yk},
are drawn from a proposal distribution q(y|~θt−1) and are

assigned weights wi = w(yi|~θt−1) using a weight function

w(·|~θt−1). One of these proposed points, yJ , is selected
with probability given by the normalised weight

w̄i =
wi∑N
k=1 wk

. (13)

To compute the acceptance probability we need to draw
N −1 points, {xi, i = 1, . . . , N −1}, for the reverse move
from the proposal q(x|yJ), and assign weights w(x|yJ).

We then set ~θt = yJ with probability

α(~θt−1, yJ) = 1∧
{
w(yJ |~θt−1) +

∑N
k=1,k 6=J w(yk|~θt−1)

w(~θt−1|yJ) +
∑N−1
k=1 w(xk|yJ)

}
.

(14)

and set ~θt = ~θt−1 otherwise [69]. This procedure will
satisfy detailed balance if the weight function is chosen
such that

p(~θ0|y)q(~θ1|~θ0)w(~θ1|~θ0) = p(~θ1|y)q(~θ0|~θ1)w(~θ0|~θ1). (15)

This will be satisfied by a weight function of the form

w(~θt|~θt−1) = p(~θt|y)q(~θt−1|~θt)ξ(~θt−1, ~θt), (16)
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where ξ(~θt−1, ~θt) is any symmetric function, i.e.,

ξ(~θt−1, ~θt) = ξ(~θt, ~θt−1), ∀~θt, ~θt−1 ∈ D ⊆ Rd, with d be-
ing the dimensionality of the problem at hand. The de-
tailed balance condition can also be satisfied by a weight
function of the form

w(~θt|~θt−1) =
p(~θt|y)

q(~θt|~θt−1)
. (17)

Making this choice and additionally using a proposal
function that is independent of the current point,

q(~θt|~θt−1) = q(~θt) only, we obtain the Independent MTM
algorithm [69]. When using the independent MTM al-
gorithm detailed balance is maintained when the same
set of points is used for the reverse proposal as for the
forward proposal, which saves the evaluation of N − 1
posterior densities.

The base MTM is currently implemented in Eryn with
options for the Independent MTM algorithm and sym-
metric proposals. For a symmetric proposal distribution,

q(~θt−1|~θt) = q(~θt|~θt−1), eq. (15) can be satisfied using

the weight function w(~θ1|~θ0) = p(~θ1|y). In this case, we
still need to draw separate samples for the reverse step
(unlike in the Independent MTM case).

Generating a large number of candidate points yields
certain advantages. As expected, the first advantage is
the fact that there is usually very good coverage of the
parameter space. The second is that the implementation
of the MTM usually results in chain states with very
low correlation between them. Nevertheless, as for De-
layed Rejection, this algorithm requires increased com-
putational resources, since multiple likelihoods/posterior
densities have to be evaluated at each iteration of the
chain. This cost can be offset in cases where the compu-
tations can be parallelized, for example using either CPU
or GPU acceleration.

D. Adaptive Parallel Tempering

The concept of Parallel Tempering was introduced
in order to efficiently sample surfaces with high multi-
modality [73–75]. The idea is based on a transformation
of the posterior density to a density with a different tem-
perature, T , defined by

pT (~θ|y) ∝ p(y|~θ)1/T p(~θ). (18)

For T = 1 this is the target posterior density. In the
limit T → ∞ it is the prior density. Intermediate tem-
peratures “smooth out” the posterior by reducing the
contrast between areas of high and low likelihood.

In parallel tempering, a set of Markov chains are con-
structed in parallel, each one sampling the transformed
posterior for a different temperature T . These chains
periodically exchange information. The idea is that the
hottest chains explore the parameter space more widely,
and information about areas of high likelihood that they

encounter propagate to the colder chains. Information is
exchanged by proposing swaps of the states between the
different chains. If two chains are sampling from target

densities p1(~θ) and p2(~θ) respectively, then the transi-

tion probability for chain 1 in the swap is p1(~θ0 → ~θ1) =

p2(~θ1)α(~θ0, ~θ1). Detailed balance is thus maintained by
accepting the swap with probability

α(~θ0, ~θ1) = 1 ∧
{
p1(~θ1)p2(~θ0)

p1(~θ0)p2(~θ1)

}
, (19)

which for the specific case of swapping between two tem-
pered chains i and j when doing parallel tempering is

αi,j = 1 ∧


(
p(y|~θi)
p(y|~θj)

)βj−βi

 , (20)

with βi = 1/Ti being the inverse temperature, and ~θi the
given parameter state for the i-th chain.

The temperature ladder Ti should be chosen in order
to maximize the information flow between chains of dif-
ferent temperatures, so as to encourage the efficient ex-
ploration of the complete parameter space. Typically,
this ladder can be static or dynamically adjusted dur-
ing the sampling procedure. In Eryn we have adopted
the procedure of [75], which adapts the temperature lad-
der based on the swap acceptance rate calculated di-
rectly from the chains. Ideally, one should aim for
equal acceptance ratio between every pair of neighbor-
ing tempered chains, thus tuning their log-temperature-
difference Si ≡ log(Ti − Ti−1), according to the swap
acceptance rate from eq. (20):

dSi
dt

= κ(t) [αi,i−1(t)− αi+1,i(t)] , (21)

where κ(t) tunes the timescale of the evolution of the
temperatures. The function κ(t) can be chosen depend-
ing on the desired behavior of the procedure. In [75] a
hyperbolic dependence on the t state is chosen, in order to
suppress large dynamic adjustments on long timescales.
This setup is the default option in Eryn, but it can be
customized. This process is more straightforward for en-
semble samplers, where multiple walkers are used, simply
because one can get an estimate of the acceptance rate
directly from the particular state of the walkers at any
given time step t. Otherwise, the acceptance rate is com-
puted after iterating for a predefined number of steps,
which can be chosen by the user for the given problem at
hand. It can be proven [75], that the temperature ladder
will converge to a particular stable configuration. One
should only use this scheme for the initial burn-in stage
of sampling, and then continue with a stationary ladder
for the rest of the analysis.
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E. Marginal posterior calculation for model
selection

One of the most frequently encountered problems in
physics, and in science in general, is that of model or vari-
able selection, i.e., identifying the model best supported
by the observed data. Working in a Bayesian framework,
comparison between different hypotheses may be done
by computing their evidences or marginal posteriors [46]
and evaluating the Bayes Factor:

B12 =
p(~y|M1)p(M1)

p(~y|M2)p(M2)
, (22)

where the term p(Mi), is the prior probability assigned
to the model Mi.

The marginal posterior density, or evidence, is given
by the integral of eq. (2) and is in general quite chal-
lenging to compute. For some high signal-to-noise ratio
(SNR) cases it can be approximated if the covariance
matrix Σ of the parameters for all candidate models M
are known. This approach is called the Laplace approxi-
mation [46, 76]. However, this is only an approximation,
and it sometimes fails for models with weak support from
the data [77] (in particular when the posterior cannot be

approximated by a multivariate Gaussian at ~θMAP).
When using parallel tempering II D, it is possible to

compute the evidence by a procedure known as thermo-
dynamic integration [78]. We define a continuous distri-
bution of evidences based on the target distribution for
a chain with inverse temperature β = 1/T via

Zi,β =

∫
p(y|~θ,Mi)

βp(~θ) d~θ. (23)

For β = 0 the chain is sampling the prior and therefore
logZi,0 = 0. For β = 1 we are sampling the target
distribution and logZi,1 = logZi. Additionally we have

d logZβ
dβ

=

∫
log[p(y|~θ,Mi)] p(y|~θ,Mi)

βp(~θ)d~θ

≡ Eβ [log p(y|~θ,Mi)]. (24)

From this we deduce

logZi =

∫ 1

0

Eβ
[
log p

(
y|~θ,Mi

)]
dβ. (25)

The expectation value is over the distribution being sam-
pled by the chain at temperature β and so can be com-
puted by averaging over the posterior samples [75, 78, 79].
The integral can then be evaluated using standard meth-
ods, for example the trapezium rule, using the full lad-
der of temperatures. This approach generates reliable
evidences, with accuracy limited only by the number of
temperatures being sampled, and the efficiency of the
sampling of the parameter space Θ by the chains. Since
its first introduction, there have been many applications
of this approach, and in particular, there is extensive us-
age in GW astronomy [75, 80–83].

F. Reversible Jump

Another approach to the model selection problem is to
follow a Reversible Jump (RJ) MCMC strategy, which
can dynamically estimate the most probable hypotheses
given the data [30]. The RJ-MCMC is a generalization of
the MH algorithm that allows trans-dimensional propos-
als. Thus, the model order is considered a free parameter
which is fitted together with the parameters of the indi-
vidual models. The most widespread variation of the
algorithm uses a two-stage procedure. The first stage or
in-model step, uses the standard MH algorithm to update

all the parameters ~θk for the given model k. The second
stage or between-model step proposes to update the model

state k to a new model state l. Parameters ~θl for the new
model are also proposed. The newly proposed state l, is
accepted with a probability defined by [84]

α′ = 1 ∧
{
p(~θl|l, y)g′(ul)

p(~θk|k, y)g(uk)
|J|
}
, (26)

where

p(~θk|k, y) = p(y|~θk, k)p(~θk, k)p(k) (27)

with p(y|~θk, k) the likelihood for model k, p(~θk|k) the

prior on the parameters ~θk in model k, and p(k) the prior
for the model state k. The term g′(ul)|J|/g(uk) arises
because of the need for dimension matching between the
different model states. In general, we can define a move
between model states in terms of a deterministic invert-
ible mapping, ~θk = q(~θl, ul) with inverse ~θl = q′(~θk, uk),
that is a function of the parameters and two sets of ran-
dom variables, uk and ul, drawn from distributions g(uk)
and g′(ul) [30, 84]. The term |J| is the Jacobian defined
by this invertible mapping

|J| =
∣∣∣∣∣ ∂(~θl, ul)

∂(~θk, uk)

∣∣∣∣∣ (28)

and the term g′(ul)/g(uk) plays the role of the pro-
posal ratio in the standard MH acceptance probability.

Dimension mapping means that dim(~θl) + dim(ul) =

dim(~θk) + dim(uk).
Using RJ-MCMC introduces additional computational

cost at each MCMC iteration, as well as technical chal-
lenges in implementation. Luckily, implementation can
be easier when sampling nested models. This refers to
problems where more complicated models contain their
simpler counterparts. Examples of such cases are fitting
polynomial models, which differ only in the highest order
to be determined, or detection problems where multiple
similar signals are potentially present the data. In such
cases, the between-model step can always be formulated
such that the Jacobian of eq. (28) becomes unity, and
eq. (26) simplifies to the ratio of posteriors accounting for
any differences in prior and proposal volumes [22, 85, 86].
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After running RJ-MCMC, the Bayes Factor can be ap-
proximated by the ratio of the number of iterations spent
within each model:

B12 =
# of iterations in modelM1

# of iterations in modelM2
. (29)

This algorithm has proven to be robust for evaluating
high-dimensional competing models, and has been quite
successful in tackling data analysis problems in GW as-
tronomy [22, 77, 87] as well as areas spanning physics
and signal processing [e.g., 88–90]. However, designing
an efficient RJ-MCMC algorithm can be quite challeng-
ing. The first challenge is to choose suitable proposal
distributions, which can greatly affect the convergence
of the algorithm. In situations where the models are
nested, it is both tempting and convenient to take the
proposal to be the same as the prior distribution of the
parameters. As an illustrative example, we refer to sec-
tion III C 1, which describes a toy problem of searching
for Gaussian pulses in noisy data. There, the parameters
of the individual pulses are the amplitude and location
of the pulse described by their (x, y) coordinates. In
order to search for those signals, the prior on their loca-
tion must be wide enough to include the complete data
set (see figure 1a). A birth proposal based on the prior
would inevitably be quite inefficient, simply because the
chance of proposing a good source candidate is small, es-
pecially if the proposal distribution is flat across (x, y).
We treat the above problem as a motivation to adopt
efficient proposals with minimal tuning in Eryn, which
we further discuss in section III. The second major chal-
lenge, which of course depends on the given problem at
hand, arises from the samplers’ capability to explore a
multi-modal dynamical parameter space. We discuss our
strategy to overcome that challenge in section III.

III. ERYN: GATHERING ALL THE PIECES
TOGETHER

All the different algorithms described in previous sec-
tions can be extremely useful in tackling different kinds of
problems that require sampling. In Gravitational Wave
Astronomy, we encounter such problems far too often,
where dynamical parameter spaces require vast compu-
tational resources in order to be explored efficiently. Mo-
tivated by those problems, we have implemented a new
toolbox that combines all these techniques to enhance
the capabilities of an MCMC sampler. We have named
this package Eryn [91], borrowing the name from the
Tolkien mythos [92]. The analogy has its basis in the
idea of a forest: within a forest you have trees which
correspond to different walkers, a.k.a. Ents, in an en-
semble MCMC sampler. On each tree there are branches
that represent the various types of models used to fit
the data. For example, in the case of GW global fitting
for LISA, we can imagine using the Galactic binaries as
one branch and massive black hole binaries as another

branch. Each branch has leaves, which represent the in-
dividual instances of each model. In the LISA example,
leaves would represent the individual Galactic binaries
or massive black hole binaries. And finally, to zoom
out, when adding tempering capabilities, we can think
of groups of walkers in each temperature taking the form
of many forests (of walkers) located within different tem-
perature climates.

We adopt the architecture of ensemble samplers, and in
particular the one of emcee [58]. Having multiple walk-
ers running in parallel is ideal for efficiently sampling
the parameter spaces using techniques such as parallel
tempering, as described in II D (also see section II A).
In this setting, we evolve nw walkers per temperature Ti,
where each walker follows a Reversible Jump MCMC (see
section II F), mapping a parameter space of altering di-
mensionality. In practice, walkers in higher temperatures
sample the dynamic parameter space with fewer model
components as the penalty from higher prior volume is
not compensated by the smoother annealed likelihood.
In other words higher temperatures have a sharper Oc-
cam’s razor: the data can be explained with models that
are simpler, or lower-dimensional. The highest temper-
ature chain samples the prior on the model space (pro-
vided that Tmax = ∞). More details will be given in
section III C.

As already mentioned in section II F, Reversible Jump
algorithms are extremely challenging to tune, even for
simpler classes of problems. One of the major challenges
is the low acceptance rate for the between-model pro-
posal, i.e., when we propose a new state where the pa-
rameter dimensionality differs. In cases of signal search
and detection (which is a nested model situation), it is
convenient to set the proposal corresponding to a “birth”
move to be the same as the prior distribution. In order
to accommodate all possibilities for the signals present,
the prior densities are usually quite wide, and thus ac-
cepting a new higher dimensional state becomes quite
improbable. For that reason, within Eryn, we have im-
plemented a Delayed Rejection scheme with the aim of

improving this acceptance ratio. When proposing ~θl for
a higher-dimensional model l, we do not reject immedi-
ately, but rather make new delayed rejection proposals

around the first rejected point ~θl, using the given in-
model step update proposal. This, in principle, allows

the sampler to explore around ~θl before rejecting the new
state [64], which in turn improves the between-model step
acceptance rate and produces healthier MCMC chains.

The Delayed Rejection scheme, as described in sec-
tion II B, requires a serial computation of the delayed
rejection acceptance ratio for walkers where the newly
proposed state has been rejected. This scheme of calcu-
lating costly likelihoods sequentially in a loop during the
between-model step, can lead to a computational bottle-
neck of the MCMC process. This is especially true for the
LISA Global Fit problem, where multiple binary wave-
form signals are present in the data-stream. Then, the
computational time for each RJ-MCMC iteration is sig-
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FIG. 1: Searching for 2D Gaussian pulses in the presence of Gaussian noise. Panel (a): the simulated data, which
consists of injections of 25 pulses in Gaussian noise with σn = 0.2. Panel (b): the distribution of the model order,
obtained by exploring the dynamical parameter space with Eryn. The true value is marked with a dashed red line.
For this toy investigation, the correct number of simulated components is recovered. Panel (c): the 2D posterior

densities for the parameters of the k Gaussian peaks (see text for details).

nificantly increased, since the progress will be halted un-
til all walkers have gone through their respective Delayed
Rejection process, which requires evaluation of new wave-
forms at each step. For the reasons summarized here, we
have not used the Delayed-Rejection scheme for our anal-
ysis in section IV, and have resorted to the Multiple Try
scheme. However, the Delayed-Rejection scheme, as ex-
plained in section II B, has been implemented in the Eryn
package.

The Multiply Try scheme was essentially implemented
in order to facilitate use of a parallelized likelihood frame-
work. Parallelization is naturally compatible with Multi-
ple Try MCMC as multiple proposals are made for each
individual walker, which allows for the parallelized evalu-
ation of proposal distributions, likelihood functions, and
acceptance probabilities. Under these parallelized set-
tings, one proposal can act as many when compared to
the usual serial evaluation of proposals, allowing for bet-
ter chain mixing in situations where proposals are infre-
quently accepted. That being said, it is still important
to choose a good proposal distribution, for both the in-
model and between-model RJ-MCMC steps, which we
discuss further below.

A. Choosing efficient Proposal distributions

In the previous sections, we briefly discussed some of
the challenges in choosing efficient proposal distributions
for both the in-model and between-model steps of the RJ
algorithm. For the in-model case, the challenge arises
from the fact that it is sometimes impractical, or even
unfeasible, to define a well-tuned proposal for each of
the possible models that could represent the data. Using
again the example of LISA data, one would need to te-

diously design an effective proposal distribution for the
thousands of overlapping binary signals in the data. On
the other hand, for the case of the between-model step,
choosing proposals from the prior distribution, especially
if it is highly uninformative, can be very inefficient for
Reversible Jump sampling. For Eryn, in order to tackle
those issues, we have implemented the Group Propos-
als explained below for addressing the within-model pro-
posals in RJ, as well as a scheme to design an efficient
proposal for birth moves during the between-model step,
which is based on normalizing flows.

1. Group Proposals

In section II A, the stretch-move proposal was intro-
duced and discussed. One of the obvious advantages of
such a scheme of proposing new MCMC samples is that
it requires minimal tuning [58]. However, it does not
extend well in its simplest form to the generalized Re-
versible Jump MCMC. The stretch proposal is based on
the idea that the ensemble of points (Xj) is sitting on
the same posterior mode as the current point (Xi). In a
nested model situation where both the model count and
the individual model parameters change, each point may
lie on a different posterior mode representing a different
set of leaves (sources) in the data. This can be alleviated
by applying the stretch move to individual leaves within
each branch of each walker, but there is still an issue
of identifying leaves in different walkers that lie on the
same posterior mode. The stretch proposal will techni-
cally still work when mixing leaves in different posterior
modes, but the acceptance fraction will be negatively af-
fected. However, within the stretch proposal formalism,
the choice of Xj is customizable. The key to maintaining
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detailed balance is that Xj cannot depend on Xi, and Xj

cannot be updated in the same iterative step as Xi [59].
We leverage this property to design a new type of

stretch move that can handle Reversible Jump setups
while maintaining a small number of tuning parameters.
We call this proposal the “group” proposal. The group
proposal chooses a single leaf from a stationary group,
{Xj}, that is fixed for many proposed updates. The sta-
tionary group is updated after a large number of sam-
pler iterations and we make sure that detailed balance
is maintained during the update. We update every leaf
within every branch of every walker at each iteration and
repeat many iterations between updates of the stationary
group.

The appropriate stationary group varies from problem
to problem. The goal is to set a group that resembles as
best as possible the posterior modes of the current leaves
and then draw from it strategically so that the drawn
point is likely (but not guaranteed) to lie on the same
mode as the leaf that is currently being updated, Xi. In
the example of the LISA Galactic binaries analysis, we
set our stationary group to the full set of leaves (binaries)
across all walkers at a specific temperature of the sampler
at the end of a given iteration. Then, at proposal time,
we efficiently locate the ∼ nw points in the stationary
group that are closest to Xi from based on their initial
frequency parameter. We then draw Xj from this group.
The hope is that some percentage of the nw drawn points
will lie on the posterior mode on which Xi sits. The exact
percentage will vary depending on how close the posterior
modes are to each other and how many model instances
exist in the sampler that include this specific mode. For
low SNR binaries, for example, a source may exist in
some walkers and not others, making it harder to map
its posterior mode with the current group of stationary
points.

The performance of group proposals is highly
situation- and/or model-dependent. With individual
source posterior modes that are well separated and easy
to define in terms of separation, the performance will
approach the performance of the base stretch proposal
in non-Reversible Jump MCMC because the stationary
group will well represent the specific posterior mode on
which Xi is located. As the parameter space becomes
more crowded and/or separation (distance) metrics be-
come harder to define, the performance of group propos-
als will worsen.

2. Learning from the data

The second improvement concerns the between-model
step of the RJ-MCMC. As mentioned earlier, for the case
of nested models, it is often convenient to draw “birth”
candidates directly from the prior distribution of param-
eters of the given model. This practice can be quite in-
effective in terms of acceptance rate. As an example we
can again use the LISA data-set case. The UCBs are

distributed within the Galactic disk, congregated mostly
around its Center [93], therefore, adopting a proposal
based on an uninformative uniform prior across the sky,
would waste computational resources exploring a part of
the parameter space with low probability mass. A pro-
posed solution is to use an informative prior derived from
the spatial distribution of binaries in the Galaxy [21]. In
our work here, we have chosen an alternative data-driven
route, based on the actual residual data after a burn-in
period of the RJ-MCMC, which we describe below.

After a sufficient number of RJ-MCMC iterations, we
can extract a subset of sources from nested models which
are constantly present in almost all walkers of our cold
chain. In other words, we can find and subtract the
brightest sources from the data, and then allow for an-
other burn-in period on the resulting residuals. This
allows the sampler to explore the remaining parameter
space more easily, thus providing a good initial estimate
for the weak signals possibly buried in the noisy resid-
ual data. We can then use those samples to construct a
proposal density which will help us search for good candi-
dates for those weak signals, without excluding the rest of
the parameter space. This can be accomplished by learn-
ing the posterior distribution of the parameters run on
the residual data mentioned above. The most efficient
way to fit to the generic distribution, is to use invert-
ible transformations such as normalizing flows (for ex-
ample [94, 95]). The methods work in the following way:
we sample from the base distribution (which is usually
chosen to be Normal) and we fit the transform by op-
timizing Kullback-Leibler divergence between the trans-
formed distribution and the distribution that we want to
estimate. After the fit has converged we can draw sam-
ples from the Normal distribution and transform these to
samples from the distribution fitted to all residuals and
use it as a proposal. We will cover this method in more
detail in a separate paper.

B. Implementation

In this section, we discuss the main implementation
details of Eryn. We refer the interested reader, or user, to
the Eryn documentation for more exhaustive information
and examples [96].

The goal of Eryn is to produce a sampler that can han-
dle all (or most) cases of MCMC sampling ranging from
basic, non-tempered, single-model type, single-model in-
stance posterior estimation to the full reversible jump
MCMC with tempering, multiple model types, and ad-
justable model counts, as well as everywhere in between.
In the basic case, Eryn aims to be a close replica of emcee
trying to maintain as much simplicity as possible. At the
complicated end of the spectrum, Eryn attempts to pro-
vide a common interface and underlying infrastructure
for the variety of problems that may arise, allowing the
user to maintain usage of the majority of the code from
project to project, focusing on changing only the specific
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parts of the code that are difficult to implement or require
special treatment for each specific problem. Since Eryn is
effectively an enhanced version of the emcee package, the
overall structure of emcee is strongly maintained. Like
in emcee, “State” objects move coordinate and likelihood
information around the ensemble sampler, storing infor-
mation in a similar back end object either in memory
or HDF5 files. Additionally, the interface used for adding
proposals has remained.

The various enhancements discussed in this work, in-
cluding tempering, reversible jump moves, multiply try
MCMC, etc., are all implemented within the emcee-like
structure. This involved two main changes. First, the
State objects have been scaled to hold information nec-
essary for reversible jump MCMC: temperature informa-
tion, prior information, and efficient and concise contain-
ers for multiple types of models with an adjustable num-
ber of individual model instances. Second, the reversible-
jump proposal has been added as a proposal base, similar
to the use of the ‘MH’ or ‘RedBlue’ moves within emcee.
Beyond these main enhancements, there are also a vari-
ety of smaller, but useful, additions to Eryn that help the
user build a variety of analysis pipelines. These include
stopping or convergence functions, functions to periodi-
cally update the sampler setup while running, objects to
carry special information through the sampler, and aids
for coordinate transformation.

C. Toy Examples

In this section, we present a series of working exam-
ples for Eryn. We begin with simple problems, such as
searching for simple signals in noisy data, with the aim
of demonstrating the performance of this toolbox in a
dynamical parameter space. The impact of the different
enhancements discussed in section III will be assessed and
discussed. Finally, in section IV, we will apply this ma-
chinery to more realistic problems in Gravitational-Wave
astronomy.

1. Searching for pulse signals in Gaussian noise

In this first example, we explore the capabilities of
Eryn in a simplified application, commonly encountered
in physical sciences. We perform a search for Gaussian
pulses in a simulated 2D data-set, in the presence of
Gaussian noise with variance σn = 0.2. We generate 25
pulses randomly distributed on the x − y plane with all
pulses contained within x, y ∈ [−10, 10] (see figure 1a),
and amplitude uniformly drawn from U [0.7, 1.5]. The
amplitude of each pulse is considered a free parameter to
be estimated, in addition to the Cartesian coordinates of
the centres. The pulses’ width was kept fixed to σp× δij ,
with σp = 0.2, for the sake of simplicity. Thus, we are
required to estimate Np, the total number of pulses in
the data, and also estimate the parameters for each in-

dividual signal k: ~θk = {Ak, xk, yk}. The noise variance
σn is estimated as part of the fit.

The analysis of this problem is performed using the
adaptive parallel tempering scheme of section II D and
the Reversible Jump MCMC proposals (section II F). The
in-model proposals for each model component are Gaus-
sians, with a diagonal covariance matrix Σ = 10−4δij .
This proposal is not tuned during sampling. The pri-
ors for the parameters are quite wide, covering the en-
tire range of the data, while the prior on the number of
pulses k is set to k ∼ U [0, 50]. With the above settings,
we obtain the results summarized in figures 1 and 2. In
figure 1b we plot the most probable number of Gaussian
pulses present in the data, or in other words, the most
probable model given this particular data-set. It is clear
that for the given level of noise, it is straightforward to
recover the true number of signals. The noise variance
is also estimated accurately as σn = 0.2 ± 2 × 10−3. In
figure 1c we plot the posterior densities for the parame-
ters of all pulses recovered, while we also mark the true
injected values. Figure 1c shows the trans-dimensional
MCMC chains “stacked” over all samples of both model
order and model-parameters. As already mentioned, in
this simplified scenario all signals have similar value for
the amplitude, thus the almost uni-modal marginal on
Ak. This illustrative example is useful as an introduc-
tory application to the more complicated case of detec-
tion in Gravitational Wave astronomy presented below,
in section IV.

In figure 2, three diagnostic quantities for this run
are shown. In the top panel, the evolution of temper-
atures is presented. Following the recipe of [75], we
control the distances between each temperature chain
based on their in-between swap acceptance rate, com-
puted from eq. (21). The tuning term κ(t) is set to
κ(t) = t0/ (ν(t+ t0)), with the adaptation lag t0 = 104

and the adaptation time ν = 102. The middle panel
shows the evolution of the swap acceptance rate per num-
ber of walkers between the chains running at different
temperatures. After ∼ 105 sampler iterations, the sys-
tem converges to an equilibrium, where the rate of swap-
ping states reaches a single value across the tempera-
ture range. In the bottom panel we show the acceptance
rate for the in-model step of the algorithm, for all tem-
peratures. As expected, after temperature equilibrium
at ∼ 105 samples, the acceptance rate converges to a
(different) value for each temperature, which is higher
for higher temperatures (smoother posterior surfaces are
easier to explore).

Finally, it is interesting to investigate how the sampled
dimensionality of the problem varies at at different tem-
peratures. In figure 3, we plot the posterior on the num-
ber of pulses at each temperature. As expected, higher
temperature chains tend to favour lower model dimen-
sionality and the T∞ chain samples the prior on k. This
can be attributed to the choice of priors and “birth pro-
posal” distributions for both the signal parameters and k.
The likelihood is down-weighted at higher temperatures,
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FIG. 2: Top panel: The evolution of the temperature chains running in parallel for the toy problem of searching for
2D Gaussian pulses in Gaussian noise. The different colors indicate the the initial temperature chain index.

Following the parallel tempering recipe of [75], the temperature ladder is tuned according to eq. (21), and the chains
start to converge after ∼ 104 iterations. Middle panel: The evolution of the swap acceptance rate αi,j described in

eq. (20), per number of walkers nw. For this run we have used nw = 10 walkers. After 105 iterations, the swap
acceptance rate converges to a single (different) value for every temperature chain. Bottom panel: The “in-model”

acceptance rate per temperature chain, given by eq. (4).

making it harder to overcome the Occam penalty from
including extra parameters in the model. This means
quieter sources are less likely to be added and the pre-
ferred models have fewer sources.
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k

TiTi

FIG. 3: Posterior on the number of Gaussians, k, at
each temperature Ti, for the toy problem of

section III C 1. The different colors indicate the the
initial temperature chain index. Darker colors
corresponds to colder chains and vice versa.

2. Modelling power spectra: Searching for the optimal
number of B-spline knots.

One of the most common problems in signal processing
is the characterization of the spectra of the data. This
is often done by adopting spectral models and fitting the
spectra directly in the frequency domain. This method-
ology is used when the signal of interest has stochastic
properties. Examples from GW astronomy, include the
measurement of stochastic signals with astrophysical, or
cosmological origin [97, 98]. There are many examples
of possible stochastic signals for LISA [16, 20, 93, 98].
Searching for signals with stochastic properties requires
flexible spectral models, both for the observatory instru-
mental noise, and the measured stochastic signal. For
these reasons, it is sometimes convenient to adopt a ver-
satile model, such as one that is based on B-spline inter-
polation schemes.

B-splines are a geometrical modeling tool, and have
proven to be very useful for modelling or generating
smoother representations of data. They are piecewise
polynomial curves with a certain number of continu-
ous derivatives, and can be parameterised in various
ways [101]. For this application, we follow [102], and
choose to work with cubic-spline interpolation, using the
corresponding SciPy library [103]. The procedure starts
by selecting a number of control points, or knots, with a
given position and amplitude, which the smooth polyno-
mial curve crosses and at which there is a change in the
first non-continuous derivative. One of the challenging
problems using such methods, is to choose the optimal
number of spline knots for fitting the data, without over-
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FIG. 4: Results for power spectra modelling with a shape agnostic model. (a) The simulated data (gray), generated
from the theoretical model (dashed black line). The PSD computed on an equally-spaced logarithmic grid with the
method of [99, 100] is also shown (red data points and their 1-σ errors). The pink solid lines represent models drawn

randomly from the posterior chains. (b) The optimal B-spline knots estimated by the dynamical parameter
estimation procedure. As shown from this histogram, the optimal interior knot count for this data converges to six,
corresponding to eight total knots including the two edge knots. (c) Stacking the MCMC chains for all models. It is
evident from this figure that we essentially “scan” the true noise shape (pink solid line), by placing knots across the

frequency range (see text for more details).

fitting. This is a model selection problem that can be
easily solved with dynamical algorithms such as the one
presented here. For our next example, we generate time-
series data directly from a theoretical model PSD. The
simulated data are shown in figure 4a. We then use the
machinery of Eryn to find the optimal dimensionality for
the problem, together with the best-fit parameters for the
knots. To ease the computational complexity, we com-
pute the PSD of the time series using the methodology
presented in [99]. In more detail, we begin by choosing a
new frequency grid, to which we compute the PSD using
the optimal number of averaged segments for each given
frequency. We essentially split the time-series data at the
maximum number of segments that the given choice of
window and percentage of data overlap permits, which
will allow us to estimate the PSD at each frequency bin
with minimal variance. By carefully choosing the win-
dow function and distance between the data points, one
can generate a numerical spectrum estimate with mini-
mal correlations between them (see red data-points in fig-
ure 4). For more details we refer the reader to [99, 100].
Finally, we also keep two knots fixed at the edges of the
spectra, allowing the sampler to estimate only their am-
plitude, while the rest of the knot parameters (and their
number) are left to be estimated from the data.

For the spline knot positions, {log fj,k}, and ampli-
tudes, {logSj,k}, we adopt uniform priors that cover the
complete parameter space. Here, the j index corresponds
to the knot number for the given model order k. We also
use a ladder of 10 temperatures, with 10 walkers each,
while maintaining the same settings for the adaptivity

of the temperatures as in section III C 1. Each walker
is initialized at a random point on the parameter space,
after drawing the dimensionality k of the model from
k ∼ U [1, 20]. We adopt a Gaussian likelihood, with its
logarithm written as

log p(D|~θk) ∝ −1

2

∑
i

Ni

(
Di

Si,k(~θk)
+ logSi,k(~θk)

)
,

(30)
whereDi is the PSD data value for the given frequency fi,
as computed by the method presented in [99, 100], using

Ni averaged segments. The Si,k(~θk) is the spline model
of order k evaluated at fi, that depends on a parameter
set

~θk = {log f1,k, · · · , log fk,k, logS0, · · · , logSk,k, logSk+1},
(31)

in which the logS0 and logSk+1 parameters refer to the
logarithm of the PSD amplitude of the two fixed knots
at the “edges” of the spectrum. Those two parameters
correspond to our zeroth model order (k = 0), thus they
are always being explored by the walkers of Eryn.

The results are shown in figure 4. In particular, in
figure 4b we show the histogram of the recovered num-
ber of knots for the particular data-set. It is clear that
8 spline knots are preferred, two of them being fixed at
the edges of the spectrum, and the other six knots free
to take any position in the given frequency range. In
figure 4c we show the 2D sliced posteriors for the spline
parameters, {logSj,k} and {log fj,k}. In this figure, we
again stack all the MCMC samples across model orders.
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The true spectrum is indicated by the orange solid line.
There is an interesting outcome of this toy investigation;
while there is a preferable dimensionality of the model,
there is a weak constraint on the actual positions of the
knots. We find that the sampler is virtually “scanning”
the PSD data, showing slightly higher preference for lo-
cations between −6 and −4 in log-frequency, where the
spectrum follows a more complicated shape. Finally, in
figure 4a, the data (gray solid line and red data points),
is shown together with model evaluations drawn from the
posterior samples (pink solid lines).

IV. EXAMPLES FROM GRAVITATIONAL
WAVE ASTRONOMY

In recent years, we have witnessed the beginning of
Gravitational Wave Astronomy. Since the first detec-
tion [104] dozens of waveform signatures have been mea-
sured with the current network of observatories. At the
time of the writing of this paper, more than 90 events
have been recorded [7], the vast majority of them are
black hole (BH) binary mergers, with a few of them
being binary neutron star (NS) and BH-NS mergers.
At the same time, detector networks are being im-
proved [105, 106] and there are plans to expand them
with the addition of new observatories, such as the Ein-
stein Telescope [107, 108] or Cosmic Explorer [109, 110].
Those detectors will unlock the sky to larger redshifts z,
allowing access to a vast number of potential sources. In
addition, space missions, such as LISA [16, 20], are pre-
dicted to be signal-dominated observatories, with many
types of sources populating their data streams. In fact,
we expect that source confusion will be one of the pri-
mary challenges in future data analysis efforts in gravi-
tational wave astronomy. In a typical data-set, we ex-
pect an unknown number of signals, originating from
sources that generate waveforms with different charac-
teristics. Those range from the stellar-mass BH binaries
now frequently observed by ground-basd detectors, to the
supermassive BH binaries, extreme mass ratio inspirals,
ultra compact Galactic binaries (UCB), and stochastic
GW signals from both astrophysical and possibly cosmo-
logical origin [16, 20, 98]. For this final example, we will
focus on the LISA mission, and in particular on the case
of discriminating UCB signals.

A. Application to LISA data and the Ultra
Compact Galactic Binaries

LISA is going to measure GW signals in the mHz
regime, accessing sources of all the aforementioned types.
As already discussed, the most numerous of them are go-
ing to be the UCBs, which will be almost monochromatic
in the LISA band. Out of the millions of sources, only
∼ O(104) will be individually resolvable, and the rest will
generate a confusion signal. As a consequence, for the du-

10−18

10−17

10−16

|A
|

Injected signals

3.997 3.998 3.999 4.000 4.001
Frequency [mHz]

10−18

10−17

10−16

|A
|

Noise

Injection

FIG. 5: Top panel: The simulated data used for
demonstrating the capabilities of Eryn in tackling a

high-dimensional problem. A total of 10 Ultra Compact
Binaries in the vicinity of our Galaxy emitting

Gravitational Wave signals at the mHz range. Here we
plot the power spectral density of the A data channel of
LISA. The catalogue of sources is taken from the second
LISA Data Challenge [111]. Each signal is represented

by a different colour. Bottom panel: The same data-set,
now comparing the injected signal against the solution
yielded by Eryn (see text for more details). We have

plotted the shaded area by sampling the joint posterior
on model order k and the corresponding parameters.

ration of the mission, we will need to disentangle tens of
thousands of sources which will be overlapping in both
time and frequency domains. This is no trivial task, but
various different strategies have already been proposed
for analyzing such challenging data-sets. For example,
Gaussian Processes can be employed [24], or Swarm Op-
timization techniques [25], or hybrid swarm-based algo-
rithms [112]. Pipelines based on MCMC methods have
been tested extensively [21, 23, 27, 113], and have been
demonstrated to be able to tackle complex cases where
signals are overlapping.

Here, we will focus on the same problem, employing
Eryn to solve a down-scaled version of the UCB challenge.
It is down-scaled because we focus only on a single nar-
row frequency band, containing several overlapping sig-
nals. In addition, we focus solely on demonstrating the
capabilities of Eryn on dynamic parameter estimation for
UCB type sources and no other types of signals are con-
tained in the data (e.g., chirping signatures from super-
massive BH binaries). At the same time, we have access
to the level of instrumental noise, which is shown in both
panels of figure 5. Searching for the UCB signals across
the complete LISA band requires a more elaborate imple-
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mentation of this simplified pipeline. This pipeline will
be focusing on solving the complete second LISA Data
Challenge [111], and is going to be presented in future
work [31]. We choose to work on the frequency seg-

# fgw [mHz] ρopt

1 3.99780 9.98

2 3.99781 46.70

3 3.99784 4.55

4 3.99854 39.45

5 3.99873 13.02

6 3.99882 8.47

7 3.99919 10.88

8 3.99939 19.07

9 3.99964 20.00

10 3.99965 7.99

TABLE I: The optimal SNR ρopt for each of the 10
injected sources, computed for the given duration of the

mission (see eq. (37)). The dominant emission
frequency fgw is also given for reference.

ment between 3.997 and 4 mHz, which contains 10 UCB
objects, drawn directly from the LDC2 catalogue [111].
Those are shown in the top panel of figure 5 which shows
the power spectrum of the A data channel of LISA. We
use the two noise-orthogonal A, E, and T Time Delay
Interferometry variables [114–116], which are linear com-
binations of the LISA relative frequency TDI Michelson
measurements X, Y , and Z as:

A =
1√
2

(Z −X), E =
1√
6

(X − 2Y + Z),

T =
1√
3

(X + Y + Z).

(32)

In ideal conditions (equal noises across spacecrafts, and
equal LISA arms), the noise in A and E is indepen-
dent, while the T data stream can be used as a signal-
insensitive null channel, useful for instrument noise cali-
bration. Since we perform analysis on a noise-free injec-
tion, we will be neglecting the T channel altogether. We
simulated the injection data for an observation time of
Tobs = 1 year.

The optimal SNR for each injected source, ρopt, is given
in table I. The ρopt quantity refers to the SNR of each
source in isolation, with respect only to the instrumental
noise, and can be calculated as

ρ2
opt =

∑
C

(hC |hC)C , (33)

with C ∈ {A,E} the noise-orthogonal TDI channels of
eq. (32), while the (·|·)C notation represents the noise
weighted inner product expressed for two time series a

and b as

(a|b)C = 2

∞∫
0

df
[
ã∗(f)b̃(f) + ã(f)b̃∗(f)

]
/S̃n,C(f).

(34)
The tilde represents the data in the Fourier frequency
domain, and the asterisk indicates complex conjugate.
The S̃n,C(f) is the one-sided PSD of the noise in TDI
channel C. Under our assumptions Sn,A(f) = Sn,E(f).

For our investigation we chose to analyze noiseless data
(no noise realization), while in the likelihood we are using
the PSD noise levels taken from the LISA design stud-
ies [117]. For the signals, we utilize the fast frequency-
domain UCB waveform model of [14]. Then, the two
polarizations of an emitting UCB can be written as

h+(t) =
2M
DL

(πfgw(t))
2/3 (

1 + cos2 ι
)

cosφ(t),

h×(t) = −4M
DL

(πfgw(t))
2/3

cos ι sinφ(t),

(35)

whereM is the chirp mass, fgw is the instantaneous grav-
itational wave frequency, DL is the luminosity distance,
ι is the inclination of the binary orbit, and φ(t) is the
gravitational wave phase. The phase φ can be expressed

as φ = φ0 + 2π
∫ t
fgw(t′)dt′, with φ0 being an initial ar-

bitrary phase shift. For more details about the waveform
model, we refer the reader to [14, 80, 118].

In our simplified scenario, each binary signal in
the Solar System Barycenter is determined by a

set of eight parameters. Those are the ~θ =
{A, fgw [mHz], ḟgw [Hz/s], φ0, cos ι, ψ, λ, sinβ}, whereA
is the overall amplitude, ḟgw is the first derivative of the
gravitational-wave frequency, ψ the polarization, λ is the
ecliptic longitude, and β the ecliptic latitude of the bi-
nary. The amplitude of the signal is calculated as

A =
(

2M5/3π2/3f2/3
gw

)
/DL, (36)

which can be rused to obtain a rough SNR estimate,
via [21]

ρ2 =
A2Tobs sin2(fgw/f∗)

4Sn(fgw)
, (37)

with Sn(fgw) being the instrumental noise power spectral
density at frequency fgw, and f∗ = 1/(2πL), where L
the LISA arm length. Given eq. (36) and (37), we find
it convenient to directly sample on ρ instead of A, which
also yields a more illustrative measure of the amplitude
of each binary. We use wide uniform priors for all the
rest of the binary parameters, covering essentially the
complete parameter space. The exception is again the
amplitude (SNR), ρ, where we adopt a prior which was
first introduced in [119] and then adapted in [21]. The
prior density can be expressed as

p(ρ) =
3ρ

4ρ∗ (1 + ρ/(4ρ∗))
, (38)



15

0 5 10 15 20

# of sources in the data

10−3

10−2

10−1

100

(a)

6 12 18 24

ρ

3.
99

76

3.
99

84

3.
99

92

4.
00

00

f g
w

[m
H

z]

(b)

FIG. 6: Left panel: In this figure, we show the posterior on the number of UCB sources in the data. The true
injected number is shown with the red dashed line. It is clear that, for the given measurement duration of the

particular data set, we manage to confidently resolve eight binaries out of a total of ten. Right panel: Corner plot for
two of the eight parameters characterising each UCB source. These are the amplitude, expressed as an SNR ρ, and
the dominant emission (or initial) frequency, fgw [mHz] (see text for more details). The violet crosses represent the

injected parameter values. A corner plot for more parameters is shown in figure A.7 in the Appendix.

where ρ∗ is a given constant that specifies the peak of
the above distribution. This distribution is designed to
prevent the proposal of sources with very small SNR in
the model, as it drops sharply for ρ → 0. Those weak
sources do not significantly affect the likelihood, and so
their inclusion must be penalised by the prior [120]. This
prior choice forces the sampler to explore only poten-
tial sources with non-zero SNR, avoiding populating the
chains with numerous undetectable signals. This prior
performs adequately in this problem, but there are other
solutions one could adopt in order to keep control of the
number of very weak sources. This discussion, which sets
the grounds for a global-fit analysis pipeline for the LISA
data [21], is out of the scope of this paper, but a more de-
tailed description will be presented in a future work [31].

a. Search Phase: Before parameter estimation, we
initiate a search phase of our analysis, with the aim of
getting the walkers to a better starting point on the pos-
terior surface. This phase consists of an iterative brute
force procedure, based on drawing a very large number of
proposals, then maximizing the likelihood over the initial
phase φ0, and finally perform a rapid MCMC sampling
over the parameter space, using only a one-source model
(therefore there is no dynamical parameter spaces). In
particular, we draw 5 × 106 points in the parameter
space, and after phase maximization, we use them as
starting points to a parallel tempered MCMC run with
NT = 10 temperatures, each running with nw = 500
walkers. When this step concludes, we keep the 100 best
samples in terms of likelihood value and use their corre-
sponding parameter estimates as starting points for the
parameter estimation portion of the analysis. We also
use the maximum Likelihood solution to subtract the

source found from the data. We then use the residual
data to search for another source, and this process re-
peats until there is no signal found with SNR ρ > 5. In
between successive iterations of the single-binary search,
we run another MCMC over all sources found so far in
order to adjust the parameters to account for correla-
tions and overlap between sources. After convergence,
we found eight sources in our data-set with an optimal
SNR greater than 5. We take these found sources and
add them to all walkers in the sampler at the beginning
of the full MCMC run described below.

b. Parameter estimation: During this step, we per-
form hybrid MCMC sampling, where we both update
the found sources (in-model) and dynamically search for
new and weaker sources in the data employing Reversible
Jump sampling. For the number of signals k, we adopt a
uniform prior k ∼ U [6, 20]. For the sake of convenience
in this simple application, we keep the six loudest bina-
ries found during the search phase as fixed. This means
that we still sample their waveform parameters, but they
are not allowed to be removed by the Reversible Jump
process. We chose this setup in order to accelerate the
convergence of the algorithm, being confident that these
sources are part of the solution. In future work, this will
be adjusted to deal with the much larger complexity of
the full problem.

Concerning the sampler settings, we use the adaptive
parallel tempering scheme of section II D, building a tem-
perature ladder of NT = 10 temperatures, with 100 walk-
ers for each temperature. For this run, we have also
utilized the Multiple Try Metropolis algorithm (see sec-
tion II C) in order to improve the acceptance rate in the
reversible jump proposal. We have also tried the Delayed-
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Rejection scheme which is implemented for Eryn, but
we found that the Multiple-Try strategy yields more effi-
cient sampling. Finally, we have utilized the basic stretch
and group stretch proposals that were described in sec-
tion II A.

After convergence, the result is shown in figures 5
and 6. In figure 6a, the sampled posterior on the num-
ber of sources k is presented. In this histogram, we have
added the six fixed binaries to the actual number of sig-
nals being sampled via the Reversible Jump algorithm.
It is fairly obvious that we have managed to confidently
resolve eight out of the ten injected binary signals. This
fact that we do not favour 10 sources can be explained
partly by the low SNR of the signals (see table I) and
partly by confusion from source overlap (also shown in
figure 5). Additionally, the result of figure 6a depends on
the given observation duration. The greater the Tobs, the
better our ability to resolve the confused sources. Thus,
in that case, we should expect more Reversible Jump it-
erations across the higher dimensional models.

On the right panel, in figure 6b, the ensemble 2D pos-
terior slice is shown, for two selected parameters. We
call it ensemble because we are again “stacking” all the
chains for these two parameters for all sources for all
model orders k. We chose to show only the amplitude
(the ρ parameter explained in eq. (37) above) and the
dominant emission frequency fgw, which illustrates the
number of sources resolved, and how they overlap in fre-
quency. A corner plot for more parameters is shown in
figure A.7 in Appendix A. We also show the true injec-
tion values, marked as crosses, on top of the 2D posterior.
From this plot alone, one can see that the sampler is ex-
ploring efficiently the parameter space, converging to the
true values of the resolvable binaries that were injected.

V. DISCUSSION

We have implemented Eryn, a Bayesian sampling pack-
age capable of performing efficient trans-dimensional in-
ference, by employing different techniques that improve
its acceptance rate. These techniques are the affine in-
variant sampling, the adaptive parallel tempering, the
delayed rejection, and multiple try metropolis, in com-
bination with the construction of informative proposal
distributions for the parameters of the models. The
structure of Eryn is based on the widely used software
emcee [58], enhanced with the ability of performing Re-
versible Jumps [30] between different model spaces. The
sampler capabilities have been demonstrated with toy
models that are commonly encountered in different data
analysis problems. We have begun with an application to
signal detection, and in particular to searching for sim-
ple signals in the form of Gaussian pulse signals in the
presence of Gaussian noise (see section III C 1).

In section III C 2, we applied our algorithm to a prob-
lem of modeling power spectra with arbitrary shapes in
frequency domain. In such cases, it is convenient to de-

fine models based on B-splines, which are able to faith-
fully capture the shape of any spectral data. However, in
order to avoid over-fitting situations, the optimal order
of the model (i.e. the optimal number of spline knots),
needs to be estimated from the data. This can be done
either sequentially, by trying models of different dimen-
sionality and then comparing their performance, or dy-
namically, by using trans-dimensional algorithms such as
Eryn. This class of problems is often encountered in cos-
mology [121, 122], where the signal of interest is stochas-
tic in nature, and sometimes the prior knowledge on its
shape is very limited. As already discussed, this is espe-
cially true for future GW observatories, which open the
possibility of detecting such signals from both astrophys-
ical and cosmological origin [16, 98, 102]. The different
theoretical models produce spectra with distinct shapes,
increasing the need for shape-agnostic spectral models,
such as the B-spline used here.

Finally, in section IV A, we demonstrated Eryn in a
more complicated problem, that of the analysis of ultra
compact binary signals measured by the future LISA de-
tector. These objects are going to produce the majority
of the signals in the LISA data, each emitting almost
monochromatic radiation. Their vast number will gen-
erate a confusion foreground, while only a few thousand
of them will be resolvable from the data. We employ
our tools described in this work, together with a search
phase that is based on iteratively running the sampler
on “static models” (no trans-dimensional moves) with
phase-maximized likelihoods. We do these runs on the
residuals of each iteration, with the aim of extracting all
bright sources. In order to achieve faster convergence
of our parameter estimation run, we choose to keep the
brightest sources found during search as fixed (minimum
number of model order is k = 6), while the the Reversible
Jump algorithm is used to search for weaker signals in the
data. This is purely a choice that allows quick conver-
gence in this fully-controlled and simplified LISA data-
set.

We perform this analysis for a mission duration of
Tobs = 1 year and only on a single narrow frequency band
around 4 mHz, which contains a total of 10 binary signals.
It is worth noting here, that the synthetic data were pro-
duced assuming idealized conditions. This means that
we do not consider any data irregularities, such as data
gaps and glitches and spectral lines, or any other contam-
ination originating from the mixing of signals of different
types (such as supermassive BH binaries). In the end,
as shown in figure 6a, we manage to recover eight out of
ten injected signals. This result makes sense given the
relative strength of the injections, and their waveform
overlap. Many of the injected sources have an optimal
SNR in isolation which is rather low (see table I), so these
are more susceptible to deterioration when we account for
signal overlap.

The above investigations demonstrate that the dynam-
ical parameter estimation capabilities of Eryn are suitable
for these types of computationally demanding problems.
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Eryn has already been used in several works that have
been already published [80, 102, 123], or are going to ap-
pear soon. The work presented in this paper is the initial
part of our efforts toward implementing a data analysis
pipeline for LISA data. This pipeline will be demon-
strated on the LDC2 data-set [111], which contains mul-
tiple types of signals overlapping in both time and fre-
quency domains. That being said, Eryn is a generic and
versatile sampler, which can be used in any investiga-
tion that requires Reversible Jump sampling, and to our
knowledge is one of the very few statistical tools of this
kind that is not specialized to a single type of analysis
(see discussion in section II F).
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Appendix A:

In figure A.7 we show the triangle plot of the stacked
posterior points as sampled by Eryn, for the investigation
of section IV. The difference to figure 6b is that here we
include more parameters of the sources, but we still do
not include all parameters for the sake of clarity.

[1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, Equation of state calcula-
tions by fast computing machines, J. Chem. Phys. 21,
1087 (1953).

[2] W. K. Hastings, Monte Carlo Sampling Methods Using
Markov Chains and Their Applications, Biometrika 57,
97 (1970).

[3] D. B. Hitchcock, A history of the metropolis-hastings
algorithm, The American Statistician 57, 254 (2003),
https://doi.org/10.1198/0003130032413.

[4] W. Gilks, S. Richardson, and D. Spiegelhalter, Markov
Chain Monte Carlo in Practice, Chapman & Hall/CRC
Interdisciplinary Statistics (Taylor & Francis, 1995).

[5] G. Ashton and C. Talbot, B ilby-MCMC: an MCMC
sampler for gravitational-wave inference, Mon. Not.
Roy. Astron. Soc. 507, 2037 (2021), arXiv:2106.08730
[gr-qc].

[6] C. M. Biwer, C. D. Capano, S. De, M. Cabero, D. A.
Brown, A. H. Nitz, and V. Raymond, PyCBC Inference:
A Python-based parameter estimation toolkit for com-
pact binary coalescence signals, Publ. Astron. Soc. Pac.
131, 024503 (2019), arXiv:1807.10312 [astro-ph.IM].

[7] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA),
GWTC-3: Compact Binary Coalescences Observed by
LIGO and Virgo During the Second Part of the Third
Observing Run, (2021), arXiv:2111.03606 [gr-qc].

[8] T. L. S. Collaboration and the Virgo Collaboration, A
guide to ligo-virgo detector noise and extraction of tran-
sient gravitational-wave signals, Classical and Quantum
Gravity 37, 055002 (2020).

[9] P. Shawhan, Ligo data analysis, Nuclear Instruments
and Methods in Physics Research Section A: Acceler-
ators, Spectrometers, Detectors and Associated Equip-
ment 502, 396 (2003), proceedings of the VIII Interna-
tional Workshop on Advanced Computing and Analysis
Techniques in Physics Research.

[10] R. Abbott et al. (LIGO Scientific, Virgo), Open data
from the first and second observing runs of Advanced
LIGO and Advanced Virgo, SoftwareX 13, 100658
(2021), arXiv:1912.11716 [gr-qc].

[11] G. Ashton and R. Prix, Hierarchical multistage mcmc
follow-up of continuous gravitational wave candidates,

Phys. Rev. D 97, 103020 (2018).
[12] E. Thrane and C. Talbot, An introduction to bayesian

inference in gravitational-wave astronomy: Parameter
estimation, model selection, and hierarchical models,
Publications of the Astronomical Society of Australia
36, e010 (2019).

[13] M. Isi, W. M. Farr, and K. Chatziioannou, Comparing
Bayes factors and hierarchical inference for testing gen-
eral relativity with gravitational waves, Phys. Rev. D
106, 024048 (2022), arXiv:2204.10742 [gr-qc].

[14] N. J. Cornish and T. B. Littenberg, Tests of bayesian
model selection techniques for gravitational wave as-
tronomy, Phys. Rev. D 76, 083006 (2007).

[15] A. Gelman, G. O. Roberts, and W. R. Gilks, Efficient
metropolis jumping rules, in Bayesian Statistics, edited
by J. M. Bernardo, J. O. Berger, A. P. Dawid, and
A. F. M. Smith (Oxford University Press, Oxford, 1996)
pp. 599–608.

[16] P. Amaro-Seoane et al., Laser Interferometer Space
Antenna, arXiv e-prints , arXiv:1702.00786 (2017),
arXiv:1702.00786 [astro-ph.IM].

[17] J. Luo, L.-S. Chen, H.-Z. Duan, Y.-G. Gong, S. Hu,
J. Ji, Q. Liu, J. Mei, V. Milyukov, M. Sazhin, C.-G.
Shao, V. T. Toth, H.-B. Tu, Y. Wang, Y. Wang, H.-
C. Yeh, M.-S. Zhan, Y. Zhang, V. Zharov, and Z.-B.
Zhou, Tianqin: a space-borne gravitational wave detec-
tor, Classical and Quantum Gravity 33, 035010 (2016).

[18] S. Kawamura et al., The japanese space gravitational
wave antenna - decigo, Journal of Physics: Conference
Series 122, 012006 (2008).

[19] Z. Ren et al., Taiji Data Challenge for Exploring Grav-
itational Wave Universe, (2023), arXiv:2301.02967 [gr-
qc].

[20] P. Amaro-Seoane et al., Low-frequency gravitational-
wave science with eLISA/NGO, Classical and Quantum
Gravity 29, 124016 (2012), arXiv:1202.0839 [gr-qc].

[21] T. B. Littenberg, N. J. Cornish, K. Lackeos, and T. Rob-
son, Global analysis of the gravitational wave signal
from galactic binaries, Phys. Rev. D 101, 123021 (2020).

[22] T. Littenberg, N. Cornish, K. Lackeos, and T. Robson,
Global Analysis of the Gravitational Wave Signal from
Galactic Binaries, Phys. Rev. D 101, 123021 (2020),

https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1198/0003130032413
https://arxiv.org/abs/https://doi.org/10.1198/0003130032413
http://books.google.com/books?id=TRXrMWY_i2IC
http://books.google.com/books?id=TRXrMWY_i2IC
https://doi.org/10.1093/mnras/stab2236
https://doi.org/10.1093/mnras/stab2236
https://arxiv.org/abs/2106.08730
https://arxiv.org/abs/2106.08730
https://doi.org/10.1088/1538-3873/aaef0b
https://doi.org/10.1088/1538-3873/aaef0b
https://arxiv.org/abs/1807.10312
https://arxiv.org/abs/2111.03606
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/https://doi.org/10.1016/S0168-9002(03)00451-0
https://doi.org/https://doi.org/10.1016/S0168-9002(03)00451-0
https://doi.org/https://doi.org/10.1016/S0168-9002(03)00451-0
https://doi.org/https://doi.org/10.1016/S0168-9002(03)00451-0
https://doi.org/10.1016/j.softx.2021.100658
https://doi.org/10.1016/j.softx.2021.100658
https://arxiv.org/abs/1912.11716
https://doi.org/10.1103/PhysRevD.97.103020
https://doi.org/10.1017/pasa.2019.2
https://doi.org/10.1017/pasa.2019.2
https://doi.org/10.1103/PhysRevD.106.024048
https://doi.org/10.1103/PhysRevD.106.024048
https://arxiv.org/abs/2204.10742
https://doi.org/10.1103/PhysRevD.76.083006
https://arxiv.org/abs/1702.00786
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/1742-6596/122/1/012006
https://doi.org/10.1088/1742-6596/122/1/012006
https://arxiv.org/abs/2301.02967
https://arxiv.org/abs/2301.02967
https://doi.org/10.1088/0264-9381/29/12/124016
https://doi.org/10.1088/0264-9381/29/12/124016
https://arxiv.org/abs/1202.0839
https://doi.org/10.1103/PhysRevD.101.123021
https://doi.org/10.1103/PhysRevD.101.123021


18

3.
99

76
3.
99

84
3.
99

92
4.
00

00

f g
w

[m
H

z]

−0
.8
−0
.4

0.
0

0.
4

0.
8

co
s
ι

1.
5

3.
0

4.
5

λ

6 12 18 24

ρ

−0
.8
−0
.4

0.
0

0.
4

0.
8

si
n
β

3.
99

76

3.
99

84

3.
99

92

4.
00

00

fgw [mHz]

−0
.8
−0
.4 0.

0
0.
4

0.
8

cos ι

1.
5

3.
0

4.
5

λ
−0
.8
−0
.4 0.

0
0.
4

0.
8

sin β

FIG. A.7: A triangle plot showing the 2D posterior slices for the application of section IV A, but for a greater
selection of parameters than figure 6b. The rest of the parameters, if plotted stacked in the same manner, result in
surfaces that cannot be so easily interpreted, and therefore have been left out. The true injected values are marked

with crosses.

arXiv:2004.08464 [gr-qc].
[23] T. B. Littenberg and N. J. Cornish, Prototype Global

Analysis of LISA Data with Multiple Source Types,
(2023), arXiv:2301.03673 [gr-qc].

[24] S. H. Strub, L. Ferraioli, C. Schmelzbach, S. C. Stähler,
and D. Giardini, Bayesian parameter-estimation of
Galactic binaries in LISA data with Gaussian Process
Regression, (2022), arXiv:2204.04467 [astro-ph.IM].

[25] X.-H. Zhang et al., Resolving Galactic binaries in
LISA data using particle swarm optimization and
cross-validation, Phys. Rev. D 104, 024023 (2021),
arXiv:2103.09391 [gr-qc].

[26] N. Karnesis, S. Babak, M. Pieroni, N. Cornish, and
T. Littenberg, Characterization of the stochastic sig-
nal originating from compact binary populations as
measured by LISA, Phys. Rev. D 104, 043019 (2021),
arXiv:2103.14598 [astro-ph.IM].

[27] J. Crowder and N. J. Cornish, Solution to the galactic
foreground problem for lisa, Phys. Rev. D 75, 043008
(2007).

[28] K. Breivik, S. Coughlin, M. Zevin, C. L. Rodriguez,
K. Kremer, C. S. Ye, J. J. Andrews, M. Kurkowski,
M. C. Digman, S. L. Larson, and F. A. Rasio, COSMIC
Variance in Binary Population Synthesis, ApJ 898, 71
(2020), arXiv:1911.00903 [astro-ph.HE].

[29] G. Nelemans, L. R. Yungelson, and S. F. Portegies
Zwart, The gravitational wave signal from the Galac-
tic disk population of binaries containing two compact
objects, A&A 375, 890 (2001), arXiv:astro-ph/0105221
[astro-ph].

[30] P. J. Green, Reversible jump Markov chain Monte
Carlo computation and Bayesian model determination,
Biometrika 82, 711 (1995).

[31] M. L. Katz et al., in prep, .

https://arxiv.org/abs/2004.08464
https://arxiv.org/abs/2301.03673
https://arxiv.org/abs/2204.04467
https://doi.org/10.1103/PhysRevD.104.024023
https://arxiv.org/abs/2103.09391
https://doi.org/10.1103/PhysRevD.104.043019
https://arxiv.org/abs/2103.14598
https://doi.org/10.1103/PhysRevD.75.043008
https://doi.org/10.1103/PhysRevD.75.043008
https://doi.org/10.3847/1538-4357/ab9d85
https://doi.org/10.3847/1538-4357/ab9d85
https://arxiv.org/abs/1911.00903
https://doi.org/10.1051/0004-6361:20010683
https://arxiv.org/abs/astro-ph/0105221
https://arxiv.org/abs/astro-ph/0105221
https://doi.org/10.1093/biomet/82.4.711


19

[32] M. P. Hobson, A. H. Jaffe, A. R. Liddle, P. Mukher-
jee, and D. Parkinson, Bayesian Methods in Cosmology
(2009).

[33] D. W. Hogg and D. Foreman-Mackey, Data analysis
recipes: Using markov chain monte carlo, The Astro-
physical Journal Supplement Series 236, 11 (2018).

[34] S. Sharma, Markov Chain Monte Carlo Methods for
Bayesian Data Analysis in Astronomy, ARA&A 55, 213
(2017), arXiv:1706.01629 [astro-ph.IM].

[35] M. Johannes and N. Polson, MCMC Methods for Finan-
cial Econometrics (2009).

[36] H. Haario, E. Saksman, and J. Tamminen, An adaptive
metropolis algorithm, Bernoulli 7, 223 (2001).

[37] D. Frenkel, Waste-recycling monte carlo, in Computer
Simulations in Condensed Matter Systems: From Ma-
terials to Chemical Biology Volume 1 , edited by M. Fer-
rario, G. Ciccotti, and K. Binder (Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2006) pp. 127–137.

[38] C. Andrieu and J. Thoms, A tutorial on adaptive mcmc,
Statistics and Computing 18, issue 4, 343 (2008), pub-
lisher: Springer Netherlands.

[39] M. Vallisneri, Use and abuse of the Fisher informa-
tion matrix in the assessment of gravitational-wave
parameter-estimation prospects, Phys. Rev. D 77,
042001 (2008), arXiv:gr-qc/0703086 [gr-qc].

[40] R. Neal, MCMC Using Hamiltonian Dynamics, in Hand-
book of Markov Chain Monte Carlo (2011) pp. 113–162.

[41] M. J. Betancourt and M. Girolami, Hamiltonian
Monte Carlo for Hierarchical Models, arXiv e-prints ,
arXiv:1312.0906 (2013), arXiv:1312.0906 [stat.ME].

[42] M. D. Hoffman and A. Gelman, The No-U-Turn Sam-
pler: Adaptively Setting Path Lengths in Hamiltonian
Monte Carlo, arXiv e-prints , arXiv:1111.4246 (2011),
arXiv:1111.4246 [stat.CO].

[43] C. Ritter and M. Tanner, Facilitating the Gibbs Sam-
pler: The Gibbs Stopper and the Griddy-Gibbs Sam-
plerJournal of the American Statistical Association 87,
861 (1992).

[44] P. Muller, A generic approach to posterior integration
and Gibbs sampling, Tech. Rep. 91-09 (Purdue Univer-
sity, 1991).

[45] W. R. Gilks and P. Wild, Adaptive rejection sampling
for gibbs sampling, Journal of the Royal Statistical So-
ciety. Series C (Applied Statistics) 41, 337 (1992).

[46] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Ru-
bin, Bayesian Data Analysis, 2nd ed. (Chapman and
Hall/CRC, 2004).

[47] S. P. Brooks, Markov chain monte carlo method and
its application, Journal of the Royal Statistical Society.
Series D (The Statistician) 47, 69 (1998).

[48] C. Robert and G. Casella, A short history of markov
chain monte carlo: Subjective recollections from incom-
plete data, Statistical Science 26, 102 (2011).

[49] A. Joseph, Markov Chain Monte Carlo Methods in
Quantum Field Theories: A Modern Primer (Springer,
2019) arXiv:1912.10997 [hep-th].

[50] S. Sharma, Markov chain monte carlo methods for
bayesian data analysis in astronomy, Annual Re-
view of Astronomy and Astrophysics 55, 213 (2017),
https://doi.org/10.1146/annurev-astro-082214-122339.

[51] W. Kendall, F. Liang, and J. Wang, Markov Chain
Monte Carlo: Innovations and Applications, Institute
for Mathematical Sciences lecture notes series (World
Scientific, 2005).

[52] D. Sivia and J. Skilling, Data Analysis: A Bayesian Tu-
torial , Oxford science publications (OUP Oxford, 2006).

[53] D. Sorensen and D. Gianola, Likelihood, Bayesian, and
MCMC Methods in Quantitative Genetics, Statistics for
Biology and Health (Springer New York, 2007).

[54] M. Johannes and N. Polson, Chapter 13 - mcmc meth-
ods for continuous-time financial econometrics, in Hand-
book of Financial Econometrics: Applications, Hand-
books in Finance, Vol. 2, edited by Y. AÏT-SAHALIA
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Númenóreans) was originally part of the vast ancient
treescape that covered most of north-western Middle-
earth.

[92] Tolkien Gateway, http://tolkiengateway.net/wiki/

Eryn_Vorn (), accessed: 2022-06-30.
[93] P. Amaro-Seoane et al., Astrophysics with the Laser In-

terferometer Space Antenna, (2022), arXiv:2203.06016
[gr-qc].

[94] L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density esti-
mation using real nvp (2016).

[95] C. Durkan, A. Bekasov, I. Murray, and G. Papamakar-
ios, Neural spline flows (2019).

[96] Eryn Documentation , mikekatz04.github.io/Eryn/

(), accessed: 2023-01-30.
[97] R. Abbott et al. (LIGO Scientific Collaboration, Virgo

Collaboration, and KAGRA Collaboration), Upper lim-
its on the isotropic gravitational-wave background from
advanced ligo and advanced virgo’s third observing run,
Phys. Rev. D 104, 022004 (2021).

[98] P. Auclair et al. (LISA Cosmology Working Group),
Cosmology with the Laser Interferometer Space An-
tenna, (2022), arXiv:2204.05434 [astro-ph.CO].
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