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ABSTRACT

In recent years, methods for Bayesian inference have been widely used in many different problems in physics where detection
and characterization are necessary. Data analysis in gravitational-wave astronomy is a prime example of such a case. Bayesian
inference has been very successful because this technique provides a representation of the parameters as a posterior probability
distribution, with uncertainties informed by the precision of the experimental measurements. During the last couple of decades,
many specific advances have been proposed and employed in order to solve a large variety of different problems. In this work, we
present a Markov Chain Monte Carlo (MCMC) algorithm that integrates many of those concepts into a single MCMC package.
For this purpose, we have built ERYN, a user-friendly and multipurpose toolbox for Bayesian inference, which can be utilized for
solving parameter estimation and model selection problems, ranging from simple inference questions, to those with large-scale
model variation requiring trans-dimensional MCMC methods, like the Laser Interferometer Space Antenna Global Fit problem.

In this paper, we describe this sampler package and illustrate its capabilities on a variety of use cases.

Key words: gravitational waves —methods: data analysis — software: data analysis — software: development.

1 INTRODUCTION

In physics, and in science in general, one of the most encountered
problems is the one of model calibration and comparison. We test
our models of the physical world against the measured data, to
estimate their parameters and to robustly determine the most suitable
model that describes our observations. A crucial first step in this
direction is to efficiently explore the posterior distribution of the
parameters given the measured data. Markov Chain Monte Carlo
(MCMC) algorithms have proven to be very successful in this
regard (Metropolis et al. 1953; Hastings 1970; Gilks, Richardson &
Spiegelhalter 1995; Hitchcock 2003), being one of the few methods
which can efficiently perform Bayesian inference when the posterior
is not analytically tractable and without solving exactly for the
marginal likelihood. This is compared with, e.g. grid methods, which
are often computationally unfeasible. This is especially true in the
field of gravitational-wave (GW) astronomy, where MCMC methods
have been extensively used in order to find physical parameters for
signals buried in the data (see e.g. Shawhan & LIGO Scientific
Collaboration 2003; Biwer et al. 2019; LIGO Collaboration et al.
2020; Abbott et al. 2021a, b; Ashton & Talbot 2021), as well as
to hierarchically infer the properties of the underlying astrophysical
populations (e.g. Ashton & Prix 2018; Thrane & Talbot 2019; Isi,
Farr & Chatziioannou 2022). MCMC approaches can also compute
the marginal likelihood or evidence (see Section 2), by using
techniques such as thermodynamic integration (see Section 2.4). In
a Bayesian framework, the evidence difference between two models
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can be used to compute the Bayes factor, which is used to select
between different models that could describe the observations.

Thermodynamic integration (or other approximations, see Sec-
tion 2.5 or Cornish & Littenberg 2007 and Gelman, Roberts & Gilks
1996), is ideal for cases where the number of competing models is
small. However, in situations where the number of potential models
becomes too large, the task of iteratively and hierarchically comput-
ing the marginal likelihood can become computationally inefficient,
or even practically unachievable. Such is the case for future signal-
dominated GW observatories, such as the Laser Interferometer Space
Antenna (LISA, Amaro-Seoane et al. 2017) or other proposed space-
borne GW observatories (Kawamura et al. 2008; Luo et al. 2016; Ren
et al. 2023). LISA will observe different types of GW sources, the
most numerous of them being the ultra compact binaries (UCBs)
within the Milky Way (Crowder & Cornish 2007; Amaro-Seoane
et al. 2012, 2017; Littenberg et al. 2020, b; Karnesis et al. 2021;
Zhang et al. 2021; Strub et al. 2022; Littenberg & Cornish 2023).
Those are mostly comprised of a population of double white dwarfs,
although a small fraction of neutron star (NS)—white dwarf or double
NS binaries are expected (Nelemans, Yungelson & Portegies Zwart
2001; Breivik et al. 2020). In fact, LISA is going to detect GWs
from the complete population of O(107) sources simultaneously, but
only a small fraction of them is going to be individually resolvable
(O(10%)). The large majority of signals will generate an anisotropic
and non-stationary ‘confusion’ type of signal, which will dominate
the LISA band between 0.05 and ~0.2 mHz.

In the aforementioned context, computing the marginal likelihood
for such a large parameter space and for all possible numbers of
events that could be in the population becomes computationally
prohibitive. Instead, we can employ dynamical trans-dimensional
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MCMC methods (Green 1995). This family of methods can be quite
challenging to tune, but it has proven to yield satisfactory results,
even for such demanding problems as the LISA data (Littenberg et al.
2020; Littenberg & Cornish 2023). There are also implementation
challenges, which arise from technical aspects of the algorithm; one
example being the dimension matching requirement when proposing
moves between models with different dimensionality. In terms of
algorithm efficiency, it is also crucial to choose proposal distributions
that allow smooth transitions on a dynamical parameter space, a
task which in many cases requires substantial effort. For these
technical reasons, all the available software tools of this kind have
been specifically developed for the particular problem they intend to
solve.

In this work, we present ERYN, a reversible jump (RJ) MCMC
algorithm, capable of efficiently sampling dynamical parameter
spaces, while remaining generic and usable by a large community.
We build upon various ideas from statistics, astronomy, etc., in order
to develop an efficient statistical toolbox that can be applied to
the majority of problems involving detection and characterization
of signals. Our primary goal, however, is to utilize ERYN as a
basic ingredient for a data analysis pipeline to perform the LISA
Global Fit (Littenberg et al. 2020; Littenberg & Cornish 2023).
The Global Fit is a data analysis strategy required to tackle the
problem of multiple source detection, separation, and character-
ization in LISA data. For demonstration purposes in this work,
we use ERYN to analyse a ‘reduced’ scenario of the LISA data in
Section 4.

This paper is organized as follows: In Section 2, we begin with
explaining the foundations of the MCMC algorithm, as well as some
of the relevant methods that we have adopted for our implemen-
tation. In Section 3, we describe how the methods introduced in
Section 2 are combined into the actual toolbox implemented in
ERYN. In Section 3.3, we demonstrate the capabilities of ERYN
through some toy examples, while in Section 4 we apply our
machinery to more demanding applications in GW astronomy. In
particular, we demonstrate ERYN by performing model selection on
a simulated population of ultra compact Galactic binaries (UCBs)
as measured by the future LISA observatory. Finally, in Section 5,
we summarize our work and discuss future applications. We should
state again here, that ERYN is available as open-source software at:
https://github.com/mikekatz04/Eryn.

2 MCMC ALGORITHMS

Nowadays, MCMC methods are considered to be a cornerstone
of Bayesian inference, being very effective in finding solutions to
problems encountered across wide-ranging disciplines (e.g. Hobson
et al. 2009; Sharma 2017; Hogg & Foreman-Mackey 2018; Biwer
et al. 2019; Ashton & Talbot 2021). These include the sampling
of the posterior densities of parameters of interest, the numerical
marginalization over nuisance parameters, and providing a frame-
work to compute the marginal posterior distributions (or evidences)
that can be used for model selection. The Bayesian framework is
based around Bayes’ Theorem:

P16, M)p(6IM)
p(yIM) ’

where y is the measured data and M our chosen model of analysis.
The p(@ |y) term is the posterior distribution of the parameter set 6,
which is related to the likelihood function of the data p( y|9, M) and
the prior densities of the parameters p(§ | M). The evidence p(y| M)

p(Bly, M) = (1)
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is the marginal posterior over the parameter space 6 co:
2= pGIM) = [ p@. 5108
€}

= / p(316, M)p(@|M)dé. ()
[C]

For parameter estimation purposes, the evidence acts as a normal-
ization constant and can be ignored. However, it is really important
if one wants to perform model selection over the measured data. We
shall describe in detail how one can numerically approximate the
integral of equation (2) in Section 2.5.

MCMC algorithms work by constructing a Markov Chain se-
quence, whose elements, §(t,-), fori=0,1,..., are (asymptotically)
independent samples from the target distribution, f (5 ). Under fairly
general assumptions, the distribution of samples in the chain will
converge to the target distribution provided the algorithm satisfies
detailed balance:

fO)p@ — 8= f@)p@E — 6). 3)

Here p(§ — 5’) is the probability that the Markov chain moves
from point 6 to point 6'. The most widely used MCMC algorithm is
Metropolis—Hastings (Metropolis et al. 1953; Hastings 1970), which
is explained in algorithm box 1. The first step of the algorithm is
to define an initial state, §(t0). Then, at each subsequent step i, a
new state is proposed, by randomly drawing from a given proposal
distribution q(é’lé(t )). The newly proposed state is then accepted
with a certain probability, given by equation (4). If the move is
accepted we set 9(t,+1) = 6" otherwise we set 9(t,+1) = 9([,) Any
reasonable choice of the proposal density will generate a Markov
chain with the correct stationary distribution. However, a good choice
of ¢ is critical for its efficiency, i.e. achieving the convergence of
the MCMC chains within a reasonable computational time. For the
special case of a symmetric proposal distribution,' such as the widely
used multivariate Gaussian distribution centred around 67([,-), the
ratio of equation (4) in algorithm box 1 becomes simply the ratio
of the target densities at the current é(t,,) and proposed g points.
For high-dimensional problems, the multivariate Gaussian proposal
can be tuned during the burn-in period of sampling to improve
efficiency (Gelman et al. 1996; Haario, Saksman & Tamminen 2001;
Frenkel 2006; Andrieu & Thoms 2008; Roberts & Rosenthal 2009;
Christensen & Meyer 2022), or even scaled according to the Cramer—
Rao bound, estimated from the Information matrix (Vallisneri 2008).

Algorithm 1: The Metropolis-Hastings algorithm (Metropo-
lis et al. 1953; Hastings 1970). f is the target density to be
sampled.

1: Set the initial state of chain: 5(1‘0) = 4.

2: At each subsequent step n, draw a new state 6’ from a proposal
distribution q ( 0'10(ty_1)).

3: Take

Git) = 6’ with probability @ (6 (t,_1), 6”)
"7 71 @ with probability 1 — @ (8 (t,,_1), 6')

B

where
F)alxly)
a(x,y):l/\{i .
F(x)gq(ylx)
4: Go to 2 and repeat until equilibrium is reached, and enough
independent samples have been drawn from the target distribution.

“

Although the Metropolis-Hastings (MH) algorithm has been quite
successful in tackling inference problems, there are practical imple-

IThat is, a proposal with the property p(§ — 5’) = p(é’ — 5).
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mentation issues to overcome. Improving acceptance rate is crucial
for convergence, and sometimes improvements in the proposal
distribution are not sufficient to efficiently sample the parameter
space. To tackle these issues, various MCMC enhancements have
been proposed. A prime example is the Hamiltonian Monte Carlo
(HMC) algorithms that utilize local gradients in order to generate
proposal points (Neal 2011; Betancourt & Girolami 2013). One
variant of HMC is the No-U-Turn sampler which automates part
of the required tuning of the HMC (Hoffman & Gelman 2014)
sampler. Another alternative to the ‘standard” MH is the Gibbs
sampling algorithm, which is particularly useful if the conditional
distributions of the parameters of the model are known (Muller
1991; Gilks & Wild 1992; Ritter & Tanner 1992). All of the above
developments have been shown to be useful in various disciplines
(Brooks 1998; Gelman et al. 2004; Kendall, Liang & Wang 2005;
Sivia & Skilling 2006; Sorensen & Gianola 2007; Johannes & Polson
2010; Robert & Casella 2011; Baio 2012; Sharma 2017; Hogg &
Foreman-Mackey 2018; Joseph 2019). Finally, there have recently
been numerous proposals that aim to enhance sampling with machine
learning techniques. At their core, many of these methods optimize
the exploration of the likelihood surface, either by learning it directly
(see e.g. Hermans, Begy & Louppe 2019) or by sampling it in a
simpler latent space (e.g. Wu, Kohler & Noé 2020).

In this work, we introduce ERYN, which is built around the EMCEE
package (Foreman-Mackey et al. 2013), enhanced with a variety
of sampling mechanisms that allow us to perform inference on
dynamical parameter spaces with minimal tuning. We expand on
the most important features in the sections below.

2.1 Affine-invariant samplers

An affine transformation is one of the form 8 — Z = A6 + b, where
A and b are a constant matrix and vector, respectively. Under an affine
transformation a probability density p(6|y) transforms to

Pap(E1y) = p(A™'(C — b)|y)/det(A). (5)

Such transformations can help to transform difficult-to-sample dis-
tributions into easier-to-sample ones. A simple example is a multi-
variate normal distribution. If the dynamical range of the eigenvalues
of the covariance matrix is very large, then sampling can be difficult,
but any multivariate normal distribution can be transformed into a
spherical distribution via an affine transformation.

Affine-invariant MCMC is a class of samplers that are designed to
have equal sampling efficiency for all distributions that are related by
an affine transformation (Goodman & Weare 2010; Foreman-Mackey
et al. 2013). The sequence of samples in a Markov chain, {X(1)}, can
be written deterministically as a function of a sequence of random
variables, £(7), which represent the random draws used to propose
new points and evaluate the accept/reject decision. Specifically, we
can always write

X+ 1) =RX(@), &), p), ©)

where p denotes the target density. An affine-invariant sampler has
the property

R(AX(t) + b, §(1), pap) = AR(X(1), £(1), p) + b, @)

ie. the sequence of points visited when sampling an affine-
transformed density are the affine transformations of the states visited
when sampling the original density. If an affine transformation exists
that maps the given target density to one which is more straightfor-
ward to sample from, an affine-invariant sampler should sample it as
efficiently as it could the simpler distribution, so the convergence of
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affine-invariant samplers is less affected by correlations between the
parameters (Foreman-Mackey et al. 2013).

In practice, this goal is achieved by following an ensemble of
points, called walkers, and basing proposed moves on the distribution
of other points in the ensemble. In Foreman-Mackey et al. (2013), the
primary update move is the so-called strefch-move proposal. Each
walker at state X;(¢) is updated by randomly selecting another walker
Jj and proposing a new value Y = X;(¢) + Z[X;(¢) — X;(¢)], where Z is
a random variable drawn from the distribution (Goodman & Weare
2010)

1 1
7 2€lad

8(z) x (3)
0 otherwise

The parameter a can be tuned to improve convergence, but @ = 2
works well in the majority of applications (Foreman-Mackey et al.
2013). The proposed point is accepted with probability

p(Y)
p(X;(1) } ’ ©

where p is the target density and d is the dimension of the parameter
space. This acceptance probability is specific to the stretch proposal
distribution given by equation (8). For other stretch proposals, the
term z¢~ ' must be replaced by z¢~2g(1/z)/g(z). Following this
scheme, detailed balance is maintained, and it can be proven that
affine-invariant samplers converge faster to their target distribu-
tion (Foreman-Mackey et al. 2013). Below in Section 3, we discuss
the extension of the stretch-move proposal to RI MCMC methods.
The benefits of running MCMC chains in parallel, combined with a
proposal distribution that requires almost no tuning, have contributed
to an increasing popularity of affine-invariant samplers. In particular,
the EMCEE package (Foreman-Mackey et al. 2013), has been used
widely in Astrophysics and Cosmology (e.g. McMillan 2017; De
et al. 2018; Virtanen et al. 2020; Wong et al. 2020).

aX;(),Y)=1A {zd—‘

2.2 Delayed rejection

The delayed-rejection (DR) scheme of sampling was devised in
order to improve two aspects of MCMC algorithms. First, it allows
for improvements in the acceptance rate of the proposals, yielding
‘healthier’ parameter chains, with better mixing. Secondly, it is more
robust against becoming trapped in local maxima of the posterior
surface (Green & Mira 2001; Mira 2001; Haario et al. 2006; Trias,
Vecchio & Veitch 2009). The strategy, as the name suggests, is, at
each iteration, instead of immediately rejecting the newly proposed
point based on Algorithm 1, we keep proposing new points while
maintaining detailed balance by computing both the forward and
backward transition probabilities. Suppose we are at a point 50
and use a proposal q(él |§0) to propose a new point 51. The usual
acceptance probability, following the notation of equation (1), is

s o p@11y)q(6161)
09,01 =1A ———5—= 3, (10)
s {P(90|)’)11(91|90)}

as per equation (4). If 51 is rejected, then instead of going back to step
1 of Algorithm 1, we propose a new point, 6,, drawn from a proposal
di strlbutlon q(92|91 s 90) This proposal distribution may depend only
on 61, but we write it more generally here to allow for the case that
the proposal is adapted based on the sequence of steps that have
been rejected. The acceptance probability for 6>, az(Go, 61, 02) is
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computed using
012(50, 51, 52) = (1)
P@:1)q@1102)g @161, 62) [1 — o (62,61

IA
p@)a(@1160)g @161, 6) [1 - o (b0.61)]

If 6, is rejected, further steps can be included and each step adds
additional proposal and rejection-probability terms to the numerator
and denominator of the acceptance probablhty For example, the
three step acceptance probability, a;(@o, 01, 92, 9;) is the minimum
of one and

P(631y)q(6165)q (61165, 63)q(6o|6), 65, 63)
P(Ooly)q(61100)q(62101, 60)q (85102, 61, 6o)

1 e (5] [1 - (3)]
e ()] e (00,5

The proposal g can be different at each step, as long as the relevant
proposal density is used in equation (11). For example, in Trias
et al. (2009), the proposal is built upon a Gaussian mixture model
that tries further points in the parameter space with the aim of
efficiently exploring multiple modes of the posterior distribution.
As the number of steps in the DR scheme becomes arbitrarily large,
the acceptance probability slowly approaches zero. This algorithm
is also limited in practice by high computational requirements,
since at every DR step we need to evaluate a new likelihood and
compute the backwards probability (the o (52, G 1) from equation 11).
Nevertheless, the DR scheme offers many advantages, and despite
the computational cost, it is very useful when the posterior surface
exhibits high dimensionality, and when acceleration techniques are
available. These, e.g. might include the use of graphical processing
units (GPUs), and/or heterodyned likelihoods (Cornish 2021). In
our implementation here, we follow closely the one in Trias et al.
(2009), for improving the acceptance rate of the between-model step
of the RJ algorithm (see Section 2.6). As already mentioned, the
RJ MCMC allows for sampling dynamical parameter spaces. In the
special case of nested models, such as the case of searching multiple
signals in the LISA data, proposing the ‘birth’ of a signal out of
a very wide prior can be very inefficient. A DR scheme alleviates
this problem, by effectively performing a small search around the
first set of rejections, increasing the chances of finding a good signal
candidate, and thus improving the mixing of the chains.

X

12)

2.3 Multiple try metropolis

The multiple try metropolis (MTM, Liu, Liang & Wong 2000;
Martino, Del Olmo & Read 2012; Bédard, Douc & Moulines 2012;
Martino 2018) is a subclass of the implementation of the MH
algorithm, which is based on the idea of generating a number of
proposals for each individual current state, and then selecting one of
them based on their importance weight. In proposing a move from
6,_1,asetof N possible new points, {y,}, are drawn from a proposal
distribution q(y|§,,1) and are assigned weights w; = w(y; |§,,1)
using a weight function w(-|§,_1). One of these proposed points,
vy, is selected with probability given by the normalized weight

i e (13)

l ZII(V:I Wi

To compute the acceptance probability, we need to draw N — 1 points,
{x;,i=1,...,N— 1}, for the reverse move from the proposal g(x|y,),
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and assign weights w(x|y,). We then set 6, = v with probability

w(y1|5z71)+217:1,k¢/ w()’k|§t—l) (14)
w1y, + Son wiady) [

a1, y) = 1A {

and set 5, = 5,,1 otherwise (Martino 2018). This procedure will
satisfy detailed balance if the weight function is chosen such that

P(Boly)q(61160)w(@1160) = p(61y)q(6ol6)w(Eol6)). (15)
This will be satisfied by a weight function of the form
w(@16,-1) = p@,1y)qG,—116) @1, 6,), (16)

where &(9, 1 9,) is any symmetric function, i.e. & (5, 1s 5,) =
E(@,, 0, s V@,, 9, | € D C R?, with d being the dimensionality of
the problem at hand. The detailed balance condition can also be
satisfied by a weight function of the form

w@ |Gy = Lo (17)

q(6:16,-1)

Making this choice and additionally using a proposal function that is
independent of the current point, q(9,|9, )= q(@,) only, we obtain
the independent MTM algorithm (Martino 2018). When using the
independent MTM algorithm detailed balance is maintained when
the same set of points is used for the reverse proposal as for the
forward proposal, which saves the evaluation of N — 1 posterior
densities.

The base MTM is currently implemented in ERYN with options
for the independent MTM algorithm and symmetric proposals. For
a symmetric proposal distribution, q(é,,llé,) = q(§t|§,,1), equa-
tion (15) can be satisfied using the weight function w(§1|50) =
p(§1 |¥). In this case, we still need to draw separate samples for
the reverse step (unlike in the independent MTM case).

Generating a large number of candidate points yields certain
advantages. As expected, the first advantage is the fact that there
is usually very good coverage of the parameter space. The second is
that the implementation of the MTM usually results in chain states
with very low correlation between them. Nevertheless, as for DR, this
algorithm requires increased computational resources, since multiple
likelihoods/posterior densities have to be evaluated at each iteration
of the chain. This cost can be offset in cases where the computations
can be parallelized, e.g. using either Central Processing Unit (CPU
or GPU acceleration.

2.4 Adaptive parallel tempering

The concept of parallel tempering was introduced in order to
efficiently sample surfaces with high multimodality (Swendsen &
Wang 1986; Hukushima & Nemoto 1996; Vousden, Farr & Mandel
2016). The idea is based on a transformation of the posterior density
to a density with a different temperature, 7, defined by

pr(61y) < p(v16)"/7 p(®). (18)

For T =1 this is the target posterior density. In the limit 7 — oo,
it is the prior density. Intermediate temperatures ‘smooth out’ the
posterior by reducing the contrast between areas of high and low
likelihood.

In parallel tempering, a set of Markov chains is constructed in
parallel, each one sampling the transformed posterior for a different
temperature 7. These chains periodically exchange information. The
idea is that the hottest chains explore the parameter space more
widely, and information about areas of high likelihood that they
encounter propagates to the colder chains. Information is exchanged
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by proposing swaps of the states between the different chains. If
two chains are sampling from target densities pl(é) and pz(é),
respectively, then the transition probability for chain 1 in the swap is
23 (50 — 51) = p2(§1 )a(éo, 51). Detailed balance is thus maintained
by accepting the swap with probability

Pl(él)l’z(éo)} ’ (19)

P160)p2(61)
which for the specific case of swapping between two tempered chains
i and j when doing parallel tempering is

- Bj—Bi
(p(y@)) | 0,
p(y16;)
with B; = 1/T; being the inverse temperature, and 51 the given
parameter state for the ith chain.

The temperature ladder 7; should be chosen in order to maximize
the information flow between chains of different temperatures, so
as to encourage the efficient exploration of the complete parameter
space. Typically, this ladder can be static or dynamically adjusted
during the sampling procedure. In ERYN, we have adopted the
procedure of Vousden et al. (2016), which adapts the temperature
ladder based on the swap acceptance rate calculated directly from
the chains. Ideally, one should aim for equal acceptance ratio between
every pair of neighbouring tempered chains, thus tuning their log-
temperature-difference S; = log (T; — T; _ 1), according to the swap
acceptance rate from equation (20):

ds;
dt

where « () tunes the time-scale of the evolution of the temperatures.
The function «(#) can be chosen depending on the desired behaviour
of the procedure. In Vousden et al. (2016), a hyperbolic dependence
on the 7 state is chosen, in order to suppress large dynamic adjust-
ments on long time-scales. This set-up is the default option in ERYN,
but it can be customized. This process is more straightforward for
ensemble samplers, where multiple walkers are used, simply because
one can get an estimate of the acceptance rate directly from the
particular state of the walkers at any given time-step 7. Otherwise, the
acceptance rate is computed after iterating for a predefined number
of steps, which can be chosen by the user for the given problem at
hand. It can be proven (Vousden et al. 2016), that the temperature
ladder will converge to a particular stable configuration. One should
only use this scheme for the initial burn-in stage of sampling, and
then continue with a stationary ladder for the rest of the analysis.

a(éo,él)zm{

;=

= k(1) [ai,i—l(t) - ai+1,i(f)] , 210

2.5 Marginal posterior calculation for model selection

One of the most frequently encountered problems in physics, and in
science in general, is that of model or variable selection, i.e. identi-
fying the model best supported by the observed data. Working in a
Bayesian framework, comparison between different hypotheses may
be done by computing their evidences or marginal posteriors (Gelman
et al. 2004) and evaluating the Bayes factor:

_ pGIMDPM)
pGIMy)p(My)’
where the term p(M,), is the prior probability assigned to the model
M,;.
The marginal posterior density, or evidence, is given by the

integral of equation (2) and is in general quite challenging to
compute. For some high signal-to-noise ratio (SNR) cases it can

12 (22)
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be approximated if the covariance matrix ¥ of the parameters for
all candidate models M are known. This approach is called the
Laplace approximation (Kass & Raftery 1995; Gelman et al. 2004).
However, this is only an approximation, and it sometimes fails for
models with weak support from the data (Cornish & Littenberg
2007) (in particular when the posterior cannot be approximated by a
multivariate Gaussian at §MAp).

When using parallel tempering (Section 2.4), it is possible to
compute the evidence by a procedure known as thermodynamic
integration (Lartillot & Philippe 2006). We define a continuous
distribution of evidences based on the target distribution for a chain
with inverse temperature § = 1/T via

Zi’ﬁ:/p(ylé’ Mz)ﬁp(é)dg (23)

For B = 0, the chain is sampling the prior and therefore log Z; o = 0.

For 8 = 1, we are sampling the target distribution and log Z; | =

log Z;. Additionally, we have

dlog Zg
g

- / loglp(y18. M0)] p(y1f. M, p(@)dé
= E4llog p(yl6, M))]. 24)

From this, we deduce

log Z; = /01 E, [1ogp (y|§, M,—)] dg. (25)

The expectation value is over the distribution being sampled by the
chain at temperature 8 and so can be computed by averaging over
the posterior samples (Goggans & Chi 2004; Lartillot & Philippe
2006; Vousden et al. 2016). The integral can then be evaluated
using standard methods, e.g. the trapezium rule, using the full ladder
of temperatures. This approach generates reliable evidences, with
accuracy limited only by the number of temperatures being sampled,
and the efficiency of the sampling of the parameter space © by the
chains. Since its first introduction, there have been many applications
of this approach, and in particular, there is extensive usage in GW
astronomy (Littenberg & Cornish 2009, 2010; Vousden et al. 2016;
Maturana-Russel et al. 2019; Katz et al. 2022).

The thermodynamic integral in equation (25) can be thought of
as computing the evidence as a sum of differences between the
evidences at different temperatures. An alternative approach, called
the stepping-stone algorithm (Xie et al. 2010), writes the evidence
as a product of the ratios of evidences at different temperatures:

Nr—1
Z Z;
Z=7 L= T;/’H' (26)
i,0 k=1 i Br

where B denotes the inverse temperature of chain k, Ny is the number
of different temperatures being sampled, and we assume 8; = 0 and
Bn, = 1. Each evidence ratio can be written as a posterior integral:

. o Bk n(D
o =/ (318, M= PO M PO) i
Zip Zg,
> Br+1—Bk
= £ |p (16, M)
1< . Br+1—Bk
S ()
i=1

where n is the number of posterior samples in each chain, and 5,2
denotes the ith sample at temperature ;. This leads to the final
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expression:

Nr—1

log 2 = Z longmek

In challenging situations, e.g. where the number of tempered chains
is relatively small, the stepping-stone algorithm has been shown to
produce more accurate estimates of the marginal likelihood than
methods that use thermodynamic integration (Xie et al. 2010). This
was also demonstrated with practical examples drawn from GW
astronomy in Maturana-Russel et al. (2019).

)ﬂk+1—ﬂk — (N7 — 1)logn. (28)

2.6 Reversible jump

Another approach to the model selection problem is to follow
a RJ MCMC strategy, which can dynamically estimate the most
probable hypotheses given the data (Green 1995). The RI MCMC is
a generalization of the MH algorithm that allows trans-dimensional
proposals. Thus, the model order is considered a free parameter
which is fitted together with the parameters of the individual models.
The most widespread variation of the algorithm uses a two-stage
procedure. The first stage or in-model step, uses the standard MH
algorithm to update all the parameters ék for the given model k. The
second stage or between-model step proposes to update the model
state k to a new model state /. Parameters 5; for the new model are also
proposed. The newly proposed state /, is accepted with a probability
defined by Godsill (2001):

o =1A P(?l“ay)g/(”l) 3| 29)
p(Gilk, y)g(ur)

where

Pk, ) = p(yl6e, k) p(Be, k) p(k) (30)

with p(y|6, k) the likelihood for model k, p(6|k) the prior on the
parameters 6y in model k, and p(k) the prior for the model state k. The
term g’ (1;)|J|/g(uy) arises because of the need for dimension matching
between the different model states. In general, we can define a move
between model states in terms of a deterministic invertible mapping,
0k = q(@,, u;) with inverse 91 =q (Qk, uy), that is a function of the
parameters and two sets of random variables, u; and u;, drawn from
distributions g(uy) and g'(u;) (Green 1995; Godsill 2001). The term
|J| is the Jacobian defined by this invertible mapping:

361, u)

Ul =|—=
9Ok, ux)

(31

and the term g'(u;)/g(u;) plays the role of the proposal ratio in the
standard MH acceptance probability. Dimension mapping means that
dim(6;) + dim(u;) = dim(§y) + dim(ug).

Using RI MCMC introduces additional computational cost at each
MCMLC iteration, as well as technical challenges in implementation.
Luckily, implementation can be easier when sampling nested models.
This refers to problems where more complicated models contain their
simpler counterparts. Examples of such cases are fitting polynomial
models, which differ only in the highest order to be determined,
or detection problems where multiple similar signals are potentially
present the data. In such cases, the between-model step can always
be formulated such that the Jacobian of equation (31) becomes unity,
and equation (29) simplifies to the ratio of posteriors accounting for
any differences in prior and proposal volumes (Dellaportas, Forster &
Ntzoufras 2002; Lopes & West 2004; Littenberg et al. 2020).

Eryn 4819
After running RJ MCMC, the Bayes factor can be approximated
by the ratio of the number of iterations spent within each model:
# of iterations in model M

B = . 32
"2 ™ % of iterations in model M, (32)

This algorithm has proven to be robust for evaluating high-
dimensional competing models, and has been quite successful in
tackling data analysis problems in GW astronomy (Cornish &
Littenberg 2007; Karnesis et al. 2014; Littenberg et al. 2020) as well
as areas spanning physics and signal processing (e.g. Marrs 1997;
Khan, Balch & Dellaert 2005; Yu et al. 2021). However, designing
an efficient RI MCMC algorithm can be quite challenging. The first
challenge is to choose suitable proposal distributions, which can
greatly affect the convergence of the algorithm. In situations where
the models are nested, it is both tempting and convenient to take the
proposal to be the same as the prior distribution of the parameters.
As an illustrative example, we refer to Section 3.3.1, which describes
a toy problem of searching for Gaussian pulses in noisy data. There,
the parameters of the individual pulses are the amplitude and location
of the pulse described by their (x, y) coordinates. In order to search
for those signals, the prior on their location must be wide enough to
include the complete data set (see Fig. 1a). A birth proposal based
on the prior would inevitably be quite inefficient, simply because
the chance of proposing a good source candidate is small, especially
if the proposal distribution is flat across (x, y). We treat the above
problem as a motivation to adopt efficient proposals with minimal
tuning in ERYN, which we further discuss in Section 3. The second
major challenge, which of course depends on the given problem at
hand, arises from the samplers’ capability to explore a multimodal
dynamical parameter space. We discuss our strategy to overcome
that challenge in Section 3.

3 ERYN: GATHERING ALL THE PIECES
TOGETHER

All the different algorithms described in previous sections can be
extremely useful in tackling different kinds of problems that require
sampling. In GW astronomy, we encounter such problems far too
often, where dynamical parameter spaces require vast computational
resources in order to be explored efficiently. Motivated by those
problems, we have implemented a new toolbox that combines all
these techniques to enhance the capabilities of an MCMC sampler.
We have named this package ERYN,” borrowing the name from the
Tolkien mythos (Tolkien Gateway 2023). The analogy has its basis in
the idea of a forest: Within a forest you have trees which correspond
to different walkers, also known as Ents, in an ensemble MCMC
sampler. On each tree, there are branches that represent the various
types of models used to fit the data. For example, in the case of GW
global fitting for LISA, we can imagine using the Galactic binaries as
one branch and massive black hole (BH) binaries as another branch.
Each branch has leaves, which represent the individual instances
of each model. In the LISA example, leaves would represent the
individual Galactic binaries or massive BH binaries. And finally,
to zoom out, when adding tempering capabilities, we can think of
groups of walkers in each temperature taking the form of many
forests (of walkers) located within different temperature climates.

2Eryn Vorn (Sindarin for Blackwood) was a wooded cape in Eriador, and a
region of dark pine trees. Located in western Minhiriath, Eryn Vorn (likely
named so by the Numenoreans) was originally part of the vast ancient
treescape that covered most of north-western middle-Earth.
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Figure 1. Searching for two-dimensional (2D) Gaussian pulses in the presence of Gaussian noise. (a) The simulated data, which consists of injections of 25
pulses in Gaussian noise with o, = 0.2. (b) The distribution of the model order, obtained by exploring the dynamical parameter space with ERYN. The true
value is marked with a dashed red line. For this toy investigation, the correct number of simulated components is recovered. (c) The 2D posterior densities for

the parameters of the k Gaussian peaks (see text for details).

We adopt the architecture of ensemble samplers, and in particular
the one of EMCEE (Foreman-Mackey et al. 2013). Having multiple
walkers running in parallel is ideal for efficiently sampling the
parameter spaces using techniques such as parallel tempering, as
described in Section 2.4 (also see Section 2.1). In this setting, we
evolve n,, walkers per temperature T;, where each walker follows a
RJ MCMC (see Section 2.6), mapping a parameter space of altering
dimensionality. In practice, walkers in higher temperatures sample
the dynamic parameter space with fewer model components as the
penalty from higher prior volume is not compensated by the smoother
annealed likelihood. In other words higher temperatures have a
sharper Occam’s razor: The data can be explained with models that
are simpler, or lower dimensional. The highest temperature chain
samples the prior on the model space (provided that Ty, = 00).
More details will be given in Section 3.3.

As already mentioned in Section 2.6, RJ algorithms are extremely
challenging to tune, even for simpler classes of problems. One of
the major challenges is the low acceptance rate for the between-
model proposal, i.e. when we propose a new state where the
parameter dimensionality differs. In cases of signal search and
detection (which is a nested model situation), it is convenient to
set the proposal corresponding to a ‘birth’ move to be the same
as the prior distribution. In order to accommodate all possibilities
for the signals present, the prior densities are usually quite wide,
and thus accepting a new higher dimensional state becomes quite
improbable. For that reason, within ERYN, we have implemented a
DR scheme with the aim of improving this acceptance ratio. When
proposing 6, for a higher dimensional model /, we do not reject
immediately, but rather make new DR proposals around the first
rejected point 6, using the given in-model step update proposal.
This, in principle, allows the sampler to explore around 6, before
rejecting the new state (Trias et al. 2009), which in turn improves the
between-model step acceptance rate and produces healthier MCMC
chains.

The DR scheme, as described in Section 2.2, requires a serial
computation of the DR acceptance ratio for walkers where the newly
proposed state has been rejected. This scheme of calculating costly
likelihoods sequentially in a loop during the between-model step,
can lead to a computational bottleneck of the MCMC process. This
is especially true for the LISA Global Fit problem, where multiple
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binary waveform signals are present in the data stream. Then, the
computational time for each RJ] MCMC iteration is significantly
increased, since the progress will be halted until all walkers have
gone through their respective DR process, which requires evaluation
of new waveforms at each step. For the reasons summarized here,
we have not used the DR scheme for our analysis in Section 4, and
have resorted to the multiple try scheme. However, the DR scheme,
as explained in Section 2.2, has been implemented in the ERYN
package.

The multiple try scheme was essentially implemented in order to
facilitate use of a parallelized likelihood framework. Parallelization is
naturally compatible with multiple try MCMC as multiple proposals
are made for each individual walker, which allows for the paral-
lelized evaluation of proposal distributions, likelihood functions,
and acceptance probabilities. Under these parallelized settings, one
proposal can act as many when compared with the usual serial
evaluation of proposals, allowing for better chain mixing in situations
where proposals are infrequently accepted. That being said, it is
still important to choose a good proposal distribution, for both the
in-model and between-model RJ MCMC steps, which we discuss
further ahead.

3.1 Choosing efficient proposal distributions

In the previous sections, we briefly discussed some of the challenges
in choosing efficient proposal distributions for both the in-model and
between-model steps of the RJ algorithm. For the in-model case, the
challenge arises from the fact that it is sometimes impractical, or even
unfeasible, to define a well-tuned proposal for each of the possible
models that could represent the data. Using again the example of
LISA data, one would need to tediously design an effective proposal
distribution for the thousands of overlapping binary signals in the
data. On the other hand, for the case of the between-model step,
choosing proposals from the prior distribution, especially if it is
highly uninformative, can be very inefficient for RJ sampling. For
ERYN, in order to tackle those issues, we have implemented the
group proposals explained below for addressing the within-model
proposals in RJ, as well as a scheme to design an efficient proposal
for birth moves during the between-model step, which is based on
normalizing flows.
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3.1.1 Group proposals

In Section 2.1, the stretch-move proposal was introduced and dis-
cussed. One of the obvious advantages of such a scheme of proposing
new MCMC samples is that it requires minimal tuning (Foreman-
Mackey et al. 2013). However, it does not extend well in its simplest
form to the generalized R] MCMC. The stretch proposal is based
on the idea that the ensemble of points (X;) is sitting on the same
posterior mode as the current point (X;). In a nested model situation
where both the model count and the individual model parameters
change, each point may lie on a different posterior mode representing
a different set of leaves (sources) in the data. This can be alleviated
by applying the stretch move to individual leaves within each branch
of each walker, but there is still an issue of identifying leaves in
different walkers that lie on the same posterior mode. The stretch
proposal will technically still work when mixing leaves in different
posterior modes, but the acceptance fraction will be negatively
affected. However, within the stretch proposal formalism, the choice
of X; is customizable. The key to maintaining detailed balance is
that X; cannot depend on X;, and X; cannot be updated in the same
iterative step as X; (Goodman & Weare 2010).

We leverage this property to design a new type of stretch move
that can handle RJ set-ups while maintaining a small number of
tuning parameters. We call this proposal the ‘group’ proposal.
The mathematics that governs the group proposal is equivalent to
that of the original stretch proposal. The key difference is that
the group proposal chooses X; (see Section 2.1) from a stationary
group that is fixed for many proposed updates. This is in contrast
to the original stretch proposal that always uses the current set of
points in the ensemble sampler to draw X;. The stationary group is
updated after a large number of sampler iterations and we make
sure that detailed balance is maintained during the update. We
update every leaf within every branch of every walker at each
iteration and repeat many iterations between updates of the stationary
group.

The appropriate stationary group varies from problem to problem.
The goal is to set a group that resembles as best as possible
the posterior modes of the current leaves and then draw from it
strategically so that the drawn point is likely (but not guaranteed) to
lie on the same mode as the leaf that is currently being updated, X;.
In the example of the LISA Galactic binaries analysis, we set our
stationary group to the full set of leaves (binaries) across all walkers
at a specific temperature of the sampler at the end of a given iteration.
Then, at proposal time, we efficiently locate the ~n,, points in the
stationary group that are closest to X; from based on their initial
frequency parameter. We then draw X; from this group. The hope is
that some percentage of the n,, drawn points will lie on the posterior
mode on which X; sits. The exact percentage will vary depending
on how close the posterior modes are to each other and how many
model instances exist in the sampler that include this specific mode.
For low-SNR binaries, e.g. a source may exist in some walkers and
not others, making it harder to map its posterior mode with the current
group of stationary points.

The performance of group proposals is highly situation- and/or
model-dependent. With individual source posterior modes that are
well separated and easy to define in terms of separation, the perfor-
mance will approach the performance of the base stretch proposal
in non-RJ MCMC because the stationary group will well represent
the specific posterior mode on which X; is located. As the parameter
space becomes more crowded and/or separation (distance) metrics
become harder to define, the performance of group proposals will
worsen.

Eryn 4821

3.1.2 Learning from the data

The second improvement concerns the between-model step of the
RJ MCMC. As mentioned earlier, for the case of nested models, it
is often convenient to draw ‘birth’ candidates directly from the prior
distribution of parameters of the given model. This practice can be
quite ineffective in terms of acceptance rate. As an example we can
again use the LISA data set case. The UCBs are distributed within the
Galactic disc, congregated mostly around its centre (Amaro-Seoane
etal. 2023), therefore, adopting a proposal based on an uninformative
uniform prior across the sky, would waste computational resources
exploring a part of the parameter space with low probability mass.
A proposed solution is to use an informative prior derived from the
spatial distribution of binaries in the Galaxy (Littenberg et al. 2020).
In our work here, we have chosen an alternative data-driven route,
based on the actual residual data after a burn-in period of the RJ
MCMC, which we describe below. After a sufficient number of RJ
MCMLC iterations, we can extract a subset of sources from nested
models which are constantly present in almost all walkers of our cold
chain. In other words, we can find and subtract the brightest sources
from the data, and then allow for another burn-in period on the
resulting residuals. This allows the sampler to explore the remaining
parameter space more easily, thus providing a good initial estimate
for the weak signals possibly buried in the noisy residual data. We
can then use those samples to construct a proposal density which will
help us search for good candidates for those weak signals, without
excluding the rest of the parameter space. This can be accomplished
by fitting the distribution to the residual data described above. The
most efficient way to fit to the generic distribution, is to use an
invertible transformation, such as a normalizing flow (e.g. Dinh,
Sohl-Dickstein & Bengio 2016; Durkan et al. 2019). The method
works in the following way: We sample from the base distribution
(which is usually chosen to be normal A(z;0, 1)) and transform
samples to the desired distribution p(@) by applying the change of
variable equation:

p@) = N(f~'@O)IJ-1(O). (33)

Here, function f(z) is a bijection which we fit by optimizing the
Kullback-Leibler divergence, Dxi [p(f(0))||N(z;0, 1)], between a
normal distribution and the inverse transform of the distribution that
we want to estimate. After the fit has converged, we can draw samples
from the normal distribution and transform these to samples from the
distribution fitted to all residuals and use it as a proposal. We will
cover this method in more detail in a separate paper which is being
prepared.

3.1.3 Convergence diagnostics

Many standard approaches for assessing convergence of MCMC
chains can be applied to the RI MCMC chains generated by ERYN.
Trace plots, both for individual parameters within models, and the
indices labelling different models, will show that the chains are
mixing well and that the initial burn-in phase has finished. Repeating
runs with different numbers of walkers, different starting positions,
different numbers of parallel chains, or different choices of tem-
peratures and comparing results can be used to assess convergence.
Similarly, posteriors produced from randomly selected subsets of
chain points can be compared (using e.g. statistical tools such as the
Jensen—Shannon divergence, Menéndez et al. 1997).

Additionally, ERYN computes and outputs the potential scale
reduction factor (PSRF) for each tempered chain, which provides
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a quantitative diagnostic of the convergence of the result (Gelman &
Rubin 1992; Brooks & Gelman 1998). For a single parameter, the
PSRF index is given by

R /(d+3)V’ (34)
da+3)w

where W the mean of the empirical variance within each chain, and
V is the estimated variance of the all chains, assuming that the target
distribution is Gaussian. The degrees of freedom are estimated by the
method of moments as d ~ 2V / \7a\r(f/\) (Brooks & Gelman 1998).

The PSRF index takes values R > 1, with values close to unity
indicating converged MCMC chains. In the end, the quantity that
really matters is the PSRF value for the cold chain, but converged
chains across for all temperatures are good indicators for healthy
mixing and efficient temperature swaps.

3.2 Implementation

In this section, we discuss the main implementation details of ERYN.
We refer the interested reader, or user, to the ERYN documentation
for more exhaustive information and examples (Documentation).

The goal of ERYN is to produce a sampler that can handle all (or
most) cases of MCMC sampling ranging from basic, non-tempered,
single-model type, single-model instance posterior estimation to the
full RI MCMC with tempering, multiple model types, and adjustable
model counts, as well as everywhere in between. In the basic case,
ERYN aims to be a close replica of EMCEE trying to maintain as much
simplicity as possible. At the complicated end of the spectrum, ERYN
attempts to provide a common interface and underlying infrastructure
for the variety of problems that may arise, allowing the user to
maintain usage of the majority of the code from project to project,
focusing on changing only the specific parts of the code that are
difficult to implement or require special treatment for each specific
problem. Since ERYN is effectively an enhanced version of the EMCEE
package, the overall structure of EMCEE is strongly maintained. Like
in EMCEE, ‘State’ objects move coordinate and likelihood information
around the ensemble sampler, storing information in a similar back
end object either in memory or HDF5 files. Additionally, the interface
used for adding proposals has remained.

The various enhancements discussed in this work, including
tempering, RJ moves, multiple try MCMC, etc., are all implemented
within the EMCEE-like structure. This involved two main changes.
First, the State objects have been scaled to hold information necessary
for RI MCMC: temperature information, prior information, and
efficient and concise containers for multiple types of models with
an adjustable number of individual model instances. Second, the
RJ proposal has been added as a proposal base, similar to the use
of the ‘MH’ or ‘RedBlue’ moves within EMCEE. Beyond these main
enhancements, there are also a variety of smaller, but useful, additions
to ERYN that help the user build a variety of analysis pipelines.
These include stopping or convergence functions, functions to
periodically update the sampler set-up while running, objects to carry
special information through the sampler, and aids for coordinate
transformation.

3.3 Toy examples

In this section, we present a series of working examples for ERYN.
‘We begin with simple problems, such as searching for simple signals
in noisy data, with the aim of demonstrating the performance of this
toolbox in a dynamical parameter space. The impact of the different
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enhancements discussed in Section 3 will be assessed and discussed.
Finally, in Section 4, we will apply this machinery to more realistic
problems in GW astronomy.

3.3.1 Searching for pulse signals in Gaussian noise

In this first example, we explore the capabilities of ERYN in a
simplified application, commonly encountered in physical sciences.
We perform a search for Gaussian pulses in a simulated 2D data
set, in the presence of Gaussian noise with variance o, = 0.2. We
generate 25 pulses randomly distributed on the x — y plane with
all pulses contained within x, y € [ —10, 10] (see Fig. 1a), and
amplitude uniformly drawn from /[0.7, 1.5]. The amplitude A;
of each pulse, labelled by %, is considered a free parameter to be
estimated, in addition to the Cartesian coordinates of their centres.
The pulses’ width was kept fixed to o, x §;;, with o, = 0.2, for the
sake of simplicity. Thus, we are required to estimate N, the total
number of pulses in the data, and also estimate the parameters for
each individual signal k: ék = {Ay, X, yr}. The noise variance o, is
estimated as part of the fit. The analysis of this problem is performed
using the adaptive parallel tempering scheme of Section 2.4 and the
RJ MCMC proposals (Section 2.6). The in-model proposals for each
model component are Gaussians, with a diagonal covariance matrix
¥ = 107*8;;. This proposal is not tuned during sampling. The priors
for the parameters are quite wide, covering the entire range of the
data, while the prior on the number of pulses k is set to k ~ /[0, 50].
With the above settings, we obtain the results summarized in Figs 1
and 2. In Fig. 1b, we plot the most probable number of Gaussian
pulses present in the data, or in other words, the most probable model
given this particular data set. It is clear that for the given level of
noise, it is straightforward to recover the true number of signals. The
noise variance is also estimated accurately as o, = 0.2 & 2 x 1073,
In Fig. 1c, we plot the posterior densities for the parameters of
all pulses recovered, while we also mark the true injected values.
Fig. 1c shows the trans-dimensional MCMC chains ‘stacked’ over
all samples of both model order and model parameters. As already
mentioned, in this simplified scenario all signals have similar value
for the amplitude, thus the almost unimodal marginal on A. This
illustrative example is useful as an introductory application to the
more complicated case of detection in GW astronomy presented
below, in Section 4.

In Fig. 2, three diagnostic quantities for this run are shown. In the
top panel, the evolution of temperatures is presented. Following the
recipe of Vousden et al. (2016), we control the distances between
each temperature chain based on their in-between swap acceptance
rate, computed from equation (21). The tuning term «(¥) is set to
k() = to/(v(t + 1)), with the adaptation lag ty = 10* and the
adaptation time v = 10?. The middle panel shows the evolution of
the swap acceptance rate per number of walkers between the chains
running at different temperatures. After ~10° sampler iterations,
the system converges to an equilibrium, where the rate of swapping
states reaches a single value across the temperature range. In the
bottom panel, we show the acceptance rate for the in-model step of
the algorithm, for all temperatures. As expected, after temperature
equilibrium at ~10° samples, the acceptance rate converges to a
(different) value for each temperature, which is higher for higher
temperatures (smoother posterior surfaces are easier to explore).

Finally, it is interesting to investigate how the sampled dimen-
sionality of the problem varies at different temperatures. In Fig. 3,
we plot the posterior on the number of pulses at each temperature.
As expected, higher temperature chains tend to favour lower model
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Figure 2. Top panel: The evolution of the temperature chains running in parallel for the toy problem of searching for 2D Gaussian pulses in Gaussian noise.
The different colours indicate the initial temperature chain index. Following the parallel tempering recipe of Vousden et al. (2016), the temperature ladder is
tuned according to equation (21), and the chains start to converge after ~10* iterations. Middle panel: The evolution of the swap acceptance rate o, j described
in equation (20), per number of walkers ny,. For this run, we have used ny = 10 walkers. After 107 iterations, the swap acceptance rate converges to a single
(different) value for every temperature chain. Bottom panel: The ‘in-model’ acceptance rate per temperature chain, given by equation (4).
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Figure 3. Posterior on the number of Gaussians, k, at each temperature 77,
for the toy problem of Section 3.3.1. The different colours indicate the initial
temperature chain index. Darker colours correspond to colder chains and vice
versa.

dimensionality and the T, chain samples the prior on k. This can be
attributed to the choice of priors and ‘birth proposal’ distributions for
both the signal parameters and k. The likelihood is down-weighted
at higher temperatures, making it harder to overcome the Occam
penalty from including extra parameters in the model. This means
quieter sources are less likely to be added and the preferred models
have fewer sources.

3.3.2 Modelling power spectra: searching for the optimal number
of B-spline knots

One of the most common problems in signal processing is the
characterization of the spectra of the data. This is often done by
adopting spectral models and fitting the spectra directly in the
frequency domain. This methodology is used when the signal of
interest has stochastic properties. Examples from GW astronomy,

include the measurement of stochastic signals with astrophysical, or
cosmological origin (Abbott et al. 2021c; Auclair et al. 2023). There
are many examples of possible stochastic signals for LISA (Amaro-
Seoane et al. 2012, 2017, 2023; Auclair et al. 2023). Searching for
signals with stochastic properties requires flexible spectral models,
both for the observatory instrumental noise, and the measured
stochastic signal. For these reasons, it is sometimes convenient to
adopt a versatile model, such as one that is based on B-spline
interpolation schemes.

B-splines are a geometrical modelling tool, and have proven to be
very useful for modelling or generating smoother representations
of data. They are piece wise polynomial curves with a certain
number of continuous derivatives, and can be parametrized in various
ways (Piegl & Tiller 1996). For this application, we follow Baghi
et al. (2023), and choose to work with cubic-spline interpolation,
using the corresponding SCIPY library (Virtanen et al. 2020). The
procedure starts by selecting a number of control points, or knots,
with a given position and amplitude, which the smooth polynomial
curve crosses and at which there is a change in the first non-
continuous derivative. One of the challenging problems using such
methods, is to choose the optimal number of spline knots for fitting
the data, without overfitting. This is a model selection problem that
can be easily solved with dynamical algorithms such as the one
presented here.

For our next example, we generate time-series data directly from
a theoretical model Power Spectral Density (PSD). The simulated
data are represented with the solid grey line in Fig. 4a. We then
use the machinery of ERYN to find the optimal dimensionality for
the problem, together with the best-fitting parameters for the knots.
To ease the computational complexity, we compute the PSD of the
time series using the methodology developed by Trobs & Heinzel
(2006). In more detail, we begin by choosing a new frequency
grid, on which we compute the PSD using the optimal number of
averaged segments for each given frequency. Following this method,
we essentially split the time-series data at the maximum number
of segments that the given choice of window and percentage of
data overlap permits, which will allow us to estimate the PSD at
each frequency bin with minimal variance. By carefully choosing
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Figure 4. Results for power spectra modelling with a shape agnostic model. (a) The simulated data (grey), generated from the theoretical model (dashed black
line). The PSD computed on an equally spaced logarithmic grid with the method of Trobs & Heinzel (2006) and Armano et al. (2018), which is used for
inference, is represented with the red data points. The pink solid lines represent models drawn randomly from the posterior chains. (b) The optimal B-spline
knots estimated by the dynamical parameter estimation procedure. As shown from this histogram, the optimal interior knot count for these data converges to
six, corresponding to eight total knots including the two edge knots. (c) Posterior slice for the knot parameters, (log f; x, log S «), after stacking the MCMC
chains across all model dimensions, k. This illustrates where the model prefers to place spline knots, which clearly corresponds to where the spectral density is
changing most rapidly. It is also evident from this figure that we essentially ‘scan’ the true noise shape (pink solid line), by placing knots across the frequency

range (see text for more details).

the window function and distance between the data points, one
can compute a power spectrum with minimal correlations between
frequencies. The estimated spectrum, D;, at each frequency, f;, is
then used in the likelihood function given in equation (35) below
(the spectrum D; is represented by the red data points in Fig. 4). For
more details about this method of computing the PSD, we refer the
reader to Trobs & Heinzel (2006) and Armano et al. (2018) and for
a similar application to the work of Baghi et al. (2023).

Finally, we also keep two knots fixed at the edges of the spectra,
allowing the sampler to estimate only their amplitude, while the rest
of the knot parameters (and their number) are left to be estimated from
the data. For the spline knot positions, {logf; «}, and amplitudes,
{log S; + }, we adopt uniform priors that cover the complete parameter
space. Here, the j index corresponds to the knot number for the
given model order k. We also use a ladder of 10 temperatures,
with 10 walkers each, while maintaining the same settings for the
adaptivity of the temperatures as in Section 3.3.1. Each walker is
initialized at a random point on the parameter space, after drawing
the dimensionality k of the model from k ~ U/[1, 20]. We adopt a
Gaussian likelihood, with its logarithm written as
log p(D|Fy) IZ ( bi N(é)) (35)
ogp k) X 2 n; ./\/—,-71{(51{) 0g N 1 (bk s
where D; is the PSD data value for the given frequency f;, as computed
by the method presented in Trobs & Heinzel (2006) and Armano et al.
(2018), using n; averaged segments. The /\fi,k(ék) is the spline noise
model of order k evaluated at f;, that depends on a parameter set

O = {log fix, -+~ ,10g fix, 10gSo, -+ ,1og Spx, log Sip1},  (36)

in which the log Sy and log Sy 4 ; parameters refer to the logarithm
of the PSD amplitude of the two fixed knots at the ‘edges’ of the
spectrum. Those two parameters correspond to our zeroth model
order (k = 0), thus they are always being explored by the walkers of
ERYN.

The results are shown in Fig. 4. In particular, in Fig. 4b, we show
the histogram of the recovered number of knots for the particular
data set. It is clear that eight spline knots are preferred, two of them
being fixed at the edges of the spectrum, and the other six knots free

i
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to take any position in the given frequency range. In Fig. 4c, we
show the 2D sliced posteriors for the spline parameters, {logS; «}
and {logf; +}. In this figure, we again stack all the MCMC samples
across model orders. The true spectrum is indicated by the orange
solid line. There is an interesting outcome of this toy investigation;
while there is a preferable dimensionality of the model, there is a
weak constraint on the actual positions of the knots. We find that the
sampler is virtually ‘scanning’ the PSD data, showing slightly higher
preference for locations between —6 and —4 in log -frequency, where
the spectrum follows a more complicated shape. Finally, in Fig. 4a,
the data (grey solid line and red data points), are shown together
with model evaluations drawn from the posterior samples (pink solid
lines).

4 EXAMPLES FROM GW ASTRONOMY

In recent years, we have witnessed the beginning of GW astronomy.
Since the first detection (Abbott et al. 2016) dozens of waveform
signatures have been measured with the current network of obser-
vatories. At the time of the writing of this paper, more than 90
events have been recorded (Abbott et al. 2021a), the vast majority
of them are BH binary mergers, with a few of them being binary
NS and BH-NS mergers. At the same time, detector networks are
being improved (The LIGO Scientific Collaboration 2019; Abbott
et al. 2020) and there are plans to expand them with the addition
of new observatories, such as the Einstein Telescope (Punturo et al.
2010; Maggiore et al. 2020) or Cosmic Explorer (Abbott et al. 2017;
Evans et al. 2021). Those detectors will unlock the sky to larger
redshifts z, allowing access to a vast number of potential sources. In
addition, space missions, such as LISA (Amaro-Seoane et al. 2012,
2017), are predicted to be signal-dominated observatories, with many
types of sources populating their data streams. In fact, we expect that
source confusion will be one of the primary challenges in future
data analysis efforts in GW astronomy. In a typical data set, we
expect an unknown number of signals, originating from sources that
generate waveforms with different characteristics. Those range from
the stellar-mass BH binaries now frequently observed by ground-
based detectors, to the supermassive BH binaries, extreme mass ratio
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inspirals, UCBs, and stochastic GW signals from both astrophysical
and possibly cosmological origin (Amaro-Seoane et al. 2012, 2017;
Auclair et al. 2023). For this final example, we will focus on the
LISA mission, and in particular on the case of discriminating UCB
signals.

4.1 Application to LISA data and the UCBs

LISA is going to measure GW signals in the mHz regime, accessing
sources of all the aforementioned types. As already discussed, the
most numerous of them are going to be the UCBs, which will be
almost monochromatic in the LISA band. Out of the millions of
sources, only ~ O(10*) will be individually resolvable, and the
rest will generate a confusion signal. As a consequence, for the
duration of the mission, we will need to disentangle tens of thousands
of sources which will be overlapping in both time and frequency
domains. This is no trivial task, but various different strategies
have already been proposed for analysing such challenging data
sets. For example, Gaussian processes (Strub et al. 2022), swarm
optimization techniques (Zhang et al. 2021), or hybrid swarm-based
algorithms (Bouffanais & Porter 2016) can be employed. Pipelines
based on MCMC methods have been tested extensively (Crowder &
Cornish 2007; Littenberg 2011; Littenberg et al. 2020; Littenberg &
Cornish 2023), and have been demonstrated to be able to tackle
complex cases where signals are overlapping.

Here, we will focus on the same problem, employing ERYN to
solve a down-scaled version of the UCB challenge. It is down-scaled
because we focus only on a single narrow-frequency band, containing
several overlapping signals, in the presence of instrumental noise
only.? In addition, we focus solely on demonstrating the capabilities
of ERYN on dynamic parameter estimation for UCB type sources
and no other types of signals are contained in the data (e.g. chirping
signatures from supermassive BH binaries). At the same time, we
have access to the level of instrumental noise, which is shown in
both panels of Fig. 5. Searching for the UCB signals across the
complete LISA band requires a more elaborate implementation of
this simplified pipeline. This pipeline will be focusing on solving
the complete second LISA Data Challenge (LDC2; LISA Data
Challenges Working Group 2022), and is going to be presented in
future work. We choose to work on the frequency segment between
3.997 and 4 mHz, which contains 10 UCB objects, drawn directly
from the LDC2 catalogue (LISA Data Challenges Working Group
2022). Those are shown in the top panel of Fig. 5 which shows
the power spectrum of the A data channel of LISA. We use the
two noise-orthogonal A, E, and T time delay interferometry (TDI)
variables (Prince et al. 2002; Tinto & Dhurandhar 2005; Baghi et al.
2021), which are linear combinations of the LISA relative frequency
TDI Michelson measurements X, Y, and Z as:

1 1
A= —Z-X), E=—=(X-2Y+2),
ﬁ( ) Jé( +2)
T = L(X+Y+Z). (37)

V3

In ideal conditions (equal noises across spacecrafts, and equal LISA
arms), the noise in A and FE is independent, while the 7 data stream
can be used as a signal-insensitive null channel, useful for instrument
noise calibration. Since we perform analysis on a noise-free injection,

3No confusion signal from other unresolved UCBs is considered in this
investigation.
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Figure 5. Top panel: The simulated data used for demonstrating the ca-
pabilities of ERYN in tackling a high-dimensional problem. A total of 10
UCBEs in the vicinity of our Galaxy emitting GW signals at the mHz range.
Here, we plot the power spectral density of the A data channel of LISA. The
catalogue of sources is taken from the LDC2 (LISA Data Challenges Working
Group 2022). Each signal is represented by a different colour. Bottom panel:
The same data set, now comparing the injected signal against the solution
yielded by ERYN (see text for more details). We have plotted the shaded
area by sampling the joint posterior on model order k and the corresponding
parameters.

Table 1. The optimal SNR pp for each of the 10 injected sources, computed
for the given duration of the mission (see equation 42). The dominant emission
frequency fy is also given for reference.

# fgw (mHz) Popt

1 3.99780 9.98
2 3.99781 46.70
3 3.99784 4.55
4 3.99854 39.45
5 3.99873 13.02
6 3.99 882 8.47
7 3.99919 10.88
8 3.99939 19.07
9 3.99964 20.00
10 3.99965 7.99

we will be neglecting the T channel altogether. We simulated the
injection data for an observation time of Tops = 1 yr.

The optimal SNR for each injected source, pop, is given in Table 1.
The pop quantity refers to the SNR of each source in isolation, with
respect only to the instrumental noise, and can be calculated as

oy =Y _ (helhe)e (38)
C

with C € {A, E} the noise-orthogonal TDI channels of equation (37),
while the (- | -) notation represents the noise-weighted inner product
expressed for two time series a and b as

oo

(alb) =2 / df [@*(HBC) +a( )b ()] /Sa(f). (39)

0
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The tilde represents the data in the Fourier frequency domain, and
the asterisk indicates complex conjugate. The S,( f) is the one-sided
PSD of the noise for a given TDI channel. Under our assumptions
Sn,A(f) = Sn, E(f)

For our investigation, we chose to analyse noiseless data (no noise
realization), while in the likelihood we are using the PSD noise
levels taken from the LISA design studies (LISA Science Study
Team 2018). For the signals, we utilize the fast frequency-domain
UCB waveform model of Cornish & Littenberg (2007). Then, the
two polarizations of an emitting UCB can be written as

hy(t) = % (ﬂ_fgw(t))2/3 (1 + cos? L) cos ¢(t),

h(t) = —4'# (7 fan(0)) " cos 15in (1), (40)
L

where M is the chirp mass, fq,, is the instantaneous GW frequency,
D, is the luminosity distance, ¢ is the inclination of the binary orbit,
and ¢(7) is the GW phase. The phase ¢ can be expressed as ¢ = ¢g
+ 27 [fyu(¢)df, with ¢y being an initial arbitrary phase shift. The
LISA constellation is assumed to be rigid and with equal arms, while
the spacecrafts are assumed to follow analytic Keplerian orbits (Cor-
nish & Rubbo 2003). Under these assumptions, it is straightforward
to compute its response to the almost monochromatic waveforms of
equation (40) (Cornish & Rubbo 2003; Babak, Petiteau & Hewitson
2021). For more details about the waveform model, the response of
the instrument, and the orbits of the constellation, we refer the reader
to Cornish & Littenberg (2007), Robson et al. (2018), Katz et al.
(2022), Cornish & Rubbo (2003), and Babak et al. (2021).

In our simplified scenario, each binary signal in the Solar system
barycentre is determined by a set of eight parameters. Those are
the § = {A, few [mHz], fgw [Hzs™'1, ¢o, cost, ¥, A, sin B}, where
A is the overall amplitude, fgw is the first derivative of the GW
frequency, ¥ the polarization, A is the ecliptic longitude, and g the
ecliptic latitude of the binary. The amplitude of the signal is calculated
as

A= (2M5/3n2/3fg2\£3) /DL» (41)

which can be used to obtain a rough SNR estimate, via (Littenberg
et al. 2020)

) A2 T SIn*(fow/ fo)
480 (fow)

with §,(f;w) being the instrumental noise power spectral density at
frequency fow, and f;, = 1/(2 L), where L the LISA arm length. Given
equation (41) and (42), we find it convenient to directly sample on
p instead of A, which also yields a more illustrative measure of the
amplitude of each binary. Then, if d is the measured TDI data and h
the given GW signal after applying the response of the instrument,
the logarithm of the likelihood for an arbitrary number k£ of UCB
signals can be written as

, (42)

R 1
log p(d|6x) o (d|hy) — 5 (helhg), (43)

where for the sake of convenience, we have defined hy = 5 " h(ék).

We use wide uniform priors for all the rest of the binary parameters,
covering essentially the complete parameter space. The exception is
again the amplitude (SNR), p, where we adopt a prior which was
first introduced in Cornish & Littenberg (2015) and then adapted
in Littenberg et al. (2020). The prior density can be expressed as

3p

—_—, (44)
4p (1 + p/(4p4)

p(p) =
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where p, is a given constant that specifies the peak of the above
distribution. This distribution is designed to prevent the proposal of
sources with very small SNR in the model, as it drops sharply for p —
0. Those weak sources do not significantly affect the likelihood, and
so their inclusion must be penalized by the prior.* This prior choice
forces the sampler to explore only potential sources with non-zero
SNR, avoiding populating the chains with numerous undetectable
signals. This prior performs adequately in this problem, but there are
other solutions one could adopt in order to keep control of the number
of very weak sources. This discussion, which sets the grounds for a
Global Fit analysis pipeline for the LISA data (Littenberg et al. 2020),
is out of the scope of this paper, but a more detailed description will
be presented in a future work.

4.1.1 Search phase

Before parameter estimation, we initiate a search phase of our
analysis, with the aim of getting the walkers to a better starting point
on the posterior surface. This phase consists of an iterative brute
force procedure, based on drawing a very large number of proposals,
then maximizing the likelihood over the initial phase ¢, and finally
perform a rapid MCMC sampling over the parameter space, using
only a one-source model (therefore there are no dynamical parameter
spaces). In particular, we draw 5 x 10° points in the parameter
space, and after phase maximization, we use them as starting points
to a parallel tempered MCMC run with Ny = 10 temperatures,
each running with ny, = 500 walkers. When this step concludes,
we keep the 100 best samples in terms of likelihood value and
use their corresponding parameter estimates as starting points for
the parameter estimation portion of the analysis. We also use the
maximum likelihood solution to subtract the source found from the
data. We then use the residual data to search for another source, and
this process repeats until there is no signal found with SNR p > 5.
In between successive iterations of the single-binary search, we run
another MCMC over all sources found so far in order to adjust the
parameters to account for correlations and overlap between sources.
After convergence, we found eight sources in our data set with an
optimal SNR > 5. We take these found sources and add them to
all walkers in the sampler at the beginning of the full MCMC run
described below.

4.1.2 Parameter estimation

During this step, we perform hybrid MCMC sampling, where we
both update the found sources (in-model) and dynamically search
for new and weaker sources in the data employing RJ sampling. For
the number of signals k, we adopt a uniform prior k ~ U[6, 20]. For
the sake of convenience in this simple application, we keep the six
loudest binaries found during the search phase as fixed. This means
that we still sample their waveform parameters, but they are not
allowed to be removed by the RJ process. We chose this set-up in
order to accelerate the convergence of the algorithm, being confident
that these sources are part of the solution. In future work, this will be
adjusted to deal with the much larger complexity of the full problem.

Concerning the sampler settings, we use the adaptive parallel
tempering scheme of Section 2.4, building a temperature ladder of
Nr = 10 temperatures, with 100 walkers for each temperature. For
this run, we have also utilized the MTM algorithm (see Section 2.3)
in order to improve the acceptance rate in the RJ proposal. We have

4We remind that the prior is also used as our ‘birth’ proposal here.
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Figure 6. Left panel: In this figure, we show the posterior on the number of UCB sources in the data. The true injected number is shown with the red dashed
line. It is clear that, for the given measurement duration of the particular data set, we manage to confidently resolve eight binaries out of a total of 10. Right
panel: Corner plot for two of the eight parameters characterizing each UCB source. These are the amplitude, expressed as an SNR p, and the dominant emission
(or initial) frequency, fow (mHz) (see text for more details). The violet crosses represent the injected parameter values. A corner plot for more parameters is

shown in Fig. A1l in the Appendix.

also tried the DR scheme which is implemented for ERYN, but we
found that the multiple try strategy yields more efficient sampling.
Finally, we have utilized the basic stretch and group stretch proposals
that were described in Section 2.1.

After convergence, the result is shown in Figs 5 and 6. In Fig. 6a,
the sampled posterior on the number of sources k is presented. In
this histogram, we have added the six fixed binaries to the actual
number of signals being sampled via the RJ algorithm. It is fairly
obvious that we have managed to confidently resolve eight out of
the 10 injected binary signals. This fact that we do not favour 10
sources can be explained partly by the low SNR of the signals (see
Table 1) and partly by confusion from source overlap (also shown
in Fig. 5). Additionally, the result of Fig. 6a depends on the given
observation duration. The greater the Ty, the better our ability to
resolve the confused sources. Thus, in that case, we should expect
more RJ iterations across the higher dimensional models.

On the right panel, in Fig. 6b, the ensemble 2D posterior slice is
shown, for two selected parameters. We call it ensemble because we
are again ‘stacking’ all the chains for these two parameters for all
sources for all model orders k. We chose to show only the amplitude
(the p parameter explained in equation 42) and the dominant emission
frequency fq, which illustrates the number of sources resolved, and
how they overlap in frequency. A corner plot for more parameters is
shown in Fig. Al in Appendix A. We also show the true injection
values, marked as crosses, on top of the 2D posterior. From this
plot alone, one can see that the sampler is exploring efficiently the
parameter space, converging to the true values of the resolvable
binaries that were injected.

5 DISCUSSION

We have implemented ERYN, a Bayesian sampling package capable
of performing efficient trans-dimensional inference, by employ-
ing different techniques that improve its acceptance rate. These
techniques are the affine invariant sampling, the adaptive parallel
tempering, the DR, and MTM, in combination with the construction
of informative proposal distributions for the parameters of the
models. The structure of ERYN is based on the widely used software
EMCEE (Foreman-Mackey et al. 2013), enhanced with the ability of

performing RJs (Green 1995) between different model spaces. The
sampler capabilities have been demonstrated with toy models that
are commonly encountered in different data analysis problems. We
have begun with an application to signal detection, and in particular
to searching for simple signals in the form of Gaussian pulse signals
in the presence of Gaussian noise (see Section 3.3.1).

In Section 3.3.2, we applied our algorithm to a problem of
modelling power spectra with arbitrary shapes in frequency domain.
In such cases, it is convenient to define models based on B-splines,
which are able to faithfully capture the shape of any spectral data.
However, in order to avoid overfitting situations, the optimal order
of the model (i.e. the optimal number of spline knots), needs to be
estimated from the data. This can be done either sequentially, by
trying models of different dimensionality and then comparing their
performance, or dynamically, by using trans-dimensional algorithms
such as ERYN. This class of problems is often encountered in
cosmology (Planck Collaboration I 2020a; Planck Collaboration
V 2020b), where the signal of interest is stochastic in nature, and
sometimes the prior knowledge on its shape is very limited. As
already discussed, this is especially true for future GW observatories,
which open the possibility of detecting such signals from both
astrophysical and cosmological origin (Amaro-Seoane et al. 2017;
Auclair et al. 2023; Baghi et al. 2023). The different theoretical
models produce spectra with distinct shapes, increasing the need for
shape-agnostic spectral models, such as the B-spline used here.

Finally, in Section 4.1, we demonstrated ERYN in a more compli-
cated problem, that of the analysis of UCB signals measured by the
future LISA detector. These objects are going to produce the majority
of the signals in the LISA data, each emitting almost monochromatic
radiation. Their vast number will generate a confusion foreground,
while only a few thousand of them will be resolvable from the
data. We employ our tools described in this work, together with
a search phase that is based on iteratively running the sampler on
‘static models’ (no trans-dimensional moves) with phase-maximized
likelihoods. We do these runs on the residuals of each iteration, with
the aim of extracting all bright sources. In order to achieve faster
convergence of our parameter estimation run, we choose to keep the
brightest sources found during search as fixed (minimum number of
model order is k = 6), while the RJ algorithm is used to search for
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weaker signals in the data. This is purely a choice that allows quick
convergence in this fully controlled and simplified LISA data set.

We perform this analysis for a mission duration of Tops = 1 yr
and only on a single narrow-frequency band around 4 mHz, which
contains a total of 10 binary signals. It is worth noting here, that the
synthetic data were produced assuming idealized conditions. This
means that we do not consider any data irregularities, such as data
gaps and glitches and spectral lines, or any other contamination
originating from the mixing of signals of different types (such as
supermassive BH binaries). In the end, as shown in Fig. 6a, we
manage to recover eight out of ten injected signals. This result
makes sense given the relative strength of the injections, and their
waveform overlap. Many of the injected sources have an optimal
SNR in isolation which is rather low (see Table 1), so these are more
susceptible to deterioration when we account for signal overlap.

The above investigations demonstrate that the dynamical param-
eter estimation capabilities of ERYN are suitable for these types of
problems. This feature is missing from already existing libraries such
as BILBY (Ashton & Talbot 2021), which are used by the GW com-
munity. BILBY offers a wide selection of tools which are necessary for
the Bayesian analysis of GW data. These include implementations
of likelihood and prior functions, instrument response models and
spectral densities, waveform models, and a number of samplers to
choose from (both MCMC and nested samplers). On the other hand,
ERYN is based on parallel tempering MCMC enhanced with RJ,
which allows Bayesian analyses for a wider set of problems, in
which sampling of a dynamical parameter space is needed.

ERYN has already been used in several works that have been
already published (Katz 2022; Katz et al. 2022; Baghi et al. 2023;
Sasli, Karnesis & Stergioulas 2023), or are going to appear soon.
The work presented in this paper is the initial part of our efforts
towards implementing a data analysis pipeline for LISA data. This
pipeline will be demonstrated on the LDC2 data set (LISA Data
Challenges Working Group 2022), which contains multiple types of
signals overlapping in both time and frequency domains. That being
said, ERYN is a generic and versatile sampler, which can be used in
any investigation that requires RJ sampling, and to our knowledge is
one of the very few statistical tools of this kind that is not specialized
to a single type of analysis (see discussion in Section 2.6).
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Eryn. The code for the toy examples of Section 3.3 can be found in
the documentation of ERYN (https://mikekatz04.github.io/Eryn/html
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an implementation of the UCB waveforms of the LDC software
(https://lisa-1dc.lal.in2p3.fr/code).
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APPENDIX A:

In Fig. Al, we show the triangle plot of the stacked posterior
points as sampled by ERYN, for the investigation of Section 4. The
difference to Fig. 6b is that here we include more parameters of the
sources, but we still do not include all parameters for the sake of
clarity.
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Figure Al. A triangle plot showing the 2D posterior slices for the application of Section 4.1, but for a greater selection of parameters than Fig. 6b. The rest of
the parameters, if plotted stacked in the same manner, result in surfaces that cannot be so easily interpreted, and therefore have been left out. The true injected
values are marked with crosses.
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