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A B S T R A C T 

In recent years, methods for Bayesian inference have been widely used in many different problems in physics where detection 

and characterization are necessary. Data analysis in gra vitational-wa ve astronomy is a prime example of such a case. Bayesian 

inference has been very successful because this technique provides a representation of the parameters as a posterior probability 

distribution, with uncertainties informed by the precision of the experimental measurements. During the last couple of decades, 
many specific advances have been proposed and employed in order to solve a large variety of different problems. In this work, we 
present a Markov Chain Monte Carlo (MCMC) algorithm that integrates many of those concepts into a single MCMC package. 
For this purpose, we ha ve b uilt ERYN , a user -friendly and multipurpose toolbox for Bayesian inference, which can be utilized for 
solving parameter estimation and model selection problems, ranging from simple inference questions, to those with large-scale 
model variation requiring trans-dimensional MCMC methods, like the Laser Interferometer Space Antenna Global Fit problem. 
In this paper, we describe this sampler package and illustrate its capabilities on a variety of use cases. 

Key w ords: gravitational w aves – methods: data analysis – software: data analysis – software: development. 
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 I N T RO D U C T I O N  

n physics, and in science in general, one of the most encountered
roblems is the one of model calibration and comparison. We test
ur models of the physical world against the measured data, to
stimate their parameters and to robustly determine the most suitable
odel that describes our observations. A crucial first step in this

irection is to efficiently explore the posterior distribution of the
arameters given the measured data. Markov Chain Monte Carlo
MCMC) algorithms have proven to be very successful in this
egard (Metropolis et al. 1953 ; Hastings 1970 ; Gilks, Richardson &
piegelhalter 1995 ; Hitchcock 2003 ), being one of the few methods
hich can efficiently perform Bayesian inference when the posterior

s not analytically tractable and without solving exactly for the
arginal likelihood. This is compared with, e.g. grid methods, which

re often computationally unfeasible. This is especially true in the
eld of gra vitational-wa ve (GW) astronomy, where MCMC methods
av e been e xtensiv ely used in order to find physical parameters for
ignals buried in the data (see e.g. Shawhan & LIGO Scientific
ollaboration 2003 ; Biwer et al. 2019 ; LIGO Collaboration et al.
020 ; Abbott et al. 2021a , b ; Ashton & Talbot 2021 ), as well as
o hierarchically infer the properties of the underlying astrophysical
opulations (e.g. Ashton & Prix 2018 ; Thrane & Talbot 2019 ; Isi,
arr & Chatziioannou 2022 ). MCMC approaches can also compute

he marginal likelihood or evidence (see Section 2 ), by using
echniques such as thermodynamic integration (see Section 2.4 ). In
 Bayesian framework, the evidence difference between two models
 E-mail: karnesis@auth.gr 
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an be used to compute the Bayes factor, which is used to select
etween different models that could describe the observations. 

Thermodynamic integration (or other approximations, see Sec-
ion 2.5 or Cornish & Littenberg 2007 and Gelman, Roberts & Gilks
996 ), is ideal for cases where the number of competing models is
mall. Ho we ver, in situations where the number of potential models
ecomes too large, the task of iteratively and hierarchically comput-
ng the marginal likelihood can become computationally inefficient,
r even practically unachievable. Such is the case for future signal-
ominated GW observatories, such as the Laser Interferometer Space
ntenna (LISA, Amaro-Seoane et al. 2017 ) or other proposed space-
orne GW observatories (Kawamura et al. 2008 ; Luo et al. 2016 ; Ren
t al. 2023 ). LISA will observe different types of GW sources, the
ost numerous of them being the ultra compact binaries (UCBs)
ithin the Milky Way (Crowder & Cornish 2007 ; Amaro-Seoane

t al. 2012 , 2017 ; Littenberg et al. 2020, b ; Karnesis et al. 2021 ;
hang et al. 2021 ; Strub et al. 2022 ; Littenberg & Cornish 2023 ).
hose are mostly comprised of a population of double white dwarfs,
lthough a small fraction of neutron star (NS)–white dwarf or double
S binaries are expected (Nelemans, Yungelson & Portegies Zwart
001 ; Breivik et al. 2020 ). In fact, LISA is going to detect GWs
rom the complete population of O(10 7 ) sources simultaneously, but
nly a small fraction of them is going to be individually resolvable
 O(10 4 )). The large majority of signals will generate an anisotropic
nd non-stationary ‘confusion’ type of signal, which will dominate
he LISA band between 0.05 and ∼0.2 mHz. 

In the aforementioned context, computing the marginal likelihood
or such a large parameter space and for all possible numbers of
vents that could be in the population becomes computationally
rohibitive. Instead, we can employ dynamical trans-dimensional
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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1 That is, a proposal with the property p( � θ → 

� θ ′ ) = p( � θ ′ → 

� θ). 
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CMC methods (Green 1995 ). This family of methods can be quite
hallenging to tune, but it has pro v en to yield satisfactory results,
ven for such demanding problems as the LISA data (Littenberg et al.
020; Littenberg & Cornish 2023 ). There are also implementation 
hallenges, which arise from technical aspects of the algorithm; one 
xample being the dimension matching requirement when proposing 
o v es between models with different dimensionality. In terms of

lgorithm efficiency, it is also crucial to choose proposal distributions 
hat allow smooth transitions on a dynamical parameter space, a 
ask which in many cases requires substantial effort. For these 
echnical reasons, all the available software tools of this kind have 
een specifically developed for the particular problem they intend to 
olve. 

In this work, we present ERYN , a reversible jump (RJ) MCMC
lgorithm, capable of efficiently sampling dynamical parameter 
paces, while remaining generic and usable by a large community . 
e build upon various ideas from statistics, astronomy, etc., in order 

o develop an efficient statistical toolbox that can be applied to 
he majority of problems involving detection and characterization 
f signals. Our primary goal, ho we ver, is to utilize ERYN as a
asic ingredient for a data analysis pipeline to perform the LISA
lobal Fit (Littenberg et al. 2020; Littenberg & Cornish 2023 ). 
he Global Fit is a data analysis strategy required to tackle the
roblem of multiple source detection, separation, and character- 
zation in LISA data. For demonstration purposes in this work, 
e use ERYN to analyse a ‘reduced’ scenario of the LISA data in
ection 4 . 
This paper is organized as follows: In Section 2 , we begin with

xplaining the foundations of the MCMC algorithm, as well as some 
f the rele v ant methods that we have adopted for our implemen-
ation. In Section 3 , we describe how the methods introduced in
ection 2 are combined into the actual toolbox implemented in 
RYN . In Section 3.3 , we demonstrate the capabilities of ERYN

hrough some toy examples, while in Section 4 we apply our 
achinery to more demanding applications in GW astronomy. In 

articular, we demonstrate ERYN by performing model selection on 
 simulated population of ultra compact Galactic binaries (UCBs) 
s measured by the future LISA observatory . Finally , in Section 5 ,
e summarize our work and discuss future applications. We should 

tate again here, that ERYN is available as open-source software at: 
ttps:// github.com/ mikekatz04/ Eryn . 

 M C M C  A L G O R I T H M S  

owadays, MCMC methods are considered to be a cornerstone 
f Bayesian inference, being very ef fecti ve in finding solutions to
roblems encountered across wide-ranging disciplines (e.g. Hobson 
t al. 2009 ; Sharma 2017; Hogg & F oreman-Macke y 2018 ; Biwer
t al. 2019 ; Ashton & Talbot 2021 ). These include the sampling
f the posterior densities of parameters of interest, the numerical 
arginalization o v er nuisance parameters, and pro viding a frame- 
ork to compute the marginal posterior distributions (or evidences) 

hat can be used for model selection. The Bayesian framework is
ased around Bayes’ Theorem: 

 ( � θ | y, M ) = 

p ( y| � θ, M ) p ( � θ | M ) 

p ( y | M ) 
, (1) 

here y is the measured data and M our chosen model of analysis.
he p( � θ | y) term is the posterior distribution of the parameter set � θ ,
hich is related to the likelihood function of the data p( y| � θ, M ) and

he prior densities of the parameters p( � θ | M ). The evidence p( y| M )
s the marginal posterior o v er the parameter space � θ ∈ � : 

 ≡ p( � y | M ) = 

∫ 
� 

p( � θ, � y | M )d � θ

= 

∫ 
� 

p ( � y | � θ, M ) p ( � θ | M )d � θ. (2) 

or parameter estimation purposes, the evidence acts as a normal- 
zation constant and can be ignored. Ho we ver, it is really important
f one wants to perform model selection o v er the measured data. We
hall describe in detail how one can numerically approximate the 
ntegral of equation ( 2 ) in Section 2.5 . 

MCMC algorithms work by constructing a Markov Chain se- 
uence, whose elements, � θ ( t i ), for i = 0, 1, . . . , are (asymptotically)
ndependent samples from the target distribution, f ( � θ). Under fairly
eneral assumptions, the distribution of samples in the chain will 
onverge to the target distribution provided the algorithm satisfies 
etailed balance : 

 ( � θ ) p( � θ → 

� θ ′ ) = f ( � θ ′ ) p( � θ ′ → 

� θ ) . (3) 

ere p( � θ → 

� θ ′ ) is the probability that the Markov chain moves
rom point � θ to point � θ ′ . The most widely used MCMC algorithm is

etropolis–Hastings (Metropolis et al. 1953 ; Hastings 1970 ), which 
s explained in algorithm box 1. The first step of the algorithm is
o define an initial state, � θ ( t 0 ). Then, at each subsequent step i , a
ew state is proposed, by randomly drawing from a given proposal
istribution q( � θ ′ | � θ ( t i )). The newly proposed state is then accepted
ith a certain probability, given by equation (4). If the mo v e is

ccepted we set � θ ( t i+ 1 ) = 

� θ ′ , otherwise we set � θ ( t i+ 1 ) = 

� θ ( t i ). Any
easonable choice of the proposal density will generate a Markov 
hain with the correct stationary distribution. Ho we ver, a good choice
f q is critical for its ef ficiency, i.e. achie ving the convergence of
he MCMC chains within a reasonable computational time. For the 
pecial case of a symmetric proposal distribution, 1 such as the widely
sed multi v ariate Gaussian distribution centred around � θ ( t i ), the
atio of equation (4) in algorithm box 1 becomes simply the ratio
f the target densities at the current � θ ( t n ) and proposed � θ ′ points.
or high-dimensional problems, the multi v ariate Gaussian proposal 
an be tuned during the burn-in period of sampling to impro v e
fficiency (Gelman et al. 1996 ; Haario, Saksman & Tamminen 2001 ;
renkel 2006 ; Andrieu & Thoms 2008 ; Roberts & Rosenthal 2009 ;
hristensen & Meyer 2022 ), or even scaled according to the Cramer–
ao bound, estimated from the Information matrix (Vallisneri 2008 ). 

Although the Metropolis-Hastings (MH) algorithm has been quite 
uccessful in tackling inference problems, there are practical imple- 
MNRAS 526, 4814–4830 (2023) 
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entation issues to o v ercome. Impro ving acceptance rate is crucial
or convergence, and sometimes improvements in the proposal
istribution are not sufficient to efficiently sample the parameter
pace. To tackle these issues, various MCMC enhancements have
een proposed. A prime example is the Hamiltonian Monte Carlo
HMC) algorithms that utilize local gradients in order to generate
roposal points (Neal 2011 ; Betancourt & Girolami 2013 ). One
ariant of HMC is the No-U-Turn sampler which automates part
f the required tuning of the HMC (Hoffman & Gelman 2014 )
ampler. Another alternative to the ‘standard’ MH is the Gibbs
ampling algorithm, which is particularly useful if the conditional
istributions of the parameters of the model are known (Muller
991 ; Gilks & Wild 1992 ; Ritter & Tanner 1992 ). All of the abo v e
ev elopments hav e been shown to be useful in various disciplines
Brooks 1998 ; Gelman et al. 2004 ; Kendall, Liang & Wang 2005 ;
ivia & Skilling 2006 ; Sorensen & Gianola 2007 ; Johannes & Polson
010 ; Robert & Casella 2011 ; Baio 2012 ; Sharma 2017 ; Hogg &
 oreman-Macke y 2018 ; Joseph 2019 ). Finally, there have recently
een numerous proposals that aim to enhance sampling with machine
earning techniques. At their core, many of these methods optimize
he exploration of the likelihood surface, either by learning it directly
see e.g. Hermans, Begy & Louppe 2019 ) or by sampling it in a
impler latent space (e.g. Wu, K ̈ohler & No ́e 2020 ). 

In this work, we introduce ERYN , which is built around the EMCEE

ackage (F oreman-Macke y et al. 2013 ), enhanced with a variety
f sampling mechanisms that allow us to perform inference on
ynamical parameter spaces with minimal tuning. We expand on
he most important features in the sections below. 

.1 Affine-invariant samplers 

n affine transformation is one of the form 

� θ → 

� ζ = A 

� θ + b, where
 and b are a constant matrix and v ector, respectiv ely. Under an affine

ransformation a probability density p( � θ | y) transforms to 

 A, b ( � ζ | y) = p( A 

−1 ( � ζ − b) | y) / det ( A ) . (5) 

uch transformations can help to transform difficult-to-sample dis-
rib utions into easier -to-sample ones. A simple example is a multi-
ariate normal distribution. If the dynamical range of the eigenvalues
f the covariance matrix is very large, then sampling can be difficult,
ut any multi v ariate normal distribution can be transformed into a
pherical distribution via an affine transformation. 

Af fine-inv ariant MCMC is a class of samplers that are designed to
ave equal sampling efficiency for all distributions that are related by
n affine transformation (Goodman & Weare 2010 ; F oreman-Macke y
t al. 2013 ). The sequence of samples in a Markov chain, { X ( t ) } , can
e written deterministically as a function of a sequence of random
ariables, ξ ( t ), which represent the random draws used to propose
ew points and evaluate the accept/reject decision. Specifically, we
an al w ays write 

( t + 1) = R( X( t ) , ξ ( t ) , p) , (6) 

here p denotes the target density. An af fine-inv ariant sampler has
he property 

( AX( t) + b, ξ ( t) , p A,b ) = AR( X( t) , ξ ( t) , p) + b, (7) 

.e. the sequence of points visited when sampling an affine-
ransformed density are the affine transformations of the states visited
hen sampling the original density. If an affine transformation exists

hat maps the given target density to one which is more straightfor-
ard to sample from, an af fine-inv ariant sampler should sample it as

fficiently as it could the simpler distribution, so the convergence of
NRAS 526, 4814–4830 (2023) 
f fine-inv ariant samplers is less affected by correlations between the
arameters (F oreman-Macke y et al. 2013 ). 
In practice, this goal is achieved by following an ensemble of

oints, called w alk ers, and basing proposed mo v es on the distribution
f other points in the ensemble. In F oreman-Macke y et al. ( 2013 ), the
rimary update mo v e is the so-called stretch-move proposal. Each
 alk er at state X i ( t ) is updated by randomly selecting another w alk er

 and proposing a new value Y = X j ( t ) + Z [ X i ( t ) − X j ( t )], where Z is
 random variable drawn from the distribution (Goodman & Weare
010 ) 

( z) ∝ 

⎧ ⎨ ⎩ 

1 √ 

z 
z ∈ 

[
1 
a 
, a 

]
0 otherwise 

(8) 

he parameter a can be tuned to impro v e conv ergence, but a = 2
orks well in the majority of applications (F oreman-Macke y et al.
013 ). The proposed point is accepted with probability 

( X i ( t) , Y ) = 1 ∧ 

{
z d−1 p( Y ) 

p( X i ( t)) 

}
, (9) 

here p is the target density and d is the dimension of the parameter
pace. This acceptance probability is specific to the stretch proposal
istribution given by equation ( 8 ). For other stretch proposals, the
erm z d − 1 must be replaced by z d − 2 g (1/ z )/ g ( z ). Following this
cheme, detailed balance is maintained, and it can be pro v en that
f fine-inv ariant samplers converge faster to their target distribu-
ion (F oreman-Macke y et al. 2013 ). Below in Section 3 , we discuss
he extension of the stretch-move proposal to RJ MCMC methods.
he benefits of running MCMC chains in parallel, combined with a
roposal distribution that requires almost no tuning, have contributed
o an increasing popularity of af fine-inv ariant samplers. In particular,
he EMCEE package (F oreman-Macke y et al. 2013 ), has been used
idely in Astrophysics and Cosmology (e.g. McMillan 2017 ; De

t al. 2018 ; Virtanen et al. 2020; Wong et al. 2020 ). 

.2 Delayed rejection 

he delayed-rejection (DR) scheme of sampling was devised in
rder to impro v e two aspects of MCMC algorithms. First, it allows
or impro v ements in the acceptance rate of the proposals, yielding
healthier’ parameter chains, with better mixing. Secondly, it is more
obust against becoming trapped in local maxima of the posterior
urface (Green & Mira 2001 ; Mira 2001 ; Haario et al. 2006 ; Trias,
 ecchio & V eitch 2009 ). The strategy, as the name suggests, is, at

ach iteration, instead of immediately rejecting the newly proposed
oint based on Algorithm 1, we keep proposing new points while
aintaining detailed balance by computing both the forward and

ackward transition probabilities. Suppose we are at a point � θ0 

nd use a proposal q( � θ1 | � θ0 ) to propose a new point � θ1 . The usual
cceptance probability, following the notation of equation ( 1 ), is 

1 ( � θ0 , � θ1 ) = 1 ∧ 

{ 

p( � θ1 | y) q( � θ0 | � θ1 ) 

p( � θ0 | y) q( � θ1 | � θ0 ) 

} 

, (10) 

s per equation (4). If � θ1 is rejected, then instead of going back to step
 of Algorithm 1, we propose a new point, � θ2 , drawn from a proposal
istribution q( � θ2 | � θ1 , � θ0 ). This proposal distribution may depend only
n � θ1 , but we write it more generally here to allow for the case that
he proposal is adapted based on the sequence of steps that have
een rejected. The acceptance probability for � θ2 , α2 ( � θ0 , � θ1 , � θ2 ), is
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omputed using 

2 ( � θ0 , � θ1 , � θ2 ) = (11) 

1 ∧ 

⎧ ⎨ ⎩ 

p( � θ2 | y) q( � θ1 | � θ2 ) q( � θ0 | � θ1 , � θ2 ) 
[ 
1 − α1 

(
� θ2 , � θ1 

)] 
p( � θ0 | y) q( � θ1 | � θ0 ) q( � θ2 | � θ1 , � θ0 ) 

[ 
1 − α1 

(
� θ0 , � θ1 

)] 
⎫ ⎬ ⎭ 

. 

f � θ2 is rejected, further steps can be included and each step adds
dditional proposal and rejection-probability terms to the numerator 
nd denominator of the acceptance probability. For example, the 
hree step acceptance probability, α3 ( � θ0 , � θ1 , � θ2 , � θ3 ) is the minimum
f one and 

p( � θ3 | y) q( � θ2 | � θ3 ) q( � θ1 | � θ2 , � θ3 ) q( � θ0 | � θ1 , � θ2 , � θ3 ) 

p( � θ0 | y) q( � θ1 | � θ0 ) q( � θ2 | � θ1 , � θ0 ) q( � θ3 | � θ2 , � θ1 , � θ0 ) 

×
[ 
1 − α1 

(
� θ3 , � θ2 

)] [ 
1 − α2 

(
� θ3 , � θ2 , � θ1 

)] 
[ 
1 − α1 

(
� θ0 , � θ1 

)] [ 
1 − α2 

(
� θ0 , � θ1 , � θ2 

)] . 
(12) 

he proposal q can be different at each step, as long as the rele v ant
roposal density is used in equation ( 11 ). For example, in Trias
t al. ( 2009 ), the proposal is built upon a Gaussian mixture model
hat tries further points in the parameter space with the aim of
fficiently exploring multiple modes of the posterior distribution. 
s the number of steps in the DR scheme becomes arbitrarily large,

he acceptance probability slowly approaches zero. This algorithm 

s also limited in practice by high computational requirements, 
ince at every DR step we need to e v aluate a ne w likelihood and
ompute the backwards probability (the α1 ( � θ2 , � θ1 ) from equation 11 ).
e vertheless, the DR scheme of fers many adv antages, and despite

he computational cost, it is very useful when the posterior surface 
xhibits high dimensionality, and when acceleration techniques are 
vailable. These, e.g. might include the use of graphical processing 
nits (GPUs), and/or heterodyned likelihoods (Cornish 2021 ). In 
ur implementation here, we follow closely the one in Trias et al.
 2009 ), for improving the acceptance rate of the between-model step
f the RJ algorithm (see Section 2.6 ). As already mentioned, the
J MCMC allows for sampling dynamical parameter spaces. In the 

pecial case of nested models, such as the case of searching multiple
ignals in the LISA data, proposing the ‘birth’ of a signal out of
 very wide prior can be very inefficient. A DR scheme alleviates
his problem, by ef fecti vely performing a small search around the
rst set of rejections, increasing the chances of finding a good signal
andidate, and thus improving the mixing of the chains. 

.3 Multiple try metropolis 

he multiple try metropolis (MTM, Liu, Liang & Wong 2000 ; 
artino, Del Olmo & Read 2012 ; B ́edard, Douc & Moulines 2012 ;
artino 2018 ) is a subclass of the implementation of the MH

lgorithm, which is based on the idea of generating a number of
roposals for each individual current state, and then selecting one of
hem based on their importance weight. In proposing a mo v e from
� 
t−1 , a set of N possible new points, { y k } , are drawn from a proposal
istribution q( y| � θt−1 ) and are assigned weights w i = w( y i | � θt−1 )
sing a weight function w( ·| � θt−1 ). One of these proposed points,
 J , is selected with probability given by the normalized weight 

¯  i = 

w i ∑ N 

k= 1 w k 

. (13) 

o compute the acceptance probability, we need to draw N − 1 points, 
 x i , i = 1, . . . , N − 1 } , for the reverse move from the proposal q ( x | y J ),
nd assign weights w( x | y J ). We then set � θt = y J with probability 

( � θt−1 , y J ) = 1 ∧ 

{ 

w( y J | � θt−1 ) + 

∑ N 

k = 1 ,k �= J w( y k | � θt−1 ) 

w( � θt−1 | y J ) + 

∑ N−1 
k= 1 w( x k | y J ) 

} 

, (14) 

nd set � θt = 

� θt−1 otherwise (Martino 2018 ). This procedure will 
atisfy detailed balance if the weight function is chosen such that 

( � θ0 | y) q( � θ1 | � θ0 ) w( � θ1 | � θ0 ) = p( � θ1 | y) q( � θ0 | � θ1 ) w( � θ0 | � θ1 ) . (15) 

his will be satisfied by a weight function of the form 

( � θt | � θt−1 ) = p( � θt | y) q( � θt−1 | � θt ) ξ ( � θt−1 , � θt ) , (16) 

here ξ ( � θt−1 , � θt ) is any symmetric function, i.e. ξ ( � θt−1 , � θt ) =
( � θt , � θt−1 ), ∀ 

� θt , � θt−1 ∈ D ⊆ R 

d , with d being the dimensionality of
he problem at hand. The detailed balance condition can also be
atisfied by a weight function of the form 

 ( � θt | � θt−1 ) = 

p ( � θt | y) 

q( � θt | � θt−1 ) 
. (17) 

aking this choice and additionally using a proposal function that is
ndependent of the current point, q( � θt | � θt−1 ) = q( � θt ) only, we obtain
he independent MTM algorithm (Martino 2018 ). When using the 
ndependent MTM algorithm detailed balance is maintained when 
he same set of points is used for the reverse proposal as for the
orward proposal, which saves the e v aluation of N − 1 posterior
ensities. 
The base MTM is currently implemented in ERYN with options 

or the independent MTM algorithm and symmetric proposals. For 
 symmetric proposal distribution, q( � θt−1 | � θt ) = q( � θt | � θt−1 ), equa-
ion ( 15 ) can be satisfied using the weight function w( � θ1 | � θ0 ) =
( � θ1 | y). In this case, we still need to draw separate samples for

he reverse step (unlike in the independent MTM case). 
Generating a large number of candidate points yields certain 

dvantages. As expected, the first advantage is the fact that there
s usually very good coverage of the parameter space. The second is
hat the implementation of the MTM usually results in chain states
ith very low correlation between them. Nevertheless, as for DR, this

lgorithm requires increased computational resources, since multiple 
ikelihoods/posterior densities have to be e v aluated at each iteration
f the chain. This cost can be offset in cases where the computations
an be parallelized, e.g. using either Central Processing Unit (CPU 

r GPU acceleration. 

.4 Adapti v e parallel tempering 

he concept of parallel tempering was introduced in order to 
fficiently sample surfaces with high multimodality (Swendsen & 

ang 1986 ; Hukushima & Nemoto 1996 ; Vousden, Farr & Mandel
016 ). The idea is based on a transformation of the posterior density
o a density with a different temperature, T , defined by 

 T ( � θ | y) ∝ p ( y| � θ ) 1 /T p ( � θ) . (18) 

or T = 1 this is the target posterior density. In the limit T → ∞ ,
t is the prior density. Intermediate temperatures ‘smooth out’ the 
osterior by reducing the contrast between areas of high and low
ikelihood. 

In parallel tempering, a set of Markov chains is constructed in
arallel, each one sampling the transformed posterior for a different 
emperature T . These chains periodically exchange information. The 
dea is that the hottest chains explore the parameter space more
idely, and information about areas of high likelihood that they 

ncounter propagates to the colder chains. Information is exchanged 
MNRAS 526, 4814–4830 (2023) 
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y proposing swaps of the states between the different chains. If
wo chains are sampling from target densities p 1 ( � θ ) and p 2 ( � θ ),
espectively, then the transition probability for chain 1 in the swap is
 1 ( � θ0 → 

� θ1 ) = p 2 ( � θ1 ) α( � θ0 , � θ1 ). Detailed balance is thus maintained
y accepting the swap with probability 

( � θ0 , � θ1 ) = 1 ∧ 

{ 

p 1 ( � θ1 ) p 2 ( � θ0 ) 

p 1 ( � θ0 ) p 2 ( � θ1 ) 

} 

, (19) 

hich for the specific case of swapping between two tempered chains
 and j when doing parallel tempering is 

i,j = 1 ∧ 

⎧ ⎨ ⎩ 

( 

p( y| � θi ) 

p( y| � θj ) 

) βj −βi 

⎫ ⎬ ⎭ 

, (20) 

ith β i = 1/ T i being the inverse temperature, and � θi the given
arameter state for the i th chain. 
The temperature ladder T i should be chosen in order to maximize

he information flow between chains of different temperatures, so
s to encourage the efficient exploration of the complete parameter
pace. Typically, this ladder can be static or dynamically adjusted
uring the sampling procedure. In ERYN , we have adopted the
rocedure of Vousden et al. ( 2016 ), which adapts the temperature
adder based on the swap acceptance rate calculated directly from
he chains. Ideally, one should aim for equal acceptance ratio between
very pair of neighbouring tempered chains, thus tuning their log-
emperature-difference S i ≡ log ( T i − T i − 1 ), according to the swap
cceptance rate from equation ( 20 ): 

d S i 
d t 

= κ( t ) 
[
αi ,i −1 ( t ) − αi+ 1 ,i ( t) 

]
, (21) 

here κ( t ) tunes the time-scale of the evolution of the temperatures.
he function κ( t ) can be chosen depending on the desired behaviour
f the procedure. In Vousden et al. ( 2016 ), a hyperbolic dependence
n the t state is chosen, in order to suppress large dynamic adjust-
ents on long time-scales. This set-up is the default option in ERYN ,

ut it can be customized. This process is more straightforward for
nsemble samplers, where multiple w alk ers are used, simply because
ne can get an estimate of the acceptance rate directly from the
articular state of the w alk ers at an y giv en time-step t . Otherwise, the
cceptance rate is computed after iterating for a predefined number
f steps, which can be chosen by the user for the given problem at
and. It can be pro v en (Vousden et al. 2016 ), that the temperature
adder will converge to a particular stable configuration. One should
nly use this scheme for the initial burn-in stage of sampling, and
hen continue with a stationary ladder for the rest of the analysis. 

.5 Marginal posterior calculation for model selection 

ne of the most frequently encountered problems in physics, and in
cience in general, is that of model or variable selection, i.e. identi-
ying the model best supported by the observed data. Working in a
ayesian framework, comparison between different hypotheses may
e done by computing their evidences or marginal posteriors (Gelman
t al. 2004 ) and e v aluating the Bayes factor: 

 12 = 

p ( � y | M 1 ) p ( M 1 ) 

p ( � y | M 2 ) p ( M 2 ) 
, (22) 

here the term p( M i ), is the prior probability assigned to the model
 i . 
The marginal posterior density, or e vidence, is gi ven by the

ntegral of equation ( 2 ) and is in general quite challenging to
ompute. For some high signal-to-noise ratio (SNR) cases it can
NRAS 526, 4814–4830 (2023) 
e approximated if the covariance matrix 
 of the parameters for
ll candidate models M are known. This approach is called the
aplace approximation (Kass & Raftery 1995 ; Gelman et al. 2004 ).
o we ver, this is only an approximation, and it sometimes fails for
odels with weak support from the data (Cornish & Littenberg

007 ) (in particular when the posterior cannot be approximated by a
ulti v ariate Gaussian at � θMAP ). 
When using parallel tempering (Section 2.4 ), it is possible to

ompute the evidence by a procedure known as thermodynamic
ntegration (Lartillot & Philippe 2006 ). We define a continuous
istribution of evidences based on the target distribution for a chain
ith inverse temperature β = 1/ T via 

 i,β = 

∫ 
p ( y| � θ, M i ) 

βp ( � θ ) d � θ. (23) 

or β = 0, the chain is sampling the prior and therefore log Z i, 0 = 0.
or β = 1, we are sampling the target distribution and log Z i, 1 =

og Z i . Additionally, we have 

d log Z β

d β
= 

∫ 
log [ p( y| � θ, M i )] p( y| � θ, M i ) 

βp( � θ)d � θ

≡ E β [ log p( y| � θ, M i )] . (24) 

rom this, we deduce 

log Z i = 

∫ 1 

0 
E β

[ 
log p 

(
y| � θ, M i 

)] 
d β. (25) 

he expectation value is o v er the distribution being sampled by the
hain at temperature β and so can be computed by averaging over
he posterior samples (Goggans & Chi 2004 ; Lartillot & Philippe
006 ; Vousden et al. 2016 ). The integral can then be e v aluated
sing standard methods, e.g. the trapezium rule, using the full ladder
f temperatures. This approach generates reliable evidences, with
ccuracy limited only by the number of temperatures being sampled,
nd the efficiency of the sampling of the parameter space � by the
hains. Since its first introduction, there have been many applications
f this approach, and in particular, there is e xtensiv e usage in GW
stronomy (Littenberg & Cornish 2009 , 2010 ; Vousden et al. 2016 ;
aturana-Russel et al. 2019; Katz et al. 2022 ). 
The thermodynamic integral in equation ( 25 ) can be thought of

s computing the evidence as a sum of differences between the
vidences at different temperatures. An alternative approach, called
he stepping-stone algorithm (Xie et al. 2010 ), writes the evidence
s a product of the ratios of evidences at different temperatures: 

 i ≡ Z i, 1 

Z i, 0 
= 

N T −1 ∏ 

k= 1 

Z i,βk+ 1 
Z i,βk 

(26) 

here βk denotes the inverse temperature of chain k , N T is the number
f different temperatures being sampled, and we assume β1 = 0 and
N T = 1. Each evidence ratio can be written as a posterior integral: 

Z i,βk+ 1 
Z i,βk 

= 

∫ 
p ( y| � θ, M i ) 

βk+ 1 −βk 
p ( y| � θ, M i ) βk p ( � θ) 

Z βk 

d � θ

= E β

[
p 

(
y| � θ, M i 

)βk+ 1 −βk 

]
≈ 1 

n 

n ∑ 

i= 1 

p 

(
y| � θ i 

k , M i 

)βk+ 1 −βk 

, (27) 

here n is the number of posterior samples in each chain, and � θ i 
k 

enotes the i th sample at temperature βk . This leads to the final
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2 Eryn Vorn (Sindarin for Blackwood) was a wooded cape in Eriador, and a 
region of dark pine trees. Located in western Minhiriath, Eryn Vorn (likely 
named so by the N ́umen ́oreans) was originally part of the vast ancient 
treescape that co v ered most of north-western middle-Earth. 
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xpression: 

log Z = 

N T −1 ∑ 

k= 1 

log 
n ∑ 

i= 1 

p( y| � θ i 
k , M ) βk+ 1 −βk − ( N T − 1) log n. (28) 

n challenging situations, e.g. where the number of tempered chains 
s relatively small, the stepping-stone algorithm has been shown to 
roduce more accurate estimates of the marginal likelihood than 
ethods that use thermodynamic integration (Xie et al. 2010 ). This
as also demonstrated with practical e xamples dra wn from GW 

stronomy in Maturana-Russel et al. ( 2019 ). 

.6 Reversible jump 

nother approach to the model selection problem is to follow 

 RJ MCMC strategy, which can dynamically estimate the most 
robable hypotheses given the data (Green 1995 ). The RJ MCMC is
 generalization of the MH algorithm that allows trans-dimensional 
roposals. Thus, the model order is considered a free parameter 
hich is fitted together with the parameters of the individual models. 
he most widespread variation of the algorithm uses a two-stage 
rocedure. The first stage or in-model step , uses the standard MH
lgorithm to update all the parameters � θk for the given model k . The
econd stage or between-model step proposes to update the model 
tate k to a new model state l . Parameters � θl for the new model are also
roposed. The newly proposed state l , is accepted with a probability
efined by Godsill ( 2001 ): 

′ = 1 ∧ 

{ 

p( � θl | l, y) g ′ ( u l ) 

p( � θk | k , y) g ( u k ) 
| J | 

} 

, (29) 

here 

( � θk | k, y) = p( y| � θk , k) p( � θk , k ) p( k ) (30) 

ith p( y| � θk , k) the likelihood for model k , p( � θk | k) the prior on the
arameters � θk in model k , and p ( k ) the prior for the model state k . The
erm g ′ ( u l ) | J | / g ( u k ) arises because of the need for dimension matching
etween the different model states. In general, we can define a mo v e
etween model states in terms of a deterministic invertible mapping, 

� 
k = q( � θl , u l ) with inverse � θl = q ′ ( � θk , u k ), that is a function of the
arameters and two sets of random variables, u k and u l , drawn from
istributions g ( u k ) and g ′ ( u l ) (Green 1995 ; Godsill 2001 ). The term
 J | is the Jacobian defined by this invertible mapping: 

 J | = 

∣∣∣∣∣ ∂( � θl , u l ) 

∂( � θk , u k ) 

∣∣∣∣∣ (31) 

nd the term g ′ ( u l )/ g ( u k ) plays the role of the proposal ratio in the
tandard MH acceptance probability. Dimension mapping means that 
im ( � θl ) + dim ( u l ) = dim ( � θk ) + dim ( u k ). 
Using RJ MCMC introduces additional computational cost at each 
CMC iteration, as well as technical challenges in implementation. 

uckily, implementation can be easier when sampling nested models . 
his refers to problems where more complicated models contain their 
impler counterparts. Examples of such cases are fitting polynomial 
odels, which differ only in the highest order to be determined, 

r detection problems where multiple similar signals are potentially 
resent the data. In such cases, the between-model step can al w ays
e formulated such that the Jacobian of equation ( 31 ) becomes unity,
nd equation ( 29 ) simplifies to the ratio of posteriors accounting for
ny differences in prior and proposal volumes (Dellaportas, Forster & 

tzoufras 2002 ; Lopes & West 2004 ; Littenberg et al. 2020 ). 
After running RJ MCMC, the Bayes factor can be approximated 
y the ratio of the number of iterations spent within each model: 

 12 = 

# of iterations in model M 1 

# of iterations in model M 2 
. (32) 

his algorithm has pro v en to be robust for e v aluating high-
imensional competing models, and has been quite successful in 
ackling data analysis problems in GW astronomy (Cornish & 

ittenberg 2007 ; Karnesis et al. 2014 ; Littenberg et al. 2020 ) as well
s areas spanning physics and signal processing (e.g. Marrs 1997 ;
han, Balch & Dellaert 2005 ; Yu et al. 2021 ). Ho we ver, designing

n efficient RJ MCMC algorithm can be quite challenging. The first
hallenge is to choose suitable proposal distributions, which can 
reatly affect the convergence of the algorithm. In situations where 
he models are nested, it is both tempting and convenient to take the
roposal to be the same as the prior distribution of the parameters.
s an illustrativ e e xample, we refer to Section 3.3.1 , which describes
 toy problem of searching for Gaussian pulses in noisy data. There,
he parameters of the individual pulses are the amplitude and location
f the pulse described by their ( x , y ) coordinates. In order to search
or those signals, the prior on their location must be wide enough to
nclude the complete data set (see Fig. 1 a). A birth proposal based
n the prior would inevitably be quite inefficient, simply because 
he chance of proposing a good source candidate is small, especially
f the proposal distribution is flat across ( x , y ). We treat the abo v e
roblem as a moti v ation to adopt ef ficient proposals with minimal
uning in ERYN , which we further discuss in Section 3 . The second
ajor challenge, which of course depends on the given problem at

and, arises from the samplers’ capability to explore a multimodal 
ynamical parameter space. We discuss our strategy to o v ercome
hat challenge in Section 3 . 

 E RY N :  G AT H E R I N G  A L L  T H E  PI ECES  

O G E T H E R  

ll the different algorithms described in previous sections can be 
xtremely useful in tackling different kinds of problems that require 
ampling. In GW astronomy, we encounter such problems far too 
ften, where dynamical parameter spaces require vast computational 
esources in order to be explored ef ficiently. Moti v ated by those
roblems, we have implemented a new toolbox that combines all 
hese techniques to enhance the capabilities of an MCMC sampler. 

e have named this package ERYN , 2 borrowing the name from the
 olkien mythos (T olkien Gateway 2023 ). The analogy has its basis in

he idea of a forest: Within a forest you have trees which correspond
o different w alk ers, also known as Ents , in an ensemble MCMC
ampler. On each tree, there are branches that represent the various
ypes of models used to fit the data. For example, in the case of GW
lobal fitting for LISA, we can imagine using the Galactic binaries as
ne branch and massive black hole (BH) binaries as another branch.
ach branch has leaves, which represent the individual instances 
f each model. In the LISA e xample, leav es would represent the
ndividual Galactic binaries or massive BH binaries. And finally, 
o zoom out, when adding tempering capabilities, we can think of
roups of w alk ers in each temperature taking the form of many
orests (of w alk ers) located within different temperature climates. 
MNRAS 526, 4814–4830 (2023) 
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M

(a) (b) (c)

Figure 1. Searching for two-dimensional (2D) Gaussian pulses in the presence of Gaussian noise. (a) The simulated data, which consists of injections of 25 
pulses in Gaussian noise with σ n = 0.2. (b) The distribution of the model order, obtained by exploring the dynamical parameter space with ERYN . The true 
value is marked with a dashed red line. For this toy investigation, the correct number of simulated components is reco v ered. (c) The 2D posterior densities for 
the parameters of the k Gaussian peaks (see text for details). 
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We adopt the architecture of ensemble samplers, and in particular
he one of EMCEE (F oreman-Macke y et al. 2013 ). Having multiple
 alk ers running in parallel is ideal for efficiently sampling the
arameter spaces using techniques such as parallel tempering, as
escribed in Section 2.4 (also see Section 2.1 ). In this setting, we
volve n w w alk ers per temperature T i , where each w alk er follows a
J MCMC (see Section 2.6 ), mapping a parameter space of altering
imensionality. In practice, w alk ers in higher temperatures sample
he dynamic parameter space with fewer model components as the
enalty from higher prior volume is not compensated by the smoother
nnealed likelihood. In other words higher temperatures have a
harper Occam’s razor: The data can be explained with models that
re simpler, or lower dimensional. The highest temperature chain
amples the prior on the model space (provided that T max = ∞ ).

ore details will be given in Section 3.3 . 
As already mentioned in Section 2.6 , RJ algorithms are extremely

hallenging to tune, even for simpler classes of problems. One of
he major challenges is the low acceptance rate for the between-
odel proposal, i.e. when we propose a new state where the

arameter dimensionality differs. In cases of signal search and
etection (which is a nested model situation), it is convenient to
et the proposal corresponding to a ‘birth’ mo v e to be the same
s the prior distribution. In order to accommodate all possibilities
or the signals present, the prior densities are usually quite wide,
nd thus accepting a new higher dimensional state becomes quite
mprobable. For that reason, within ERYN , we have implemented a
R scheme with the aim of improving this acceptance ratio. When
roposing � θl for a higher dimensional model l , we do not reject
mmediately, but rather make new DR proposals around the first
ejected point � θl , using the given in-model step update proposal.
his, in principle, allows the sampler to explore around � θl before

ejecting the new state (Trias et al. 2009 ), which in turn impro v es the
 etween-model step acceptance rate and produces healthier MCMC
hains. 

The DR scheme, as described in Section 2.2 , requires a serial
omputation of the DR acceptance ratio for w alk ers where the newly
roposed state has been rejected. This scheme of calculating costly
ikelihoods sequentially in a loop during the between-model step,
an lead to a computational bottleneck of the MCMC process. This
s especially true for the LISA Global Fit problem, where multiple
NRAS 526, 4814–4830 (2023) 
inary waveform signals are present in the data stream. Then, the
omputational time for each RJ MCMC iteration is significantly
ncreased, since the progress will be halted until all w alk ers have
one through their respective DR process, which requires evaluation
f new waveforms at each step. For the reasons summarized here,
e have not used the DR scheme for our analysis in Section 4 , and
ave resorted to the multiple try scheme. Ho we ver, the DR scheme,
s explained in Section 2.2 , has been implemented in the ERYN

ackage. 
The multiple try scheme was essentially implemented in order to

acilitate use of a parallelized likelihood framework. Parallelization is
aturally compatible with multiple try MCMC as multiple proposals
re made for each individual w alk er, which allows for the paral-
elized e v aluation of proposal distributions, likelihood functions,
nd acceptance probabilities. Under these parallelized settings, one
roposal can act as many when compared with the usual serial
 v aluation of proposals, allowing for better chain mixing in situations
here proposals are infrequently accepted. That being said, it is

till important to choose a good proposal distribution, for both the
n-model and between-model RJ MCMC steps, which we discuss
urther ahead. 

.1 Choosing efficient proposal distributions 

n the previous sections, we briefly discussed some of the challenges
n choosing efficient proposal distributions for both the in-model and
etween-model steps of the RJ algorithm. For the in-model case, the
hallenge arises from the fact that it is sometimes impractical, or even
nfeasible, to define a well-tuned proposal for each of the possible
odels that could represent the data. Using again the example of
ISA data, one would need to tediously design an ef fecti ve proposal
istribution for the thousands of o v erlapping binary signals in the
ata. On the other hand, for the case of the between-model step,
hoosing proposals from the prior distribution, especially if it is
ighly uninformative, can be very inefficient for RJ sampling. For
RYN , in order to tackle those issues, we have implemented the
r oup pr oposals explained below for addressing the within-model
roposals in RJ, as well as a scheme to design an efficient proposal
or birth mo v es during the between-model step, which is based on
ormalizing flows. 
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.1.1 Gr oup pr oposals 

n Section 2.1 , the stretch-mo v e proposal was introduced and dis-
ussed. One of the obvious advantages of such a scheme of proposing
ew MCMC samples is that it requires minimal tuning (Foreman- 
ackey et al. 2013 ). Ho we ver, it does not extend well in its simplest

orm to the generalized RJ MCMC. The stretch proposal is based 
n the idea that the ensemble of points ( X j ) is sitting on the same
osterior mode as the current point ( X i ). In a nested model situation
here both the model count and the individual model parameters 

hange, each point may lie on a different posterior mode representing 
 different set of leaves (sources) in the data. This can be alleviated
y applying the stretch mo v e to individual leaves within each branch
f each w alk er, but there is still an issue of identifying leaves in
ifferent w alk ers that lie on the same posterior mode. The stretch
roposal will technically still work when mixing leaves in different 
osterior modes, but the acceptance fraction will be ne gativ ely 
f fected. Ho we ver, within the stretch proposal formalism, the choice
f X j is customizable. The key to maintaining detailed balance is
hat X j cannot depend on X i , and X j cannot be updated in the same
terative step as X i (Goodman & Weare 2010 ). 

We leverage this property to design a new type of stretch mo v e
hat can handle RJ set-ups while maintaining a small number of
uning parameters. We call this proposal the ‘group’ proposal. 
he mathematics that go v erns the group proposal is equi v alent to

hat of the original stretch proposal. The key difference is that 
he group proposal chooses X j (see Section 2.1 ) from a stationary
roup that is fixed for many proposed updates. This is in contrast
o the original stretch proposal that al w ays uses the current set of
oints in the ensemble sampler to draw X j . The stationary group is
pdated after a large number of sampler iterations and we make 
ure that detailed balance is maintained during the update. We 
pdate every leaf within every branch of every w alk er at each
teration and repeat many iterations between updates of the stationary 
roup. 
The appropriate stationary group varies from problem to problem. 

he goal is to set a group that resembles as best as possible
he posterior modes of the current leaves and then draw from it
trategically so that the drawn point is likely (but not guaranteed) to
ie on the same mode as the leaf that is currently being updated, X i .
n the example of the LISA Galactic binaries analysis, we set our
tationary group to the full set of leaves (binaries) across all w alk ers
t a specific temperature of the sampler at the end of a given iteration.
hen, at proposal time, we efficiently locate the ∼n w points in the
tationary group that are closest to X i from based on their initial
requency parameter. We then draw X j from this group. The hope is
hat some percentage of the n w drawn points will lie on the posterior

ode on which X i sits. The exact percentage will vary depending 
n how close the posterior modes are to each other and how many
odel instances exist in the sampler that include this specific mode. 
or low-SNR binaries, e.g. a source may exist in some w alk ers and
ot others, making it harder to map its posterior mode with the current
roup of stationary points. 
The performance of group proposals is highly situation- and/or 
odel-dependent. With individual source posterior modes that are 
ell separated and easy to define in terms of separation, the perfor-
ance will approach the performance of the base stretch proposal 

n non-RJ MCMC because the stationary group will well represent 
he specific posterior mode on which X i is located. As the parameter
pace becomes more crowded and/or separation (distance) metrics 
ecome harder to define, the performance of group proposals will 
orsen. 
.1.2 Learning from the data 

he second impro v ement concerns the between-model step of the
J MCMC. As mentioned earlier, for the case of nested models, it

s often convenient to draw ‘birth’ candidates directly from the prior
istribution of parameters of the given model. This practice can be
uite inef fecti ve in terms of acceptance rate. As an example we can
gain use the LISA data set case. The UCBs are distributed within the
alactic disc, congregated mostly around its centre (Amaro-Seoane 

t al. 2023 ), therefore, adopting a proposal based on an uninformative
niform prior across the sky, would waste computational resources 
xploring a part of the parameter space with low probability mass.
 proposed solution is to use an informative prior derived from the

patial distribution of binaries in the Galaxy (Littenberg et al. 2020).
n our work here, we have chosen an alternative data-driven route,
ased on the actual residual data after a burn-in period of the RJ
CMC, which we describe below. After a sufficient number of RJ
CMC iterations, we can extract a subset of sources from nested
odels which are constantly present in almost all w alk ers of our cold

hain. In other words, we can find and subtract the brightest sources
rom the data, and then allow for another burn-in period on the
esulting residuals. This allows the sampler to explore the remaining 
arameter space more easily, thus providing a good initial estimate 
or the weak signals possibly buried in the noisy residual data. We
an then use those samples to construct a proposal density which will
elp us search for good candidates for those weak signals, without
xcluding the rest of the parameter space. This can be accomplished
y fitting the distribution to the residual data described abo v e. The
ost efficient way to fit to the generic distribution, is to use an

nvertible transformation, such as a normalizing flow (e.g. Dinh, 
ohl-Dickstein & Bengio 2016 ; Durkan et al. 2019 ). The method
orks in the following way: We sample from the base distribution

which is usually chosen to be normal N ( z ; 0 , 1)) and transform
amples to the desired distribution p( θ) by applying the change of
ariable equation: 

( θ) = N ( f −1 ( θ)) | J f −1 ( θ) | . (33) 

ere, function f ( z ) is a bijection which we fit by optimizing the
 ullback–Leibler div ergence, D KL [ p( f ( θ )) || N ( z ; 0 , 1)], between a
ormal distribution and the inverse transform of the distribution that 
e want to estimate. After the fit has converged, we can draw samples

rom the normal distribution and transform these to samples from the
istribution fitted to all residuals and use it as a proposal. We will
o v er this method in more detail in a separate paper which is being
repared. 

.1.3 Converg ence dia gnostics 

any standard approaches for assessing convergence of MCMC 

hains can be applied to the RJ MCMC chains generated by ERYN .
race plots, both for individual parameters within models, and the 

ndices labelling different models, will show that the chains are 
ixing well and that the initial burn-in phase has finished. Repeating

uns with different numbers of w alk ers, different starting positions,
ifferent numbers of parallel chains, or different choices of tem- 
eratures and comparing results can be used to assess convergence. 
imilarly, posteriors produced from randomly selected subsets of 
hain points can be compared (using e.g. statistical tools such as the
ensen–Shannon divergence, Men ́endez et al. 1997 ). 

Additionally, ERYN computes and outputs the potential scale 
eduction factor (PSRF) for each tempered chain, which provides 
MNRAS 526, 4814–4830 (2023) 
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 quantitative diagnostic of the convergence of the result (Gelman &
ubin 1992 ; Brooks & Gelman 1998 ). For a single parameter, the
SRF index is given by 

̂ 
 = 

√ 

( d + 3) ̂  V 

( d + 3) W 

, (34) 

here W the mean of the empirical variance within each chain, and̂ 
 is the estimated variance of the all chains, assuming that the target
istribution is Gaussian. The degrees of freedom are estimated by the
ethod of moments as d ≈ 2 ̂  V / ̂  var ( ̂  V ) (Brooks & Gelman 1998 ). 
The PSRF index takes values ̂ R ≥ 1, with values close to unity

ndicating converged MCMC chains. In the end, the quantity that
eally matters is the PSRF value for the cold chain, but converged
hains across for all temperatures are good indicators for healthy
ixing and efficient temperature swaps. 

.2 Implementation 

n this section, we discuss the main implementation details of ERYN .
e refer the interested reader, or user, to the ERYN documentation

or more e xhaustiv e information and examples (Documentation). 
The goal of ERYN is to produce a sampler that can handle all (or
ost) cases of MCMC sampling ranging from basic, non-tempered,

ingle-model type, single-model instance posterior estimation to the
ull RJ MCMC with tempering, multiple model types, and adjustable
odel counts, as well as everywhere in between. In the basic case,
RYN aims to be a close replica of EMCEE trying to maintain as much
implicity as possible. At the complicated end of the spectrum, ERYN

ttempts to provide a common interface and underlying infrastructure
or the variety of problems that may arise, allowing the user to
aintain usage of the majority of the code from project to project,

ocusing on changing only the specific parts of the code that are
ifficult to implement or require special treatment for each specific
roblem. Since ERYN is ef fecti vely an enhanced version of the EMCEE

ackage, the o v erall structure of EMCEE is strongly maintained. Like
n EMCEE , ‘State’ objects mo v e coordinate and likelihood information
round the ensemble sampler, storing information in a similar back
nd object either in memory or HDF5 files. Additionally, the interface
sed for adding proposals has remained. 
The various enhancements discussed in this work, including

empering, RJ mo v es, multiple try MCMC, etc., are all implemented
ithin the EMCEE -like structure. This involved two main changes.
irst, the State objects have been scaled to hold information necessary
or RJ MCMC: temperature information, prior information, and
fficient and concise containers for multiple types of models with
n adjustable number of individual model instances. Second, the
J proposal has been added as a proposal base, similar to the use
f the ‘MH’ or ‘RedBlue’ mo v es within EMCEE . Beyond these main
nhancements, there are also a variety of smaller, but useful, additions
o ERYN that help the user build a variety of analysis pipelines.
hese include stopping or convergence functions, functions to
eriodically update the sampler set-up while running, objects to carry
pecial information through the sampler, and aids for coordinate
ransformation. 

.3 Toy examples 

n this section, we present a series of working examples for ERYN .
e begin with simple problems, such as searching for simple signals

n noisy data, with the aim of demonstrating the performance of this
oolbox in a dynamical parameter space. The impact of the different
NRAS 526, 4814–4830 (2023) 
nhancements discussed in Section 3 will be assessed and discussed.
inally, in Section 4 , we will apply this machinery to more realistic
roblems in GW astronomy. 

.3.1 Searching for pulse signals in Gaussian noise 

n this first example, we explore the capabilities of ERYN in a
implified application, commonly encountered in physical sciences.
e perform a search for Gaussian pulses in a simulated 2D data

et, in the presence of Gaussian noise with variance σ n = 0.2. We
enerate 25 pulses randomly distributed on the x – y plane with
ll pulses contained within x , y ∈ [ −10, 10] (see Fig. 1 a), and
mplitude uniformly drawn from U[0 . 7 , 1 . 5]. The amplitude A k 

f each pulse, labelled by k , is considered a free parameter to be
stimated, in addition to the Cartesian coordinates of their centres.
he pulses’ width w as k ept fixed to σ p × δij , with σ p = 0.2, for the
ake of simplicity. Thus, we are required to estimate N p , the total
umber of pulses in the data, and also estimate the parameters for
ach individual signal k : � θk = { A k , x k , y k } . The noise variance σ n is
stimated as part of the fit. The analysis of this problem is performed
sing the adaptive parallel tempering scheme of Section 2.4 and the
J MCMC proposals (Section 2.6 ). The in-model proposals for each
odel component are Gaussians, with a diagonal covariance matrix
 = 10 −4 δij . This proposal is not tuned during sampling. The priors

or the parameters are quite wide, co v ering the entire range of the
ata, while the prior on the number of pulses k is set to k ∼ U[0 , 50].
ith the abo v e settings, we obtain the results summarized in Figs 1

nd 2 . In Fig. 1 b, we plot the most probable number of Gaussian
ulses present in the data, or in other words, the most probable model
iven this particular data set. It is clear that for the given level of
oise, it is straightforward to reco v er the true number of signals. The
oise variance is also estimated accurately as σ n = 0.2 ± 2 × 10 −3 .
n Fig. 1 c, we plot the posterior densities for the parameters of
ll pulses reco v ered, while we also mark the true injected values.
ig. 1 c shows the trans-dimensional MCMC chains ‘stacked’ o v er
ll samples of both model order and model parameters. As already
entioned, in this simplified scenario all signals have similar value

or the amplitude, thus the almost unimodal marginal on A k . This
llustrativ e e xample is useful as an introductory application to the

ore complicated case of detection in GW astronomy presented
elow, in Section 4 . 
In Fig. 2 , three diagnostic quantities for this run are shown. In the

op panel, the evolution of temperatures is presented. Following the
ecipe of Vousden et al. ( 2016 ), we control the distances between
ach temperature chain based on their in-between swap acceptance
ate, computed from equation ( 21 ). The tuning term κ( t ) is set to
( t ) = t 0 /( ν( t + t 0 )), with the adaptation lag t 0 = 10 4 and the
daptation time ν = 10 2 . The middle panel shows the evolution of
he swap acceptance rate per number of walkers between the chains
unning at different temperatures. After ∼10 5 sampler iterations,
he system converges to an equilibrium, where the rate of swapping
tates reaches a single value across the temperature range. In the
ottom panel, we show the acceptance rate for the in-model step of
he algorithm, for all temperatures. As expected, after temperature
quilibrium at ∼10 5 samples, the acceptance rate converges to a
dif ferent) v alue for each temperature, which is higher for higher
emperatures (smoother posterior surfaces are easier to explore). 

Finally, it is interesting to investigate how the sampled dimen-
ionality of the problem varies at different temperatures. In Fig. 3 ,
e plot the posterior on the number of pulses at each temperature.
s expected, higher temperature chains tend to fa v our lower model
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Figure 2. Top panel: The evolution of the temperature chains running in parallel for the toy problem of searching for 2D Gaussian pulses in Gaussian noise. 
The different colours indicate the initial temperature chain inde x. F ollowing the parallel tempering recipe of Vousden et al. ( 2016 ), the temperature ladder is 
tuned according to equation ( 21 ), and the chains start to converge after ∼10 4 iterations. Middle panel: The evolution of the swap acceptance rate αi , j described 
in equation ( 20 ), per number of w alk ers n w . For this run, we have used n w = 10 w alk ers. After 10 5 iterations, the sw ap acceptance rate converges to a single 
(dif ferent) v alue for e very temperature chain. Bottom panel: The ‘in-model’ acceptance rate per temperature chain, gi ven by equation (4). 

Figure 3. Posterior on the number of Gaussians, k , at each temperature T i , 
for the toy problem of Section 3.3.1 . The different colours indicate the initial 
temperature chain index. Darker colours correspond to colder chains and vice 
versa. 
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imensionality and the T ∞ 

chain samples the prior on k . This can be
ttributed to the choice of priors and ‘birth proposal’ distributions for
oth the signal parameters and k . The likelihood is down-weighted 
t higher temperatures, making it harder to o v ercome the Occam
enalty from including extra parameters in the model. This means 
uieter sources are less likely to be added and the preferred models
ave fewer sources. 

.3.2 Modelling power spectra: searching for the optimal number 
f B-spline knots 

ne of the most common problems in signal processing is the 
haracterization of the spectra of the data. This is often done by
dopting spectral models and fitting the spectra directly in the 
requency domain. This methodology is used when the signal of 
nterest has stochastic properties. Examples from GW astronomy, 
nclude the measurement of stochastic signals with astrophysical, or 
osmological origin (Abbott et al. 2021c ; Auclair et al. 2023 ). There
re many examples of possible stochastic signals for LISA (Amaro- 
eoane et al. 2012 , 2017 , 2023 ; Auclair et al. 2023 ). Searching for
ignals with stochastic properties requires flexible spectral models, 
oth for the observatory instrumental noise, and the measured 
tochastic signal. For these reasons, it is sometimes convenient to 
dopt a versatile model, such as one that is based on B-spline
nterpolation schemes. 

B-splines are a geometrical modelling tool, and have proven to be
ery useful for modelling or generating smoother representations 
f data. They are piece wise polynomial curves with a certain
umber of continuous deri v ati ves, and can be parametrized in various
ays (Piegl & Tiller 1996 ). For this application, we follow Baghi

t al. ( 2023 ), and choose to work with cubic-spline interpolation,
sing the corresponding SCIPY library (Virtanen et al. 2020 ). The
rocedure starts by selecting a number of control points, or knots ,
ith a given position and amplitude, which the smooth polynomial 

urve crosses and at which there is a change in the first non-
ontinuous deri v ati ve. One of the challenging problems using such
ethods, is to choose the optimal number of spline knots for fitting

he data, without o v erfitting. This is a model selection problem that
an be easily solved with dynamical algorithms such as the one
resented here. 
For our next example, we generate time-series data directly from 

 theoretical model Power Spectral Density (PSD). The simulated 
ata are represented with the solid grey line in Fig. 4 a. We then
se the machinery of ERYN to find the optimal dimensionality for
he problem, together with the best-fitting parameters for the knots. 
o ease the computational complexity, we compute the PSD of the

ime series using the methodology developed by Tr ̈obs & Heinzel
 2006 ). In more detail, we begin by choosing a new frequency
rid, on which we compute the PSD using the optimal number of
v eraged se gments for each giv en frequenc y. F ollowing this method,
e essentially split the time-series data at the maximum number 
f segments that the given choice of window and percentage of
ata o v erlap permits, which will allow us to estimate the PSD at
ach frequency bin with minimal variance. By carefully choosing 
MNRAS 526, 4814–4830 (2023) 
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M

Figure 4. Results for power spectra modelling with a shape agnostic model. (a) The simulated data (grey), generated from the theoretical model (dashed black 
line). The PSD computed on an equally spaced logarithmic grid with the method of Tr ̈obs & Heinzel ( 2006 ) and Armano et al. ( 2018 ), which is used for 
inference, is represented with the red data points. The pink solid lines represent models drawn randomly from the posterior chains. (b) The optimal B-spline 
knots estimated by the dynamical parameter estimation procedure. As shown from this histogram, the optimal interior knot count for these data converges to 
six, corresponding to eight total knots including the two edge knots. (c) Posterior slice for the knot parameters, ( log f j,k , log S j,k ), after stacking the MCMC 

chains across all model dimensions, k . This illustrates where the model prefers to place spline knots, which clearly corresponds to where the spectral density is 
changing most rapidly. It is also evident from this figure that we essentially ‘scan’ the true noise shape (pink solid line), by placing knots across the frequency 
range (see text for more details). 
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he window function and distance between the data points, one
an compute a power spectrum with minimal correlations between
requencies. The estimated spectrum, D i , at each frequency, f i , is
hen used in the likelihood function given in equation ( 35 ) below
the spectrum D i is represented by the red data points in Fig. 4 ). For
ore details about this method of computing the PSD, we refer the

eader to Tr ̈obs & Heinzel ( 2006 ) and Armano et al. ( 2018 ) and for
 similar application to the work of Baghi et al. ( 2023 ). 

Finally, we also keep two knots fixed at the edges of the spectra,
llowing the sampler to estimate only their amplitude, while the rest
f the knot parameters (and their number) are left to be estimated from
he data. For the spline knot positions, { log f j , k } , and amplitudes,
 log S j , k } , we adopt uniform priors that co v er the complete parameter
pace. Here, the j index corresponds to the knot number for the
iven model order k . We also use a ladder of 10 temperatures,
ith 10 w alk ers each, while maintaining the same settings for the

daptivity of the temperatures as in Section 3.3.1 . Each w alk er is
nitialized at a random point on the parameter space, after drawing
he dimensionality k of the model from k ∼ U[1 , 20]. We adopt a
aussian likelihood, with its logarithm written as 

log p( D| � θk ) ∝ −1 

2 

∑ 

i 

n i 

(
D i 

N i,k ( � θk ) 
+ log N i,k ( � θk ) 

)
, (35) 

here D i is the PSD data value for the giv en frequenc y f i , as computed
y the method presented in Tr ̈obs & Heinzel ( 2006 ) and Armano et al.
 2018 ), using n i averaged segments. The N i,k ( � θk ) is the spline noise
odel of order k e v aluated at f i , that depends on a parameter set 

� 
k = { log f 1 ,k , · · · , log f k,k , log S 0 , · · · , log S k,k , log S k+ 1 } , (36) 

n which the log S 0 and log S k + 1 parameters refer to the logarithm
f the PSD amplitude of the two fixed knots at the ‘edges’ of the
pectrum. Those two parameters correspond to our zeroth model
rder ( k = 0), thus they are al w ays being explored by the w alk ers of
RYN . 
The results are shown in Fig. 4 . In particular, in Fig. 4 b, we show

he histogram of the reco v ered number of knots for the particular
ata set. It is clear that eight spline knots are preferred, two of them
eing fixed at the edges of the spectrum, and the other six knots free
NRAS 526, 4814–4830 (2023) 
o take any position in the given frequency range. In Fig. 4 c, we
how the 2D sliced posteriors for the spline parameters, { log S j , k }
nd { log f j , k } . In this figure, we again stack all the MCMC samples
cross model orders. The true spectrum is indicated by the orange
olid line. There is an interesting outcome of this toy investigation;
hile there is a preferable dimensionality of the model, there is a
eak constraint on the actual positions of the knots. We find that the

ampler is virtually ‘scanning’ the PSD data, showing slightly higher
reference for locations between −6 and −4 in log -frequency, where
he spectrum follows a more complicated shape. Finally, in Fig. 4 a,
he data (grey solid line and red data points), are shown together
ith model e v aluations drawn from the posterior samples (pink solid

ines). 

 EXAMPLES  F RO M  G W  A S T RO N O M Y  

n recent years, we have witnessed the beginning of GW astronomy.
ince the first detection (Abbott et al. 2016 ) dozens of waveform
ignatures have been measured with the current network of obser-
atories. At the time of the writing of this paper, more than 90
v ents hav e been recorded (Abbott et al. 2021a ), the vast majority
f them are BH binary mergers, with a few of them being binary
S and BH–NS mergers. At the same time, detector networks are
eing impro v ed (The LIGO Scientific Collaboration 2019 ; Abbott
t al. 2020 ) and there are plans to expand them with the addition
f new observatories, such as the Einstein Telescope (Punturo et al.
010 ; Maggiore et al. 2020 ) or Cosmic Explorer (Abbott et al. 2017 ;
vans et al. 2021 ). Those detectors will unlock the sky to larger

edshifts z, allowing access to a vast number of potential sources. In
ddition, space missions, such as LISA (Amaro-Seoane et al. 2012 ,
017 ), are predicted to be signal-dominated observatories, with many
ypes of sources populating their data streams. In fact, we expect that
ource confusion will be one of the primary challenges in future
ata analysis efforts in GW astronomy. In a typical data set, we
xpect an unknown number of signals, originating from sources that
enerate waveforms with different characteristics. Those range from
he stellar-mass BH binaries now frequently observed by ground-
ased detectors, to the supermassive BH binaries, extreme mass ratio
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Figure 5. Top panel: The simulated data used for demonstrating the ca- 
pabilities of ERYN in tackling a high-dimensional problem. A total of 10 
UCBs in the vicinity of our Galaxy emitting GW signals at the mHz range. 
Here, we plot the power spectral density of the A data channel of LISA. The 
catalogue of sources is taken from the LDC2 (LISA Data Challenges Working 
Group 2022 ). Each signal is represented by a different colour. Bottom panel: 
The same data set, now comparing the injected signal against the solution 
yielded by ERYN (see text for more details). We have plotted the shaded 
area by sampling the joint posterior on model order k and the corresponding 
parameters. 

Table 1. The optimal SNR ρopt for each of the 10 injected sources, computed 
for the given duration of the mission (see equation 42 ). The dominant emission 
frequency f gw is also given for reference. 

# f gw (mHz) ρopt 

1 3.99 780 9 .98 
2 3.99 781 46 .70 
3 3.99 784 4 .55 
4 3.99 854 39 .45 
5 3.99 873 13 .02 
6 3.99 882 8 .47 
7 3.99 919 10 .88 
8 3.99 939 19 .07 
9 3.99 964 20 .00 
10 3.99 965 7 .99 

w  

i
 

T  

r

ρ

w  

w  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/4/4814/7284403 by M
ax Planck Institut Fuer M

ol. Pflanzenphysiologiy user on 28 M
arch 2024
nspirals, UCBs, and stochastic GW signals from both astrophysical 
nd possibly cosmological origin (Amaro-Seoane et al. 2012 , 2017 ; 
uclair et al. 2023 ). For this final example, we will focus on the
ISA mission, and in particular on the case of discriminating UCB
ignals. 

.1 Application to LISA data and the UCBs 

ISA is going to measure GW signals in the mHz regime, accessing
ources of all the aforementioned types. As already discussed, the 
ost numerous of them are going to be the UCBs, which will be

lmost monochromatic in the LISA band. Out of the millions of
ources, only ∼ O(10 4 ) will be individually resolvable, and the 
est will generate a confusion signal. As a consequence, for the 
uration of the mission, we will need to disentangle tens of thousands
f sources which will be o v erlapping in both time and frequency
omains. This is no trivial task, but various different strategies 
ave already been proposed for analysing such challenging data 
ets. F or e xample, Gaussian processes (Strub et al. 2022 ), swarm
ptimization techniques (Zhang et al. 2021 ), or hybrid swarm-based 
lgorithms (Bouffanais & Porter 2016 ) can be employed. Pipelines 
ased on MCMC methods have been tested extensively (Crowder & 

ornish 2007 ; Littenberg 2011 ; Littenberg et al. 2020; Littenberg &
ornish 2023 ), and have been demonstrated to be able to tackle
omplex cases where signals are overlapping. 

Here, we will focus on the same problem, employing ERYN to 
olve a down-scaled version of the UCB challenge. It is down-scaled 
ecause we focus only on a single narrow-frequency band, containing 
ev eral o v erlapping signals, in the presence of instrumental noise
nly. 3 In addition, we focus solely on demonstrating the capabilities 
f ERYN on dynamic parameter estimation for UCB type sources 
nd no other types of signals are contained in the data (e.g. chirping
ignatures from supermassive BH binaries). At the same time, we 
ave access to the level of instrumental noise, which is shown in
oth panels of Fig. 5 . Searching for the UCB signals across the
omplete LISA band requires a more elaborate implementation of 
his simplified pipeline. This pipeline will be focusing on solving 
he complete second LISA Data Challenge (LDC2; LISA Data 
hallenges Working Group 2022 ), and is going to be presented in

uture work. We choose to work on the frequenc y se gment between
.997 and 4 mHz, which contains 10 UCB objects, drawn directly 
rom the LDC2 catalogue (LISA Data Challenges Working Group 
022 ). Those are shown in the top panel of Fig. 5 which shows
he power spectrum of the A data channel of LISA. We use the
wo noise-orthogonal A , E , and T time delay interferometry (TDI)
ariables (Prince et al. 2002 ; Tinto & Dhurandhar 2005 ; Baghi et al.
021 ), which are linear combinations of the LISA relative frequency 
DI Michelson measurements X , Y , and Z as: 

 = 

1 √ 

2 
( Z − X) , E = 

1 √ 

6 
( X − 2 Y + Z) , 

 = 

1 √ 

3 
( X + Y + Z) . (37) 

n ideal conditions (equal noises across spacecrafts, and equal LISA 

rms), the noise in A and E is independent, while the T data stream
an be used as a signal-insensitive null channel, useful for instrument 
oise calibration. Since we perform analysis on a noise-free injection, 
 No confusion signal from other unresolved UCBs is considered in this 
nvestigation. 

e

e will be neglecting the T channel altogether. We simulated the
njection data for an observation time of T obs = 1 yr. 

The optimal SNR for each injected source, ρopt , is given in Table 1 .
he ρopt quantity refers to the SNR of each source in isolation , with

espect only to the instrumental noise, and can be calculated as 

2 
opt = 

∑ 

C 

( h C | h C ) C , (38) 

ith C ∈ { A , E } the noise-orthogonal TDI channels of equation ( 37 ),
hile the ( · | ·) notation represents the noise-weighted inner product

xpressed for two time series a and b as 

( a| b ) = 2 

∞ ∫ 
0 

d f 
[

˜ a ∗( f ) ̃  b ( f ) + ˜ a ( f ) ̃  b ∗( f ) 
]
/ ̃  S n ( f ) . (39) 
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he tilde represents the data in the Fourier frequency domain, and
he asterisk indicates complex conjugate. The ˜ S n ( f ) is the one-sided
SD of the noise for a given TDI channel. Under our assumptions
 n, A ( f ) = S n, E ( f ). 
For our investigation, we chose to analyse noiseless data (no noise

ealization), while in the likelihood we are using the PSD noise
evels taken from the LISA design studies (LISA Science Study
eam 2018 ). For the signals, we utilize the fast frequency-domain
CB waveform model of Cornish & Littenberg (2007). Then, the

wo polarizations of an emitting UCB can be written as 

 + 

( t) = 

2 M 

D L 

(
πf gw ( t) 

)2 / 3 (
1 + cos 2 ι

)
cos φ( t) , 

 ×( t) = −4 M 

D L 

(
πf gw ( t) 

)2 / 3 
cos ι sin φ( t) , (40) 

here M is the chirp mass, f gw is the instantaneous GW frequency,
 L is the luminosity distance, ι is the inclination of the binary orbit,

nd φ( t ) is the GW phase. The phase φ can be expressed as φ = φ0 

 2 π
∫ 

t f gw ( t ′ )d t ′ , with φ0 being an initial arbitrary phase shift. The
ISA constellation is assumed to be rigid and with equal arms, while

he spacecrafts are assumed to follow analytic Keplerian orbits (Cor-
ish & Rubbo 2003 ). Under these assumptions, it is straightforward
o compute its response to the almost monochromatic waveforms of
quation ( 40 ) (Cornish & Rubbo 2003 ; Babak, Petiteau & Hewitson
021 ). For more details about the waveform model, the response of
he instrument, and the orbits of the constellation, we refer the reader
o Cornish & Littenberg (2007), Robson et al. ( 2018 ), Katz et al.
 2022 ), Cornish & Rubbo ( 2003 ), and Babak et al. ( 2021 ). 

In our simplified scenario, each binary signal in the Solar system
arycentre is determined by a set of eight parameters. Those are
he � θ = { A , f gw [ mHz ] , ḟ gw [ Hz s −1 ] , φ0 , cos ι, ψ, λ, sin β} , where
 is the o v erall amplitude, ḟ gw is the first deri v ati ve of the GW

requency, ψ the polarization, λ is the ecliptic longitude, and β the
cliptic latitude of the binary. The amplitude of the signal is calculated
s 

 = 

(
2 M 

5 / 3 π2 / 3 f 2 / 3 gw 

)
/D L , (41) 

hich can be used to obtain a rough SNR estimate, via (Littenberg
t al. 2020) 

2 = 

A 

2 T obs sin 2 ( f gw /f ∗) 

4 S n ( f gw ) 
, (42) 

ith S n ( f gw ) being the instrumental noise power spectral density at
requency f gw , and f ∗ = 1/(2 πL ), where L the LISA arm length. Given
quation ( 41 ) and ( 42 ), we find it convenient to directly sample on
instead of A , which also yields a more illustrative measure of the

mplitude of each binary. Then, if d is the measured TDI data and h
he given GW signal after applying the response of the instrument,
he logarithm of the likelihood for an arbitrary number k of UCB
ignals can be written as 

log p( d| � θk ) ∝ ( d| h k ) − 1 

2 
( h k | h k ) , (43) 

here for the sake of convenience, we have defined h k = 

∑ 

k h( � θk ). 
We use wide uniform priors for all the rest of the binary parameters,

o v ering essentially the complete parameter space. The exception is
gain the amplitude (SNR), ρ, where we adopt a prior which was
rst introduced in Cornish & Littenberg ( 2015 ) and then adapted

n Littenberg et al. (2020). The prior density can be expressed as 

( ρ) = 

3 ρ

4 ρ∗ ( 1 + ρ/ (4 ρ∗) ) 
, (44) 
NRAS 526, 4814–4830 (2023) 
here ρ∗ is a given constant that specifies the peak of the abo v e
istrib ution. This distrib ution is designed to prevent the proposal of
ources with very small SNR in the model, as it drops sharply for ρ →
. Those weak sources do not significantly affect the likelihood, and
o their inclusion must be penalized by the prior. 4 This prior choice
orces the sampler to explore only potential sources with non-zero
NR, a v oiding populating the chains with numerous undetectable
ignals. This prior performs adequately in this problem, but there are
ther solutions one could adopt in order to keep control of the number
f very weak sources. This discussion, which sets the grounds for a
lobal Fit analysis pipeline for the LISA data (Littenberg et al. 2020),

s out of the scope of this paper, but a more detailed description will
e presented in a future work. 

.1.1 Search phase 

efore parameter estimation, we initiate a search phase of our
nalysis, with the aim of getting the w alk ers to a better starting point
n the posterior surface. This phase consists of an iterative brute
orce procedure, based on drawing a very large number of proposals,
hen maximizing the likelihood o v er the initial phase φ0 , and finally
erform a rapid MCMC sampling o v er the parameter space, using
nly a one-source model (therefore there are no dynamical parameter
paces). In particular, we draw 5 × 10 6 points in the parameter
pace, and after phase maximization, we use them as starting points
o a parallel tempered MCMC run with N T = 10 temperatures,
ach running with n w = 500 w alk ers. When this step concludes,
e keep the 100 best samples in terms of likelihood value and
se their corresponding parameter estimates as starting points for
he parameter estimation portion of the analysis. We also use the

aximum likelihood solution to subtract the source found from the
ata. We then use the residual data to search for another source, and
his process repeats until there is no signal found with SNR ρ > 5.
n between successive iterations of the single-binary search, we run
nother MCMC o v er all sources found so far in order to adjust the
arameters to account for correlations and o v erlap between sources.
fter convergence, we found eight sources in our data set with an
ptimal SNR > 5. We take these found sources and add them to
ll w alk ers in the sampler at the beginning of the full MCMC run
escribed below. 

.1.2 Parameter estimation 

uring this step, we perform hybrid MCMC sampling, where we
oth update the found sources (in-model) and dynamically search
or new and weaker sources in the data employing RJ sampling. For
he number of signals k , we adopt a uniform prior k ∼ U[6 , 20]. For
he sake of convenience in this simple application, we keep the six
oudest binaries found during the search phase as fixed . This means
hat we still sample their waveform parameters, but they are not
llowed to be remo v ed by the RJ process. We chose this set-up in
rder to accelerate the convergence of the algorithm, being confident
hat these sources are part of the solution. In future work, this will be
djusted to deal with the much larger complexity of the full problem.

Concerning the sampler settings, we use the adaptive parallel
empering scheme of Section 2.4 , building a temperature ladder of
 T = 10 temperatures, with 100 w alk ers for each temperature. For

his run, we have also utilized the MTM algorithm (see Section 2.3 )
n order to impro v e the acceptance rate in the RJ proposal. We have
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(a) (b)

Figure 6. Left panel: In this figure, we show the posterior on the number of UCB sources in the data. The true injected number is shown with the red dashed 
line. It is clear that, for the given measurement duration of the particular data set, we manage to confidently resolve eight binaries out of a total of 10. Right 
panel: Corner plot for two of the eight parameters characterizing each UCB source. These are the amplitude, expressed as an SNR ρ, and the dominant emission 
(or initial) frequency, f gw (mHz) (see text for more details). The violet crosses represent the injected parameter values. A corner plot for more parameters is 
shown in Fig. A1 in the Appendix. 
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lso tried the DR scheme which is implemented for ERYN , but we
ound that the multiple try strategy yields more efficient sampling. 
inally, we have utilized the basic stretch and group stretch proposals

hat were described in Section 2.1 . 
After convergence, the result is shown in Figs 5 and 6 . In Fig. 6 a,

he sampled posterior on the number of sources k is presented. In
his histogram, we have added the six fixed binaries to the actual
umber of signals being sampled via the RJ algorithm. It is fairly
bvious that we have managed to confidently resolve eight out of
he 10 injected binary signals. This fact that we do not fa v our 10
ources can be explained partly by the low SNR of the signals (see
able 1 ) and partly by confusion from source o v erlap (also shown

n Fig. 5 ). Additionally, the result of Fig. 6 a depends on the given
bservation duration. The greater the T obs , the better our ability to
esolve the confused sources. Thus, in that case, we should expect 
ore RJ iterations across the higher dimensional models. 
On the right panel, in Fig. 6 b, the ensemble 2D posterior slice is

hown, for two selected parameters. We call it ensemble because we 
re again ‘stacking’ all the chains for these two parameters for all
ources for all model orders k . We chose to show only the amplitude
the ρ parameter explained in equation 42 ) and the dominant emission 
requency f gw , which illustrates the number of sources resolved, and 
ow the y o v erlap in frequenc y. A corner plot for more parameters is
hown in Fig. A1 in Appendix A . We also show the true injection
alues, marked as crosses, on top of the 2D posterior. From this
lot alone, one can see that the sampler is exploring efficiently the
arameter space, converging to the true values of the resolvable 
inaries that were injected. 

 DISCUSSION  

e have implemented ERYN , a Bayesian sampling package capable 
f performing efficient trans-dimensional inference, by employ- 
ng different techniques that impro v e its acceptance rate. These 
echniques are the af fine inv ariant sampling, the adapti ve parallel
empering, the DR, and MTM, in combination with the construction 
f informative proposal distributions for the parameters of the 
odels. The structure of ERYN is based on the widely used software

MCEE (F oreman-Macke y et al. 2013 ), enhanced with the ability of
erforming RJs (Green 1995 ) between different model spaces. The 
ampler capabilities have been demonstrated with toy models that 
re commonly encountered in different data analysis problems. We 
av e be gun with an application to signal detection, and in particular
o searching for simple signals in the form of Gaussian pulse signals
n the presence of Gaussian noise (see Section 3.3.1 ). 

In Section 3.3.2 , we applied our algorithm to a problem of
odelling power spectra with arbitrary shapes in frequency domain. 

n such cases, it is convenient to define models based on B-splines,
hich are able to faithfully capture the shape of any spectral data.
o we ver, in order to a v oid overfitting situations, the optimal order
f the model (i.e. the optimal number of spline knots), needs to be
stimated from the data. This can be done either sequentially, by
rying models of different dimensionality and then comparing their 
erformance, or dynamically, by using trans-dimensional algorithms 
uch as ERYN . This class of problems is often encountered in
osmology (Planck Collaboration I 2020a ; Planck Collaboration 
 2020b ), where the signal of interest is stochastic in nature, and

ometimes the prior knowledge on its shape is very limited. As
lready discussed, this is especially true for future GW observatories, 
hich open the possibility of detecting such signals from both 

strophysical and cosmological origin (Amaro-Seoane et al. 2017 ; 
uclair et al. 2023 ; Baghi et al. 2023 ). The different theoretical
odels produce spectra with distinct shapes, increasing the need for 

hape-agnostic spectral models, such as the B-spline used here. 
Finally, in Section 4.1 , we demonstrated ERYN in a more compli-

ated problem, that of the analysis of UCB signals measured by the
uture LISA detector. These objects are going to produce the majority
f the signals in the LISA data, each emitting almost monochromatic
adiation. Their vast number will generate a confusion foreground, 
hile only a few thousand of them will be resolvable from the
ata. We employ our tools described in this work, together with
 search phase that is based on iteratively running the sampler on
static models’ (no trans-dimensional mo v es) with phase-maximized 
ikelihoods. We do these runs on the residuals of each iteration, with
he aim of extracting all bright sources. In order to achieve faster
onvergence of our parameter estimation run, we choose to keep the
rightest sources found during search as fixed (minimum number of 
odel order is k = 6), while the RJ algorithm is used to search for
MNRAS 526, 4814–4830 (2023) 
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eaker signals in the data. This is purely a choice that allows quick
onvergence in this fully controlled and simplified LISA data set. 

We perform this analysis for a mission duration of T obs = 1 yr
nd only on a single narrow-frequency band around 4 mHz, which
ontains a total of 10 binary signals. It is worth noting here, that the
ynthetic data were produced assuming idealized conditions. This
eans that we do not consider any data irregularities, such as data

aps and glitches and spectral lines, or any other contamination
riginating from the mixing of signals of different types (such as
upermassive BH binaries). In the end, as shown in Fig. 6 a, we
anage to reco v er eight out of ten injected signals. This result
akes sense given the relative strength of the injections, and their
av eform o v erlap. Man y of the injected sources have an optimal
NR in isolation which is rather low (see Table 1 ), so these are more
usceptible to deterioration when we account for signal o v erlap. 

The abo v e inv estigations demonstrate that the dynamical param-
ter estimation capabilities of ERYN are suitable for these types of
roblems. This feature is missing from already existing libraries such
s BILBY (Ashton & Talbot 2021 ), which are used by the GW com-
unity. BILBY offers a wide selection of tools which are necessary for

he Bayesian analysis of GW data. These include implementations
f likelihood and prior functions, instrument response models and
pectral densities, waveform models, and a number of samplers to
hoose from (both MCMC and nested samplers). On the other hand,
RYN is based on parallel tempering MCMC enhanced with RJ,
hich allows Bayesian analyses for a wider set of problems, in
hich sampling of a dynamical parameter space is needed. 
ERYN has already been used in several works that have been

lready published (Katz 2022 ; Katz et al. 2022 ; Baghi et al. 2023 ;
asli, Karnesis & Stergioulas 2023 ), or are going to appear soon.
he work presented in this paper is the initial part of our efforts

owards implementing a data analysis pipeline for LISA data. This
ipeline will be demonstrated on the LDC2 data set (LISA Data
hallenges Working Group 2022 ), which contains multiple types of

ignals o v erlapping in both time and frequenc y domains. That being
aid, ERYN is a generic and versatile sampler, which can be used in
n y inv estigation that requires RJ sampling, and to our knowledge is
ne of the very few statistical tools of this kind that is not specialized
o a single type of analysis (see discussion in Section 2.6 ). 
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he documentation of ERYN ( ht tps://mikekatz04.git hub.io/Eryn/ht ml
inde x.html# ). F or the analysis of Section 4 , we used the GBGPU
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n implementation of the UCB waveforms of the LDC software
 https:// lisa-ldc.lal.in2p3.fr/ code ). 
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Figure A1. A triangle plot showing the 2D posterior slices for the application of Section 4.1 , but for a greater selection of parameters than Fig. 6 b. The rest of 
the parameters, if plotted stacked in the same manner, result in surfaces that cannot be so easily interpreted, and therefore have been left out. The true injected 
values are marked with crosses. 
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