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In certain classes of the scalar-Gauss-Bonnet theory strong spacetime curvature in the vicinity of
neutron stars and black holes can spontaneously trigger scalarization in the compact object if the
coupling strength of the scalar field to the Gauss-Bonnet invariant exceeds a critical value. Specifying
on neutron stars, this threshold depends on the mass and equation of state. The presence of a
companion will further influence the required coupling strength for scalarization, and thus, a stable
hair can be installed at a lower magnitude of coupling for those neutron stars as members of binaries.
Focusing on binary neutron star mergers, we investigate this latter dynamically-driven scalarization,
and find that the reduction in the threshold coupling strength seems to be more profound for
symmetric binaries, while the threshold is only marginally reduced for rather asymmetric binaries.
The associated scalar radiation is also discussed. We discover in addition a universal relation between
the critical coupling strength and the stellar compactness for isolated neutron stars and perform
a detailed comparison with the dynamical scalarization threshold. In synergy with such relations,
one can, at least in principle, constrain the theory parameters regardless of the uncertainty in the
equation of state.

I. INTRODUCTION

Pulsar binary timing observations and gravitational
waves are among the most stringent tests that have ever
been implemented to scrutinize the strong field regime of
Einstein’s theory (e.g., [1–4]; see also [5–7] for reviews on
this topic). Although general relativity (GR) gains great
success in these two tests, some fundamental physical as-
pects, such as its non-renormalizability, are difficult to
be addressed when pursuing a unification with quantum
theories. An extension to GR thus warrants further in-
vestigation. Among a variety of possibilities, including a
single scalar field to a gravitational theory may be the
simplest modification. Such theories can be constructed
by coupling a scalar field to curvature invariants of dif-
ferent orders as suggested by the attempts to quantize
gravity, e.g., the Ricci scalar and self-contraction of the
Riemann tensor. However, if we restrict ourselves to the
theories admitting 2nd order field equations, the land-
scape of the possible candidates is narrowed down sig-
nificantly, and can be parameterized as Horndeski action
with scalar field coupling functions to be assumed [8].
We here focus on a subset of the Horndeski theories,

known as scalar-Gauss-Bonnet theory (SGB). A specific
property of scalarized NSs in such theories is that they
have less (gravitational) mass than their GR counterpart
for the same central energy density [9, 10]. It may be
worth mentioning that this is in sharp contrast to the
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classical scalar-tensor theory, where the scalar field tends
to increase the maximum allowed NS masses. In addition,
as opposed to scalar-tensor theory, black holes (BHs) in
SGB can circumvent the no-scalar-hair theorems and be
imbued with a scalar field [11, 12]. Depending on the
exact form of the coupling function between the scalar
field and the Gauss-Bonnet invariant, either the GR com-
pact objects can be solutions to the SGB field equations
with a zero scalar field [13–17], or the compact objects
should always be endowed with scalar hair in the shift-
symmetric SGB gravity [11, 12, 18–21]. In the present
paper, we focus on the former case, which admits spon-
taneous scalarization that is a nonlinear development of
the scalar field once a certain threshold of the coupling
strength is exceeded [22].

The formalism of SGB is rather complicated compared
to those of scalar-tensor theories for example. Thus the
so-called decoupling limit, i.e., neglecting back-reaction
of the scalar field on Einstein’s and Euler’s equations, is
often adopted in the first studies of nonlinear dynamics
of compact objects [20, 23]. As a matter of fact, this ap-
proximation captures well both qualitatively and quanti-
tatively the scalar field dynamics for realistic magnitudes
of the scalar field [21, 24, 25]. Furthermore, the bifurca-
tion point of scalarization, where the GR black hole and
NS loses stability and acquires scalar hair, can be de-
termined without approximation in the decoupling limit
[26]. Investigating the threshold of scalarization for coa-
lescing binary NSs is one of our goals.

The richness/complexity of SGB does not stop at this
level provided that different coupling functions may give
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rise to completely distinct physics. As commented above,
there are no non-scalarized NSs and BHs in the shift-
symmetric SGB, where the coupling function reads [11,
12, 18],

f(ϕ) = ϕ. (1)

A spontaneous activation of the scalar field cannot be
witnessed for the above coupling function therefore.
However, one can observe such spontaneous scalarization
once the near-horizon spacetime curvature exceeds a cer-
tain threshold for a coupling function having the form
f(ϕ) ∼ ϕ2 + O(ϕ3). Although keeping only the lowest
order square term renders instabilities [27–29], a conve-
nient and well-behaved choice, having the same leading
order expansion with respect to the scalar field, is the
following one [30]:

f(ϕ) =
ι

2β

[

1− e−βϕ2
]

, (2)

where β is a dimensionless parameter, ι = ±1 and thus
two flavors of the coupling are contained. For ι = 1 the
no-scalar-hair theorems are circumvented and scalarized
states exist for both NSs and BHs [10, 13, 14]. On the
other hand, scalarization can only manifest in NSs when
ι = −1 [10], i.e., no-hair theorem applies to BHs (for an
exception in the case of rotating BHs see [31–34]).
Dynamics of spontaneous scalarization in SGB gravity

was investigated both for isolated BHs [25, 35] and iso-
lated NS [14, 24]. When it comes to NSs in coalescing
binaries, though, the collective effects on scalarization
alter the picture [36–38] and the dynamical scalarization
can be observed. More precisely, the dynamical devel-
opment of the scalar hair can be activated as the two
inspiralling compact objects approach each other even
when one or both of the individual objects do not have
the critical compactness to be scalarized when isolated.
We should mention that for BHs, the process is usually
the other way around and scalarized BHs can lose their
scalar field as they merge [23] (for an exception and scalar
field growth during merger related to the spin-induced
scalarization see [39]).
This scenario can realize only for a coupling strength

larger than a threshold, which is the subject of the
present article, and when the distance between the ob-
jects is small enough, i.e., shortly before the merger of
BHs or NSs [36, 37]. Up to now, the effort in exploring
the dynamical scalarization phenomenon in SGB gravity
was directed mainly towards binary BHs [17, 23, 40, 41]
while the NS mergers remain largely unexplored. Coa-
lescing binary NSs is studied only recently for the specific
coupling function f(ϕ) ∝ ϕ [42](i.e., the shift-symmetric
SGB). However, the coupling function they adopted for
this first study of binary NSs in SGB does not admit the
phenomenon of scalarization.
In the present work, we aim to numerically demon-

strate scalarization in binary NSs, while we work in the
decoupling limit as the first step. A special emphasise

is put on the condition admitting scalarization with dy-
namical origin. In particular, we study the threshold on
the coupling strength of scalar field to the Gauss-Bonnet
invariant such that the scalarization can occur in the pre-
merger stage, which is shown to be different from the
threshold applying to isolated NSs. The mismatch of the
critical magnitude of the coupling then indicates that the
scalarization in coalescing binaries is triggered differently
than that in a single star; similar shift in the critical cou-
pling strength is observed in scalar-tensor theories (e.g.,
[37, 38]; see also a recent review [26]).
The article is structured as follows: We recap the the-

ory in Sec. II, focusing on the phenomenon of sponta-
neous scalarization and speculating possible constraints
that may be placed on the theory parameters with a use
of the novelly established universal relation. We then
turn to consider dynamical scalarization occurring in co-
alescing binaries in Sec. III, where a reduction in the
threshold coupling strength for endowing scalar hair to
NSs is elucidated. In this section, we also compute the
scalar radiation associated with dynamical scalarization;
accordingly, some possible implication of GW170817 are
commented. We finally offer a conclusion and discussion
in Sec. IV. The indices for the spacetime coordinates are
denoted by Greek letters, while Latin ones are for indices
for space coordinates. In addition, we work in the unit
c = 1 = G.

II. SCALAR GAUSS-BONNET THEORY

The action in the SGB theory we consider is

S =
1

16π

∫

d4x
√−g

[

R− 2∇µϕ∇µϕ+ λ2f(ϕ)R2
GB

]

+ Smatter(gµν ,Ψm), (3)

for which the associated field equations are summarised
as

Rµν − 1

2
Rgµν = 2∇µϕ∇νϕ− gµν∇αϕ∇αϕ

+ 8πTµν − λ2Γµν , (4)

and

∇µ∇µϕ = −λ2

4

df(ϕ)

dϕ
R2

GB. (5)

Here, R and Rµν denote the Ricci scalar and Ricci ten-
sor, respectively, and Ψm collectively denotes the matter
fields, whose matter energy momentum tensor is Tµν . In
addition, one can tell from the action that λ has the same
dimension as length. As introduced in Sec. I, the scalar
field, ϕ, couples to the Gauss-Bonnet invariant,

R2
GB = R2 − 4RµνR

µν +RµνησR
µνησ , (6)

through a function f(ϕ), where Rµνησ denotes the Rie-
mann tensor. It is worth mentioning that R2

GB can be
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negative for NSs although it is always positive for BHs.
On the right hand side of Eq. (4), the back-reaction of the
scalar field induced from R2

GB is encoded in Γµν , defined
as

Γµν =−R(∇µΨν +∇νΨµ)− 4∇αΨα

(

Rµν − 1

2
Rgµν

)

+ 4Rµσ∇σΨν + 4Rνσ∇σΨµ

− 4gµνR
αβ∇αΨβ + 4Rα

µβν∇βΨα, (7)

with Ψµ = λ2 df(ϕ)

dϕ
∇µϕ.

A. Scalarization of isolated NSs

In the present paper, we focus on scalar field in NSs
and adopt the coupling function (2), for which a vanish-
ing ϕ naturally satisfies Eq. (5), and thus GR solutions
are always solutions to the considered theory. However,
the perturbation of interior scalar field can develop to
scalarize the star via tachyonic instability depending on
the theory parameters and the nuclear matter equation
of state (EOS). In particular, there is a critical coupling
strength λbif for some specific stellar mass (M⋆) and
EOS beyond which the NS is susceptible to scalariza-
tion; for example, NSs with mass & 1.4 M⊙ and EOS
APR4 will be imbued with a stable scalar hair for a cou-
pling strength λ ≥ 13M⊙ when ι = −1. It may be worth
mentioning that the condition allowing for scalarization
is solely determined by λ, while the quantitative profile
of the scalar field is determined jointly by β, λ, and ι [10]
(see also below). As seen later, the threshold of λ to al-
low for a scalarized NS with a certain mass will however
change in the presence of a binary companion.

For isolated and non-spinning NSs, the metric of spher-
ically symmetric NSs can be expressed as

ds2 = −α(r)2dt2 +X(r)2dr2 + r2(dθ2 + sin2 θdφ2) (8)

with functions α and X depending solely on the radius
r. Owing to the respected symmetry, perturbations of
the scalar field can be decomposed into harmonic com-
ponents in terms of the spherical harmonics function Yℓm,
labeled by the eigen-values {ℓ,m}, as

ϕ =
u(r)

r
e−iωtYℓm(θ, φ). (9)

The radial part, u(r), is governed by the linearised equa-
tion (see Eqs. (2.18) and (2.19) of [10]),

α

X

d

dr

[

α

X

du(r)

dr

]

+ [ω2 − U(r)]u(r) = 0 (10)

with the effective potential U(r) given by

U(r) =α2

[

X−2

r

(

d lnα

dr
− d lnX

dr

)

+
ℓ(ℓ+ 1)

r2

− λ2ι

4
R2

GB

]

, (11)

and the frequency of this specific mode ω.
Specifying fluid to be perfect, the energy-stress tensor

is given by,

Tµν = ρhuµuν + Pgµν , (12)

where ρ is the rest-mass density, uµ is the four-velocity,
and h = (ǫ+ P )/ρ is the specific enthalpy for the energy
density ǫ and the pressure P . The Gauss-Bonnet invari-
ant for non-scalarized NSs (i.e., Rµν − Rgµν/2 = 8πTµν

is obeyed) then has the form (see Eq. (2.20) of [10])

R2
GB =

48m2

r6
− 128

r3
(2πPr3 +m)ǫ, (13)

where the mass m is defined by

m =
r

2
(1−X−2). (14)

It can be seen that R2
GB is negative at center of NSs,

and gradually grows to positive values as approaching
stellar surface at which it reaches the peak and then it
slowly drops to zero toward the infinity. The tachyonic
instability is present in a non-scalarized NS if the effective
potential U(r) suggests a negative eigen-value of ω2 for a
harmonic mode. In order for that to occur, the positive
part of λ2ιR2

GB should be large enough somewhere inside
the star so that the potential can be sufficiently ‘deep’ to
harbor a scalarized state.
In addition, the absence of β in U(r) indicates that

whether an isolated NS can be stably endowed with a
scalar field is independent of β [10]. We denote as ±λbif

the critical coupling strength to grow a scalar field for
ι = ±1. It should be noted that, as a matter of fact,
more than one scalarized solution exist and the different
solutions are labeled by the number of scalar field nodes.
Clearly, the threshold ±λbif varies for classes of solutions
with different number of scalar field nodes. Nonetheless,
we focus on the nodeless scalar field solutions since they
are the only ones that are stable and can realize in some
dynamical scenario [24, 27].
The configuration of the nodeless scalar field in ‘hairy’

NSs is quantitatively different for the two flavors of the
coupling function (2). In particular, the maximum of ϕ
locates at the stellar center for ι = −1 (see Fig. 3 of [24]),
while the peak of ϕ lies at a finite distance close to the
star’s surface when ι = 1 (see Fig. 3 in the supplemental
material of [24]). The difference roots in the source term
of the scalar field. In particular, ιR2

GB has the maximum
nearby the stellar surface for ι = 1, where the scalar
field “condensates”. On the other hand, the maximum of
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FIG. 1. Universal relation between the stellar compactness
and the mass-scaled critical coupling strength. The filled cir-
cles show the values allowing a marginal scalarization in the
star with indicated mass. Three EOSs are considered in the
plot, viz. APR4 (blue), SLy (red), H4 (yellow). The over-
lapped solid lines represent the fitting formulae (15a) and
(15b), serving as a boundary separating the parameter space
admitting scalarized states (above the lines) from that pro-
hibits spontaneous scalarization (below the lines).

ιR2
GB locates at the center if ι = −1, which then suggests

a profile of ϕ that peaks at the center.
For nodeless scalar hairs, we find for the first time and

plot in Fig. 1 the universal relations between the stellar
compactness1, defined as C = M⋆/R⋆ with R⋆ being the
radius of the star, and the threshold coupling strength
±λbif for three EOSs, viz. APR4, SLy, and H4. Two of
the considered EOSs, namely APR4 and SLy, have sim-
ilar stiffness, while the H4 one is the stiffest among the
three. Each of the EOSs belongs to different groups pro-
posed in [43] (see Tab. 1 therein), categorized by some
internal oscillation properties. The fitting formulae, de-
rived from the data of 0.07 . C . 0.24, are expressed as

−λbif/M⋆

30
≃ 0.819C2 − 0.586C + 0.127

C − 0.021
, (15a)

and

+λbif/M⋆

30
≃ 1.422C2 − 1.040C + 0.247

C − 0.023
. (15b)

The denominator of both equations should theoretically
be the compactness without an abstraction of a small but
non-zero number. This latter non-zero number attributes
to the limited datum used for fitting; in particular, we
consider finitely many models in a specific range, which
is large enough to account for any possible NS that could
manifest in nature but not complete in theoretic aspect.

1 Just to eliminate possible confusion, a NS with M⋆ = 1.4 M⊙

and R⋆ = 12 km has a compactness of C = 0.172.

B. Possible EOS-insensitive constraints on SGB

gravity with a massless scalar field

The relations (15a) and (15b) may be used to set con-
straints on λ that are immune to the uncertainty of nu-
clear EOS. Here we will focus on the constraints com-
ing from the orbital period decrease of pulsar binaries
that are the most stringent ones [4, 7]. In particular, for
those close binaries involving pulsar(s) where the mass
and radius of the NS can be estimated with relatively
good accuracy, a non-detection of scalar dipole radiation
could place an EOS-insensitive bound on the coupling
parameter ±λ for both ι = ±1 cases. For example, PSR
J0740+6620 are estimated from its X-ray spectral-timing
to have a mass of M⋆ ≃ 2.01–2.15 M⊙ and an equatorial
radius R⋆ ≃ 11.41–16.3 km [44–46]. Running over the
mass and radius ranges, we find that the most conserva-
tive upper bounds that could be inferred by a future null
observation of a dipolar scalar radiation from this pul-
sar system, if confirmed at all, are −λ . 14.54M⊙ and
+λ . 30.88M⊙ (though see below for possible relaxation
by a scalar mass).

In this respect, some other examples may be accret-
ing millisecond X-ray pulsars (AMXPs) in low-mass X-
ray binaries (LMXBs), such as XTE J1751-305, IGR
J00291+5934 and SAX J1808.4-3658. The orbital evo-
lution of AMXPs is much more complicated than that
of the secular pulsar binaries like PSR J0740+6620 (e.g.,
[47, 48]) because of the active communication between
the two orbiting objects as well as the interaction be-
tween individual stars and the orbit (see a recent review
[49]). Although subject to the uncertainty of the mass-
transfer physics, AMXPs still have potential to set bound
on the strength of scalar radiation in the future.

Among the aforementioned AMXPs, the simultaneous
measurement of mass and radius are arguably obtain-
able for XTE J1751-305 considering that the stellar spin
is saturated by r-mode instability [50], whereM⋆ = 1.59–
1.91M⊙ and R⋆ = 11.8± 0.9 km are inferred. Together
with the fitting formulae (15a) and (15b), the most con-
servative bounds −λ . 11.17M⊙ and +λ . 23.77M⊙

could be placed if the null detection of scalar radiation
could be acclaimed with future observations. The masses
and radii of the other two AMXPs are however not so
well limited (see, e.g., [51, 52]). On the other hand,
by scrutinising the spectroscopic data on multiple ther-
monuclear bursts, the X-ray-loud NS in the LMXB 4U
1820-30 are estimated to have M⋆ = 1.58± 0.06 M⊙ and
R⋆ = 9.1±0.4 km [53]. This latter system has a potential
to limit the coupling strength to be −λ . 6.35M⊙ and
+λ . 14.22M⊙ positing again that the scalar dipolar
radiation is absent in the measured orbital decay [54].

We note, however, that the fitting formulae (15a) and
(15b) are found for isolated and non-rotating NSs. The
influence of spin and a companion on the threshold is ex-
pected from the results of scalar-tensor theory (see, e.g.,
[26]). We study the latter effect in Sec. III B, while de-
ferring the investigation about the spin effect to future
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work. As we will show later, ±λbif is lower for a NS if it
is a member of binary instead of being reclusive since the
maximum of ιR2

GB increases as the binary approaches
merger thus hinting at a smaller ±λbif . Accordingly, a
more stringent bound may possibly be placed if scalar-
induced phenomena are absent in binary pulsars and/or
coalescing binaries. Similar reduction in the scalariza-
tion threshold is observed and elucidated in scalar-tensor
theory [36, 37] but until now it was not studied in detail
in SGB gravity neither for BHs nor for NSs. In addition,
developing a similar universal relation for rotating NSs
will supplement in this direction, while we expect that
the deviations should be small for the spins of currently
observed pulsars based on the studies of other universal
relations [55–57].
Apart from the constraints that can be potentially set

by future observations in the aforementioned manner,
measuring the shrinking of the orbit of NS-white dwarf
binaries is reportedly able to place a limit on λ. This
was illustrated in a recent work [30] (see also [58]). Since
there is already a good number of such observed sys-
tems with a relatively well-measured orbital decay due to
gravitational wave emission, it was obtained that roughly
+λ . 24M⊙ and −λ . 8M⊙. These limits are strongly
dependent on the EOS, though, since they do not employ
an EOS universal relations.

C. Relaxing observational constraints on SGB

gravity with a massive scalar field

If the above constraints are satisfied, it will be dif-
ficult to observe any measurable deviation from GR in
binary mergers. The aforementioned bounds ought to be
eased, though, if the scalar field is massive since a mass of
mϕ will introduce a Yukawa suppression e−r/λcomp on the
scalar field with a Compton length-scale λcomp = ~/mϕ.
A tiny mass of mϕ = 10−16 eV is enough to evade the
binary pulsar observation since the associated λcomp ≃
2 × 106 km is much smaller than the orbital separation
for the binary pulsars cited above, while still allowing for
large deviations for merging NSs (e.g., [59, 60]; see also
below).
Interestingly, such tiny scalar field mass does not

change the stellar structure in any practical sense. In
Fig. 2, we plot the mass of scalarized NSs as a func-
tion of the central energy density ǫc for three different
masses mϕ = 0 eV, 10−11 eV, and 10−16 eV while fix-
ing λ = 10M⊙(=14.77 km), β = 250 and ι = −1. Only
the scalarized equilibria are plotted while the solutions
with ϕ = 0 are omitted for better visualization. As seen,
the change in the NS equilibrium properties differs neg-
ligibly even for mϕ = 10−11 eV while the most signif-
icant change is the point of bifurcation that moves to
larger central energy densities. This gives us the confi-
dence that the scalar field dynamics for a massive scalar
field with mϕ = 10−16 eV, that evades binary pulsar ob-
servations, will be practically indistinguishable from the

FIG. 2. Stellar mass to central energy density (M⋆−ǫc) curve
for equilibrium of scalarized NSs pertaining to the EOS APR4
in the considered theory with parameters λ = 10M⊙, β = 250
and ι = −1. The blue sequence corresponds to NSs that are
imbued by a scalar field with a mass of mϕ = 10−11 eV, while
the red one represents solutions with massless scalar field.

massless case which allow us to consider values of λ larger
than the above mentioned constraints as demonstrated in
the next section.

D. Projected constraints in the massive scalar field

case by a network of observations

In the previous subsection, we discussed how even a
tiny scalar field mass can suppress the scalar gravita-
tional radiation for binary pulsars. The smaller the sep-
aration between the stars, though, the larger the scalar
field mass should be in order to smear out the scalar-
induced effects. Thus, the constraints one can set on
massive SGB theories from the merger of compact ob-
jects are much stronger due to the reduced separation. In
this subsection, we put these quantitative considerations
on a more solid ground and speculate on the strongest
constraints could be placed by a network of observations.
The inclusion of a scalar mass via a potential having

the form V = 2m2
ϕϕ

2 in the action (3) renders the equa-
tion,

∇µ∇µϕ = −λ2

4

df

dϕ
R2

GB +m2
ϕϕ, (16)

for the scalar field. For a small perturbation of ϕ, the
right-hand side can be approximated to give

∇µ∇µϕ ≃
(

− ιλ2

4
R2

GB +m2
ϕ

)

ϕ. (17)

In addition, we find for a typical BNS that the value of
R2

GB lies in the range of

−1× 10−2M−4
⊙ . R2

GB . 1× 10−3M−4
⊙ (18)

throughout the last stages of inspiral until the onset of
merging. During the merger, the magnitudes of the low-
est and highest values of R2

GB are significantly stretched
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FIG. 3. Upper bound on the coupling strength λ as a
function of mϕ for several assumed values of λup,0, which
is the bound if the scalar field is massless. We assumed
|R2

GB|max = 10−3 M−4
⊙ .

by almost an order of magnitude, which will then relax
to the values for the formed remnant. For this range (18)
of values, a mass such that

mϕ >
λ

2

√

|R2
GB|max

≈ 3.34× 10−11

(

λ

10M⊙

)

(

√

|R2
GB|max

0.05M−2
⊙

)

eV (19)

will then essentially quench the growth of scalar field
(cf. Fig. 3), where |R2

GB|max denotes the maximum of
|R2

GB|. The reason is that the term in the brackets on
the right-hand side of Eq. (17) will become positive thus
forbidding the existence of any bounds state of the gen-
eralized potential (11).
Therefore, the upper bound for the coupling strength

(λup) that could be obtained from a certain network of
observations, both binary pulsar and merger ones, de-
pends on the scalar mass. It is expressed as

λup(mϕ) =

√

λ2
up,0 +

4m2
ϕ

|R2
GB|max

, (20)

where λup,0 = λup(0) is the bound for zero scalar field
mass. We note that this expression is applicable for ι =
±1. In Fig. 3, we show how the bound in massless theory
(i.e., λup,0) would be modified by mϕ, where we see that
the constraint set for a massive theory does not deviate
in a noticeable way from what could be inferred for a
massless theory with mϕ < 10−11 eV.

III. COALESCING BINARY NEUTRON STARS

Having recapped the formulae of SGB, introduced
the novel universal relations, illustrated how an EOS-
insensitive constraint could be placed and how a tiny

scalar mass is sufficient to relax the constraints on pa-
rameters, we now proceed to the main part of the present
paper, where we aim at studying binary NS coalescence in
SGB gravity with an emphasis on dynamically-triggered
scalarization. In this section, however, we consider only
the mϕ = 0 case but the dynamics of ϕ and the ren-
dered scalar radiation would be practically unchanged if
the scalar mass is less than a few times of 10−13 eV since
the associated Compton wavelength (& 103 km) is longer
than the binary separation and the wavelength of scalar
waves in the late inspiralling phase that we consider in
this paper. For this purpose, the simplified metric (8) for
stationary and spherically-symmetric spacetime should
be generalised to describe the spacetime where a coalesc-
ing binary is embedded. We express the metric hereafter
as

ds2 = −α(t,x)2dt2 + γij(t,x)(dx
i + βidt)(dxj + βjdt),

(21)

where the lapse function α, the shift vector βk, and the
induced metric on three-dimensional hypersurfaces γij
vary with time t and position x.
In the decoupling limit that we adopt in the present

work, we will ignore the influence of scalar field on the
3+1 decomposed Einstein field equations, thus leaving
them identical to those in GR. As commented in the in-
troduction, this approximation gives accurate results for
the scalar field dynamics in the cases where the scalar
field’s magnitude is limited to low or moderate values.
In addition, the threshold for scalarization of the GR
solutions can be obtained exactly within the decoupling
limit, i.e., it is not influenced by this approximation.
The field equation of the scalar field in 3+1 decompo-

sition has the form:

(∂t − βk∂k)ϕ =− αKϕ,

(∂t − βk∂k)Kϕ =− αDiD
iϕ− (Diα)D

iϕ+ αKKϕ

− ιαλ2

4
ϕe−βϕ2R2

GB , (22)

where K is the trace of the extrinsic curvature tensor
Kij , and Kϕ = −na∇aϕ for na the unit vector normal
to spatial hypersurfaces. In the second equation we have
used the specific coupling (2). In addition, the Gauss-
Bonnet invariant R2

GB can be expressed as

R2
GB =8EijE

ij − 4ΩijkΩ
ijk − 256π2

3
(ρh− P )(ρh+ 2P ),

(23)

where the tensors Eij and Ωijk, defined by

Eij =
3Rij +KKij −K l

i Klj

− 16π

3
ρhγij − 4π

(

Sij −
1

3
γijS

k
k

)

, (24)

and

Ωklj = DkKlj −DlKkj − 4π(γjkJl − γjlJk), (25)
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characterise the electric and magnetic components of the
Weyl tensor. Here 3Rij is the Ricci tensor with respect
to γij , whose determinant is denoted as γ, and we have
introduced

ρh = Tµνn
µnν , (26)

Jk = −Tµνn
µγν

k = ρhwuk, (27)

and

Sij = Tµνγ
µ
iγ

ν
j = ρhuiuj + Pγij (28)

with the Lorentz factor w = −uµn
µ.

Defining the trace-free extrinsic curvature by

Aij = Kij −
1

3
γijK, (29)

and its conformally-related tensor Ãij = W 2Aij for W =

γ−1/6, we can rewrite the tensors Eij and Ωijk as,

Eij =
3Rij − 4π

(

Sij −
1

3
γ̃ijSklγ̃

kl

)

+W−2

[

− 16π

3
ρhγ̃ij +

K

3
Ãij +

2K2

9
γ̃ij − Ã l

i Ãlj

]

,

(30)

and

Ωklj =− 2W−3
(

Ãlj∂kW − Ãkj∂lW
)

+W−2

[

∂kÃlj − ∂lÃkj + Γi
ljÃik − Γi

kjÃil

+
1

3
(γ̃lj∂kK − γ̃kj∂lK)− 4π (γ̃jkJl − γ̃jlJk)

]

,

(31)

respectivley, where Γi
jk are the Christoffel symbols with

respect to γij .

A. Numerical method

Here we briefly summarise the technical setting for
evolving binary NSs in the code SACRA-MPI, while we
refer the interested reader to the original articles [61, 62]
for more details. An adaptive mesh-refinement (AMR)
algorithm with 2:1 refinements is implemented to con-
struct a graded grid. For the simulations in the present
article, the grid structure is set under the mirror symme-
try about the orbital plane, and consists of 6 non-moving,
concentric boxes for the whole binary. Within the finest
fixed box, two piles of moving boxes exist for each NS
with each graded in 4-levels. Adopting the Cartesian co-
ordinate, one box contains (2N +1)× (2N+1)× (N+1)
points covering the domain along the x-, y-, and z-axis,
respectively. The resolution is set by N , and the size of

FIG. 4. Maximum values of the scalar field as a function of the
maximum rest-mass density (ϕmax-ρmax) from late inspiral
stages to shortly after merger. Models A, B, and C in Tab. I
are simulated with three grid resolutions with N = 42, 62, and
82, respectively. The initial separation for the binaries is fixed
to be 41.35 km while the associated initial orbital frequencies
are listed in the last column of Tab. I. The coupling strength
is chosen as λ = 17.42 km, 15.50 km, and 12.67 km for models
A, B, and C, respectively. The rest of theory parameters are
set as β = 200 and ι = −1.

the finest box, which is a moving box, is chosen to have
the dimension of 25.84 km×25.84 km×12.92 km.
The initial datum for the simulations in this work are

generated by an open source code FUKA [63, 64], which
is designed for GR. Since we are adopting the decoupling
limit approximation, the initial data are exact for the
metric and the fluid variables while the scalar field initial
data is in the form of a tiny perturbation. Although
both NSs are always non-scalarized at the beginning of
our simulations, this inaccuracy is “corrected” relatively
fast and the tachyonically unstable NS develops scalar
field exponentially over a certain timescale (typically .
5 ms) after the beginning of simulation. Not starting with
consistent scalar field initial data might be unsatisfactory
for accurate waveform generation [65] but is sufficient for
studying the onset of dynamical scalarization [23, 42].
As the last remark of this section, we confirm the con-

vergence of each model listed in Tab. I; these models will
be described in detail in the following section. By imple-
menting three different grid resolutions for the simula-
tions, we plot in Fig. 4 the maximum values of the scalar
field (ϕmax) as a function of the maximum rest-mass den-
sity of the numerical domain (ρmax), which is the cen-
tral density of the heavier progenitors before merger and
roughly that of the merger remnant. We observe a good
convergence for the considered models, and we stick to
N = 62 as the standard resolution in this article.

B. Dynamical scalarization

While the bifurcation point on the GR sequence of iso-
lated NS equilibria is determined solely by the parameter
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TABLE I. Source parameters relevant here for the GW170817-like binaries characterised by a fixed M = 1.186M⊙ with both
NSs each having a mass in the range estimated by GW170817. The APR4 EOS is assumed for all the involved NSs, and the
theory takes the flavor of ι = −1. We performed a handful of simulations for every considered binaries by using several values
of λ and two initial separations (the associated initial mass-scaled orbital frequencies are presented as number pairs in the 6th
column). For each separation, the used coupling strengths are linearly- and logarithmically-even-sampled by 21 values in the
two ranges listed in the last column, respectively.

Model m1 (M⊙) m2 (M⊙)
−λbif,1/m1

−λbif,2/m2 Ωini(m1 +m2) λ for simulations (M⊙)
A 1.365 1.360 9.890 9.967 (0.0270, 0.0224) [11.5,15] & [11.68,12]
B 1.625 1.149 6.768 13.950 (0.0276, 0.0229) [10.4,10.6] & [10.4,13]
C 1.890 1.002 4.598 18.098 (0.0292, 0.0243) [8.56,8.8] & [8.56,11.5]

λ for a given EOS, the ratio between the masses of the
stars in the binary, q = m2/m1, will influence the onset
of dynamical scalarization; stipulating two binaries with
the same total mass but two different mass ratios, the
binary harbouring the more massive NS will undergo dy-
namical scalarization earlier owing to its lower value of
λbif . In general, the threshold for dynamical scalarization
depends on the total mass, mass ratio, theory parameters
(viz. λ, β, and ι), and the EOS. Given that λbif/M⋆ can
be associated with stellar compactness for an isolated NS
in an EOS-independent way (see Fig. 1), we specify our-
selves hereafter on the EOS APR4, and opt to quantify
the effect of mass ratio when the chirp mass,

M =
(m1m2)

3/5

(m1 +m2)1/5
, (32)

is fixed. A motivation for this choice comes from the fact
that M can be estimated rather accurately from grav-
itational waveforms (typically within an error of order
10−3%; see, e.g., [66]). We consider three binaries with
the chirp mass of the gravitational wave event GW170817
(i.e., M = 1.186M⊙). Their properties are collated in
Tab. I, including the individual masses of the NS mem-
bers and the respective bifurcation threshold of −λ of
each of the binary component, viz. −λbif,1 and −λbif,2.
We consider only ι = −1 for studying dynamical scalar-
ization in the present article. The results for ι = 1, how-
ever, seem to suggest otherwise, and will be studied in a
separate work.
Identifying the occurrence of scalarization as the mo-

ment when the magnitude of the scalar field exceeds
10−4, in Fig. 5 we show the gravitational wave frequency
at the onset of scalarization as a function of the dimen-
sionless coupling strength −λ/m1. We consider two ini-
tial separations for each model so as to reinforce the dy-
namical origin of scalarization. The associated initial
orbital angular frequencies Ωini are collated in the sec-
ond last column of Tab. I, where the two numbers for
a model correspond to two separations set to the initial
data. The onset of dynamical scalarization should not
depend on the chosen initial separation, while the spon-
taneous scalarization kicks in at the beginning of the sim-
ulations regardless initial separation and completes over
a dynamical timescale. In particular, the heavier (less
massive) NS in each model is spontaneously scalarized

FIG. 5. Relation between the coupling strength and the
gravitational wave frequency at the occurrence of scalariza-
tion, which is defined as the moment when the maximum
of ϕ exceeds 10−4. The black vertical lines show the mass-
scaled threshold for spontaneous scalarization of the heavier
NS member for each binaries listed as −λbif,1/m1 in Tab. I.
Each simulation is labeled by the model names listed in Tab. I
with ‘close’ denoting the larger Ωini case and ‘far’ otherwise.
The dashed lines show the tendency of the reduction of critical
threshold, predicted by the Keplerian orbit, as a leading-order
estimate.

if the dimensionless coupling strength that we employ
in a particular simulation is greater than the threshold
−λbif,1/m1 (−λbif,2/m2) listed in the fourth (fifth) col-
umn of Tab. I.
These thresholds corresponding to −λbif,1/m1 for each

binary are plotted by the vertical black lines in Fig. 5.
On the right with respect to this line, the massive NS
companion should always be scalarized irrespective of
whether it is isolated or in binary. On the other hand,
this is not the case for the region of small λ/m1 to the
left, where only dynamical scalarization can endow the
NSs with a scalar field2. Indeed, this is the phenomenon
we observe: the scalarization kinks in at smaller binary
separation, thus larger gravitational-wave frequencies, for

2 Clearly, since the less massive companion has −λbif,2/m2 >−

λbif,1/m1, it is also for sure non-scalarized to the left of the

vertical line.
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FIG. 6. Maxima of the Gauss-Bonnet invariant (top) and the
scalar field (bottom) for the binary Model A as functions of
simulation time. The insets zoom in the evolution of both
quantities in the first 11 ms. For both panels, theory param-
eters are set as β = 200, λ/m1 = 8.79, and ι = −1.

decreasing λ/m1. Although we plot in Fig. 5 only the
threshold of dynamical scalarization in the primary since
it is easier to be installed a stable hair, we do witness a
mutual scalarization for model A, where the secondary
has a more or less the same mass as the primary.
A mismatch between the triangles and the filled circles

in Fig. 5 is observed for each model. This is expected es-
pecially right to each vertical line because of the fact that
we do not start with correct scalar field initial data but
instead with a small scalar field perturbation. Thus, until
the system settles to a qusi-equlibrium configuration on
a timescale dependent on λ, the initial binary separation
will influence the results. What is important, though, is
that the onset of the scalarization that has a significant
dynamical origin (left-end of each curves) is almost in-
dependent on the initial separation with the exception
of the transition region in the vicinity of the bifurcation
line.
As expected, the dynamical scalarization window is

larger than that for isolated NSs, and the difference be-
tween them is maximal for equal mass binary (blue mark-
ers in Fig. 5). If the asymmetry in the mass ratio is
too large the dynamical scalarization is much more diffi-
cult to develop because the gravitational effect from the
lighter NS to the heavier companion becomes less impor-

tant, and thus, its threshold approaches the limit for the
isolated NS (yellow markers in Fig. 5). In addition, as the
two NSs approaches, the variation in the Gauss-Bonnet
invariant reads,

δR2
GB ∝ 1

a6
∝ f4

gw, (33)

where a is the separation, and the last relation comes
from the Keplerian theory. The use of Keplerian orbit is
a rough estimate, while capturing well the leading order
effect. This variation can then be translated to a rela-
tion between the reduction in the critical coupling func-
tion and the GW frequency at the onset of dynamical
scalarization, expressed as

δ(−λbif) ∝ f2
gw,onset. (34)

The tendency is plotted as dashed line in Fig. 5 for each
model.
To look at how the dynamical scalarization is activated

by ever-increasing maximum of ιR2
GB before merger, we

now focus on the case with the most pronounced mutual
interaction of the scalar field, viz. model A. We plot in
the top panel of Fig. 6 the evolution of the maximum of
ιR2

GB, which values . 4 × 10−3 M−4
⊙ up to the onset of

merging (at ∼ 12.18 ms), while the strength of it grows
by a factor of . 7 then settles to a few hundredths shortly
after merger (at ∼ 18 ms). We plot in the bottom panel
of Fig. 6 the evolution of the scalar field. When ϕmax hits
10−4 at 6.8 ms when ιR2

GB grows 3.5% from the initial
value. In addition, a scalarized NS formed aftermath the
merger, where the scalar field peaks at the remnant cen-
ter with a value of ϕc ∼ 0.1, and the scalar field possesses
a multipolar structure.

C. Scalar radiation

The scalar radiation can be decomposed in the har-
monic manner, namely,

ϕ(r, θ, φ) =
∑

ℓm

ϕℓm(r)
[

0Yℓm(θ, φ)
]

(35)

with the harmonic components defined as

ϕℓm(r) =

∮

ϕ
[

0Y ℓm(θ, φ)
]

dΩ, (36)

where sYℓm is the spin-weighted spherical harmonics with
spin s and harmonic numbers ℓ and m. As relevant to
the scalar-induced tensorial mode of gravitational waves,
we plot in the top panel of Fig. 7 the monopole mo-
ment of ϕ, denoted as ϕ00, as a function of the retarded
time with respect to the beginning of simulations. In ad-
dition, the quadruple scalar radiation, denoted as ϕ22,
is shown in the bottom panel, which kicks in after the
dynamical scalarization. The wavelength of the scalar-
radiation during the late inspiral is a few tens of the
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total mass of the binary (see, e.g., Sec. III. C of [61]).
Thus, given that the total mass of the considered bina-
ries lies in the range 2.725–2.892M⊙, an extraction radius
rex = 300 M⊙ should adequately reside in the radiation
zone. We extract ϕ22 at three places in the radiation
zone, where we see that the pre-merger signals have an
agreement at different distances. On the other hand, the
post-merger segments do not agree with different sam-
pling distances. The reason for this is that in the present
grid resolution, the grid spacing at the extraction radii
is too wide to well resolve the short wavelength of post-
merger scalar waves.
As for the leading order leakage of the orbital energy

via scalar channel, we show in Fig. 8 the dipole radiation,
which is supported by the difference of the scalar charge
of the two NSs [67, 68], for the least (model A; top panel)
and the most (model C; bottom panel) asymmetric cases
among the considered binaries. We see that the dipole
radiation in the pre-merger phase is more significant for
the latter model due to the larger difference of the scalar
charges of both component. For the post-merger phase,
however, we observe an abrupt quenching for the model C
since a prompt collapse to BH ensues the merger. On the
other hand, the hypermassive NS left behind the merger
of binary A continuously emits scalar waves, and, inter-
estingly, the dipole radiation in the post-merger stages
can already be accurately traced by the used resolution,
in oppose to the case of quadrupole moment, while the
extraction is still not precise during merger (cf. Fig. 8).
The more detailed study of the scalar waveform will

be deferred to a future work, while we leave some com-
ments on the implication of the absence of scalar radi-
ation in the event GW170817. Although the constrain
on the dipole radiation from GW170817 is not as strin-
gent as that comes from pulsar binaries [3] with cur-
rent observatories, the future detectors may have capa-
bility to push the constraints from gravitational waves
to higher accuracy. The implication of the non-detection
of such additional channel of energy flux than GR in a
future GW170817-like systems would then set a bound
of −λ/m1 < 8, as indicated by the result of model A
(Fig. 5). We note that model A is the most symmetric
binary among those satisfying the inferred source param-
eters. Thus, the most conservative constraint is obtained
by considering the symmetric model.

IV. CLOSING REMARKS

A. Conclusion

In a subclass of SGB, spontaneous scalarization can
occur for isolated NSs with a mass in a certain range,
which depends on coupling strength λ between the scalar
field and the Gauss-Bonnet invariant [Eq. (3)]. The con-
sidered theory comes in two flavors with each featuring
a different sign of the coupling function (2). In partic-
ular, scalarized NSs exist for both signs ι = ±1, while

FIG. 7. Monopole (top) and quadruple (bottom) moments
of scalar field extracted at three different distances (in M⊙):
rex = 300, 400, and 600. For both panels, the evolution is
shown with respect to retarded time since the beginning of
simulations, and the same binary and theory parameters as
Fig. 6 are used.

hairy BHs can be realised only for the flavor ι = 1
[13, 24]. Focusing on NSs as members in a coalescing bi-
nary with ι = −1, we numerically study the scalarization
dynamically activated by the curvature of the whole sys-
tem, and the convergence of the performed simulations is
confirmed by running each model with three resolutions
(Fig. 4). For a given EOS and stellar mass, there exists
a critical coupling strength of the scalar to R2

GB so as
to allow for a scalarized state of the NS. This threshold,
however, will be reduced by an extent depending on the
mass ratio of the binary [Fig. 5] due to the presence of a
companion; in other words, a stable scalar hair can de-
velop in the primary of binary NSs for lower values of
the coupling parameters. In the presented results, the
consistency of dynamical scalarization is confirmed by
considering for each model two initial separations since
their onsets are independent on the initial state of the
binary, as expected (Fig. 5).

Although gravitational-wave and pulsar timing obser-
vations have already left a narrow parameter space for a
number of theories with a massless scalar field, these cur-
rent constraints can be dodged by a massive scalar field
with a mass as small as 10−16 eV (Sec. II D). As a matter
of fact, even for a scalar field mass as small as 10−11 eV
the effect on the structure of scalarized NSs is negligible
(Fig. 2), leaving the dynamics of the scalar field essen-
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FIG. 8. Dipole moment of scalar field extracted at three dif-
ferent distances (in M⊙): rex = 300, 400, and 600 for model A
(top) and C (bottom). For both panels, the evolution is shown
with respect to retarded time since the beginning of simula-
tions, and the coupling strengths are chosen as λ/m1 = 8.79
and 4.55 for the two models, respectively.

tially the same as massless theories. In line with this fact,
we here consider the theory as massless, while remarking
that the results are quantitatively indistinguishable for a
scalar field with up to the aforementioned mass.

Fixing the chirp mass to that of GW170817, three mass
ratios are considered, where model A is the most sym-
metric case (i.e, closest to the equal mass scenario), and
model C is the most asymmetric possibility for the es-
timated mass range of each star (Tab. I). The mutual
interaction of the scalar field is significant for a binary
with mass ratio close to 1 as suggested by the blue mark-
ers in Fig. 5. There, we see the minimum of λ to allow for
scalarization is sizable shifted down by the companion,
while, on the other hand, the reduction in the threshold
of coupling strength for model C is marginal since the
weak influence of the secondary to the primary.

The associated scalar radiation is computed [Eqs. (35)
and (36)] for monopole and quadrupole moments (Fig. 7).
The scalar signal in the late inspiral phase has a fre-
quency being twice the orbital one. After merger, the
scalar field oscillates at much higher frequencies, which
may attribute to the excitation of several orders of scalar
modes. However, the adopted grid resolution is too crude
to well capture the post-merger signal (bottom panel of
Fig. 7). On the other hand, the resolution is already
sufficient for extracting the post-merger dipole radia-

tion (Fig. 8), which attributes to the non-identical scalar
strength after the scalarization in the two components.

B. Discussion

The studies above were performed for a coupling func-
tion with ι = −1 that does not allow black hole scalar-
ization in the static case, and is thus similar as a scalar-
ization mechanism and behavior to the classical scalar-
tensor theories. In addition, we have focused primarily on
the change of the threshold for dynamical scalarization in
comparison to the case of isolated NSs. Our preliminary
results show, though, the case when ι = 1 shows very in-
teresting and distinct phenomenology. In addition, it will
be interesting to explore the possibility of spin-induced
scalarization of the merger remnant with ι = −1. A
detailed study of such phenomenology, including its im-
plications for distinguishing between different flavors of
the gravitational theory, is currently underway.
Borrowing the experience from scalar-tensor theories,

the physical condition admitting the dynamical scalar-
ization should correlate strongly to the critical orbital
frequency after which the binding energy of the binary
defers from the GR value (cf. Figs. 1 and 3 of [69]). In
other words, the quasiequilibrium sequence in the consid-
ered SGB theory will deviate from that of GR for orbital
frequencies larger than the critical value. The binary
will thus keep abreast of a different evolution track after-
wards. Constructing quasiequilibrium sequence in SGB
will be a future pursue. To that purpose, our results of
the threshold for dynamical scalarization may serve to
pick the most suitable parameter for such investigation.
In this work, we have only considered non-rotating NS

members. Although a mild stellar spin does not influ-
ence much the M⋆–R⋆ curve of scalarized NSs, a large
spin can greatly modifies the profile of an equilibrium
[70]. As an example of the consequences, a rather dis-
tinct universal relation between moment of inertia and
quadrupole moment is rendered [71]. Stellar spins may
therefore partially affect the onset of dynamical scalariza-
tion. It is also important to note that we simulated the
binary evolution for massless scalar field, while a scalar
mass of mϕ . 10−11 eV will not alter the picture in any
conceivable way (Sec. II D). Nonetheless, the waveform
may be influenced by this amount ofmϕ to an extent that
can deteriorate the gravitational wave analysis. A study
taking into account the backreaction of scalar field in the
Einstein equations with a massive scalar field is therefore
necessary to investigate the waveform generated during
the stages right before merger.
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ApJ 719, 1807 (2010), arXiv:1002.3825 [astro-ph.HE].

[54] M. van der Klis, G. Hasinger, F. Verbunt, J. van Paradijs,
T. Belloni, and W. H. G. Lewin, A&A 279, L21 (1993).

[55] D. D. Doneva, S. S. Yazadjiev, N. Stergioulas, and K. D.
Kokkotas, ApJ 781, L6 (2014), arXiv:1310.7436 [gr-qc].

[56] G. Pappas and T. A. Apostolatos,
Phys. Rev. Lett. 112, 121101 (2014),
arXiv:1311.5508 [gr-qc].

[57] S. Chakrabarti, T. Delsate, N. Gürlebeck, and
J. Steinhoff, Phys. Rev. Lett. 112, 201102 (2014),
arXiv:1311.6509 [gr-qc].

[58] L. K. Wong, C. A. R. Herdeiro, and
E. Radu, Phys. Rev. D 106, 024008 (2022),
arXiv:2204.09038 [gr-qc].

[59] F. M. Ramazanoǧlu and F. Preto-
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