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In certain classes of the scalar-Gauss-Bonnet theory strong spacetime curvature in the vicinity of neutron
stars and black holes can spontaneously trigger scalarization in the compact object if the coupling strength
of the scalar field to the Gauss-Bonnet invariant exceeds a critical value. Specifying on neutron stars, this
threshold depends on the mass and equation of state. The presence of a companion will further influence the
required coupling strength for scalarization, and thus, a stable hair can be installed at a lower magnitude of
coupling for those neutron stars as members of binaries. Focusing on binary neutron star mergers, we
investigate this latter dynamically driven scalarization, and find that the reduction in the threshold coupling
strength seems to be more profound for symmetric binaries, while the threshold is only marginally reduced
for rather asymmetric binaries. The associated scalar radiation is also discussed. We discover in addition a
universal relation between the critical coupling strength and the stellar compactness for isolated neutron
stars and perform a detailed comparison with the dynamical scalarization threshold. In synergy with such
relations, one can, at least in principle, constrain the theory parameters regardless of the uncertainty in the
equation of state.
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I. INTRODUCTION

Pulsar binary timing observations and gravitational
waves are among the most stringent tests that have ever
been implemented to scrutinize the strong field regime of
Einstein’s theory (e.g., [1–4]; see also [5–7] for reviews on
this topic). Although general relativity (GR) gains great
success in these two tests, some fundamental physical
aspects, such as its nonrenormalizability, are difficult to be
addressed when pursuing a unification with quantum
theories. An extension to GR thus warrants further inves-
tigation. Among a variety of possibilities, including a single
scalar field to a gravitational theory may be the simplest
modification. Such theories can be constructed by coupling

a scalar field to curvature invariants of different orders as
suggested by the attempts to quantize gravity, e.g., the Ricci
scalar and self-contraction of the Riemann tensor. However,
if we restrict ourselves to the theories admitting 2nd order
field equations, the landscape of the possible candidates is
narrowed down significantly, and can be parametrized as
Horndeski action with scalar field coupling functions to be
assumed [8].
We here focus on a subset of the Horndeski theories,

known as scalar-Gauss-Bonnet theory (SGB). A specific
property of scalarized NSs in such theories is that they
have less (gravitational) mass than their GR counterpart
for the same central energy density [9,10]. It may be worth
mentioning that this is in sharp contrast to the classical
scalar-tensor theory, where the scalar field tends to
increase the maximum allowed NS masses. In addition,
as opposed to scalar-tensor theory, black holes (BHs) in
SGB can circumvent the no-scalar-hair theorems and be
imbued with a scalar field [11,12]. Depending on the exact
form of the coupling function between the scalar field and
the Gauss-Bonnet invariant, either the GR compact objects
can be solutions to the SGB field equations with a zero
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scalar field [13–17], or the compact objects should always
be endowed with scalar hair in the shift-symmetric SGB
gravity [11,12,18–21]. In the present paper, we focus on
the former case, which admits spontaneous scalarization
that is a nonlinear development of the scalar field once a
certain threshold of the coupling strength is exceeded [22].
The formalism of SGB is rather complicated compared

to those of scalar-tensor theories for example. Thus the
so-called decoupling limit, i.e., neglecting backreaction of
the scalar field on Einstein’s and Euler’s equations, is often
adopted in the first studies of nonlinear dynamics of
compact objects [20,23]. As a matter of fact, this approxi-
mation captures well both qualitatively and quantitatively
the scalar field dynamics for realistic magnitudes of the
scalar field [21,24,25]. Furthermore, the bifurcation point
of scalarization, where the GR black hole and NS loses
stability and acquires scalar hair, can be determined without
approximation in the decoupling limit [26]. Investigating
the threshold of scalarization for coalescing binary NSs is
one of our goals.
The richness/complexity of SGB does not stop at this

level provided that different coupling functions may give rise
to completely distinct physics. As commented above, there
are no nonscalarized NSs and BHs in the shift-symmetric
SGB, where the coupling function reads [11,12,18],

fðφÞ ¼ φ: ð1Þ

A spontaneous activation of the scalar field cannot be
witnessed for the above coupling function therefore.
However, one can observe such spontaneous scalarization
once the near-horizon spacetime curvature exceeds a
certain threshold for a coupling function having the form
fðφÞ ∼ φ2 þOðφ3Þ. Although keeping only the lowest
order square term renders instabilities [27–29], a conven-
ient and well-behaved choice, having the same leading
order expansion with respect to the scalar field, is the
following one [30]:

fðφÞ ¼ ι

2β

h
1 − e−βφ

2
i
; ð2Þ

where β is a dimensionless parameter, ι ¼ �1 and thus two
flavors of the coupling are contained. For ι ¼ 1 the no-
scalar-hair theorems are circumvented and scalarized states
exist for both NSs and BHs [10,13,14]. On the other hand,
scalarization can only manifest in NSs when ι ¼ −1 [10],
i.e., no-hair theorem applies to BHs (for an exception in the
case of rotating BHs see Refs. [31–34]).
Dynamics of spontaneous scalarization in SGB gravity

was investigated both for isolated BHs [25,35] and isolated
NS [14,24]. Some of these studies shed light also on
the possible loss of hyperbolicity in some subclasses of the

theory that was further elaborated in [36]. When it comes to
NSs in coalescing binaries, though, the collective effects on
scalarization alter the picture [37–39] and the dynamical
scalarization can be observed. More precisely, the dynami-
cal development of the scalar hair can be activated as the
two inspiralling compact objects approach each other even
when one or both of the individual objects do not have the
critical compactness to be scalarized when isolated. We
should mention that for BHs, the process is usually the
other way around and scalarized BHs can lose their scalar
field as they merge [23] (for an exception and scalar field
growth during merger related to the spin-induced scalari-
zation see Ref. [40]).
This scenario can realize only for a coupling strength

larger than a threshold, which is the subject of the
present article, and when the distance between the objects
is small enough, i.e., shortly before the merger of BHs or
NSs [37,38]. Up to now, the effort in exploring the
dynamical scalarization phenomenon in SGB gravity was
directed mainly toward binary BHs [17,23,41,42] while the
NS mergers remain largely unexplored. Coalescing binary
NSs is studied only recently for the specific coupling
function fðφÞ ∝ φ [43](i.e., the shift-symmetric SGB).
However, the coupling function they adopted for this first
study of binary NSs in SGB does not admit the phenomenon
of scalarization.
In the present work, we aim to numerically demonstrate

scalarization in binary NSs, while we work in the decou-
pling limit as the first step. A special emphasis is put on the
condition admitting scalarization with dynamical origin. In
particular, we study the threshold on the coupling strength
of scalar field to the Gauss-Bonnet invariant such that the
scalarization can occur in the pre-merger stage, which is
shown to be different from the threshold applying to
isolated NSs. The mismatch of the critical magnitude of
the coupling then indicates that the scalarization in
coalescing binaries is triggered differently than that in a
single star; similar shift in the critical coupling strength is
observed in scalar-tensor theories (e.g., [38,39]; see also a
recent review [26]).
The article is structured as follows: We recap the theory

in Sec. II, focusing on the phenomenon of spontaneous
scalarization and speculating possible constraints that may
be placed on the theory parameters with a use of the novelly
established universal relation. We then turn to consider
dynamical scalarization occurring in coalescing binaries in
Sec. III, where a reduction in the threshold coupling
strength for endowing scalar hair to NSs is elucidated.
In this section, we also compute the scalar radiation
associated with dynamical scalarization; accordingly, some
possible implication of GW170817 are commented. We
finally offer a conclusion and discussion in Sec. IV. The
indices for the spacetime coordinates are denoted by Greek
letters, while Latin ones are for indices for space coor-
dinates. In addition, we work in the unit c ¼ 1 ¼ G.
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II. SCALAR GAUSS-BONNET THEORY

The action in the SGB theory we consider is

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μφ∇μφþ λ2fðφÞR2
GB�

þ Smatterðgμν;ΨmÞ; ð3Þ

for which the associated field equations are summarized as

Rμν −
1

2
Rgμν ¼ 2∇μφ∇νφ− gμν∇αφ∇αφþ 8πTμν − λ2Γμν;

ð4Þ

and

∇μ∇μφ ¼ −
λ2

4

dfðφÞ
dφ

R2
GB: ð5Þ

Here, R and Rμν denote the Ricci scalar and Ricci tensor,
respectively, and Ψm collectively denotes the matter fields,
whose matter energy momentum tensor is Tμν. In addition,
one can tell from the action that λ has the same dimension
as length. As introduced in Sec. I, the scalar field, φ,
couples to the Gauss-Bonnet invariant,

R2
GB ¼ R2 − 4RμνRμν þ RμνησRμνησ; ð6Þ

through a function fðφÞ, where Rμνησ denotes the Riemann
tensor. It is worth mentioning that R2

GB can be negative for
NSs although it is always positive for BHs. On the right-
hand side of Eq. (4), the backreaction of the scalar field
induced from R2

GB is encoded in Γμν, defined as

Γμν ¼ −Rð∇μΨν þ∇νΨμÞ − 4∇αΨα

�
Rμν −

1

2
Rgμν

�
þ 4Rμσ∇σΨν þ 4Rνσ∇σΨμ − 4gμνRαβ∇αΨβ

þ 4Rα
μβν∇βΨα; ð7Þ

with Ψμ ¼ dfðφÞ
dφ ∇μφ.

A. Scalarization of isolated NSs

In the present paper, we focus on scalar field in NSs and
adopt the coupling function (2), for which a vanishing φ
naturally satisfies Eq. (5), and thus GR solutions are always
solutions to the considered theory. However, the perturba-
tion of interior scalar field can develop to scalarize the star
via tachyonic instability depending on the theory param-
eters and the nuclear matter equation of state (EOS). In
particular, there is a critical coupling strength λbif for some
specific stellar mass (M⋆) and EOS beyond which the NS is
susceptible to scalarization; for example, NSs with mass
≳1.4M⊙ and EOS APR4 will be imbued with a stable

scalar hair for a coupling strength λ ≥ 13M⊙ when ι ¼ −1.
It may be worth mentioning that the condition allowing for
scalarization is solely determined by λ, while the quanti-
tative profile of the scalar field is determined jointly by β, λ,
and ι [10] (see also below). As seen later, the threshold of λ
to allow for a scalarized NS with a certain mass will
however change in the presence of a binary companion.
For isolated and nonspinning NSs, the metric of spheri-

cally symmetric NSs can be expressed as

ds2 ¼ −αðrÞ2dt2 þ XðrÞ2dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ ð8Þ

with functions α and X depending solely on the radius r.
Owing to the respected symmetry, perturbations of the
scalar field can be decomposed into harmonic components
in terms of the spherical harmonics function Ylm, labeled
by the eigenvalues fl; mg, as

φ ¼ uðrÞ
r

e−iωtYlmðθ;ϕÞ: ð9Þ

The radial part, uðrÞ, is governed by the linearized equation
(see Eqs. (2.18) and (2.19) of [10]),

α

X
d
dr

�
α

X
duðrÞ
dr

�
þ ½ω2 −UðrÞ�uðrÞ ¼ 0 ð10Þ

with the effective potential UðrÞ given by

UðrÞ ¼ α2
�
X−2

r

�
d lnα
dr

−
d lnX
dr

�
þ lðlþ 1Þ

r2
−
λ2ι

4
R2

GB

�
;

ð11Þ

and the frequency of this specific mode ω.
Specifying fluid to be perfect, the energy-stress tensor is

given by,

Tμν ¼ ρhuμuν þ Pgμν; ð12Þ

where ρ is the rest-mass density, uμ is the four-velocity,
and h ¼ ðϵþ PÞ=ρ is the specific enthalpy for the energy
density ϵ and the pressure P. The Gauss-Bonnet invariant
for nonscalarized NSs (i.e., Rμν − Rgμν=2 ¼ 8πTμν is
obeyed) then has the form (see Eq. (2.20) of [10])

R2
GB ¼ 48m2

r6
−
128

r3
ð2πPr3 þmÞϵ; ð13Þ

where the mass m is defined by

m ¼ r
2
ð1 − X−2Þ: ð14Þ

It can be seen that R2
GB is negative at center of NSs, and

gradually grows to positive values as approaching stellar
surface at which it reaches the peak and then it slowly
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drops to zero toward the infinity. The tachyonic instability
is present in a nonscalarized NS if the effective potential
UðrÞ suggests a negative eigen-value of ω2 for a harmonic
mode. In order for that to occur, the positive part of
λ2ιR2

GB should be large enough somewhere inside the star
so that the potential can be sufficiently “deep” to harbor a
scalarized state.
In addition, the absence of β in UðrÞ indicates that

whether an isolated NS can be stably endowed with a scalar
field is independent of β [10]. We denote as �λbif the critical
coupling strength to grow a scalar field for ι ¼ �1. It should
be noted that, as a matter of fact, more than one scalarized
solution exist and the different solutions are labeled by the
number of scalar field nodes. Clearly, the threshold �λbif
varies for classes of solutions with different number of
scalar field nodes. Nonetheless, we focus on the nodeless
scalar field solutions since they are the only ones that are
stable and can realize in some dynamical scenario [24,27].
The configuration of the nodeless scalar field in “hairy”

NSs is quantitatively different for the two flavors of the
coupling function (2). In particular, the maximum of φ
locates at the stellar center for ι ¼ −1 (see Fig. 3 of [24]),
while the peak of φ lies at a finite distance close to the star’s
surface when ι ¼ 1 (see Fig. 3 in the supplemental material
of Ref. [24]). The difference roots in the source term of the
scalar field. In particular, ιR2

GB has the maximum nearby
the stellar surface for ι ¼ 1, where the scalar field “con-
densates.”On the other hand, the maximum of ιR2

GB locates
at the center if ι ¼ −1, which then suggests a profile of φ
that peaks at the center.
We use the formalism detailed in [10] to construct static

states with nodeless scalar hair, whereby we find for the
first time and plot in Fig. 1 the universal relations between

the stellar compactness,1 defined as C ¼ M⋆=R⋆ with R⋆
being the radius of the star, and the threshold coupling
strength �λbif for three piecewise-polytropically approxi-
mated EOSs [44], viz. APR4, SLy, and H4. Two of the
considered EOSs, namely APR4 and SLy, have similar
stiffness, while the H4 one is the stiffest among the three.
Each of the EOSs belongs to different groups proposed
in [45] (see Table 1 therein), categorized by some internal
oscillation properties. The fitting formulas, derived from
the data of 0.07 ≲ C ≲ 0.24, are expressed as

−λbif=M⋆

30
≃
0.819C2 − 0.586C þ 0.127

C − 0.021
; ð15aÞ

and

þλbif=M⋆

30
≃
1.422C2 − 1.040C þ 0.247

C − 0.023
: ð15bÞ

The denominator of both equations should theoretically
be the compactness without an abstraction of a small but
nonzero number. This latter nonzero number attributes to
the limited datum used for fitting; in particular, we consider
finitely many models in a specific range, which is large
enough to account for any possible NS that could manifest
in nature but not complete in theoretic aspect.

B. Possible EOS-insensitive constraints on SGB gravity
with a massless scalar field

The relations (15a) and (15b) may be used to set
constraints on λ that are immune to the uncertainty of
nuclear EOS. Here we will focus on the constraints
coming from the orbital period decrease of pulsar binaries
that are the most stringent ones [4,7]. In particular, for
those close binaries involving pulsar(s) where the mass
and radius of the NS can be estimated with relatively good
accuracy, a nondetection of scalar dipole radiation could
place an EOS-insensitive bound on the coupling parameter
�λ for both ι ¼ �1 cases. For example, PSR J0740þ 6620
are estimated from its X-ray spectral-timing to have a
mass ofM⋆ ≃ 2.01–2.15M⊙ and an equatorial radius R⋆ ≃
11.41–16.3 km [46–48]. Running over the mass and radius
ranges, we find that the most conservative upper bounds that
could be inferred by a future null observation of a dipolar
scalar radiation from this pulsar system, if confirmed at all,
are −λ≲ 14.54M⊙ and þλ≲ 30.88M⊙ (though see below
for possible relaxation by a scalar mass).
In this respect, some other examples may be accreting

millisecond X-ray pulsars (AMXPs) in low-mass x-ray
binaries (LMXBs), such as XTE J1751-305, IGR J00291þ
5934, and SAX J1808.4-3658. The orbital evolution of

FIG. 1. Universal relation between the stellar compactness and
the mass-scaled critical coupling strength. The filled circles show
the values allowing a marginal scalarization in the star with
indicated mass. Three EOSs are considered in the plot, viz. APR4
(blue), SLy (red), H4 (yellow). The overlapped solid lines
represent the fitting formulas (15a) and (15b), serving as a
boundary separating the parameter space admitting scalarized
states (above the lines) from that prohibits spontaneous scalari-
zation (below the lines).

1Just to eliminate possible confusion, a NS withM⋆ ¼ 1.4M⊙
and R⋆ ¼ 12 km has a compactness of C ¼ 0.172.
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AMXPs is much more complicated than that of the secular
pulsar binaries like PSR J0740þ 6620 (e.g., [49,50])
because of the active communication between the two
orbiting objects as well as the interaction between individual
stars and the orbit (see a recent review [51]). Although
subject to the uncertainty of the mass-transfer physics,
AMXPs still have potential to set bound on the strength
of scalar radiation in the future.
Among the aforementioned AMXPs, the simultaneous

measurement of mass and radius are arguably obtainable for
XTE J1751-305 considering that the stellar spin is saturated
by r-mode instability [52], where M⋆ ¼ 1.59–1.91M⊙ and
R⋆ ¼ 11.8� 0.9 km are inferred. Together with the fitting
formulas (15a) and (15b), the most conservative bounds
−λ≲ 11.17M⊙ and þλ≲ 23.77M⊙ could be placed if the
null detection of scalar radiation could be acclaimed with
future observations. The masses and radii of the other
two AMXPs are however not so well limited (see,
e.g., [53,54]). On the other hand, by scrutinizing the
spectroscopic data on multiple thermonuclear bursts, the
x-ray-loud NS in the LMXB 4U 1820-30 are estimated to
have M⋆ ¼ 1.58� 0.06M⊙ and R⋆ ¼ 9.1� 0.4 km [55].
This latter system has a potential to limit the coupling
strength to be −λ≲ 6.35M⊙ and þλ≲ 14.22M⊙ positing
again that the scalar dipolar radiation is absent in the
measured orbital decay [56].
We note, however, that the fitting formulas (15a)

and (15b) are found for isolated and nonrotating NSs.
The influence of spin and a companion on the threshold is
expected from the results of scalar-tensor theory (see, e.g.,
[26]). We study the latter effect in Sec. III B, while deferring
the investigation about the spin effect to future work. As we
will show later, �λbif is lower for a NS if it is a member of
binary instead of being reclusive since the maximum of
ιR2

GB increases as the binary approaches merger thus hinting
at a smaller �λbif. Accordingly, a more stringent bound may
possibly be placed if scalar-induced phenomena are absent
in binary pulsars and/or coalescing binaries. Similar reduc-
tion in the scalarization threshold is observed and elucidated
in scalar-tensor theory [37,38] but until now it was not
studied in detail in SGB gravity neither for BHs nor for NSs.
In addition, developing a similar universal relation for
rotating NSs will supplement in this direction, while we
expect that the deviations should be small for the spins of
currently observed pulsars based on the studies of other
universal relations [57–59].
Apart from the constraints that can be potentially set by

future observations in the aforementioned manner, meas-
uring the shrinking of the orbit of NS-white dwarf binaries
is reportedly able to place a limit on λ. This was illustrated
in a recent work [30] (see also [60]). Since there is already a
good number of such observed systems with a relatively
well-measured orbital decay due to gravitational wave
emission, it was obtained that roughly þλ≲ 24M⊙ and
−λ≲ 8M⊙. These limits are strongly dependent on the

EOS, though, since they do not employ an EOS universal
relations.

C. Relaxing observational constraints on SGB gravity
with a massive scalar field

If the above constraints are satisfied, it will be difficult to
observe any measurable deviation from GR in binary
mergers. The aforementioned bounds ought to be eased,
though, if the scalar field is massive since a mass ofmφ will
introduce a Yukawa suppression e−r=λcomp on the scalar field
with a Compton length-scale λcomp ¼ ℏ=mφ. A tiny mass of
mφ ¼ 10−16 eV is enough to evade the binary pulsar
observation since the associated λcomp ≃ 2 × 106 km is
much smaller than the orbital separation for the binary
pulsars cited above, while still allowing for large deviations
for merging NSs (e.g., [61,62]; see also below).
Interestingly, such tiny scalar field mass does not

change the stellar structure in any practical sense. In
Fig. 2, we plot the mass of scalarized NSs as a function
of the central energy density ϵc for three different
masses mφ¼0 eV, 10−11 eV, and 10−16 eV while fixing
λ¼10M⊙ð¼14.77 kmÞ, β ¼ 250 and ι ¼ −1. Only the
scalarized equilibria are plotted while the solutions with
φ ¼ 0 are omitted for better visualization. As seen, the
change in the NS equilibrium properties differs negligibly
even formφ ¼ 10−11 eV while the most significant change
is the point of bifurcation that moves to larger central
energy densities. This gives us the confidence that the
scalar field dynamics for a massive scalar field with
mφ ¼ 10−16 eV, that evades binary pulsar observations,
will be practically indistinguishable from the massless
case which allow us to consider values of λ larger than
the above mentioned constraints as demonstrated in the
next section.

FIG. 2. Stellar mass to central energy density (M⋆ − ϵc) curve
for equilibrium of scalarized NSs pertaining to the EOS APR4 in
the considered theory with parameters λ ¼ 10M⊙, β ¼ 250 and
ι ¼ −1. The blue sequence corresponds to NSs that are imbued
by a scalar field with a mass ofmφ ¼ 10−11 eV, while the red one
represents solutions with massless scalar field.
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D. Projected constraints in the massive scalar field case
by a network of observations

In the previous subsection, we discussed how even a tiny
scalar field mass can suppress the scalar gravitational
radiation for binary pulsars. The smaller the separation
between the stars, though, the larger the scalar field mass
should be in order to smear out the scalar-induced effects.
Thus, the constraints one can set on massive SGB theories
from the merger of compact objects are much stronger due
to the reduced separation. In this subsection, we put these
quantitative considerations on a more solid ground and
speculate on the strongest constraints could be placed by a
network of observations.
The inclusion of a scalar mass via a potential having the

form V ¼ 2m2
φφ

2 in the action (3) renders the equation,

∇μ∇μφ ¼ −
λ2

4

df
dφ

R2
GB þm2

φφ; ð16Þ

for the scalar field. For a small perturbation of φ, the right-
hand side can be approximated to give

∇μ∇μφ ≃
�
−
ιλ2

4
R2

GB þm2
φ

�
φ: ð17Þ

In addition, we find for a typical BNS that the value ofR2
GB

lies in the range of

−1 × 10−2M−4
⊙ ≲R2

GB ≲ 1 × 10−3M−4
⊙ ð18Þ

throughout the last stages of inspiral until the onset of
merging. During the merger, the magnitudes of the lowest
and highest values of R2

GB are significantly stretched by
almost an order of magnitude, which will then relax to the
values for the formed remnant. For this range (18) of
values, a mass such that

mφ >
λ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2

GBjmax

q

≈ 3.34 × 10−11
�

λ

10M⊙

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2

GBjmax

p
0.05M−2

⊙

!
eV ð19Þ

will then essentially quench the growth of scalar field
(cf. Fig. 3), where jR2

GBjmax denotes the maximum of
jR2

GBj. The reason is that the term in the brackets on the
right-hand side of Eq. (17) will become positive thus
forbidding the existence of any bounds state of the gener-
alized potential (11). The aim of the present paper, though,
is to investigate the dynamical scalarization. Therefore,
we have to restrict ourselves to ultralight scalar masses
≪ 10−11 eV given the canonical values of λ and curvature
for the performed simulation.
Therefore, the upper bound for the coupling strength

(λup) that could be obtained from a certain network of

observations, both binary pulsar and merger ones, depends
on the scalar mass. It is expressed as

λupðmφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2up;0 þ

4m2
φ

jR2
GBjmax

s
; ð20Þ

where λup;0 ¼ λupð0Þ is the bound for zero scalar field
mass. We note that this expression is applicable for ι ¼ �1.
In Fig. 3, we show how the bound in massless theory (i.e.,
λup;0) would be modified by mφ, where we see that the
constraint set for a massive theory does not deviate in a
noticeable way from what could be inferred for a massless
theory with mφ < 10−11 eV.

III. COALESCING BINARY NEUTRON STARS

Having recapped the formulas of SGB, introduced the
novel universal relations, illustrated how an EOS-insensitive
constraint could be placed and how a tiny scalar mass is
sufficient to relax the constraints on parameters, we now
proceed to the main part of the present paper, where we aim
at studying binary NS coalescence in SGB gravity with an
emphasis on dynamically triggered scalarization. In this
section, however, we consider only the mφ ¼ 0 case but the
dynamics of φ and the rendered scalar radiation would be
practically unchanged if the scalar mass is less than a few
times of 10−13 eV since the associated Compton wave-
length (≳103 km) is longer than the binary separation and
the wavelength of scalar waves in the late inspiralling phase
that we consider in this paper. For this purpose, the
simplified metric (8) for stationary and spherically sym-
metric spacetime should be generalized to describe the
spacetime where a coalescing binary is embedded. We
express the metric hereafter as

ds2 ¼ −αðt; xÞ2dt2 þ γijðt; xÞðdxi þ βidtÞðdxj þ βjdtÞ;
ð21Þ

FIG. 3. Upper bound on the coupling strength λ as a function of
mφ for several assumed values of λup;0, which is the bound if the
scalar field is massless. We assumed jR2

GBjmax ¼ 10−3M−4
⊙ .
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where the lapse function α, the shift vector βk, and the
induced metric on three-dimensional hypersurfaces γij vary
with time t and position x.
In the decoupling limit that we adopt in the present work,

we will ignore the influence of scalar field on the 3þ 1
decomposed Einstein field equations, thus leaving them
identical to those in GR. As commented in the introduction,
this approximation gives accurate results for the scalar field
dynamics in the cases where the scalar field’s magnitude is
limited to low or moderate values. In addition, the threshold
for scalarization of the GR solutions can be obtained
exactly within the decoupling limit, i.e., it is not influenced
by this approximation.
The field equation of the scalar field in 3þ 1 decom-

position has the form:

ð∂t − βk∂kÞφ ¼ −αKφ;

ð∂t − βk∂kÞKφ ¼ −αDiDiφ − ðDiαÞDiφþ αKKφ

−
ιαλ2

4
φe−βφ

2

R2
GB; ð22Þ

where K is the trace of the extrinsic curvature tensor Kij,
and Kφ ¼ −na∇aφ for na the unit vector normal to spatial
hypersurfaces. In the second equation we have used the
specific coupling (2). In addition, the Gauss-Bonnet invari-
ant R2

GB can be expressed as

R2
GB ¼ 8EijEij − 4ΩijkΩijk −

256π2

3
ðρh − PÞðρhþ 2PÞ;

ð23Þ

where the tensors Eij and Ωijk, defined by

Eij ¼ 3Rij þ KKij − Ki
lKlj −

16π

3
ρhγij

− 4π

�
Sij −

1

3
γijSkk

�
; ð24Þ

and

Ωklj ¼ DkKlj −DlKkj − 4πðγjkJl − γjlJkÞ; ð25Þ

characterise the electric and magnetic components of the
Weyl tensor. Here 3Rij is the Ricci tensor with respect to γij,
whose determinant is denoted as γ, and we have introduced

ρh ¼ Tμνnμnν; ð26Þ

Jk ¼ −Tμνnμγνk ¼ ρhwuk; ð27Þ

and

Sij ¼ Tμνγ
μ
iγ

ν
j ¼ ρhuiuj þ Pγij ð28Þ

with the Lorentz factor w ¼ −uμnμ.
Defining the trace-free extrinsic curvature by

Aij ¼ Kij −
1

3
γijK; ð29Þ

and its conformally related tensor Ãij ¼ W2Aij for
W ¼ γ−1=6, we can rewrite the tensors Eij and Ωijk as,

Eij¼ 3Rij−4π

�
Sij−

1

3
γ̃ijSklγ̃kl

�

þW−2
�
−
16π

3
ρhγ̃ijþ

K
3
Ãijþ

2K2

9
γ̃ij− Ãi

lÃlj

�
; ð30Þ

and

Ωklj ¼ −2W−3
�
Ãlj∂kW − Ãkj∂lW

�
þW−2

�
∂kÃlj − ∂lÃkj þ Γi

ljÃik − Γi
kjÃil

þ 1

3
ðγ̃lj∂kK − γ̃kj∂lKÞ − 4πðγ̃jkJl − γ̃jlJkÞ

�
; ð31Þ

respectivley, where Γi
jk are the Christoffel symbols with

respect to γij.

A. Numerical method

Here we briefly summarize the technical setting for
evolving binary NSs in the code SACRA-MPI, while we
refer the interested reader to the original articles [63,64] for
more details. An adaptive mesh-refinement (AMR) algo-
rithm with 2∶1 refinements is implemented to construct a
graded grid. For the simulations in the present article, the
grid structure is set under the mirror symmetry about the
orbital plane, and consists of 6 nonmoving, concentric
boxes for the whole binary. Within the finest fixed box,
two piles of moving boxes exist for each NS with each
graded in 4-levels. Adopting the Cartesian coordinate, one
box contains ð2N þ 1Þ × ð2N þ 1Þ × ðN þ 1Þ points cov-
ering the domain along the x-, y-, and z-axis, respectively.
The resolution is set by N, and the size of the finest box,
which is a moving box, is chosen to have the dimension
of 25.84 km × 25.84 km × 12.92 km.
The initial datum for the simulations in this work are

generated by an open source code FUKA [65,66], which is
designed for GR. Since we are adopting the decoupling
limit approximation, the initial data are exact for the
metric and the fluid variables while the scalar field initial
data is in the form of a tiny perturbation. Although both
NSs are always nonscalarized at the beginning of our
simulations, this inaccuracy is “corrected” relatively fast
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and the tachyonically unstable NS develops scalar field
exponentially over a certain timescale (typically ≲5 ms)
after the beginning of simulation. Not starting with
consistent scalar field initial data might be unsatisfactory
for accurate waveform generation [67] but is sufficient for
studying the onset of dynamical scalarization [23,43].
As the last remark of this section, we confirm the

convergence of each model listed in Table I; these models
will be described in detail in the following section. By
implementing three different grid resolutions for the sim-
ulations, we plot in Fig. 4 the maximum values of the scalar
field (φmax) as a function of the maximum rest-mass density
of the numerical domain (ρmax), which is the central density
of the heavier progenitors before merger and roughly that of
the merger remnant. We observe a good convergence for
the considered models, and we stick to N ¼ 62 as the
standard resolution in this article.

B. Dynamical scalarization

While the bifurcation point on the GR sequence of
isolated NS equilibria is determined solely by the parameter
λ for a given EOS, the ratio between the masses of the stars
in the binary, q ¼ m2=m1, will influence the onset of
dynamical scalarization; stipulating two binaries with the
same total mass but two different mass ratios, the binary
harboring the more massive NS will undergo dynamical
scalarization earlier owing to its lower value of λbif .
Dynamical scalarization is triggered by the enhanced
curvature of the binary as it gets closer to merger. In
particular, the variation in the Gauss-Bonnet invariant reads,

δR2
GB ∝

1

a6
∝ f4gw; ð32Þ

where a is the separation, and the last relation comes from
the Keplerian theory. The use of Keplerian orbit is a rough
estimate, while capturing well the leading order effect.
This variation can then be translated to a relation between
the reduction in the critical coupling function and the
GW frequency at the onset of dynamical scalarization,
expressed as

δð−λbifÞ ∝ f2gw;onset: ð33Þ

Although the coefficient for the above two proportional
relations depends on the EOS and thus dictates an EOS-
dependent late time enhancement ofR2

GB, this effect is still
present for any EOS possibly with a shift of the parameter
range where the phenomenon of interest happens. Since
the cause is of gravitational nature, the uncertainty in the
EOS is not expected to have a large effect on the dynamical
scalarization as long as the total mass of the binary and the
compactness of the individual stars is large enough. We
specify ourselves on the EOS APR4 hereafter, and opt to
quantify the effect of mass ratio when the chirp mass,

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

; ð34Þ

TABLE I. Source parameters relevant here for the GW170817-like binaries characterized by a fixed M ¼
1.186M⊙ with both NSs each having a mass in the range estimated by GW170817. The APR4 EOS is assumed for
all the involved NSs, and the theory takes the flavor of ι ¼ −1. We performed a handful of simulations for every
considered binaries by using several values of λ and two initial separations (the associated initial mass-scaled orbital
frequencies are presented as number pairs in the 6th column). For each separation, the used coupling strengths are
linearly and logarithmically even-sampled by 21 values in the two ranges listed in the last column, respectively.

Model m1 ðM⊙Þ m2 ðM⊙Þ −λbif;1=m1
−λbif;2=m2 Ωiniðm1 þm2Þ λ for simulations (M⊙)

A 1.365 1.360 9.890 9.967 (0.0270, 0.0224) [11.5,15] & [11.68,12]
B 1.625 1.149 6.768 13.950 (0.0276, 0.0229) [10.4,10.6] & [10.4,13]
C 1.890 1.002 4.598 18.098 (0.0292, 0.0243) [8.56,8.8] & [8.56,11.5]

FIG. 4. Maximum values of the scalar field as a function of the
maximum rest-mass density (φmax-ρmax) from late inspiral stages
to shortly after merger. Models A, B, and C in Table I are simulated
with three grid resolutions with N ¼ 42, 62, and 82, respectively.
The initial separation for the binaries is fixed to be 41.35 km while
the associated initial orbital frequencies are listed in the last
column of Table I. The coupling strength is chosen as
λ ¼ 17.42 km, 15.50 km, and 12.67 km for models A, B, and
C, respectively. The rest of theory parameters are set as β ¼ 200
and ι ¼ −1.
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is fixed. A motivation for this choice comes from the fact
that M can be estimated rather accurately from gravita-
tional waveforms (typically within an error of order
10−3%; see, e.g., [68]). We consider three binaries with
the chirp mass of the gravitational wave event GW170817
(i.e., M ¼ 1.186M⊙). Their properties are collated in
Table I, including the individual masses of the NS
members and the respective bifurcation threshold of −λ
of each of the binary component, viz. −λbif;1 and −λbif;2. We
consider only ι ¼ −1 for studying dynamical scalarization
in the present article. The results for ι ¼ 1, however, seem
to suggest otherwise, and will be studied in a sepa-
rate work.
Identifying the occurrence of scalarization as the

moment when the magnitude of the scalar field exceeds
10−4, in Fig. 5 we show the gravitational wave frequency at
the onset of scalarization as a function of the dimensionless
coupling strength −λ=m1. We consider two initial separa-
tions for each model so as to reinforce the dynamical origin
of scalarization. The associated initial orbital angular
frequencies Ωini are collated in the second last column
of Table I, where the two numbers for a model correspond
to two separations set to the initial data. The onset of
dynamical scalarization should not depend on the chosen
initial separation, while the spontaneous scalarization kicks
in at the beginning of the simulations regardless initial
separation and completes over a dynamical timescale. In
particular, the heavier (less massive) NS in each model is
spontaneously scalarized if the dimensionless coupling
strength that we employ in a particular simulation is greater
than the threshold −λbif;1=m1 (−λbif;2=m2) listed in the fourth
(fifth) column of Table I.

These thresholds corresponding to −λbif;1=m1 for each
binary are plotted by the vertical black lines in Fig. 5. On
the right with respect to this line, the massive NS
companion should always be scalarized irrespective of
whether it is isolated or in binary. On the other hand, this is
not the case for the region of small λ=m1 to the left, where
only dynamical scalarization can endow the NSs with a
scalar field.2 Indeed, this is the phenomenon we observe:
the scalarization kinks in at smaller binary separation, thus
larger gravitational-wave frequencies, for decreasing λ=m1.
Although we plot in Fig. 5 only the threshold of dynamical
scalarization in the primary since it is easier to be installed a
stable hair, we do witness a mutual scalarization for model
A, where the secondary has a more or less the same mass as
the primary.
A mismatch between the triangles and the filled circles in

Fig. 5 is observed for each model. This is expected
especially right to each vertical line because of the fact
that we do not start with correct scalar field initial data but
instead with a small scalar field perturbation. Thus, until the
system settles to a quasiequlibrium configuration on a
timescale dependent on λ, the initial binary separation will
influence the results. What is important, though, is that the
onset of the scalarization that has a significant dynamical
origin (left-end of each curves) is almost independent on
the initial separation with the exception of the transition
region in the vicinity of the bifurcation line.
As expected, the dynamical scalarization window is

larger than that for isolated NSs, and the difference between
them is maximal for equal mass binary (blue markers in
Fig. 5). If the asymmetry in the mass ratio is too large the
dynamical scalarization is much more difficult to develop
because the gravitational effect from the lighter NS to the
heavier companion becomes less important, and thus, its
threshold approaches the limit for the isolated NS (yellow
markers in Fig. 5). In addition, the tendency (33) is
overplotted as dashed line in Fig. 5 for each model.
To look at how the dynamical scalarization is activated by

ever-increasing maximum of ιR2
GB before merger, we now

focus on the case with the most pronounced mutual
interaction of the scalar field, viz. model A. We plot in
the top panel of Fig. 6 the evolution of the maximum of
ιR2

GB, which values ≲4 × 10−3M−4
⊙ up to the onset of

merging (at ∼12.18 ms), while the strength of it grows by a
factor of ≲7 then settles to a few hundredths shortly after
merger (at ∼18 ms). We plot in the bottom panel of Fig. 6
the evolution of the scalar field. When φmax hits 10−4 at
6.8 ms when ιR2

GB grows 3.5% from the initial value. In
addition, a scalarized NS formed aftermath the merger,
where the scalar field peaks at the remnant center with a

FIG. 5. Relation between the coupling strength and the gravi-
tational wave frequency at the occurrence of scalarization, which
is defined as the moment when the maximum of φ exceeds 10−4.
The black vertical lines show the mass-scaled threshold for
spontaneous scalarization of the heavier NS member for each
binaries listed as −λbif;1=m1 in Table I. Each simulation is labeled
by the model names listed in Table I with “close” denoting the
larger Ωini case and “far” otherwise. The dashed lines show the
tendency of the reduction of critical threshold, predicted by
the Keplerian orbit, as a leading-order estimate.

2Clearly, since the less massive companion has −λbif;2=
m2 > −λbif;1=m1, it is also for sure nonscalarized to the left of
the vertical line.
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value of φc ∼ 0.1, and the scalar field possesses a multipolar
structure.

C. Scalar radiation

The scalar radiation can be decomposed in the harmonic
manner, namely,

φðr; θ;ϕÞ ¼
X
lm

φlmðrÞ
h
0Ylmðθ;ϕÞ

i
ð35Þ

with the harmonic components defined as

φlmðrÞ ¼
I

φ
h
0Ȳlmðθ;ϕÞ

i
dΩ; ð36Þ

where sYlm is the spin-weighted spherical harmonics with
spin s and harmonic numbers l and m. As relevant to the
scalar-induced tensorial mode of gravitational waves, we
plot in the top panel of Fig. 7 the monopole moment of φ,
denoted as φ00, as a function of the retarded time with
respect to the beginning of simulations. In addition, the

quadruple scalar radiation, denoted as φ22, is shown in the
bottom panel, which kicks in after the dynamical scala-
rization. The wavelength of the scalar-radiation during the
late inspiral is a few tens of the total mass of the binary
(see, e.g., Sec. III. C of [63]). Thus, given that the total
mass of the considered binaries lies in the range
2.725–2.892M⊙, an extraction radius rex ¼ 300M⊙ should
adequately reside in the radiation zone. We extract φ22 at
three places in the radiation zone, where we see that the
premerger signals have an agreement at different distances.
On the other hand, the postmerger segments do not agree
with different sampling distances. The reason for this is
that in the present grid resolution, the grid spacing at the
extraction radii is too wide to well resolve the short
wavelength of postmerger scalar waves.
As for the leading order leakage of the orbital energy via

scalar channel, we show in Fig. 8 the dipole radiation, which
is supported by the difference of the scalar charge of the two
NSs [69,70], for the least (model A; top panel) and the most
(model C; bottom panel) asymmetric cases among the
considered binaries. We see that the dipole radiation in
the premerger phase is more significant for the latter model
due to the larger difference of the scalar charges of both
component. For the postmerger phase, however, we observe
an abrupt quenching for the model C since a prompt collapse

FIG. 6. Maxima of the Gauss-Bonnet invariant (top) and the
scalar field (bottom) for the binary Model A as functions of
simulation time. The insets zoom in the evolution of both
quantities in the first 11 ms. For both panels, theory parameters
are set as β ¼ 200, λ=m1 ¼ 8.79, and ι ¼ −1.

FIG. 7. Monopole (top) and quadruple (bottom) moments of
scalar field extracted at three different distances (in M⊙):
rex ¼ 300, 400, and 600. For both panels, the evolution is shown
with respect to retarded time since the beginning of simulations,
and the same binary and theory parameters as Fig. 6 are used.
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to BH ensues the merger. On the other hand, the hyper-
massive NS left behind the merger of binary A continuously
emits scalar waves, and, interestingly, the dipole radiation in
the postmerger stages can already be accurately traced by
the used resolution, in oppose to the case of quadrupole
moment, while the extraction is still not precise during
merger (cf. Fig. 8).
However, it should be noted that the scalar radiation

extracted here should not be taken as exact signal since
the simulation is carried out in the decoupling limit, where
the backreaction of scalar emission is ignored. The more
detailed study of the scalar waveform will be deferred to a
future work, while we leave some comments on the
implication of the absence of scalar radiation in the event
GW170817. Although the constrain on the dipole radiation
from GW170817 is not as stringent as that comes from
pulsar binaries [3] with current observatories, the future
detectors may have capability to push the constraints from
gravitational waves to higher accuracy. The implication of
the nondetection of such additional channel of energy flux
than GR in a future GW170817-like systems would then set
a bound of −λ=m1 < 8, as indicated by the result of model
A (Fig. 5). We note that model A is the most symmetric
binary among those satisfying the inferred source param-
eters. Thus, the most conservative constraint is obtained by
considering the symmetric model.

IV. CLOSING REMARKS

A. Conclusion

In a subclass of SGB, spontaneous scalarization can
occur for isolated NSs with a mass in a certain range, which
depends on coupling strength λ between the scalar field and
the Gauss-Bonnet invariant [Eq. (3)]. The considered
theory comes in two flavors with each featuring a different
sign of the coupling function (2). In particular, scalarized
NSs exist for both signs ι ¼ �1, while hairy BHs can be
realized only for the flavor ι ¼ 1 [13,24]. Focusing on NSs
as members in a coalescing binary with ι ¼ −1, we
numerically study the scalarization dynamically activated
by the curvature of the whole system, and the convergence
of the performed simulations is confirmed by running each
model with three resolutions (Fig. 4). For a given EOS and
stellar mass, there exists a critical coupling strength of the
scalar toR2

GB so as to allow for a scalarized state of the NS.
This threshold, however, will be reduced by an extent
depending on the mass ratio of the binary (Fig. 5) due to the
presence of a companion; in other words, a stable scalar
hair can develop in the primary of binary NSs for lower
values of the coupling parameters. In the presented results,
the consistency of dynamical scalarization is confirmed by
considering for each model two initial separations since
their onsets are independent on the initial state of the
binary, as expected (Fig. 5).
Although gravitational-wave and pulsar timing observa-

tions have already left a narrow parameter space for a
number of theories with a massless scalar field, these
current constraints can be dodged by a massive scalar field
with a mass as small as 10−16 eV (Sec. II D). As a matter of
fact, even for a scalar field mass as small as 10−11 eV the
effect on the structure of scalarized NSs is negligible
(Fig. 2), leaving the dynamics of the scalar field essentially
the same as massless theories. In line with this fact, we here
consider the theory as massless, while remarking that the
results are quantitatively indistinguishable for a scalar field
with up to the aforementioned mass.
Fixing the chirp mass to that of GW170817, three mass

ratios are considered, where model A is the most symmetric
case (i.e., closest to the equal mass scenario), and model C
is the most asymmetric possibility for the estimated mass
range of each star (Table I). The mutual interaction of the
scalar field is significant for a binary with mass ratio close
to 1 as suggested by the blue markers in Fig. 5. There, we
see the minimum of λ to allow for scalarization is sizable
shifted down by the companion, while, on the other hand,
the reduction in the threshold of coupling strength for
model C is marginal since the weak influence of the
secondary to the primary.
The associated scalar radiation is computed [Eqs. (35)

and (36)] for monopole and quadrupole moments (Fig. 7).
The scalar signal in the late inspiral phase has a frequency
being twice the orbital one. After merger, the scalar field

FIG. 8. Dipole moment of scalar field extracted at three
different distances (in M⊙): rex ¼ 300, 400, and 600 for model
A (top) and C (bottom). For both panels, the evolution is shown
with respect to retarded time since the beginning of simulations,
and the coupling strengths are chosen as λ=m1 ¼ 8.79 and 4.55
for the two models, respectively.
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oscillates at much higher frequencies, which may attribute
to the excitation of several orders of scalar modes.
However, the adopted grid resolution is too crude to well
capture the postmerger signal (bottom panel of Fig. 7). On
the other hand, the resolution is already sufficient for
extracting the postmerger dipole radiation (Fig. 8), which
attributes to the nonidentical scalar strength after the
scalarization in the two components.

B. Discussion

The studies above were performed for a coupling
function with ι ¼ −1 that does not allow black hole
scalarization in the static case, and is thus similar as a
scalarization mechanism and behavior to the classical
scalar-tensor theories. In addition, we have focused pri-
marily on the change of the threshold for dynamical
scalarization in comparison to the case of isolated NSs.
Our preliminary results show, though, the case when ι ¼ 1
shows very interesting and distinct phenomenology. It is
important to note that binary BHs may be a promising
system to set constraints on þλ given that BHs may be
scalarized to a greater extent than that accessible to NSs (cf.,
e.g., [10,13]), and there are more known BH binary merger
events than other types of binary systems; a relative work
will be our future endeavor. In addition, it will be interesting
to explore the possibility of spin-induced scalarization of the
merger remnant with ι ¼ −1. A detailed study of such
phenomenology, including its implications for distinguish-
ing between different flavors of the gravitational theory, is
currently underway.
Borrowing the experience from scalar-tensor theories,

the physical condition admitting the dynamical scalariza-
tion should correlate strongly to the critical orbital fre-
quency after which the binding energy of the binary defers
from the GR value (cf., Figs. 1 and 3 of [71]). In other
words, the quasiequilibrium sequence in the considered
SGB theory will deviate from that of GR for orbital
frequencies larger than the critical value. The binary will
thus keep abreast of a different evolution track afterwards.

Constructing quasiequilibrium sequence in SGB will be a
future pursue. To that purpose, our results of the threshold
for dynamical scalarization may serve to pick the most
suitable parameter for such investigation.
In this work, we have only considered nonrotating NS

members. Although a mild stellar spin does not influence
much the M⋆–R⋆ curve of scalarized NSs, a large spin can
greatly modify the profile of an equilibrium [72,73]. As an
example of the consequences, a rather distinct universal
relation between moment of inertia and quadrupole
moment is rendered [74]. Stellar spins may therefore
partially affect the onset of dynamical scalarization. It is
also important to note that we simulated the binary
evolution for massless scalar field, while a scalar mass
of mφ ≲ 10−11 eV will not alter the picture in any con-
ceivable way (Sec. II D). Nonetheless, the waveform may
be influenced by this amount of mφ to an extent that can
deteriorate the gravitational wave analysis. A study taking
into account the backreaction of scalar field in the Einstein
equations with a massive scalar field is therefore necessary
to investigate the waveform generated during the stages
right before merger.
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