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We study tidal disruption of white dwarfs in elliptic orbits with the eccenticity of ∼ 1/3–2/3 by a non-
spinning supermassive black hole of mass MBH = 105M� in fully general relativistic simulations targeting
the extreme mass-ratio inspiral leading eventually to tidal disruption. Numerical-relativity simulations are
performed by employing a suitable formulation in which the weak self-gravity of white dwarfs is accurately
solved. We reconfirm that tidal disruption occurs for white dwarfs of the typical mass of ∼ 0.6M� and radius
≈ 1.2×104 km near the marginally bound orbit around a non-spinning black hole with MBH . 4×105M�.
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I. INTRODUCTION

Tidal disruption of ordinary stars and/or white dwarfs by
supermassive black holes has been revealed to be one of
the major sources of bright electromagnetic transients (see,
e.g., Refs. [1–3]), which have been actively observed in the
last decade. In addition, gravitational waves emitted by
tidal disruption of white dwarfs closely orbiting supermas-
sive black holes could be observable by Laser Interferome-
ter Space Antenna (LISA) [4]. Electromagnetic signals asso-
ciated with tidal excitation (e.g., Ref. [5]) or mass stripping
(e.g., Refs. [6–9] for related works) or tidal disruption (e.g.,
Refs. [10, 11]) of white dwarfs can be an important electro-
magnetic counterpart of gravitational waves. Because the ex-
pected event rate is not so high [12] that the signal-to-noise ra-
tio of gravitational waves for the LISA sensitivity is unlikely
to be very high, the discovery of the possible electromagnetic
counterparts will help extracting gravitational waves from the
noisy data in the LISA mission.

The condition for mass shedding and tidal disruption during
the cross encounter of stars with supermassive black holes is
often described by the so-called β -parameter defined by

β :=
rt

rp
, (1)

where rp is the periastron radius for the orbit and rt is the
Hill’s radius [13] defined by

rt := R∗

(
MBH

M∗

)1/3

, (2)

with R∗ the stellar radius, M∗ the stellar mass, and MBH the
mass of the supermassive black hole, respectively. Since early
1990s (see, e.g., Refs. [14–16]), a large number of numeri-
cal simulations have been performed in the last three decades
(see, e.g., Refs. [17, 18] for reviews of the latest works and
Refs. [19–24] for some of the most advanced works). They
have shown that mass stripping can take place at the close
encounter if β is larger than about 0.5, and tidal disruption
can take place if β & 1 for stars in parabolic orbits (see, e.g.,
Refs. [17, 25, 26] for Newtonian simulation works, and also

early semi-analytical work [27, 28]). It is also shown that for
close orbits around a black hole, the general relativistic effect
can significantly reduce the critical value of β for the tidal dis-
ruption [23]. Indeed, general relativistic works show that for
circular orbits near the innermost stable circular orbit of black
holes, the mass shedding can occur even for β ∼ 0.4 [29, 30].

However, the previous analyses have been carried out in
Newtonian gravity or in relativistic gravity of a black hole
with Newtonian (or no) gravity for the companion star or in a
tidal approximation with a relativistic tidal potential [29–31].
To date, no fully general relativistic (the so-called numerical-
relativity) simulation, i.e., a simulation with no approximation
except for the finite differencing, has been done for the tidal
disruption problem with β . 1 (but see Refs. [32–34] for a
head-on and an off-axis collision).

Numerical-relativity simulation is suitable for the tidal dis-
ruption problem for the case that the orbit at the tidal disrup-
tion is highly general-relativistic. This is particularly the case
for tidal disruption of white dwarfs by supermassive black
holes because it can occur only for orbits very close to the
black-hole horizon. Advantages of the numerical-relativity
simulation are: (i) the redistribution of the energy and angu-
lar momentum of the star can be followed in a straightforward
manner and (ii) we can directly follow the matter motion after
the tidal disruption including the subsequent disk formation.

In this paper, we present a result of numerical-relativity
simulations for tidal disruption of white dwarfs of typical
mass (0.6–0.8M�) by a supermassive black hole with rela-
tively low mass (MBH = 105M�) for the first time. For sim-
plicity, the white dwarfs are modeled by the Γ = 5/3 poly-
tropic equation of state. As a first step toward more detailed
and systematic studies, we focus on tidal disruption of white
dwarfs in mildly elliptic orbits aiming at confirming that our
numerical-relativity approach is suitable for reproducing the
criteria of tidal disruption, which has been already investi-
gated in many previous works referred to above.

The paper is organized as follows. In Sec. II, we describe
our formulation for evolving gravitational fields, matter fields,
and for providing initial data of a star in elliptic orbits around
supermassive black holes. In Sec. III, numerical results are
presented paying particular attention to the criterion for tidal
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disruption. Section IV is devoted to a summary. Throughout
this paper, we use the geometrical units of c = 1 = G where
c and G are the speed of light and gravitational constant, re-
spectively. The Latin and Greek indices denote the space and
spacetime components, respectively.

II. BASIC EQUATIONS FOR THE TIME EVOLUTION

A. Gravitational field

First, we reformulate the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formalism [35, 36] in numerical relativity
to a form suitable for the simulation of high-mass ratio bina-
ries, in particular for accurately computing a weak self-gravity
of white dwarfs. Throughout this paper, high-mass ratio bi-
naries imply those composed of a very massive black hole of
mass MBH & 105M� and a white dwarf (or an ordinary star) of
mass of M∗ = O(M�) with the radius R∗ & 103 km, for which
the compactness defined by M∗/R∗ is smaller than 10−3.

We consider the two-body problem with a compact orbit of
the orbital separation r . 30MBH. With such setting, the mag-
nitude of the gravitational field generated by the black hole,
which is defined by gµν − ηµν is, of order MBH/r > 10−2.
Here gµν and ηµν are the spacetime metric and Minkowski
metric, respectively. On the other hand, the magnitude of
the gravitational field generated by white dwarfs and ordi-
nary stars is of order M∗/R∗ < 10−3, which is much smaller
than that by the black hole. To accurately preserve the nearly
equilibrium state of such stars during their orbits, an accu-
rate computation of the gravitational field by them is required.
However, if we simply solve Einstein’s equation, a numerical
error for the computation of the black-hole gravitational field
can significantly affect the gravitational field for the white
dwarfs/ordinary stars. To avoid this numerical problem, we
separate out the gravitational field into the black hole part and
other part, although we still solve fully non-linear equations.
The idea employed here is similar to that of Ref. [33], but we
develop a formalism based on the BSSN formalism.

In a version of the BSSN formalism [36], the basic equa-
tions are written in the form:

(∂t −β
k
∂k)γ̃i j =−2αÃi j + γ̃ik∂ jβ

k + γ̃ jk∂iβ
k− 2

3
γ̃i j∂kβ

k, (3)

(∂t −β
l
∂l)Ãi j =W 2

[
α

(
Ri j−

γi j

3
R k

k

)
−
(

DiD jα−
γi j

3
DkDk

α

)]
+α

(
KÃi j−2ÃikÃ k

j

)
+Ãk j∂iβ

k + Ãki∂ jβ
k− 2

3
Ãi j∂kβ

k

−8π
G
c4 αW 2

(
Si j−

1
3

γi jS k
k

)
, (4)

(∂t −β
l
∂l)W =

W
3

(
αK−∂kβ

k
)
, (5)

(∂t −β
l
∂l)K = α

[
Ãi jÃi j +

1
3

K2
]

−W 2
(

D̃kD̃k
α− ∂iW

W
γ̃

i j
∂ jα

)
+4π

G
c4 α

(
ρh +S k

k

)
, (6)

(∂t −β
l
∂l)Γ̃

i =−2Ãi j
∂ jα +2α

[
Γ̃

i
jkÃ jk

−2
3

γ̃
i j

∂ jK−8π
G
c4 γ̃

ikJk−3
∂ jW
W

Ãi j
]

−Γ̃
j
∂ jβ

i +
2
3

Γ̃
i
∂ jβ

j +
1
3

γ̃
ik

∂k∂ jβ
j + γ̃

jk
∂ j∂kβ

i,

(7)

where α is the lapse function, β j is the shift vector, γ̃i j is the
conformal three metric defined from the three metric γi j by
γ̃i j := γ−1/3γi j with γ = det(γi j), W := γ−1/6, Ãi j is the con-
formal trace-free extrinsic curvature defined from the extrin-
sic curvature Ki j by Ãi j = W 2(Ki j − γi jK/3) with K := K k

k ,
and Γ̃i := −∂ j γ̃

i j. ρh, Ji, and Si j are quantities defined from
the energy-momentum tensor, Tµν , by ρh = T µν nµ nν , Ji =
−T µν nµ γν i, and Si j = T µν γµiγν j with nµ the timelike unit
vector normal to spatial hypersurfaces.

In this problem, we employ the so-called puncture
gauge [37], in which the evolution equations for α and β i are
written as

∂tα =−2αK, (8)

∂tβ
i =

3
4

Bi, (9)

∂tBi = ∂t Γ̃
i−ηBBi, (10)

where Bi is an auxiliary three-component variable and ηB is a
constant of order M−1

BH.
By introducing a static black-hole solution for the geomet-

ric variables, α0, β i
0, γ̃0

i j, W0, Ã0
i j, and K0 and by writing all the

variables by

α = α0 +αs, (11)
β

i = β
i
0 +β

i
s , (12)

γ̃i j = γ̃
0
i j + γ̃

s
i j, (13)

W =W0 +Ws, (14)
Ãi j = Ã0

i j + Ãs
i j, (15)

K = K0 +Ks, (16)
Γ̃

i = Γ̃
i
0 + Γ̃

i
s, (17)

we then write down the equations for αs, β i
s , γ̃s

i j, Ws, Ãs
i j,

Ks, and Γ̃i
s (these are denoted by a representative variable Qs

as follows). Specifically, the evolution equations (4)–(7) and
(8)–(10) of the geometrical variables (denoted by a represen-
tative variable Q) are schematically written in the form

∂tQ = F(Q). (18)

Then, for the decomposition of Q = Q0 +Qs with F(Q0) = 0
(under the conditions of ∂tQ0 = 0), we write the equation for
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Qs as

∂tQs = F(Q0 +Qs)−F(Q0). (19)

Here, to explicitly guarantee that the right-hand side of the
evolution equation of Qs does not have the zeroth order terms
in Qs, we added the second-term in the right-hand side.

Any static black-hole solutions can be used for α0, β i
0, · · · ,

but in the BSSN formalism with the puncture gauge, the
metric relaxes to a solution in the limit hypersurface with
K0 = 0. Using such a trumpet-puncture black hole also allows
us to construct the initial data in the conformal-thin-sandwich
(CTS) formalism [38] (see Sec. II C). Thus, in the present for-
malism, it is appropriate to employ such a solution. In the
non-spinning black hole, the analytic solution is known and is
written as [39]

α0 =

√
1− 2MBH

R
+

27M4
BH

16R4 , (20)

β
i
0 =

3
√

3M2
BH

4R3 xi, (21)

W0 =
r
R
, (22)

γ̃
0
i j = δi j, i.e., Γ̃

i
0 = 0, (23)

Ã0
i j =

3
√

3M2
BH

R3

(
δi j−3

xix j

r2

)
, (24)

and K0 = 0 where R is a function of r determined by [40]

r =

2R+MBH +
√

4R2 +4MBHR+3M2
BH

4


×

 (4+3
√

2)(2R−3MBH)

8R+6MBH +3
√

8R2 +8MBHR+6M2
BH

1/
√

2

.(25)

We note that r = 0 corresponds to R = 3MBH/2 and the event
horizon is located at R = 2MBH (i.e., r ≈ 0.78MBH) in this
solution.

B. Hydrodynamics

In this paper we model white dwarfs simply by the poly-
tropic equation of state,

P = κρ
Γ, (26)

where P and ρ are the pressure and rest-mass density, respec-
tively, κ the polytropic constant, and Γ adiabatic index for
which we set to be 5/3. For the hydrodynamics, we solve the
continuity and Euler equations,

∇µ(ρuµ) = 0, (27)

∇µ T µ

k = 0, (28)

with ∇µ the covariant derivative with respect to gµν and

Tµν = (ρ +ρε +P)uµ uν +Pgµν , (29)

where ε and uµ are the specific internal energy and four ve-
locity, respectively. In this work we do not solve the en-
ergy equation, and determine ε simply by ε = κρΓ−1/(Γ−1)
which is derived from the condition that the specific entropy
is conserved for the fluid elements. The continuity and Eu-
ler equations are solved in the same scheme as that used in
Refs. [41, 42].

The motivation for using the polytropic equation of state
comes from the fact that our primary purpose of this paper is
to explore the tidal disruption condition for a relatively low
value of β < 1 and the formation of shocks by the tidal com-
pression does not play any role. We here focus only on the
process of tidal disruption and subsequent short-term evolu-
tion of the tidally disrupted material. After the tidal disrup-
tion, the fluid is highly elongated and during the long-term
evolution of the fluid elements with different specific energy
and angular momentum, they collide and shocks are likely to
be formed. For such a phase, the shock heating will play an
important role. Our plan is to follow this phase by solving the
energy equation with a more general equation of state.

C. Initial condition

First, we describe the formulation employed in this paper
for computing the initial data in which white dwarfs are ap-
proximately in an equilibrium state in their comoving frame.
From Eq. (28), we have

ρuµ
∇µ(hui)+∇iP = 0, (30)

where h is the specific enthalpy defined by h := 1+ ε +P/ρ .
To derive Eq. (30), we used Eq. (27).

For the isentropic fluid, the first law of thermodynamics is
written as

ρdh = dP, (31)

where dQ denotes the variation of a quantity Q in the fluid
rest frame. In the polytropic equations of state employed in
this work, we obtain the relation

h =
∫ dP

ρ
and lnh =

∫ dP
ρh

. (32)

In this situation, Eq. (30) is rewritten to

uµ
∇µ(hui)+∂ih = 0. (33)

Then, we define kµ := uµ/ut . Using this quantity, Eq. (33)
is written to

utLk(hui)−uthuµ ∇ikµ +∂ih = 0, (34)

where Lk denotes the Lie derivative with respect to kµ . The
second term of Eq. (34) is written as

uthuµ ∇ikµ = uthuµ ∇i(uµ/ut) = h∂i lnut , (35)

where we used uµ uµ =−1. Thus, Eq. (34) is written to

Lk(hui)+∂i(h/ut) = 0. (36)
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We consider an initial condition for a system composed
of a star of mass M∗ and radius R∗, for which the center is
located on the x-axis, around a massive black hole of mass
MBH � M∗ and MBH � R∗ which is located at a coordinate
origin. We assume that the star predominantly moves toward
the y-direction with the identical specific momentum. Thus
we set vi := ui/ut = −β i

0 +V i where V i = V δ i
y with V being

a constant to be determined. Here the term of β i
0 is added to

simplify the iteration process for computing quasiequilibrium
states. Then, ut is calculated from

ut =
[
α

2− γi j(vi +β
i)(v j +β

j)
]−1/2

. (37)

In the present context, Lk(hui) can be assumed to be zero
for i = y and z, because the star has momentally translation
invariance for the motion toward the y- and z-directions. By
contrast, with respect to the x-direction, the star receives the
force from the massive black hole. Since the radius of the
star, R∗, is much smaller than the orbital separation, x0, and
x0 is larger than the black-hole radius of ∼MBH, Lk(hui) for
the x–direction can be approximated by ∂i[A(x− x0)] where
we take A to be a constant, which should be approximately
written as∼−MBH/x2

0 for x0 > 0. Then, Eq. (33) is integrated
to give

A(x− x0)+
h
ut =C, (38)

where C is an integration constant. We note that Eq. (38) is not
an exact first integral of the Euler equation but can be consid-
ered as an approximate one for obtaining an initial condition
in which the star is in an approximate equilibrium state.

For computing initial conditions, we assume the line ele-
ments of the form

ds2 =−(α2−βkβ
k)dt2 +2βkdtdxk +ψ

4
δi jdxidx j, (39)

where ψ is the conformal factor. Using the Isenberg-Wilson-
Mathews formalism [43, 44], the basic equations are written
as

∆ψ =−2πρHψ
5− ψ−7

8
Âi jÂi j, (40)

∆(αψ) = 2παψ
5(ρH +2S)+

7
8

αψ
−7Âi jÂi j, (41)

∂iÂi
j = 8πJ jψ

6, (42)

where

ρH = ρh(αut)2−P, (43)

S = ρh[(αut)2−1]+3P, (44)
Ji = ρhαutui, (45)

and ∆ is the flat Laplacian. Âi j is defined from the extrinsic
curvature, Ãi j, by Âi j = ψ6Ãi j and K is set to be zero. Using
the CTS decomposition [45, 46] with trumpet-puncture

Âi j = Âi j
0 +

ψ6

2α
(Lβs)

i j , (46)

Equation (42) is rewritten as

∂ j∂
j
β

i
s +

1
3

δ
i j

∂ j∂kβ
k
s = 16παψ

4Ji

+ (Lβs)
i j

∂ j ln
(

αψ
−6
)
, (47)

where (Lβs)
i j =

(
δ ik∂kβ

j
s +δ jk∂kβ i

s− 2
3 δ i j∂kβ k

s

)
. Note that

although there are some works in constructing binary black
holes initial data with trumpet-puncture [47–49], this is, to
our knowledge, the first attempt combining the CTS decom-
position and puncture method with the limit (trumpet) hyper-
surface in constructing quasi-equilibrium initial data in non-
vacuum spacetime. We assume that the contribution to the
extrinsic curvature from the black hole is negligible because
the orbital momentum of the black hole is negligible in this
problem, and thus, we set the black hole at rest (however, it
is straightforward to take into account the small black-hole
motion [50] in our formalism.)

For a solution of the initial data, we have to determine the
free parameters, A, C, and V . In the polytropic equation of
state, we can consider κ as well as the central density ρc as
free parameters. In the following, we first consider that V and
rest mass of the star are input parameters and A, C, and κ are
parameters to be determined during the iteration process in
numerical computation. Our method to adjust κ to a desired
value will be described later.

To determine these three parameters we need three condi-
tions, for which we choose the following relations. First, we
fix the location of the surface of white dwarfs along the x-axis
as x = x1 (referred to as point 1) and x = x2 (point 2). Typ-
ically, we choose x1 + x2 = 2x0. At the surface, h = 1, and
thus, Eq. (38) gives

A(x1− x0)+
1
ut

1
= A(x2− x0)+

1
ut

2
=C, (48)

where ut
1 and ut

2 are the values of ut at points 1 and 2. In
addition, we fix the rest mass of the star which is defined by

m∗ =
∫

d3xραψ
6ut , (49)

where m∗ is approximately equal to the gravitational mass M∗
because the star is only weakly self-gravitating.

Using the condition (48), the values of C and A are deter-
mined, and subsequently, h is determined from Eq. (38). In
the polytropic equation of state, the rest-mass density is writ-
ten as

ρ =

(
(h−1)(Γ−1)

κΓ

)1/(Γ−1)

, (50)

and thus, from Eq. (49), κ is determined for given values of
m∗ and x2− x1. Once these free parameters are determined,
the rest-mass density are obtained from Eq. (50).

For realistic setting, we have to obtain the desired values
of the mass of the star and the value of κ . The value of κ is
controlled by varying the stellar diameter x2− x1 for a given
value of m∗.
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To take into account the effect of the black-hole gravity, we
employ the puncture formulation by setting

ψ = ψ0 +φ , (51)
αψ = α0ψ0 +X , (52)
β

k = β
k
0 +β

k
s , (53)

Âi j = Â0
i j + Âs

i j, (54)

where ψ0, α0, β k
0 , and Â0

i j denote the solutions of vacuum
Einstein’s equation shown already in Sec. II A. Then we nu-
merically solve the equations for φ , X , β k

s , and Âs
i j from

Eqs. (40), (41), (47), and (46). The initial data is prepared
using the octree-mg code [51], an open source multigrid li-
brary with an octree adaptive-mesh refinement (AMR) grid,
which we modified to support a fourth-order finite-difference
elliptic solver.

III. NUMERICAL SIMULATION

A. Set up

The simulation is performed using an AMR algorithm with
the equatorial symmetry imposed on the z = 0 (equatorial)
plane using the SACRA-TD code (for SACRA see Refs. [41, 42]).
We prepare two sets of finer domains, one of which comoves
with a white dwarf and the other of which is located around the
center and covers the massive black hole. Because the radius
of the white dwarf, R∗, is smaller than the black-hole horizon
radius ∼ MBH, we need to prepare more domains for resolv-
ing the white dwarf. In addition to these domains, we prepare
coarser domains that contain both the finer domains in their in-
side. All the domains are covered by (2N +1,2N +1,N +1)
grid points for (x,y,z) with N being an even number.

Specifically, each domain is labeled by i which runs as
0,1,2, · · · , ifix, · · · , iBH, · · · , imax. The grid resolution for the
domains with ifix≤ i≤ iBH is identical with that with iBH+1≤
i ≤ 2iBH− ifix + 1(< imax), respectively. For 0 ≤ i ≤ iBH, the
center of the domain is located at the origin, at which a black
hole is present. Strictly speaking, the black hole moves due
to the back reaction against the motion of the companion star,
but this motion is tiny because of the condition MBH � M∗.
For these domains, the i-th level covers a half cubic region of
[−Li : Li]× [−Li : Li]× [0 : Li] where Li = N∆xi, ∆xi is the
grid spacing for the i-th level, and the grid spacing for each
level is determined by ∆xi+1 = ∆xi/2 (i = 0,1,2, · · · , iBH− 1
and i = iBH+1, · · · , imax−1) with ∆xiBH+1 = ∆xifix and LiBH ∼
0.8MBH.

For the moving domains that cover the white dwarf, the cen-
ter is chosen to approximately agree with the location of the
density maximum. In the present context, the local density
maximum is approximately located along a geodesic around
the supermassive black hole. The size of the finest domain
with i= imax, Lmax, is chosen so that it is 1.3–1.5R∗. We check
the convergence of two different models with three grid res-
olutions as illustrated in Figure 1. Higher resolution is used
for model M8V17 to measure the spin up of the white dwarf
more accurately (see Sec. III B). We obtain good convergence

0.5

1.0

m
ax

/
0

N = 40
N = 60
N = 70

0 25 50 75 100 125
t (s)

0.90

0.95

1.00

m
ax

/
0

N = 60
N = 82
N = 102

FIG. 1. Maximum density as a function of time for model M7V165
(top) with N = 40, 60, 70, and model M8V17 (bottom) with N = 60,
82, 102. We find that a fair convergence is obtained with N = 60.

TABLE I. Models considered in this paper and the fate (last col-
umn). M7V16a and M7V16b correspond to the models with R∗ =
8.5× 103 and 7.0× 103 km, respectively. For other models, R∗ ≈
104(M∗/0.7M�)−1/3 km. rp and rp,A are periastron radius in the
present coordinates and the Schwarzschild coordinates, respectively.
TD and OC denote tidal disruption and appreciable oscillation of
white dwarfs, and NN denotes that no appreciable tidal effect is
found.

ID V M∗(M�) rp/MBH rp,A/MBH J/MBH β Fate

M6V16 0.160 0.6 4.401 5.456 3.775 0.72 TD
M7V16 0.160 0.7 4.401 5.456 3.775 0.65 TD
M7V16a 0.160 0.7 4.401 5.456 3.775 0.55 TD
M7V16b 0.160 0.7 4.401 5.456 3.775 0.45 TD/OC
M8V16 0.160 0.8 4.401 5.456 3.775 0.59 TD
M7V165 0.165 0.7 5.770 6.813 3.897 0.52 TD
M8V165 0.165 0.8 5.770 6.813 3.897 0.47 TD/OC
M6V17 0.170 0.6 7.030 8.065 4.019 0.49 TD/OC
M7V17 0.170 0.7 7.030 8.065 4.019 0.44 OC
M8V17 0.170 0.8 7.030 8.065 4.019 0.40 OC
M6V175 0.175 0.6 8.317 9.346 4.142 0.42 OC
M7V18 0.180 0.7 9.681 10.707 4.265 0.33 NN

for both models, and thus, we employ N = 60 as the standard
resolution in this paper.

B. Numerical results

In the present paper we focus on the case that the black-hole
mass is MBH = 105M�, the white-dwarf mass is M∗= 0.6, 0.7,
and 0.8M�. For the polytropic equation of state, the stellar
radius, R∗, is proportional to M(Γ−2)/(3Γ−4)

∗ for a fixed value of
κ . Thus, for Γ = 5/3, the stellar radius depends only weakly
on the stellar mass. In the present case we basically choose
the value of κ so that R∗≈ 1.0×104(M∗/0.7M�)−1/3 km. For
M∗ = 0.7M� and V = 0.160, we also prepare two additional
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FIG. 2. Geodesics for V = 0.160, 0.165, 0.170, 0.175 and 0.180
in the coordinates of g0

µν . Those only for one orbital period started
from x = 20MBH and y = z = 0 are plotted. The filled circle at the
center represents the black hole with the coordinate radius of its event
horizon r ≈ 0.78MBH.

cases where κ is chosen such that R∗= 8.5×103 km and R∗=
7.0×103 km.

The initial separation is set to be x0 = 20MBH (it is ≈
21.01MBH in the Schwarzschild coordinates), and V is cho-
sen to be 0.160, 0.165, 0.170, 0.175, and 0.180 (see Table I).
The corresponding specific angular momentum of the white
dwarf is J ≈ 3.7748, 3.8968, 4.0192, 4.142, and 4.2653MBH,
and the resulting periastron radius is rp/MBH(rp,A/MBH) =
4.401(5.456), 5.770 (6.813), 7.030 (8.065), 8.317 (9.346),
and 9.681 (10.707) where in the parenthesis the values in the
Schwarzschild coordinate, i.e., areal radius (hereafter denoted
by rp,A), are described. In Fig. 2, we plot the geodesics only
for one orbital period for V = 0.160, 0.165, 0.170, and 0.180.

With these settings, the white dwarf has an elliptic or-
bit around the black hole with the periastron at rp ≈ (4.4–
10)MBH, and thus, the eccentricity is approximately defined
by e = (x0− rp)/(x0 + rp) is ≈ 1/3–2/3. Here, x0(= 20MBH)
and rp are defined in the radial coordinates of the metric of
g0

µν , and thus, the values of e slightly change if we define it in
the areal coordinate (Schwarzschild radial coordinate).

For the models mentioned above, the value of β is in the
range between 0.33 and 0.72 and estimated by

β ≈ 0.59
(

R∗
104 km

)(
M∗

0.7M�

)−1/3

×
(

rp,A

6MBH

)−1( MBH

105M�

)−2/3

. (55)

For V = 0.160 and 0.165 with M∗ = 0.6–0.8M�, we find
0.50 ≤ β ≤ 0.7, and thus, the white dwarf is expected to be
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FIG. 3. The maximum density as a function of time for V = 0.160,
0.165, 0.170, and 0.180 with M∗ = 0.7M�. The maximum density is
normalized by the initial value denoted by ρ0.

strongly perturbed by the black-hole tidal field for M∗ = 0.6–
0.8M�. By contrast, for V = 0.180, β < 0.35 with M∗ =
0.7M�, and thus, the tidal force of the black hole is likely
to be too weak to perturb the white dwarf.

For V = 0.170, β ≈ 0.49, 0.44, and 0.40 with M∗ = 0.6,
0.7, and 0.8M� respectively. In these cases, tidal disruption
is not very likely to take place but the tidal force from the
black hole should induce the stellar oscillation on the white
dwarf. Because for Γ = 5/3, the stellar radius depends only
weakly on the stellar mass, the presence or absence of the tidal
disruption is likely to depend primarily on the value of V (or
the specific angular momentum of the white dwarfs) in the
present setting. In the following, we will show that our code
can reproduce all these expected phenomena.

Figure 3 plots the evolution of the maximum density for
V = 0.160, 0.165, 0.170, and 0.180 with M∗ = 0.7M�. We
note that for MBH = 105M�, the orbital period for these pa-
rameters are in the range from ≈ 220 s for V = 0.160 to
≈ 250 s for V = 0.180. The figure shows the results expected
in the previous paragraphs: For M7V16 and M7V165, the white
dwarfs are tidally disrupted during approaching the black hole
irrespective of the white-dwarf mass. For M7V17 (β = 0.44),
the white dwarf is perturbed by the black hole near the perias-
tron but it is not tidally disrupted. After the close encounter,
the white dwarf is in an oscillating state due to the instanta-
neous tidal force received from the black hole. By contrast,
for M7V18, the tidal effect from the black hole to the white
dwarf is negligible, and hence, the maximum density is ap-
proximately preserved to be constant.

In Fig. 3, the results of M7V16 (β = 0.65), M7V16a (β =
0.55) and M7V16b (β = 0.45) are also compared. As expected,
for the first two models, the white dwarfs are tidally disrupted,
while for the most compact white dwarf, the tidal disruption
does not occur although it is perturbed significantly by the
black-hole tidal force. This illustrates that the β parameter is
a good indicator for assessing whether tidal disruption takes
place or not irrespective of the white-dwarf radius.

Figure 4 shows the evolution of the maximum density when
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FIG. 5. A summary for the fate of the white dwarfs in the plane of M∗
and β . TD and OC denote that tidal disruption and appreciable oscil-
lation of the white dwarfs are observed after the close encounter of
the white dwarfs with the black hole. NN denotes that no appreciable
tidal effect is observed.

stellar oscillation is induced. For M6V17 (β = 0.49), the white
dwarf is significantly elongated by the tidal force from the
black hole; the central density is decreased to less than 50%
of the original value after passing through the periastron. As-
sociated with the tidal effect, the mass is lost from the white
dwarf. However, with the increase of the orbital radius, the
central density increases again, resulting in a less massive
white dwarf. This is also the case for M8V165 (β = 0.47) and
M7V16b (β = 0.45). These results indicate that the critical
value of β for the tidal disruption is ∼ 0.50 and the threshold
value for exciting a high-amplitude oscillation is β ∼ 0.45.
Figure 4 also shows that even for 0.40 . β . 0.45 an appre-
ciable oscillation is excited by the tidal force.

In Fig. 5 and Table I, we summarize the fates of white
dwarfs as a result of the tidal interaction. It is found that
for β & 0.5 tidal disruption takes place and for β & 0.4, the
white dwarfs are perturbed appreciably by the black-hole tidal
field. All these results agree approximately with the expecta-
tion from the previous studies.

For M7V16, tidal disruption takes place but only a small
fraction of the white dwarf matter falls into the black hole
because the fluid elements have specific angular momentum
large enough to escape capturing by the black hole. Most
of the tidally disrupted matter approximately maintains the
original elliptic orbit (see Fig. 6) although the matter has an
elongated profile. To clarify the eventual matter distribution
around the black hole, we will need to follow the matter mo-
tion for more than 10 orbits. This topic is one of our major
research targets in the future.

For 0.4 . β . 0.5, the white dwarf will be continuously
perturbed by the black-hole tidal force whenever it passes
through the periastron. In addition the angular momentum is
transported during the tidal interaction, and it will lead to the
transport of the orbital angular momentum to the white dwarf
resulting in a spin-up of it. According to a perturbation study
for the stellar encounter, the energy deposition during the tidal
interaction in one orbit is written approximately as [52]

∆Etid = ftid

(
M2
∗

R∗

)(
MBH

M∗

)2( R∗
rp,A

)6

= ftid

(
M2
∗

R∗

)
β

6. (56)

where ftid is a factor of O(0.1), which depends on β and
the equation of state. Associated with the energy deposi-
tion near the periastron, the angular momentum deposition is
also deposited. In one orbit it is approximately estimated by
∆Jspin ≈ ∆Etid/Ωp [53] where Ωp =

√
MBH/r3

p,A, and thus,

∆Jspin = fspinM∗
√

M∗R∗

(
MBH

M∗

)3/2( R∗
rp,A

)9/2

= fspinM∗
√

M∗R∗β 9/2, (57)

where fspin is a coefficient of the same order of the magnitude
of ftid.

Because the maximum spin angular momentum of the star
is approximately written as M∗

√
M∗R∗, we find that ∆Jspin can

be more than 0.1% of the maximum spin if a white dwarf
passes through a close orbit with β & 0.4. We approximate
the orbit angular momentum Jorbit and the spin angular mo-
mentum Jspin of the white dwarf as

Jorbit =Mh
(
〈x〉
〈
uy
〉
−〈y〉〈ux〉

)
, (58)

Jspin =
∫

d3xψ
6
ρh
[
(x−〈x〉)

(
uy−

〈
uy
〉)

−(y−〈y〉)(ux−〈ux〉)] , (59)

where Mh :=
∫

d3xψ6ρh and the volume average of quantity
q is defined as 〈q〉 := 1

Mh

∫
d3xψ6ρhq. In such decomposi-

tion, the sum of orbital and spin angular momentum equals
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as a function of time for the stel-
lar oscillation scenario (M8V17). This agrees with the analytic
expression Eq. (57) if fspin ∼ 0.1–0.3.

to the total angular momentum of the white dwarfs. We ana-
lyzed the spin angular momentum gain of the white dwarfs for
M8V17, and we indeed find ∆Jspin/(M∗

√
M∗R∗β 9/2)≈ 0.1–0.3

as shown in Fig. 7. Note that the spin up of white dwarf ∆Jspin

is about 10−6 of the total angular momentum, abd hence, it is
not easy to determine ∆Jspin accurately. Although we cannot

achieve a good convergence in ∆Jspin, we are able to obtain
a noticeable rise in Jspin during the close encounter, which
suggests fspin ∼ 0.1–0.3, which is consistent with the above
analytic result.

For close orbits, the tidal angular-momentum transport
can dominate over the orbital angular momentum loss by
gravitational-radiation reaction. Assuming that gravitational
waves are most efficiently emitted near the periastron at which
we may approximate the orbit to be circular, the angular mo-
mentum dissipation by gravitational waves in one orbit can be
written as [54]

∆JGW ≈
64π

5
M2

BHM2
∗

r2
p,A

(
1+

7e2

8

)
, (60)

where e denotes the eccentricity. Thus, the ratio of ∆Jtid to
∆JGW is written as

∆Jspin

∆JGW
≈ 23 fspin

(
rp,A

4MBH

)−5/2( MBH

105M�

)−3( M∗
0.7M�

)−2

×
(

R∗
104 km

)5(
1+

7e2

8

)−1

. (61)

Thus it is larger than unity for rp,A . 7MBH/c2, R∗ ≈ 104 km,
MBH = 105M�, M∗ = 0.7M�, and fspin = 0.2. This is also the
case for the ratio of ∆Etid/∆EGW where ∆EGW is the energy
dissipated by gravitational waves in one orbit. Thus, near the
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tidal disruption orbit, the orbital evolution would be primarily
determined not by the gravitatiomal-wave emission but by the
tidal effect. To clarify the eventual fate of such a white dwarf,
we obviously need a longterm accurate simulation. Such a
topic is one of our future targets.

We note that both ∆Jspin and ∆JGW are much smaller than
the orbital angular momentum of order M∗

√
MBHrp,A. Thus,

the cumulative effect of the tidal angular momentum trans-
port plays an important role just prior to the tidal disruption.
By repeated tidal interaction, the spin angular velocity of the
white dwarfs is likely to be enhanced up to ∼ M1/2

BH /r3/2
p =

β 3/2M1/2
∗ /R3/2

∗ . In addition, the stellar oscillation for which
the oscillation energy is comparable to or larger than the rota-
tional kinetic energy should be excited. As a result, mass loss
could be induced, resulting in the increase of the stellar radius
and enhancing the importance of tidal interaction. In this type
of the system, the tidal disruption is unlikely to take place by
one strong impact by the black-hole tidal force but likely to do
as a result of a secular increase of the stellar radius (see, e.g.,
Refs. [9, 55] for related studies).

IV. SUMMARY

We reported a new numerical-relativity code which enables
to explore tidal disruption of white dwarfs by a relatively
low-mass supermassive black hole. As a first step toward
more detailed future studies, we paid attention to the con-
dition for tidal disruption of white dwarfs with typical mass
range in elliptic orbits by a non-spinning supermassive black
hole. We showed that our code is capable of determining the
condition for the tidal disruption. As expected from previ-
ous general relativistic works (e.g., Refs. [23, 30]), the tidal
disruption takes place for β & 0.5 and an appreciable oscilla-
tion of the white dwarfs are induced by the black-hole tidal
effect for β & 0.4 for orbits close to the black hole in the
Γ = 5/3 polytropic equation of state. The critical value for
the onset of the tidal disruption is smaller than that obtained
by Newtonian analysis. For white dwarfs with M∗ = 0.6M�
and R∗ = 1.2× 104 km, β can be larger than 0.4 even for
MBH ≈ 4× 105M� if the periastron radius is rp,A = 4MBH.
Our result indicates that in such systems with a relatively low-
mass (but not intermediate-mass) supermassive black hole for
which gravitational waves in the late inspiral phase can be de-
tected by LISA [4], tidal disruption can occur for typical white
dwarfs. For spinning black holes with the dimensionless spin
parameter of & 0.9, rp,A can be smaller than ∼ 1.7MBH [56].
For such black holes, tidal disruption of typical-mass white
dwarfs may occur even for MBH ≈ 106M�. Investigation of
this possibility is a future issue.

There are several issues to be explored. The first one is

to extend our implemetation for spinning black holes. Since
no analytic solution is known for the spacetime of spinning
black holes on the limit hypersurface, we need to develop a
method to provide g0

µν for employing the formulation intro-
duced in this paper. One straightforward way to prepare such
data is just to numerically perform a simulation for a spin-
ning black hole (in vacuum) until the hypersurface reaches
the limit hypersurface as a first step, and then, the obtained
data are saved and used in the subsequent simulations with
white dwarfs. More subtle issue along this line is to prepare
the initial condition. For non-spinning black holes, we can
assume that the conformal flatness of the three metric, and
as a result, the initial-value equations are composed only of
elliptic-type equations with the flat Laplacian. For the spin-
ning black holes, the basic equations are composed of elliptic-
type equations of complicated Laplacian, and hence, the nu-
merical computation could be more demanding, although in
principle it would be still possible to obtain an initial condi-
tion. We plan to explore this strategy in the subsequent work.

For modeling realistic white dwarfs it is necessary to im-
plement a realistic equation of state. If we assume that the
temperature of the white dwarfs is sufficiently low and the
pressure is dominated by that of degenerate electrons, it is
straightforward to implement this.

More challenging issue is to follow the hydrodynamics of
tidally disrupted white-dwarf matter for a long term. After the
tidal disruption, the matter of the white dwarf is likely to move
around the black hole for many orbits. During such orbits, the
matter collides each other, and eventually, a compact disk will
be formed after the circularization. Such disks are likely to
be hot due to the shock heating, and thus, it can be a source
of electromagnetic counterparts of the tidal disruption. In the
presence of magnetic fields, magnetorotational instability [57]
occurs in the disk, and the magnetic fields will be amplified.
If the amplified magnetic field eventually penetrates the black
hole and if the black hole is appreciably spinning, a jet may
be launched through the Blandford-Znajek effect [58]. Af-
ter the amplification of the magnetic fields, a turbulent state
will be developed in the disk and mass ejection could occur
by the effective viscosity or magneto-centrifugal force [59].
The ejecta may be a source of electromagnetic signals. One
long-term issue is to investigate such scenarios by general rel-
ativistic magentohydrodynamics.
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