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Abstract

The beating of cilia and flagella, which relies on an efficient conversion of energy from ATP-

hydrolysis into mechanical work, offers a promising way to propel synthetic cargoes. Recent

experimental realizations of such micro-swimmers, in which micron-sized beads are pro-

pelled by isolated and demembranated flagella from the green algae Chlamydomonas rein-

hardtii (C. reinhardtii), revealed a variety of propulsion modes, depending in particular on the

calcium concentration. Here, we investigate theoretically and numerically the propulsion of

a bead as a function of the flagellar waveform and the attachment geometries between the

bead and the flagellum. To this end, we take advantage of the low Reynolds number of the

fluid flows generated by the micro-swimmer, which allows us to neglect fluid inertia. By

describing the flagellar waveform as a superposition of a static component and a propagat-

ing wave, and using resistive-force theory, we show that the asymmetric sideways attach-

ment of the flagellum to the bead makes a contribution to the rotational velocity of the micro-

swimmer that is comparable to the contribution caused by the static component of the flagel-

lar waveform. Remarkably, our analysis reveals the existence of a counter-intuitive propul-

sion regime in which an increase in the size of the cargo, and hence its drag, leads to an

increase in some components of the velocity of the bead. Finally, we discuss the relevance

of the uncovered mechanisms for the fabrication of synthetic, bio-actuated medical micro-

robots for targeted drug delivery.

1 Introduction

Cilia and flagella are fundamental units of motion in various biological systems. These hair-

like cellular protrusions share a common conserved 9+2 microtubule-based structure, and
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beat to accomplish a variety of biological tasks. Examples are surface fluid flows generated by

ciliary carpet in the human respiratory tract to remove pollutants [1], cilia-driven cerebrospi-

nal fluid transport in the mammalian brain to deliver nutrients and important signaling mole-

cules [2], ciliary flow in the Fallopian tube to assist sperm transport to the fertilization site [3],

and propulsion of green algae C. reinhardtii that swims by breaststroke-like motion of its two

flagella [4–6].

In recent years, there has been a great interest in the field of targeted drug delivery and

assisted fertilization to integrate cilia and flagella as efficient energy conversion modules into

bio-compatible micro-swimmers. Autonomous flagella-driven motility of various biological

species, mainly E. coli and sperm, are utilized as bio-actuators to provide an efficient cargo

transport [7–13]. More recently, in the experiments by Ahmad et al. [14], axonemally-driven

cargoes are fabricated by integration of isolated and demembranated flagella from C. reinhard-
tii (known as axonemes) with micron-sized beads (see Fig 1 and S1–S2 Videos). These ATP-

reactivated axonemes, with a length of approximately 10 μm, beat with an ATP-dependent fre-

quency [15–17] and have an asymmetric waveform that can best be described as a base-to-tip

traveling wave component superimposed on a circular arc with mean curvature of about -0.2

μm−1. The static component of the axonemal curvature leads to a curved swimming trajectory

of the micro-swimmer (see Fig 1D) [18–21]. In comparison, when the static curvature is

strongly reduced, a micro-swimmer swims along an essentially straight path [14, 22–24].

Importantly, the static curvature of axonemes is highly dependent on the calcium concentra-

tion. Namely, increasing the calcium concentration beyond 0.05 mM reduces the static curva-

ture of axonemes by one order of magnitude [14, 23, 24], thereby inducing a transition from

circular to straight swimming trajectories of axonemally-propelled beads. In addition to the

flagellar waveform, the axoneme-bead attachment geometry also plays a critical role in the

cargo propulsion speed. As emphasized in Ref. [14], axonemes can attach to the bead symmet-

rically, with their tangent vector at the contact point passing through the bead center, or asym-

metrically. Due to the limitations of 2D microscopy in Ref. [14], it was not experimentally

possible to distinguish between these two types of bead-axoneme attachment and 3D micros-

copy techniques [25] are required to quantify the effect of attachment geometry on the propul-

sion speed. This symmetric versus asymmetric attachment has consequences on cargo

propulsion dynamics and investigating this effect theoretically and numerically is the main

focus of the present work.

Here, we investigate the effect of (i) various flagellar wave components, (ii) the size of the

cargo (the bead), and (iii) the symmetric versus asymmetric flagellum-bead attachment on the

swimming dynamics of a bead that is propelled by a model flagellum. We restrict ourselves to

two-dimensional motion, which captures most of the experimental results in Ref. [14]. We use

an approximate description of the flagellum waveform as a combination of a static curvature

and a traveling wave component, and use resistive-force theory (RFT) [26, 27] to obtain analyt-

ical expressions for the translational and rotational velocities of a flagellum-propelled bead in

the limit of small amplitude of curvature waves. We compare the resulting expressions to the

results of simulations of the swimming trajectories. Our analysis reveals a surprising non-

monotonic behavior of the mean translational and rotational velocities of the axonemally-

driven bead as a function of the bead radius. Finally, our analysis shows that for a freely swim-

ming axoneme, which rotates predominantly with its static component of the axonemal wave-

form, sideways bead attachment is sufficient to generate mean rotational velocities comparable

to the rotation rates induced by the static curvature. This paper is structured as follows: first

we briefly describe RFT, which we use to calculate the propulsion speed of the micro-swimmer

as a function of the cargo size. In this approach, the specific details of the bead-axoneme

attachment geometry are taken into account in the drag matrices of the bead and the axoneme.
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Next, we present our analytical approximations and numerical simulations to show the effect

of the cargo size and of the symmetric versus asymmetric bead-axoneme attachment.

2 Materials and methods

2.1 RFT and calculations of mean translational and rotational velocities

The fluid flow generated by the swimming of small objects is characterized by very small Rey-

nolds numbers. In this regime, viscous forces dominate over inertia and non-reciprocal

motion is necessary to break the time-symmetry and generate propulsion (scallop theorem)

[28, 29]. The micro-swimmer in our system consists of an axoneme (a filament of characteris-

tic length L* 10 μm and radius 0.1 μm), which is attached at one end to a micron-sized bead

and swims in an aqueous solution of viscosity μ = 10−3 Pa s and density ρ = 103 kg m−3. Given

the characteristic axonemal wave velocity V = λ/T� 0.5 mm s−1 (calculated for a typical

Fig 1. An exemplary experiment showing a flagellum-based bead propulsion. A) An isolated and demembranated flagellum (known as axoneme)

from green algae C. reinhardtii is attached to a 1 micron-sized bead. The axoneme is reactivated with 1 mM ATP and beats at around 110 Hz (see S1

Video). B) Over time, the position of the center of the bead, its evolution represented by the blue curve, is propelled on a helical-like trajectory (see S2

Video). (C) The definition of the laboratory and the swimmer-fixed frame. As the flagellum beats, the micro-swimmer swims counterclockwise (CCW)

in the microscope’s field of view effectively in 2D. D) The traces of the basal (yellow line) and distal tip (cyan line) of the flagellum tracked for 198 sec.

(E) Curvature waves initiate at the basal end of axoneme (s = 0) which is attached to the bead, and propagate toward the distal tip (s = L) at the

frequency of about 110 Hz. F) The axonemal shapes averaged over one beat cycle results in a circular arc with mean curvature of about -0.2 μm−1. This

static component of the axonemal curvature results in a curved swimming trajectory and in the absence of this component, the bead is propelled on a

straight trajectory. The experimental techniques used to record the motion of the beads and the flagella are described in Ref. [14]. Please note that in this

experiment, the bead-axoneme attachment appears to be asymmetric but 3D microscopy techniques are required to distinguish a symmetric versus an

asymmetric attachment.

https://doi.org/10.1371/journal.pone.0279940.g001
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axonemal beat frequency of 50 Hz and a wavelength which is comparable to the axonemal con-

tour length L), the Reynolds number Re = ρLV/μ is small, no larger than* 0.005. In this phys-

ical regime, Newton’s laws then consist of an instantaneous balance between external and fluid

forces and torques exerted on the swimmer, i.e. Fext + Ffluid = 0 and τext + τfluid = 0. The force

Ffluid and torque τfluid exerted by the fluid on the axoneme-bead swimmer can be written as:

Ffluid ¼ FBead þ

Z L

0

ds FAxonemeðs; tÞ; ð1Þ

τfluid ¼ τBead þ

Z L

0

ds rðs; tÞ � FAxonemeðs; tÞ; ð2Þ

where Fbead and τBead are the hydrodynamic drag force and torque acting on the bead, and the

integrals over the contour length L of the axoneme calculate the total hydrodynamic force and

torque exerted by the fluid on the axoneme. The bead is propelled by the oscillatory shape

deformations of the ATP-reactivated axoneme. At any given time, we consider axoneme-bead

swimmer as a solid body with translational and rotational velocities U(t) and O(t) to be deter-

mined as explained below. Ffluid and τfluid can be separated into propulsive part due to the rela-

tive shape deformations of the axoneme in the body-fixed frame and the drag part [30]:

Ffluid

τfluid

 !

¼
Fprop

τprop

 !

� D
U

Ω

 !

¼
Fprop

τprop

 !

� ðDA þDBÞ
U

Ω

 !

; ð3Þ

where the 6 × 6 geometry-dependent drag matrix D is symmetric and non-singular (invertible)

and is composed of drag matrix of the axoneme DA and drag matrix of the bead DB. For a

freely swimming axoneme-bead, which experiences no external forces and torques, Ffluid and

τfluid must vanish. As explained in the introduction, we restrict ourselves to 2-dimensional

motion, which describes most of the experimental work described by Ref. [14]. In 2-dimen-

sions, D is reduced to a 3 × 3 matrix and Eq 3 can be reformulated as:

Ux

Uy

Oz

0

B
@

1

C
A ¼ ðDA þDBÞ

� 1

Fprop
x

Fprop
y

tpropz

0

B
@

1

C
A; ð4Þ

which we use to calculate translational and rotational velocities of the swimmer after determin-

ing the drag matrices DA and DB, and the propulsive forces and torque ðFprop
x ; Fprop

y ; tpropz Þ.

We calculate Fprop
x , Fprop

y and tpropz in the body-fixed frame by selecting the basal end of the

axoneme (bead-axoneme contact point) as the origin of the swimmer-fixed frame. As shown

in Figs 1C and 3A, we define the local tangent vector at contour length s = 0 as X-direction,

the local normal vector n as the Y-direction, and assume that z and Z are parallel. Here (x, y, z)
denote an orthogonal lab-frame basis. We define θ0(t) = θ(s = 0, t) as the angle between x and

X which gives the velocity of the bead in the laboratory frame as UBead� Lab
x ¼ cosy0ðtÞUx þ

siny0ðtÞUy and UBead� Lab
y ¼ � siny0ðtÞUx þ cosy0ðtÞUy. Furthermore, note that the instanta-

neous velocity of the axoneme in the lab frame is given by u = U + O × r(s, t) + u0, where u0 is

the deformation velocity of the flagellum in the body-fixed frame, U = (Ux, Uy, 0) and O = (0,

0,Oz) with Oz = dθ0(t)/dt.
To calculate Fprop

x , Fprop
y and tpropz for a given beating pattern of axoneme in the body-fixed

frame, we used the classical framework of resistive-force theory (RFT), which neglects long-

range hydrodynamic interactions between different parts of the flagellum as well as the
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inter-flagella interactions [26, 27]. In this theory, the flagellum is discretized as a set of small

rod-like segments moving with velocity u0(s, t) in the body-frame, as illustrated in Fig 2. The

propulsive force Fprop is proportional to the local center-line velocity components of each seg-

ment in parallel and perpendicular directions:

Fpropðs; tÞ ¼ zku0kðs; tÞ þ z?u
0
?
ðs; tÞ;

u0
k
ðs; tÞ ¼ ½ _rðs; tÞ:tðs; tÞ�tðs; tÞ;

u0
?
ðs; tÞ ¼ _rðs; tÞ � u0

k
ðs; tÞ;

ð5Þ

where u0
k

and u0
?

are the projections of the local velocity on the directions parallel and perpen-

dicular to the axoneme. The friction coefficients in parallel and perpendicular directions are

defined as zk = 4πμ/(ln(2L/a) + 0.5) and z? = 2zk [26], respectively. This anisotropic hydrody-

namic friction experienced by a cylindrical segment is the basis of propulsion by a flagellum.

For a water-like environment with dynamic viscosity μ = 10−3 Pa s, we obtain zk* 2.1 pN

msec/μm2. As zk 6¼ z?, Eq (5) implies that the resulting velocity is not parallel to the propulsive

force Fprop. In the following, we introduce the two dimensionless quantities:

Z �
zk

z?
and z

0

?
�
z?
m
: ð6Þ

The value of η will be fixed to 1/2 in the rest of the text [26]. The value of z
0

?
is determined by

the geometry of the axoneme. We take for the axoneme radius a realistic value of a = 0.1 μm

and a contour length of L = 10 μm.

Here is a brief summary of the steps in the RFT analysis: First, we translate and rotate the

axoneme such that the basal end is at position (0, 0) and the local tangent vector at s = 0 at any

Fig 2. A schematic representation of the Resistance Force Theory (RFT) calculation. A flagellum, depicted by the blue line, is decomposed into small

cylindrical segments moving at a velocity u0, which is decomposed as the sum of a tangential and a perpendicular component u0
k

and u0
?

in the body

frame. The propulsive force is obtained by multiplying u0
k

and u0
?

, with the friction coefficients zk and z?.

https://doi.org/10.1371/journal.pone.0279940.g002
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time t is along the x-axis (see Fig 1C). In this way, we lose the orientation information of the

axoneme at all the time points except for the initial configuration at time t = 0. Second, we cal-

culate propulsive forces and torque in the body-frame using RFT (Eq 5), and then use Eq 4 to

obtain translational velocities Ux, Uy as well as rotational velocity Oz of the axoneme. Now the

infinitesimal rotational matrix can be expressed as

dΓðtÞ ¼

cosðOzðtÞdtÞ � sinðOzðtÞdtÞ UxðtÞdt

sinðOzðtÞdtÞ cosðOzðtÞdtÞ UyðtÞdt

0 0 1

0

B
B
B
@

1

C
C
C
A
; ð7Þ

which we use to update the rotation matrix as Γ(t + dt) = Γ(t)dΓ(t), considering Γ(t = 0) to be

the unity matrix. Having the rotation matrix at time t, we obtain the configuration of the axo-

neme at time t from its shape at the body-fixed frame by multiplying the rotation matrix as

rlab-frame(s, t) = Γ(t)rbody-frame(s, t), which can then be compared with the experimental data.

Please note that rlab-frame(s, t) = (Xlab-frame(s, t), Ylab-frame(s, t), 1) is an input from experimental

data presenting the beating patterns in the laboratory frame.

S2 Fig in S1 File shows a comparison between the rotational and translational velocities

measured directly with the experimental data presented in Fig 1 and the results obtained with

RFT using the experimental beat pattern as input (as explained above). This comparison

shows a semi-quantitative agreement, therefore justifying our analysis in the framework of

RFT in section 3.2.

2.2 Drag matrix of a bead in 2D

Let us consider the two-dimensional geometry defined in Fig 3A. Note that the origin of the

swimmer-fixed frame is not at the bead center; rather it is selected to be at the bead-axoneme

contact point. In general, the tangent vector at position s = 0 of the axoneme, which defines

the X-axis, does not pass through the bead center located at (XB, YB) (note that X2
B þ Y

2
B ¼ R2).

This asymmetric bead-axoneme attachment is also observed in the experiments, as shown in

Fig 1A. We emphasize that the drag force is actually a distributed force, given by d f = σ.dA,

applied at the surface of the sphere, but symmetry implies that drag force effectively acts on the

bead center. We define the translational and rotational friction coefficients of the bead as νT =

6παtμR and νR = 8παrμR3, where μ = 10−3 Pa s is the dynamic viscosity of water and factors

αt = 1/(1 − 9(R/h)/16 + (R/h)3/8) and αr = 1/(1−(R/h)3/8) are corrections due to the fact that

axonemal-based bead propulsion occurs in the vicinity of a substrate [31]. Here R is the bead

radius (*0.5 μm), and h is the distance of the center of the bead to the substrate. Assuming

R/h* 1, we obtain αt = 16/9 and αr = 8/7. We now look at each component of velocity and

ask what force do we need to apply to counteract the viscous force and torque?

i. Translation in X-direction. In this case, we have (Ux, Uy, Oz) = (1, 0, 0) as shown in Fig 3B.

We need to apply a force in +X-direction to counteract the drag force as:

Fx ¼ 6patmR ¼ nT: ð8Þ

But we must also apply a torque in +Z-direction for the case illustrated in Fig 3B (where

YB< 0) to prevent rotation from occurring:

τ ¼ � τD ¼ � YBFx ¼ � nTYB; ð9Þ
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so we get:

ðFx; Fy; tzÞ ¼ ðnT; 0; � nTYBÞUx: ð10Þ

ii. Translation in Y-direction, see Fig 3C, corresponding to (Ux, Uy, Oz) = (0, 1, 0). We have Fx
= 0 and Fy = + 6παtμR = νT. Note that we need to apply a negative torque, and since XB< 0,

Fig 3. A) Definition of the swimmer-fixed frame, and illustration of the bead orientation with respect to the axoneme in 2D. The X-direction is given

by the tangent vector at s = 0 (basal end). We note that XB = −R and YB = 0 corresponds to a symmetric bead-axoneme attachment, where the tangent

vector at s = 0 passes through the bead center. B-D) Schematic drawing of the forces and torques that counteract the hydrodynamic drag force and

torque.

https://doi.org/10.1371/journal.pone.0279940.g003
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we have τz = + XBνT which gives:

ðFx; Fy; tzÞ ¼ ð0; nT; nTXBÞUy: ð11Þ

iii. Rotation around Z-direction, see Fig 3D, corresponding to (Ux, Uy, Oz) = (0, 0, 1). Before

looking at the forces, let us examine the motion. The rotation O
0

z ¼ 1 of the bead center

around the origin O also generates translational velocity U0 = O0 × R = (−Ry, Rx)Oz = (−YB,

XB). Note that for YB< 0 and XB< 0, we get U 0x > 0 and U 0y < 0 which is consistent.

Around the center of the bead, drag exerts force and torque FD and τD, as depicted in

Fig 3D:

FD ¼ � vTU
0 ¼ ðnTYB; � nTXBÞ; and ðtDÞz ¼ � nR: ð12Þ

To counteract the drag force, we must apply:

FD ¼ ð� nTYB; nTXBÞ; and tz ¼ nR þ FR ¼ nR þ nTR2; ð13Þ

so we obtain (Fx, Fy, τz) = (−νTYB, νTXB, νR + νTR2)Oz, where νT = 6παtμR and νR =

8παrμR3.

Now we combine parts (i), (ii) and (iii) to obtain:

Fx

Fy

tz

0

B
B
B
@

1

C
C
C
A
¼

nT 0 � nTYB

0 nT nTXB

� nTYB nTXB nR þ nTR2

0

B
B
B
@

1

C
C
C
A

Ux

Uy

Oz

0

B
B
B
@

1

C
C
C
A
: ð14Þ

For the special case of a symmetric attachment, with the center of the bead at (XB, YB) =

(−R, 0), Eq 14 simplifies to:

Fx

Fy

tz

0

B
B
B
@

1

C
C
C
A
¼

nT 0 0

0 nT � nTR

0 � nTR nR þ nTR2

0

B
B
B
@

1

C
C
C
A

Ux

Uy

Oz

0

B
B
B
@

1

C
C
C
A
: ð15Þ

Note that Eqs 14 and 15 present the forces and torque exerted by the bead on the fluid which

has opposite sign of the forces generated by the fluid on the bead, so the drag matrix of the

bead DB is given by:

DB ¼

� nT 0 nTYB

0 � nT � nTXB

nTYB � nTXB � nR � nTR2

0

B
B
B
@

1

C
C
C
A
: ð16Þ

The general form of the drag matrix in 3D is derived in the supplemental information.
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2.3 Drag matrix of an axoneme in 2D

Since the axoneme beats over time, its drag matrix, which relates force and velocity, is time-

dependent:

DA ¼

a11ðtÞ a12ðtÞ a13ðtÞ

a21ðtÞ a22ðtÞ a23ðtÞ

a31ðtÞ a32ðtÞ a33ðtÞ

0

B
B
B
@

1

C
C
C
A
: ð17Þ

Assume the motion is 2D, and consider the axonemal shapes at successive time points are

given in the body frame as rbody-frame(s, t) = (Xbody-frame(s, t), Ybody-frame(s, t), 1). This can be

either an input from the experimental data (see Fig 1F) or a predefined waveform of a model

axoneme, as introduced in Section 3.1. The experimental shapes shown in Fig 1 were recorded

with a high time resolution of 1000 Hz [14], and translated and rotated such that the tangent

vector at s = 0 is along the X-axis. Factoring out an overall rotation and translation in the labo-

ratory frame allows us to focus on the shape deformation of the axoneme.

To obtain the elements of the drag matrix for a given axonemal shape at time t, we work in

the framework of RFT and follow the same procedure as in the case of a bead, as described in

Sec. 2.2:

i. Global translation of the axoneme in X-direction. In this case, we have (Ux, Uy, Oz) = (1, 0,

0), which using Eq 5 and the given axonemal shape at time t, we first obtain the tangential

and perpendicular velocity components for each cylindrical segment of the axoneme. Sec-

ond, in the framework of RFT, we calculate the corresponding elemental force dF = (dFX(s,
t), dFY(s, t)) and torque dτZ(s, t) = rbody-frame(s, t) × dF exerted by each cylindrical segment

of the axoneme on the fluid to counteract the drag force. Third, to obtain the drag elements

a11, a21 and a31, we integrate the elemental force and torque over the whole contour length

of axoneme to calculate the total force and torque exerted by the axoneme on the fluid to

counteract the drag. The fluid drag force exerted on the axoneme has an opposite sign, thus:

a11 ¼ �

Z L

0

dFXðs; tÞ ; a21 ¼ �

Z L

0

dFYðs; tÞ; and a31 ¼ �

Z L

0

dtZðs; tÞ: ð18Þ

ii. Global translation of the axoneme in Y-direction. In this case, we have (Ux, Uy,Oz) = (0, 1,

0). The matrix elements a12, a22 and a32 are obtained as in (i).

iii. Global rotation of the axoneme around Z-direction, corresponding to (Ux, Uy, Oz) = (0, 0,

1). We note that the rotation of the axoneme around the origin O (see Fig 3A) with O =

(0, 0, Oz), also generates translational velocity components as O × rbody-frame(s, t) =

(−Ybody-frame(s, t), Xbody-frame(s, t)), that should be taken into account while using Eq 5 to

obtain the force and the torque that the axoneme exerts on the fluid to counteract the drag.

Similar to Eq 18, we can now calculate the drag elements a13, a23 and a33.
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3 Results

3.1 Analytical approximations of rotational and translational velocities of

an axonemally-propelled bead

The waveform of the axoneme is complex, and involves a combination of several components

[18, 20, 22, 32]. In this first subsection, we begin by discussing a simplified waveform, in order

to understand the elementary aspects of the propulsion of the bead. In practice, we approxi-

mate the waveform of the axoneme as a superposition of traveling wave component, with

amplitude C1, and a circular arc with mean curvature C0 [18, 22]:

Cðs; tÞ � C0 þ C1cosðo0t � ksÞ; ð19Þ

where ω0 = 2πf0, k = 2π/λ is the wave number. For our exemplary axoneme in Fig 1A, follow-

ing the method described in Ref. [16], we calculate the wavelength to be λ* 11.34 μm, which

is*34% larger than the axonemal contour length L* 8 μm. The approximate waveform

given by Eq 19 allows us to obtain explicit expressions for the propulsion velocity of the cargo.

This expression, however, neglects a small backwards wave component, propagating from tip-

to-base of the form C0
1
cosðo0t þ ksÞ [22], along with components with wave numbers equal to

n × k, where n is an integer > 1. The results of our analysis of beating axonemes [22] show that

back-propagating wave component is about 5–10 times smaller than the main base-to-tip

wave. For simplicity, this small component is neglected in this subsection. The analysis pre-

sented in Subsection 3.2, based on numerical simulations with the precise waveform of the

axonemes determined experimentally [14], qualitatively validates the approach presented here.

To obtain analytical expressions for the mean translational and rotational velocities of the

swimmer, we used RFT, as presented in the Materials and Methods section. As a further sim-

plification, we neglect in this section the difference between the wavelength of the beat pattern,

λ, and the size of the axoneme, L, and assume in the following L = λ. We determine the propul-

sion velocity up to the first order in C0, and the second order in C1.

3.1.1 Symmetric bead-axoneme attachment. Let us first consider the example of an axo-

neme attached symmetrically from the basal side to a bead, so that the tangent vector at s = 0

passes through the bead center (XB = −R, YB = 0, see Fig 3B). We determine the dependence of

the translational and rotational velocities of the swimmer on the dimensionless bead radius r =

R/L, with the simplified waveform of the axoneme given by Eq 19 and impose the force-free

and torque-free conditions in 2D. The drag matrix of the bead is given by Eq 16, with YB = 0

and XB = −R. The drag matrix of the axoneme is calculated as described in Sec. 2.2.

We approximate analytically the averaged angular and linear velocities in the swimmer-

fixed frame, as defined in Fig 1C, and we determine the propulsion velocities up to first order

in C0, and to second order in C1:

hOzi

o0

� b1ðr; z
0

?
; ZÞC0C

2

1
; ð20Þ

hUxi

Lo0

� b2ðr; z
0

?
; ZÞC2

1
; ð21Þ

hUyi

Lo0

� b3ðr; z
0

?
; ZÞC0C

2

1
: ð22Þ

The functions β1, β2 and β3 depend on the dimensionless quantities z
0

?
and η, defined by Eq 6,

and on r = R/L. The explicit expressions are presented in the supplemental information, Eqs.
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S16-S18. The results in the absence of the bead simplifies to:

hOzi

o0

� � 0:42C0C
2

1
; ð23Þ

hUxi

Lo0

� � 0:16C2

1
; ð24Þ

hUyi

Lo0

� þ0:038C0C
2

1
: ð25Þ

which are previously discussed in Refs. [19, 20]. The corresponding dependence on C0 and C1

is shown in Fig 4A–4F as full lines. We note that Eqs 20–22, in the absence of intrinsic curva-

ture C0 = 0, predict that the axoneme swims in a straight path with hUyi = 0, hUxi proportional

to the square of traveling wave component C1 [33–35] and the mean rotational velocity hOzi

vanishes (see the solid red line in Fig 4A and S3A Fig in S1 File).

In order to verify the quality of our analytical approximations, we also determined the

motion of the swimmer numerically using RFT, starting from the simplified waveform given

in Eq 19 and r = 0. The corresponding results are shown by the circular symbols in Fig 4A–4F.

The comparison between numerical simulations and the full analytical approximations pre-

sented in Eqs. S16-S18, shows a very good agreement at small values of C0 and C1, with devia-

tions at larger values. In addition, three exemplary trajectories (r = 0.1), determined from RFT,

are shown in Fig 4G–4I. The corresponding averaged rotational velocity hOzi of the model

swimmer is proportional to the square of the traveling wave component C1.

To investigate the dependency of the mean translational and rotational velocities of our

model swimmer on the bead size, r, Fig 5 shows the dependence of hOzi/ω0 (A and D), hUxi/
(Lω0) (B and E) and hUyi/(Lω0) (C and F), predicted by Eqs 20–22; see the full lines. We also

performed numerical simulations at different values of the bead radii, see the circular symbols.

As shown in Fig 5, there is a very good agreement between our numerical simulations and ana-

lytical approximations at small values of C1 (panels A-C) but deviations appear at larger values

(panels D-F). Remarkably, while hUxi decreases monotonically with the bead radius r = R/L,

both hOzi and hUyi exhibit a non-monotonic dependence. This behavior is counter-intuitive:

the drag exerted by the fluid on the sphere increases with the size of the bead, which in turn

increases dissipation. Based on this general remark, one expects the velocity of the swimmer to

go down when r increases. We nevertheless notice that not all three components of velocity

may increase when r increases.

To gain more insight on this anomalous behavior, we determined the asymptotic expres-

sions of Eqs 20–22 in two opposite limits of small and large bead radii. The corresponding

dependence is shown by the dashed lines in Fig 5. In the limit of very large bead radius, R� L
(small 1/r), we obtain a dependence of hUxi and hUyi as r−1, and of hOzi as r−2 (up to the higher

order corrections):

hOzi

o0

�
21C0C2

1
ðZ � 1Þz

0

?
r� 2

64
; ð26Þ

hUxi

Lo0

�
7C2

1
ðZ � 1Þz

0

?
r� 1

36864p2
ð576p � 7ð6Zþ 5Þz

0

?
r� 1Þ; ð27Þ
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hUyi

Lo0

� �
7C0C2

1
z
0

?
r� 1

36864p2
ð35pðZ � 1Þð4Zþ 21Þz

0

?
r� 1

þ720ð3Z � 1Þr� 1 � 96p2ðZð9r� 1 þ 30Þ � 11r� 1 � 30ÞÞ:

ð28Þ

In the opposite limit of small r (i.e. R� L), up to the second order in r, we obtain with the

realistic value of z
0

?
� 4:33:

hOzi

o0

� � 0:42C0C2
1
ð1 � 19:15r þ 513:77r2Þ; ð29Þ

Fig 4. A-F) Comparison between the analytical approximations for the rotational and translational velocities, Eqs 20–22 (solid lines), and the results of

numerical simulations (dots) for bead radius of R = 0. G-I) Numerical simulations performed with the simplified waveform to show the effect of C1. A

bead of radius R, with r = R/L = 0.1, is attached symmetrically to a model flagellum. At a fixed value of the static curvature, C0 = 0.2, the mean rotational

velocity decreases as the amplitude of dynamic mode C1 decreases from G) C1 = 0.7, to H) C1 = 0.5 and further to I) C1 = 0.2.

https://doi.org/10.1371/journal.pone.0279940.g004
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Fig 5. Anomalous flagella-based propulsion speed of a symmetrically attached bead as a function of its dimensionless radius r = R/L.

Contrary to expectations, in the region highlighted in cyan, the mean translational and rotational velocities increase with increasing the bead

radius. Analytical approximations (continuous lines calculated from Eqs 20–22) and simulations (dotted points) are performed at different

values of C1, while the intrinsic curvature of the axoneme is fixed at C0 = −0.01 in (A-C), and C0 = −0.1 in (D-F). The black dashed curves show

the trend expected in the limit of large bead radius (r = R/L> 1), as presented in Eqs 26–28. The black dashed lines with stars in magenta

illustrate the opposite limit of the small r, as given in Eqs 29–31.

https://doi.org/10.1371/journal.pone.0279940.g005
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hUxi

Lo0

� 0:16C2
1
ð1 � 29:85r þ 960:23r2Þ; ð30Þ

hUyi

Lo0

� 0:038C0C2
1
ð1þ 39:8r � 3941:65r2Þ: ð31Þ

The black dashed lines (with and without stars in pink color) in Fig 5 show the correspond-

ing asymptotic behavior. The limiting behavior is valid only for very small values of r. It never-

theless qualitatively captures the non-monotonous trend, observed at intermediate values of r.
The transition from the r2 dependence at small values of bead radius to the r−2-trend at large

values of r provides a qualitative explanation for the non-monotonous behavior, observed for

hOzi and hUyi.
3.1.2 The sideways bead-axoneme attachment contributes to the rotational velocity of

the swimmer. In the experiments in Ref. [14], it was frequently observed that the bead-axo-

neme attachment was asymmetric, i.e. the tangent vector of the axoneme at s = 0 does not pass

through the bead center. This case is schematically illustrated in Fig 3A, where it results in a

value of YB 6¼ 0. Interestingly, our analytical approximations and simulations show that this

asymmetric bead-axoneme attachment is enough to rotate the axoneme, so the presence of the

static curvature or the second harmonic is not necessary for rotation to occur.

For this analysis, we consider the 2D geometry where the center of the bead is at position

XB and YB, measured with respect to the coordinate system defined at the bead-axoneme con-

tact point (Figs 1C and 3A). We will use here the dimensionless coordinates xB = XB/L and yB
= YB/L (note that x2

B þ y
2
B ¼ ðR=LÞ

2
¼ r2). The drag matrix of the bead is given by Eq 16,

where we specify the value of YB 6¼ 0 corresponding to the asymmetric attachment. The beat-

ing of the axoneme is described by Eq 19 in terms of a traveling wave component C1 and

intrinsic curvature C0. Similar to the case of a symmetric bead-axoneme attachment in Section

3.1.1, we calculate the mean rotational and translational velocities of an axonemally-driven

bead by combining the drag matrix of the bead and the axoneme (see Materials and methods).

The results up to the leading order in C0 and C1 can be expressed as:

hOzi=o0 � ða1ðZ; z
0

?
; yb; rÞ þ a

0

1
ðZ; z

0

?
; yb; rÞC0ÞC

2

1
; ð32Þ

hUxi=Lo0 � ða2ðZ; z
0

?
; yb; rÞ þ a

0

2
ðZ; z

0

?
; yb; rÞC0ÞC

2

1
; ð33Þ

hUyi=Lo0 � ða3ðZ; z
0

?
; yb; rÞ þ a

0

3
ðZ; z

0

?
; yb; rÞC0ÞC

2

1
ð34Þ

where η and z
0

?
are defined by Eq 6, r = R/L, and yb = Yb/L. When the attachment is symmetric

(yB = 0), symmetry considerations impose that:

a1ðZ; z
0

?
; yb ¼ 0; rÞ ¼ 0 and a3ðZ; z

0

?
; yb ¼ 0; rÞ ¼ 0 ; ð35Þ

which expresses the fact that in the absence of C0, both hOzi and hUyi are zero. This is also con-

sistent with previous expressions of hOzi and hUyi when the attachment is symmetric, see Eqs

26,28,29 and 31. In contrast, when the attachment is not symmetric (yB 6¼ 0), the coefficients

a1ðZ; z
0

?
; yB; rÞ and a3ðZ; z

0

?
; yB; rÞ become non zero, which implies that the system rotates

(hOzi6¼0) and has a nonzero velocity component hUyi6¼0 even when C0 = 0. This clearly shows

the importance of the asymmetric bead-axoneme attachment.

This is illustrated by Fig 6, which shows the translational and rotational velocities of the

swimmer for different values of C0 and C1 and a sideways bead attachment of xb = 0 and
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yb = −r, as shown schematically in Fig 7B. The full analytic forms of αi and a0i (i = 1, 2, 3) are

very long and not particularly informative, so we only present closed form expressions for the

coefficients αi, defined by Eqs 32–34, when C0 = 0 in the supporting information, see Section

3. In particular, Eq 22 shows the closed form of α1. For α2 and α3, Eqs. S23- S24) show the

expressions for the even more restricted case where C0 = 0 and yb = −r.
We also performed numerical simulations to study the effect of an asymmetric bead-axo-

neme attachment on the swimming motion (see Fig 7). In these simulations, the model

Fig 6. The mean rotational and translational velocities of a bead which is asymmetrically attached to an axoneme with yb = −r and xb = 0

for different values of C1, as a function of the dimensionless ratio r = R/L. The mean curvature C0 is −0.01 in panels A-C and −0.1 for panels

D-F. For a sketch of the bead-axoneme attachment geometry see Fig 7B.

https://doi.org/10.1371/journal.pone.0279940.g006
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axoneme has only the traveling wave component C1 and it swims in a straight path if the bead

is attached symmetrically i.e. when yB = 0; see Fig 7A and S3 Video. An asymmetric bead-axo-

neme attachment causes the axoneme to rotate, as illustrated by Fig 7B and 7C; see also the S4

and S5 Videos. Thus, consistent with Eqs 32–34, our numerical simulations show that an

asymmetric attachment of the axoneme to the bead causes rotation of the swimmer, even in

the absence of static curvature (C0 = 0).

It is interesting to compare the effect of the intrinsic curvature (Eq. S16 with r = 0) versus

asymmetric bead attachment (Eq 32 with C0 = 0) on the rotational velocity of the swimmer. To

this end, Fig 7D presents a comparison between the influence on the rotational velocity, hOzi,

of an asymmetric attachment, as a function of yB (lower horizontal and left vertical axes; black

line), and of intrinsic curvature, C0 (upper horizontal and right vertical axes; red line). The

results presented in Fig 7D show that the contribution of the asymmetry in the attachment to

Fig 7. A-C) Asymmetric versus symmetric bead attachment to an axoneme with a beat pattern consisting only of the traveling wave component

C1 (C0 = 0 in Eq 19). While the axoneme in panel A, to which the bead is symmetrically attached, swims on a straight path (S3 Video), the axonemes in

panel B (S4 Video) and C (S5 Video), with an asymmetric bead attachment, swim on curved paths. D) Comparison of the effect of the asymmetric bead

attachment (in black) as a function of yb = YB/L versus the effect of the intrinsic curvature C0 (in red) on hOzi. E) The averaged angular velocity hOzi

changes non-monotonically with yb for different bead radii. XB and YB are the coordinates of the bead center in the swimmer-fixed reference frame.

Parameters are η = 0.5, z
0

?
¼ 4:33 and C1 = 0.1.

https://doi.org/10.1371/journal.pone.0279940.g007
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hOzi is comparable to that of the intrinsic curvature, C0. We also observe that, as shown in Fig

7E, the maximum rotational velocity is found at values of yb close to −r.

3.2 Analysis with the experimental waveform

To confirm that the predictions of the previous subsection of the existence of an anomalous

propulsion regime and of a rotation induced by asymmetric cargo attachment is general and

not limited to the very simplified waveform given by Eq 19, we also used the experimental beat

patterns and performed RFT simulations to compute mean translational and rotational veloci-

ties of an axonemally-propelled bead for both asymmetric and symmetric bead-axoneme

attachment and various bead radii.

For this purpose, we used the experimental beat pattern shown in Fig 3A of Ref. [14] (see S6

Video). As explained in our recent studies [14, 22], we performed principal component analy-

sis (PCA) of the experimental beat patterns, and then, decomposed the eigenmodes as Fourier

series. Our analysis reveals that the traveling curvature waves can be decomposed into a static

component C0 and a leading traveling wave component of amplitude C1 that coexist with

standing waves at the traveling wave number and at multiples of this wave number (higher

harmonics). This Fourier analysis of the experimental data indeed justifies the decomposition

of the waveform as defined in Eq 19 for our analytical study.

The results of our determination of the mean translational and rotational velocities as a

function of the bead radius is shown in Fig 8. Although the results are quantitatively different

Fig 8. Experimental beat pattern presented in Ref. [14] (see S6 Video) are used to calculate rotational and translational velocities of an

axonemally-propelled bead attached (A) symmetrically at YB = 0, XB = −R, (B) asymmetrically at YB = R, XB = 0 (C) asymmetrically at YB = −R,

XB = 0. Anomalous propulsion regimes are highlighted in cyan color. Red circles mark the experimental bead size of R/L*0.05 and the corresponding

rotational velocities. Note that the trend observed in panel A is consistent with the trend predicted by our analytical calculations with a simplified

waveform for a symmetric bead-axoneme attachment as shown in Fig 5.

https://doi.org/10.1371/journal.pone.0279940.g008
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from those in Fig 5 obtained with the simplified waveform given by Eq 19, the variations of

hOzi and one of the translational velocity show a non-monotonic dependence on r = R/L for

the case when the attachment is symmetric, as shown in Fig 8A. The results obtained with the

experimentally realistic waveform are therefore qualitatively consistent with those obtained

with the simplified waveform, Eq 19.

In the case of an asymmetric attachment, depending on the sign of the static curvature of

the axoneme C0 and the position at which the bead is attached, one may observe an increase or

decrease in the overall mean rotational velocities. For the axoneme in Fig 8, C0 is negative and

the sideways bead attachment at YB = R (Fig 8B) acts against the rotation induced by the intrin-

sic curvature C0. The opposite happens in Fig 8C where the bead attachment at YB = −R ampli-

fies the rotational velocity of the axoneme. We also note that the anomalous propulsion regime

is more pronounced in panel C where the bead is attached sideways at YB = −R.

Furthermore, in the right panels of Fig 8A–8C, the measured values of hOzi/ω0 using RFT

at the experimental bead size of R = 0.5 μm (so the ratio R/L = 0.05), are indicated by red cir-

cles. We note that in this experiment (see S6 Video) the axoneme globally rotates around 2π in

the time interval of *650 msec, and with f0 = 38.21 Hz, results to hOzi/ω0*0.04, which is

larger than the measured RFT values of 0.025, 0.020 and 0.029, corresponding to different

bead-axoneme attachment geometries in panels A-C, respectively. Overall, we observe a semi-

quantitative agreement between the RFT predicted and the experimentally measured values of

hOzi/ω0.

An important conclusion in Ref. [14] is that at higher calcium concentration, the mean cur-

vature C0 is strongly reduced, leading to a strong reduction of hOzi. For this reason, we also

considered the beat patterns from the experiment in Fig 3D of Ref. [14] at higher calcium

concentration (S7 Video), to study the influence of the flagellar waveform on the propulsion

of the swimmer, both with symmetric and asymmetric bead attachments. The results, pre-

sented in Fig 9 also demonstrate the existence of an anomalous propulsion regimes as

highlighted by the bands in cyan color in the three graphs on the right. The experimental value

of hOzi/ω0 * 0.004 (total rotation of * π/4 in 1299 msec; see S7 Video) is slightly larger than

the values 0.0024, 0.0029 and 0.0028 in panels A-C, respectively, which are highlighted by the

red circles in Fig 9A–9C. Finally, comparing Figs 8 and 9 shows that, as expected, the depen-

dence of the mean translational and rotational velocities on the bead size is highly sensitive to

the flagellar waveform.

4 Conclusions

In this work, we have studied analytically and by numerical simulations the motion of a bead

propelled by a model flagellum. We used data from our previous experimental study in which

isolated and demembranated flagella of the green alga C. reinhardtii were reactivated with

ATP to propel a bead. [14]. In this work, we observed two distinct regimes of bead propulsion

depending on the calcium concentration. The first regime describes the bead motion along a

curved trajectory which is observed in experiments at zero or very small concentration of cal-

cium ions (less than 0.02 mM). In the second regime and at higher calcium concentrations, the

cargo is propelled along a straight trajectory, at an averaged velocity as high as *20 μm/sec,

comparable to the typical human sperm migration speed in mucus [36]. Calcium ions are

known to affect the flagellar waveform by reducing the mean curvature (C0) of axonemes in a

dose-dependent manner [22, 23], thereby inducing a transition from circular to straight swim-

ming trajectories.

To characterize the motion, we first used a simplified waveform to describe the axonemal

shapes which is composed of a traveling wave component propagating along a circular arc
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(Eq 19). This simplified waveform allows us to obtain analytical expressions for the transla-

tional and rotational velocities of an axonemally-propelled bead in the limit of small ampli-

tudes of curvature waves. The rotational velocity of an axoneme is predominately controlled

by its mean curvature C0. As shown in Ref. [19], the second harmonics (as well as higher har-

monics of even order) of the flagellar waveform also contribute to the rotational velocity of an

axoneme, although more weakly (at higher orders). Remarkably, our analysis with the simpli-

fied waveform predicts a non-monotonous dependence of the rotational velocity, and/or of

some of the components of the translational velocity as a function of the size of the bead.

Namely, some of these components may increase when the size of the bead, hence the overall

drag, increases, see Fig 5. It is also very interesting to note that the translational velocity com-

ponents Ux and Uy are nearly saturated for a fairly large range of cargo size.

Further, we used our experimental beat patterns from Ref. [14] to demonstrate that this

counter-intuitive regime is not limited to the simplified waveform and also exists for wave-

forms closer to the experimental ones. This anomalous propulsion regime has also been pre-

dicted for a model sperm-like swimmer with a zero mean curvature, propelled by a traveling

wave component. Consistent with this, we also observed anomalous regimes using our experi-

mental beat patterns from Ref. [14] at an increased calcium concentration (0.1 mM instead

of 0 mM), in which the mean curvature of axonemes is significantly reduced (by a factor of

about 10).

Fig 9. Experimental beat pattern reported in Ref. [14] with 0.1 mM [Ca2+] and [ATP] = 80 μM (see S7 Video) are used to calculate the mean

rotational and translational velocities of an axonemally-driven bead attached (A) symmetrically at YB = 0, XB = −R (B) asymmetrically at YB = R,

XB = 0, and (C) asymmetrically at YB = −R, XB = 0. Anomalous propulsion regimes are highlighted in cyan color. Red circles mark the experimental

bead radius of R/L = 0.05 and the corresponding values of hOzi/ω0 (see S7 Video). Note that the general trend in panel A is consistent with the analytical

analysis presented in Fig 5 for a symmetric bead attachment.

https://doi.org/10.1371/journal.pone.0279940.g009
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An anomalous cargo transport regime was also predicted in biofilm forming bacteria Pseu-
domonas aeruginosa (PA14) [12, 13], where swimming is driven by multiple (on average two)

rotating helical flagella (length*4 μm) that can bundle to propel the bacterium in a corkscrew-

like motion or unbundle to change direction, exhibiting a run-and-tumble swimming pattern

[37]. This anomalous behavior is expected to exist for a hypothetical mutant of PA14 which has

a larger (around three times) size than the wild type. This up-scaling of bacteria size results in a

larger rotational drag coefficient of the flagellum, compared to that of the bacterial body, which

in Ref. [12] appears to be as criterion for anomalous propulsion. Whether such a hypothetical

large-scale bacterium exists is an open question. However, this anomalous propulsion regime

could be important in bacterial swimming in polymeric solutions, where due to steric interac-

tions between flagella and polymers, the rotational drag coefficient of the flagella can become

larger than that of the bacterial body, fulfilling the criteria for anomalous propulsion. Thus, as

experimentally observed and contrary to our expectations, the swimming speed of bacteria in

the polymeric solutions can increase [38, 39]. In our system, however, we are not able to obtain

a simple analytical criteria for the anomalous propulsion as it results from the full calculations

which include inverting the full time-dependent, 3 × 3 drag matrix, DA + DB, see Eqs 16 and 17

of the bead-axoneme swimmer. From a general physics perspective, we remark that the anoma-

lous regime corresponds to a change in the partitioning between translation (in the two physi-

cal directions) and rotation as R increases, so that some components may increase with R over

a range while other components decrease or remain almost constant over a fairly large range of

the cargo size, as imposed by the overall increase of the drag due to the bead.

Furthermore, our analysis shows that asymmetric cargo-axoneme attachment provides a

contribution to the rotational velocity, comparable to that of the mean curvature of the flagel-

lum. In other words, a sperm-like beating flagellum without mean curvature and second har-

monic swims in a curved trajectory if it is attached sideways to a cargo. In our experiments

[14], the limitations due to the 2D imaging technique prevented us from precisely distinguish-

ing symmetric versus asymmetric bead-axoneme attachments. Indeed, in a 2D-projected

image, a symmetric bead-axoneme attachment could in reality be an asymmetric one. More-

over, as the bead-axoneme swimmer goes slightly out of focus, the attachment in some frames

seems to be symmetric and in other frames asymmetric. The 3D microscopy techniques uti-

lized in Ref. [25] are necessary to distinguish a symmetric from an asymmetric axoneme-bead

attachment. This 3D characterization is absolutely essential to experimentally prove the anom-

alous behavior predicted by our analysis with a simplified waveform as well as with the experi-

mental beat patterns. Although in Ref. [14], we performed few experiments with beads of

diameters of 1, 2 and 3 μm, we are unable to verify the validity of the predicted anomalous

trend because the 2D microscopy does not allow us to distinguish between symmetric and

asymmetric bead-axoneme attachment.

Finally, it is important to note that in our analysis we have assumed that the presence of the

bead (load) does not affect the waveform of the flagellum. S4 Fig in S1 File shows the hydrody-

namic force distribution along the contour length of a flagellum with a given waveform at a

fixed time and for different bead radii, and indeed we see that the force distribution depends

on the size of the bead. These tangential and perpendicular components of the hydrodynamic

force (which vary with the bead size) might feedback into the activity of the dynein molecular

motors and thereby, change the flagellar waveform. By taking the product of the force distribu-

tion with the velocity distribution and integrating, we find the hydrodynamic energy dissipa-

tion to range between 0.01 ×* 10−15 J/s (r = 0) and 0.17 × 10−15 J/s (r = 0.5). From the energy

budget point of view, the ATP consumption measurements at the single-axoneme level [15]

show that the energy required to generate elastic deformation in an axoneme is one order of

magnitude larger than hydrodynamic dissipation. The WT active Chlamydomonas axonemes
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consume approximately 106 ATP molecules/s, corresponding to an energy consumption of

8.1 × 10−14 J/s [15]. It is estimated that this energy is expended primarily for elastic deforma-

tion of the flagellum and not for overcoming viscous drag, as they calculate the viscous losses

as 6.4 × 10−15 J/s [15]. This suggests that the feedback effect of hydrodynamic drag on motor

activity might be negligible. In-depth studies to incorporate the feedback between motor activ-

ity and hydrodynamic forces require a microscopic description of flagellar dynamics and are

the subject of our future work.

The design and fabrication of synthetic micro-swimmers is a challenging task in the grow-

ing field of smart drug delivery, and has recently become a multidisciplinary effort involving

physicists, biologists, chemists and materials scientists. Our theoretical analysis as well as

numerical simulations reveal the existence of an anomalous cargo transport regime, where

contrary to expectation, the flagellar-propelled cargo rotates faster as we increase the cargo

size. This counter-intuitive behavior may play a crucial role in the design of future artificial fla-

gellar-based propulsion systems, where targeted transport of cargo is the goal and higher rota-

tional speeds could reduce the efficiency of directional propulsion. Finally, our analysis also

highlights the contribution of the asymmetric cargo-flagellum attachment in the rotational

velocity of the micro-swimmer. This turning mechanism should be also taken into account in

manufacturing bio-inspired synthetic swimmers where a directional targeted motion is critical

for delivery of drug-loaded cargoes.

Supporting information

S1 File. Supplementary material to the manuscript.

(PDF)

S1 Video. Experiment: An axonemally-driven bead. An isolated and demembranated flagel-

lum from green algae C. reinhardtii is attached to a 1 micron-sized bead. The axoneme is reac-

tivated with 1 mM ATP and beats at around 110 Hz.

(MOV)

S2 Video. Experiment: Bead trajectory. Trajectory of the bead in S1 Video. Over time, the

bead is propelled on a helical-like trajectory (blue curve).

(MOV)

S3 Video. Simulations: Symmetric versus asymmetric bead-axoneme attachment. The sim-

ulation of a bead symmetrically attached to a flagellum shows that it swims on a straight path.

The flagellar beat pattern consists only of the traveling wave component C1 (C0 = 0); see also

Fig 7A.

(MOV)

S4 Video. Simulations: Symmetric versus asymmetric bead-axoneme attachment. The sim-

ulation of a bead asymmetrically attached to a flagellum shows that it swims on a curved path.

The flagellar beat pattern consists only of the traveling wave component C1 (C0 = 0); see also

Fig 7B.

(MOV)

S5 Video. Simulations: Symmetric versus asymmetric bead-axoneme attachment. The sim-

ulation of a bead asymmetrically attached to a flagellum shows that it swims on a curved path.

The flagellar beat pattern consists only of the traveling wave component C1 (C0 = 0); see also

Fig 7C.

(MOV)
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S6 Video. Experiment without calcium. Experimental beat pattern reported in Ref. [14] used

for the analysis in Fig 8. Here [Ca2+] = 0 mM and [ATP] = 80 μM.

(MOV)

S7 Video. Experiment with calcium. Experimental beat pattern reported in Ref. [14] with

[Ca2+] = 0.1 mM and [ATP] = 80 μM.

(MOV)
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