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Discovery of a cytochrome P450
enzyme catalyzing the formation
of spirooxindole alkaloid scaffold
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Zhicheng Xia4, Trinh-Don Nguyen1 and Thu-Thuy T. Dang1*

1Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna,
BC, Canada, 2Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology,
Jena, Germany, 3Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom,
4Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
Spirooxindole alkaloids feature a unique scaffold of an oxindole ring sharing an

atom with a heterocyclic moiety. These compounds display an extensive range of

biological activities such as anticancer, antibiotics, and anti-hypertension. Despite

their structural and functional significance, the establishment and rationale of the

spirooxindole scaffold biosynthesis are yet to be elucidated. Herein, we report the

discovery and characterization of a cytochrome P450 enzyme from kratom

(Mitragyna speciosa) responsible for the formation of the spirooxindole alkaloids

3-epi-corynoxeine (3R, 7R) and isocorynoxeine (3S, 7S) from the corynanthe-type

(3R)-secoyohimbane precursors. Expression of the newly discovered enzyme in

Saccharomyces cerevisiae yeast allows for the efficient in vivo and in vitro

production of spirooxindoles. This discovery highlights the versatility of plant

cytochrome P450 enzymes in building unusual alkaloid scaffolds and opens a

gateway to access the prestigious spirooxindole pharmacophore and

its derivatives.

KEYWORDS
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1 Introduction

Spirooxindole alkaloids constitute a subclass of monoterpenoid indole alkaloids (MIAs)

with a substituted carbonyl group at the C-2 position in the indole ring (Figure 1A). Since the

first isolation of a spirooxindole alkaloid from the root of yellow jessamine (Gelsemium

sempervirens) in 1870, many spirooxindole alkaloids have been reported from various plant

genera, includingMitragyna, Rauwolfia, and Vinca (Bindra, 1973) (Supplementary Figure 1).

The majority of spirooxindole alkaloids feature the unique spirooxindole scaffold in which

the oxindole ring shares a single atom at the C-3 position with a cycloalkyl or a heterocyclic

moiety (Zhou et al., 2020) derived from monoterpenoid indole alkaloids biosynthesis. As a

valuable pharmacophore, spirooxindoles have recently attracted significant attention from

chemists and biochemists for their diverse range of bioactivities. Examples include the

tetracyclic corynoxeine and isocorynoxeine used in treating hypertension and stroke (Zhao
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et al., 2016), corynoxine and its isomer corynoxine B as potential

agents to treat Parkinson’s disease (Chen et al., 2021), and

mitraphylline with promising anti-tumour activity (Supplementary

Figure 1) (Garcıá Giménez et al., 2010). Kratom (Mitragyna speciosa)

and cat’s claw (Uncaria rhynchophylla) from the plant family
Frontiers in Plant Science 02
Rubiaceae are well known for their spirooxindole alkaloid contents

and thus have been the focus in studying spirooxindole biosynthesis.

However, the low abundance of spirooxindole alkaloids in these

plants (Manwill et al., 2022) makes biosynthetic elucidation a

formidable task. Typically, spirooxindole alkaloids occur in pairs of
A

B

FIGURE 1

(A) Proposed biosynthesis of spirooxindole alkaloids from monoterpenoid indole alkaloid precursors in kratom (Mitragyna speciosa). The dotted arrows
represent the unknown enzymatic steps. (B) Proposed oxidative rearrangement in the formation of spirooxindole alkaloids.
A

B

SCHEME 1

(A) Proposed mechanism for the formation of spirooxindole via (semi-)pinacol rearrangement. (B) The isomerization of spirooxindoles via intramolecular
Mannich reactions (Laus et al., 1996; Flores-Bocanegra et al., 2020). The red and blue dots correspond to C-3 and C-7, respectively.
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interconvertible stereoisomers as the C-3–C-7 bond of the p-

aminolactam group is prone to cleavage and reformation

(Figure 1B) (Ahmad and Salim, 2015). The distinct stereogenic

centers of the polycyclic scaffolds are the key feature contributing to

the diversity of spirooxindole structures. Generally, the known

spirooxindoles from M. speciosa are classified into two main

s t ruc tura l types : s ecoyoh imbane- type / t e t racyc l i c and

heteroyohimbane-type/pentacyclic structures (Figure 1A) (Bindra,

1973). While the underlying biochemistry is unknown, the

spirooxindole group formation is speculated to be the result of an

oxidative rearrangement at C-7 and C-3 positions in the tetrahydro-

b-carboline moiety of the indole precursor in M. species (Figure 1B)

(Shavel and Zinnes, 1962). Recent isotopic labelling studies supported

that spirooxindole alkaloids could be generated in a one-step

oxidative rearrangement from the tetrahydro-b-carboline moiety of

seco- and hetero-yohimbine-type alkaloids such as corynantheine

methyl ether and ajmalicine (Lopes et al., 2019). Among oxidative

enzymes, cytochrome P450 enzymes (CYPs) are ubiquitous in plant

specialized metabolism (Nguyen and Dang, 2021), especially

members of the CYP71 family are key drivers of MIA

diversification from simple seco- and hetero-yohimbine to various

scaffolds, including sarpagan (Dang et al., 2018), strychnos (Tatsis

et al., 2017; Hong et al., 2022; Wang et al., 2022), akuammilan (Wang

et al., 2022), iboga (Farrow et al., 2019), and aspidosperma (Caputi

et al., 2018; Qu et al., 2018). Therefore, we hypothesized that a CYP71

catalyzes the oxidative rearrangement of tetrahydro-b-carbolines to
spirooxindoles. Using available M. speciosa transcriptome and

genome (Brose et al., 2021) and OrthoFinder (Emms and Kelly,

2015), we identified and characterized a CYP71 enzyme that

converts a secoyohimbine scaffold to a spirooxindole scaffold. This

discovery opens a window into the largely unknown biosynthesis of

spirooxindole alkaloids and offers a pioneering biocatalyst for

sustainable synthetic routes of spirooxindoles from the tetrahydro-

b-carboline scaffold.
2 Materials and methods

2.1 Identification, cloning of candidates and
protein expression

Transcriptomes of spirooxindole alkaloids-producing plants (M.

speciosa, Rauwolfia serpentina, and G. sempervirens), MIAs-

producing but spirooxindole alkaloids-free plants (Camptotheca

acuminata, Amsonia hubrichtii, Cinchona ledgeriana, Nothapodytes

nimmoniana, Ophiorrhiza pumila, and Catharanthus roseus) and a

MIAs-free plant (Arabidopsis thaliana) are publicly available from the

Medicinal Plant Genomic Resources (http://mpgr.uga.edu/), the

PhytoMetaSyn database (https://bioinformatics.tugraz.at/

phytometasyn/), TAIR10 (https://www.arabidopsis.org/), and

previous studies (Rather et al., 2018; Rai et al., 2021). TransDecoder

was used to generate the proteomes, which were subsequently

subjected to OrthoFinder for orthogroups analysis. Candidates

belonging to the CYP71 family that act on the B ring of the indole

moiety were selected to test for activities in the spirooxindole scaffold

formation. We focused on the orthogroups containing CYP

orthologues unique to M. speciosa (MsCYP). The phylogenetic tree
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of the MsCYP candidates with other reported CYPs involved in the

biosynthesis of MIAs from different species was constructed by the

Geneious Tree Builder program in the Geneious Prime software

package (Biomatters). The amino acid sequence alignment of the

MsCYP candidates was performed by the Geneious Prime software

package (Biomatters). The open reading frames of MsCYP candidates

were obtained from the available transcriptome (Brose et al., 2021).

The sequences combining overhangs of SpeI and NotI restriction sites

at the multiple cloning site 1 of the pESC-Leu2d plasmid were

synthesized by TwistBioscience (CA, USA) (Ro et al., 2008; Nguyen

et al., 2021). The constructs were inserted into pESC already

containing the required redox partner cytochrome P450 reductase

(CPR) (Ro et al., 2008) by using 5X In-Fusion cloning system (Takara

Bio USA Inc.). The yeast strain YPL 150 C:PEP4KO was used for

heterologous expression of the CYP candidates following the

procedure described before (Nguyen et al., 2022).
2.2 Enzyme assays

The in vivo CYP activity screening assays were conducted using

the established protocol for yeast whole-cell assays in the 96-well plate

(Nguyen et al., 2022). Various MIA alkaloid substrates were fed at a

final concentration of 10µM into the yeast cultures for 48 h

(Supplementary Figure 13). The in vitro assays were conducted in

different buffers: 1 M citrate pH 4, 1 M citrate pH 5, 1 MHEPES pH 6,

1 M HEPES pH 7, 1 M HEPES pH 8, 1 M Tris pH 9, and 1 M Tris pH

10. The in vitro reaction condition was performed with 100 µL of 100

µM buffer, 250 µM NADPH, 10 mg total microsomal protein, and 10

µM hirsuteine at 37 °C for 1 h. The yeast cells containing plasmid

without CYP construct were used as empty vector controls. The

reaction supernatants were collected by centrifugation and filtration

with a 0.2 µm syringe filter (Sartorius). The supernatants were

injected to ultra-performance liquid chromatography (UPLC)

coupled with a Xevo TQ-S Cronos Triple Quadrupole Mass

Spectrometer (MS). All UPLC-MS analyses were conducted on an

XBridge BEH XP (50 x 2.1 mm, 1.7 mm) column at a flow rate of 0.6

mL.min–1. The column was pre-equilibrated in 90% solvent A (water

+ 0.1% formic acid), and 10% solvent B (acetonitrile + 0.01% formic

acid). The eluting conditions were: 0–8 min, 10–50% B; 8.0–8.5 min,

50–100% B; 8.5–9.5 min, 100% B; and 9.5–11 min, 100–10% B to re-

equilibrate the column. Immunoblotting experiment of recombinant

MsCYP72056 enzyme was conducted as described before (Nguyen

et al., 2021). Steady-state enzyme kinetics was conducted by varying

the concentration of hirsuteine substrate from 0 to 300 µM in HEPES

pH 7.5, at a fixed concentration of NADPH at 250 µM and analyzed

using GraphPad Prism 9.4.1 (GraphPad software).
2.3 Enzymatic product purification and
structural elucidation

To obtain enzymatic products at sufficient yields for structural

elucidation, we performed multiple in vitro assays of MsCYP72056

containing 10 mL 100 µM HEPES pH 7.5, 250 µM NADPH, 10 mg

microsomal protein, and 50 µM hirsuteine at 37 °C for 1 h. Reactions

were stopped by adding 1 mL of methanol. The in vitro assay
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supernatants were combined after centrifugation. The crude enzymatic

products mixture was extracted from the supernatant by liquid-liquid

extraction with chloroform, which was removed in vacuo by GeneVac.

Concentrated samples were subjected to a Varian semi-preparative

HPLC equipped with a Kinetex® 5 mmEVOC18 column (100 Å, 100 ×

250mm) at a flow rate of 1.5mL.min–1. The columnwas equilibrated in

90% solvent A (water, 0.1% formic acid) and 10% solvent B

(acetonitrile, 0.1% formic acid). The eluting conditions were

conducted: 0–5 min, 10–20% B; 5–25 min, 20–70% B; 25–27 min,

70–90% B; 27–30 min, 90% B; 30–31 min, 90–10% B; and 31–34 min,

10% B to re-equilibrate the column. Approximately 0.2 mg of each

product was dissolved in 600 mL CDCl3 and subjected to 1D NMR (1H,
13C) and 2D NMR (HSQC, HMBC, COSY NOESY) analyses on a

Bruker Avance 600 MHz NMR spectrometer. CD analyses were

performed with 0.2 mg/mL samples in CH3OH on the Jasco J-815

CD spectrophotometer from 200–400 nm.
3 Results

3.1 Discovery of the first plant
spirooxindole synthase

Using OrthoFinder, we generated the orthogroups from the

publicly available transcriptomes of ten species, including non-

MIA-producing plants, MIA-producing and spirooxindoles-free

plants, and spirooxindole-producing plants (see Materials and

method). We focus on orthogroups containing CYP71 orthologues

specific for spiroxindole alkaloid-producing plants such asM. speciosa

(Supplementary Figure 2A) (Bindra, 1973; Ahmad and Salim, 2015;
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Manwill et al., 2022) as we speculated that member(s) of the CYP71

subfamily could oxidize the seco-/hetero-yohimbine alkaloids to

oxygenated intermediates, which would be rearranged to

spirooxindole pairs (Figure 1). Our analysis identified six

candidates, namely MsCYP53813, MsCYP72054, MsCYP72056,

MsCYP9580 , MsCYP9583 , and MsCYP9585 f rom the

orthogroup OG0016157.

From the spirooxindole structures reported in M. speciosa, we

traced back to the plausible corynanthe- and ajmalicine-type

precursors. Among these, ajmalicine, tetrahydroalstonine,

mitragynine, 9-hydroxycorynantheidine, yohimbine, corynanthine,

and hirsuteine were available and used for the functional validation

of CYP candidates. To test the enzyme activities, 10 mM of the putative

substrates were fed to 100-mL YPL154C:PEP4KO yeast cultures for 48

hr. Only yeast cultures harbouring the construct pESC-Leu2d::CPR/

MsCYP72056 showed the consumption of hirsuteine ([M+H]+ m/z

367.5) and the formation of two new products ([M+H]+ m/z 383.5), 1

at 2.4 min and 2 at 2.6 min, as analyzed by LC-MS/MS (Supplementary

Figure 5A). A 16-amu difference between the products and the

substrate indicated that MsCYP72056 catalyzed an oxygenation/

oxidation reaction. No enzymatic product was observed when

hirsuteine was incubated with yeast transformed with an empty

vector or constructs containing other CYP candidates. In vitro assays

with microsomal protein of yeast expressing pESC-leu2d::CPR/

MsCYP72056 also showed that in the presence of NADPH, hirsuteine

was consumed, resulting in the formation of products 1 and 2

(Figure 2A). Michaelis–Menten kinetics characterization of

MsCYP72056 with hirsuteine revealed a KM value of 68.33 µM. We

also investigated the in vitro activity of MsCYP72056 in the pH range of

4–10 and found that the enzymatic reaction was more favourable at pH
A B

D

C

FIGURE 2

The activity of 3eCIS (MsCYP72056) with hirsuteine as substrate. (A) Enzymatic reaction and extracted ion chromatograms from LC-MS analysis showing
the in vitro activity of MsCYP72056 with hirsuteine in HEPES pH 7.5 buffer. (B) Immunoblotting and enzyme kinetics of MsCYP72056 using total
microsomal protein extraction of S. cerevisiae expressing MsCYP72056/CPR. (C) Circular dichroism spectra and Cotton effects at 250 nm and 290 nm of
corynoxeine, isocorynoxeine, and enzymatic products 1 and 2. (D) Product profile of in vitro assays of recombinant MsCYP72056 at different pHs.
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6–10 (Figure 2B). There was a 20-fold increase of isocorynoxeine levels

from the same amount of substrate as the pH increased from 4 to 10, of

which the most dramatic increase (5% to 50%) was observed as the pH

increased from 5 to 6 (Figure 2D).

In addition to hirsuteine, 16 other structurally various indole

alkaloids were used to assess the substrate scope of MsCYP72056

(Supplementary Figure 13). Both in vivo and in vitro assays using

cultures of yeast containing pESC-leu2d::CPR/MsCYP72056 and its

microsomal fractions, respectively, showed that MsCYP72056

accepted hirsutine beside hirsuteine but not the other alkaloids

(Supplementary Figures 5, 13). Similar to hirsuteine, hirsutine is

also a (3R) secoyohimbine alkaloid with an ethyl group at C-20 in

place of a vinyl group in hirsuteine (Supplementary Figure 5). LC-MS

analysis showed the consumption of hirsutine by MsCYP72056,

yielding two products 3 and 4 with 16 amu (m/z 385.5) greater

than the substrate (m/z 369.5). Multiple reaction monitoring (MRM)

and daughter scan analyses were performed to detect the oxindole

scaffold of the enzymatic products. The specific daughter ion of

oxindole ([M+H]+ m/z 160.0) was observed, confirming that

hirsutine was also converted into two spirooxindole products

(Avula et al., 2015). Based on MsCYP72056 activity with hirsuteine,

we speculated that the products from hirsutine were (3-epi-)

rhynchophylline-type spirooxindoles, some of which have recently

been isolated from M. speciosa (Flores-Bocanegra et al., 2020).
3.2 Structural elucidation of spirooxindole
enzymatic products

To elucidate the stereochemistry of the enzymatic products 1 and 2,

large-scale in vitro reactions were conducted. Approximately 0.2 mg of

the two products were purified and subjected to 1D NMR (1H, 13C), 2D

NMR (HSQC, HMBC, COSY, NOESY), and circular dichroism (CD)

analyses (Supplementary Figures 7-9). The 1D NMR data confirmed

the spirooxindole skeleton of two enzymatic products compared to

previously reported compounds corynoxeine and isocorynoxeine

(Supplementary Tables 1, 2; Supplementary Figures 7, 10) (Kitajiina

et al., 2001; Flores-Bocanegra et al., 2020). In particular, the spectra of

compound 2 resemble those of corynoxeine, and 1 had identical spectra

with isocorynoxeine. In 2D NMR analysis, key NOE signals of

isocorynoxeine, such as H-3/H-6, H-5/H-21, and H-20/H-21 were

observed in NOESY spectrum of 1 (Supplementary Table 2;

Supplementary Figures 11B). These signals initially indicated the 3S

and 20R configurations of C-3 and C-20 in 1 (Seki et al., 1993; Qi et al.,

2015). Based on the previous studies in conformational analysis of

spirooxindole alkaloids, 1 possessed the normal-type conformation as

that of mitraphylline and formosanine (Shamma et al., 1967; Seki et al.,

1993). As the deshielding effect at H-9 has been reported to differentiate

the 7S and 7R isomers in the normal-type spirooxindole alkaloids (Seki

et al., 1993), the downfield shift of H-9 in 1 (d 7.45) depicted the 7S

configuration (Supplementary Table 2). Although 2 had similar 1D

NMR data with corynoxeine, we could not observe the key NOE signals

of the normal-type conformation (3S, 20R) in the spectra of 2

(Supplementary Table 1; Supplementary Figure 8B). However, we

could detect the NOE signals of the pseudo-type alkaloids (3R, 20R)

as recently described in two compounds 3-epi-rhynchophylline and 3-

epi-corynoxine B (Flores-Bocanegra et al., 2020). The NOE correlations
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were among H-3/H-9, H-9/H-6, H-5/H-3, H-18/H-20 (Supplementary

Figure 8B). Therefore, we proposed that 2 was an epimer of

corynoxeine, which was 3-epi-corynoxeine (3R, 7R, 20R).

To further confirm our proposed structures, we examined the C-3

and C-7 stereocenters of the enzymatic products of MsCYP72056 and

the authentic standards of corynoxeine and isocorynoxeine using

circular dichroism (CD) spectroscopic analysis (Figure 2C).

Intriguingly, the positive Cotton effect at 250 nm confirmed the 3R

configuration of product 2. On the contrary, a negative Cotton effect

at 250 nm suggested the 3S configuration of product 1. By comparing

the CD and NMR spectra of product 1 with isocorynoxeine standard

data (Figure 2C, Supplementary Table 2), we concluded that 1 was

isocorynoxeine (3S, 7S) (Figure 2A). Meanwhile, 2 was a 3R

spirooxindole since it has the opposite Cotton effect at 250 nm, as

compared to the corynoxeine standard (Figure 2C). Therefore,

product 2 (3R, 7R) was 3-epi-corynoxeine (Figure 2A). Based on

the product profile of the enzymatic reaction, we named this enzyme

3-epi-corynoxeine/isocorynoxeine synthase (3eCIS).
4 Discussion

Spirooxindole alkaloids have become highly sought-after scaffolds

thanks to their stereochemical diversity and substantial range of

bioactivities (Nasri et al., 2021). The total synthesis of spiroxindole

involves lengthy procedures (up to 17 steps) (Wanner et al., 2013;

Zhang et al., 2019), some of which require costly as well as toxic

catalysts such as palladium and result in minute yields of products in

complex mixtures (Nasri et al., 2021). Although hundreds of tetra- and

pentacyclic spirooxindole alkaloids have been discovered (Nasri et al.,

2021) and MIA biosynthesis has been studied extensively (Pan et al.,

2016; Dang et al., 2017; Dang et al., 2018; Caputi et al., 2018; Farrow

et al., 2019; Lopes et al., 2019; Hong et al., 2022; Wang et al., 2022), no

enzymes catalyzing the oxidative rearrangement of corynanthe

alkaloids to spirooxindole alkaloids have been reported. Our

discovery of 3eCIS in M. speciosa has provided an answer to the

historical question of spirooxindole biosynthesis in plants and

highlights the versatility of CYP71 enzymes in MIA scaffolding. From

secoyohimbine precursors, 3eCIS catalyzes the formation of polycyclic

spirooxindole alkaloids with high yield (10 µg/mL purified product

from in vitro reaction). In particular, our LC-MS/MS analysis showed a

total conversion of hirsuteine substrate to the spirooxindole products at

physiological pH and 37°C within 1 hour (Supplementary Figure 6).

CYP71 enzymes are well known for their roles in MIA metabolism,

such as sarpagan bridge enzyme from serpentine wood (R. serpentina)

(Dang et al., 2018), and geissochizine oxidases from Madagascar

periwinkle (C. roseus) (Tatsis et al., 2017; Qu et al., 2018) and

blackboard tree (Alstonia scholaris) (Wang et al., 2022). These

notable examples and 3eCIS reported here provide the entry points

to various MIA subgroups, including spirooxindole (this work),

sarpagan (Dang et al., 2018), strychno (Tatsis et al., 2017; Hong

et al., 2022) and akuammilan (Wang et al., 2022) alkaloids. While a

flavoprotein monooxygenase was recently reported to catalyze the

formation of a spirooxindole alkaloid in fungus, 3eCIS is the first

plant enzyme reported to bear the spirooxindole formation catalytic

activity (Tsunematsu et al., 2013; Liu et al., 2021). Intriguingly,

oxidative rearrangements of the biosynthetic motif of seco-/
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heteroyohimbine alkaloids have been used to chemically synthesize the

spirooxindole core (Xu et al., 2019), and extensive studies in

spirooxindole synthesis have been focused on more sustainable

synthetic strategies, including less toxic catalysts and less

chemical waste (Yan and Wang, 2016; Zhang et al., 2017; Xu et al.,

2019). Towards this end, our finding paves the way to access

spirooxindole alkaloids and their derivatives through biocatalysis and

enzyme engineering.

Spirooxindoles from kratom are highly diverse in terms of scaffold

and stereochemistry (Flores-Bocanegra et al., 2020). The stereogenic

centers (C-3, C-7, C-15 and C-20) of spirooxindoles are considered key in

deciphering the upstream biosynthetic pathways of spirooxindoles

(Figure 1A). Previous studies hypothesized that these configurations

remain unchanged between an oxindole product and its tetrahydro-b-
carboline precursor; therefore, the products 1 and 2 of 3eCIS were

initially expected to share the stereo-configurations in rings C and Dwith

those of hirsuteine (3R, 20R) (Figure 1B) (Lopes et al., 2019). Since the

pseudo-conformation of 3R spirooxindoles are not stable due to the

interaction of the spirooxindole ring with ring D, the 3R spirooxindoles

could spontaneously isomerize to the 3S spirooxindoles (normal-

conformation) via intramolecular Mannich reaction to reduce

the steric hindrance (Scheme 1B) (Seki et al., 1993). The C–C

single bonds in C-5–C-6–C-7 could freely rotate, resulting in

interconvertible 3R and 3S spirooxindoles through a zwitterion

intermediate. In contrast to the configuration retention hypothesis, our

newly found enzyme could transform the 3R secoyohimbine alkaloid to a

mixture of 3R and 3S spirooxindoles, which can be partially controlled by

different pH (Figure 2D). In the enzymatic reaction with hirsuteine

catalyzed by 3eCIS, in addition to the two characterized products 3-epi-

corynoxeine and isocorynoxeine, it is possible that other stereoisomers,

corynoxeine or 3-epi-isocorynoxeine, were generated as we noticed a

small peak of m/z 383 ([M+H]+) in the extracted ion and MRM

chromatograms (Figure 2A).

Computational and synthetic chemistry studies suggested that a

seco-/hetero-yohimbine alkaloid such as hirstuteine can be converted

to a pair of spirooxindole epimers by epoxidation on the indole ring

followed by (semi-)pinacol rearrangement (Scheme 1A) (Xu et al.,

2019; Liu et al., 2021). The 3eCIS enzyme is proposed to catalyze the

initial oxygenation step (Xu et al., 2019). Then, the formation of

carbocation at C-7 could occur without water addition via the (semi-)

pinacol mechanism. Subsequently, the ring opening likely allows the

alkyl chain at C-3 to rearrange on both sides of the indole ring to yield

the spirooxindoles (Scheme 1A).

Most spirooxindole alkaloids occur at trace abundance levels in

planta (Nasri et al., 2021). The discovery and characterization of 3eCIS

as reported here provide insights into the long puzzling biosynthesis of

plant spirooxindoles and open the gateway to obtaining the elusive

spirooxindole alkaloids. The high selectivity towards the (3R) tetracyclic

corynanthe-type alkaloids of 3eCIS could serve as a starting point for

gene discovery and enzyme engineering toward accessing and

diversifying spirooxindole core-containing molecules.
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