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Abstract  

Consistent noise variance across data points (i.e. homoscedasticity) is required to ensure the validity of 
statistical analyses of MRI data conducted using linear regression methods. However, head motion leads 
to degradation of image quality, introducing noise heteroscedasticity into ordinary-least square 
analyses. The recently introduced QUIQI method restores noise homoscedasticity by means of weighted 
least square analyses in which the weights, specific for each dataset of an analysis, are computed from 
an index of motion-induced image quality degradation. QUIQI was first demonstrated in the context of 
brain maps of the MRI parameter R2*, which were computed from a single set of images with variable 
echo time. Here, we extend this framework to quantitative maps of the MRI parameters R1, R2*, and 
MTsat, which are computed from multiple sets of images. QUIQI allows for optimization of the noise 
model by using metrics quantifying heteroscedasticity and free energy. QUIQI restores 
homoscedasticity more effectively than insertion of an image quality index in the analysis design and 
yields higher sensitivity than simply removing the datasets most corrupted by head motion from the 
analysis. In sum, QUIQI provides an optimal approach to group-wise analyses of a range of quantitative 
MRI parameter maps that is robust to inherent homoscedasticity. 

1. Introduction 
The use of linear regression methods for the analysis of brain MRI data is widespread in neuroscience 
and neurological studies. Linear regression methods model MRI data as a linear combination of 
explanatory variables that may pertain to disease evolution [Beveridge et al., 2018; Ong et al., 2021; 
Panda et al., 2019; van der Plas et al., 2021; Scott et al., 2003], treatment [Plaikner et al., 2018], 
environmental factors [Hu et al., 2022; Ong et al., 2022] or phenotypes [Boots et al., 2020; Honigberg 
et al., 2020; Papadaki et al., 2019]. To estimate the coefficients of the combination, linear regression 
methods assume uncorrelated noise across measurements, sampled from normal distributions with equal 
variances (i.e. homoscedasticity). The assumption of homoscedasticity must be satisfied to ensure the 
validity of statistical inferences arising from the analyses of the relationship between explanatory 
variables and MRI data, e.g. using Student T-tests or F-tests [Hayes and Cai, 2007].  

Head motion during data acquisition degrades the quality of MR images and affects brain feature 
estimates computed from the data [Castella et al., 2018; Esteban et al., 2017; Mortamet et al., 2009; 
Reuter et al., 2015; Rosen et al., 2018; Savalia et al., 2017]. In particular, motion degradation impacts 
the noise level of relaxometry estimates computed from raw MRI data [Castella et al., 2018]. 
Heterogeneous degrees of motion degradation across cohorts leads to the homoscedasticity assumption 
in Ordinary Least Square (OLS) analyses being violated [Lutti et al., 2022]. One solution consists of 
excluding the data most affected by head motion, identified from an image-based index of data quality 
(‘Motion Degradation Index’, MDI) [Castella et al., 2018; Esteban et al., 2017; Mortamet et al., 2009; 
Pizarro et al., 2016; Reuter et al., 2015; Rosen et al., 2018; Savalia et al., 2017]. However, determining 
a suitable threshold value for the index to exclude datasets of poor quality is challenging [Gilmore et 
al., 2021]. As a result, the resulting decrease in cohort size may lead to a sub-optimal reduction in 
analysis sensitivity. 

The Weighted Least Square (WLS) alternative consists of including the estimate of the variance in each 
dataset as weights into the linear regression model. WLS analyses constitute an optimal solution 
because they guarantee residual homoscedasticity and preserve sensitivity. However the variance, i.e. 
the noise level in each individual dataset, is generally unknown. The recently introduced QUIQI method 
[Lutti et al., 2022] allows the variance to be estimated from the value of the MDI for each dataset 
through use of Restricted Maximum Likelihood (REML, [Friston et al., 2002b]). QUIQI was shown to 
be more effective at ensuring residual homoscedasticity and at optimizing analysis sensitivity than 
simple exclusion of the datasets with high MDI values.  

The QUIQI method was first demonstrated for the analysis of brain maps of the transverse relaxation 
rate R2*, computed from a single set of raw image volumes acquired on the MRI scanner with variable 
echo time (TE)  [Lutti et al., 2022]. R2* is primarily a correlate of iron content [Fukunaga et al., 2010; 
Stüber et al., 2014; Yao et al., 2009], but with sensitivity to other tissue metrics, notably myelin and 
water content [Bagnato et al., 2018; Hametner et al., 2018]. To disentangle the likely drivers of 
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parameter change or difference, neuroscience studies commonly combine the analysis of multiple, 
complementary MRI parameters (‘Multi-Parameter Mapping’, [Callaghan et al., 2014; Carey et al., 
2018; Schall et al., 2020]). For example, the MRI parameters R1 and MTsat show increased sensitivity 
to myelin content within brain tissue [Henkelman et al., 2001; Lutti et al., 2014; Sereno et al., 2013]. 
However, the estimation of R1 and MTsat requires several sets of raw MR images with different 
contrasts, and the motion level may vary across these images. Also, each MRI parameter is computed 
from the raw images using specific signal models [Helms et al., 2008a; Helms et al., 2008b], and is 
differentially sensitive to head motion as a result [Balbastre et al., 2022; Mohammadi et al., 2022]. The 
applicability of the QUIQI method to analyses of different types of MRI parameter maps remains to be 
demonstrated. 

In this work, we investigate noise heteroscedasticity induced by head motion in OLS analyses of 
quantitative relaxometry MRI data (qMRI) computed from several sets of images. Using the global and 
local metrics of homoscedasticity introduced in [Lutti et al., 2022], we assess the ability of the QUIQI 
method to ensure the validity of statistical analyses of data degraded by motion. Multiple models of the 
relationship between noise estimates and indices of motion-induced image degradation are considered. 
We identify the optimal noise model from the global and local metrics of homoscedasticity, combined 
with the free energy estimates provided by REML. We compare the sensitivity of the WLS statistical 
analyses conducted with QUIQI with that of standard OLS analyses after exclusion of the datasets most 
affected by motion degradation. Finally, we compare WLS analyses conducted with QUIQI with an 
alternative approach based on inserting the MDI into the design matrix of OLS analyses. 

2. Methods 
2.1 MRI acquisition 

MRI data was acquired in a large cohort of 1432 healthy research participants as part of the ‘BrainLaus’ 
study (https://www.colaus-psycolaus.ch/professionals/brainlaus/ [Loued-Khenissi et al., 2022; 
Trofimova et al., 2021]). The acquisition protocol included multi-echo T1-weighted (T1w), Proton 
Density-weighted (PDw) and Magnetization Transfer-weighted (MTw) scans, conducted with a 
custom-made 3D FLASH sequence. B1 mapping data were also acquired to correct for the effect of 
transmit field inhomogeneity on the qMRI maps [Lutti et al., 2010; Lutti et al., 2012]. Relevant 
acquisition parameters are available in [Lutti et al., 2022]. The total acquisition time was 27 minutes. 

2.2 Map computation and processing 
Computation and spatial processing of the qMRI maps were performed offline with the hMRI toolbox 
[Tabelow et al., 2019], as described in detail below. Image analysis was conducted using the SPM 
software (www.fil.ion.ucl.ac.uk/spm, Wellcome Centre for Human Neuroimaging) and customized 
scripts written in Matlab (R2021a, The MathWorks Inc., Natick, MA, USA). 

2.2.1. Computation of the qMRI maps 
Maps of the MRI parameters R1, MTsat and R2* were computed from the raw T1w, PDw and MTw 
images of each participant. The R2* maps were computed using the ESTATICS approach from the 
regression of the log signal of the raw images with respect to their echo times [Weiskopf et al., 2014]. 
To investigate the effect of the number of raw images involved in the map calculation on 
homoscedasticity, maps of R2* were computed from the T1w and PDw images only (‘R2*(2) maps’) 
and from the T1w, PDw and MTw images (‘R2*(3)’) (results from R2* maps computed from one set of 
images only (‘R2*(1)’) are described in [Lutti et al., 2022]). 

Maps of R1 were computed from the T1w and PDw acquisitions using the rational approximation of 
the Ernst equation [Helms et al., 2008a]. MTsat maps were estimated using the T1w, PDw, and MTw 
acquisitions using a closed form expression of the MT weighted signal [Helms et al., 2008b]. In total, 
the performance of QUIQI was assessed on four types of quantitative maps: R2*(2), R2*(3), R1 and 
MTsat maps.  

2.2.2. Normalization and segmentation 
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Complete details of the image processing steps are available in [Lutti et al., 2022]. The MTsat maps 
were used for spatial normalisation of the data into the Montreal Neurological Institute (MNI) template 
space. The MTsat maps were segmented into maps of grey and white matter probabilities using Unified 
Segmentation [Ashburner and Friston, 2005]. The nonlinear diffeomorphic algorithm Dartel 
[Ashburner, 2007] was used for inter-subject registration of the tissue classes. To preserve the 
quantitative estimates, the qMRI maps were normalized into the MNI space following the voxel-based 
quantification procedure proposed in [Draganski et al., 2011]. 

2.2.3. Motion Degradation Index 
The MDI used for QUIQI analysis is computed by the hMRI toolbox [Tabelow et al., 2019]. This MDI 
was introduced in a validation study against the history of head motion that occurred during data 
acquisition [Castella et al., 2018]. It is calculated as the standard deviation across white matter of R2* 
maps computed separately from each set of multi-echo T1w, PDw and MTw images: each set of raw 
images was assigned a specific value of the MDI.  

2.3 Inserting a motion degradation index into image analysis 
QUIQI ensures noise homoscedasticity in analyses of MRI data affected by motion degradation by 
means of weighted least square analyses (WLS). The weights, specific to each dataset of an analysis, 
are computed from a noise covariance matrix (V) modelled as a linear combination of matrices built 
from the MDI values of the analysis data (‘basis functions’).  

From the heuristic analysis of the empirical relationship between analysis residuals and the MDI [Lutti 
et al., 2022], these basis functions were set to contain powers of the MDI values: 

𝑉! = ∑ ∑ 𝜆",$𝑀𝐷𝐼$,!"
"!"#
"	&'

	($"%
$&)   ( 1 ) 

where 𝑉! is the ith diagonal element of the covariance matrix 𝑉, i.e. the noise estimate of the ith dataset. 
𝑀𝐷𝐼$,!"  is the 𝛼*+ power of the MDI of the ith dataset and the nth contrast weighting. The basis functions 
and the resulting noise covariance matrices 𝑉 were diagonal because noise is uncorrelated between 
datasets (i.e. participants). 

Estimation of 𝑉 involved the MDI of each raw image involved in the computation of the qMRI data to 
be analysed (index n in eq.1), and separate basis functions were computed from each MDI. Nraw is the 
number of raw images involved in this computation: Nraw =2 for R2*(2) and R1 maps as these data 
were estimated from the PDw and T1w raw images. Nraw=3 for MTsat and R2*(3) maps as these data 
were estimated from the PDw, T1w and MTw raw images (see section 2.2.1). 

The optimal value of 𝛼,-., the maximum power of the MDI used to compute the noise covariance 
matrix, was determined in a model comparison (see section 2.5.1). 

V and  𝜆",$ were estimated using the Restricted Maximum Likelihood (REML) algorithm as 
implemented in SPM12 [Friston et al., 2002a]. The subsequent estimation of the weights (𝑊 = )

√0
) for 

WLS analyses was conducted with the standard analysis tools of SPM12.  

2.4 Measures of analysis validity 

The results of OLS and WLS analyses were compared using local and global metrics of 
heteroscedasticity, and a measure of free energy. These metrics were also used to identify the optimal 
model of the dependence of the noise in qMRI maps on image quality. 

2.4.1 Residual heteroscedasticity  

We characterized noise heteroscedasticity from the maps of the residuals 𝜖, computed for each 
participant and qMRI maps after estimation of the coefficients of the linear model.  

Global heteroscedasticity: We computed a global noise index 𝑣𝑎𝑟(𝜖), as the spatial variance of the 
residual maps across a whole tissue type (i.e. grey or white matter) [Lutti et al., 2022]. Consistent with 
Eq 1., the effect of motion degradation on the global noise index was modelled as a cubic polynomial 
combination of the MDI of all the raw images involved in the computation of the analysis data. For 
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R2*(2) and R1 maps, the MDI of the T1w and PDw raw images were considered. For R2*(3) and MTsat 
maps, the MDI of the T1w, PDw and MTw raw images were considered. Fitting the global noise index 
with the assumed polynomial combination of the MDI led to the estimation of 𝑣𝑎𝑟(𝜖)1!*, the modelled 
dependence of the global noise level on motion degradation. 

The global heteroscedasticity index was taken as the coefficient of determination 𝑅2 = 1 −
∑ 	(5-6(7)&95-6(7)'&(& 	)

)*
&+,

∑ 	5-6(7))*
&+,

. A high value of R2 (~1) indicates a strong dependence of the global noise index 

on motion degradation and high heteroscedasticity. Conversely, a low value of R2 (~0) indicates a weak 
dependence of the global noise index on motion degradation and low noise heteroscedasticity. 

A graphical rendering of heteroscedasticity is achieved by plotting	𝑣𝑎𝑟(𝜖) against 𝑣𝑎𝑟(𝜖)1!*: a linear 
relationship between 𝑣𝑎𝑟(𝜖) and 𝑣𝑎𝑟(𝜖)1!* reflects high heteroscedasticity. The absence of relationship 
between 𝑣𝑎𝑟(𝜖) and 𝑣𝑎𝑟(𝜖)1!* reflects low heteroscedasticity. 

Local heteroscedasticity: At the local scale, we assessed noise heteroscedasticity in each image voxel 
using the Engle’s Arch test [Engle, 1982], which tests for no linear relationship between consecutive 
samples of a series of squared residuals. At a given voxel, the residual series was computed from the 
residual maps at this voxel location. The series samples were organized according to the predicted 
impact of motion degradation by arranging them in ascending order of the polynomial combination of 
MDIs (𝑣𝑎𝑟(𝜖)1!*), associated to the tissue class of the given voxel. 

The Engle’s Arch test was conducted at each voxel of the residual maps, with a maximum lag of 40 
points. The local index of heteroscedasticity was the proportion of voxels with significant 
heteroscedasticity (i.e. rejecting the null hypothesis), calculated after false discovery rate correction 
using the Benjamini-Hochberg procedure (p<0.05; [Glickman et al., 2014]). 

2.4.2 Free energy 
REML estimates the hyperparameters λ  that are used to compute the matrix V (Eq.1) by maximizing 
the evidence lower bound objective (ELBO) function, a measure of negative variational free 
energy. Intuitively, the ELBO favours the accuracy and penalizes the complexity of the model. We used 
the ELBO estimates provided by the REML implementation in SPM12 [Friston et al., 2002a] to identify 
the optimal model of the relationship between noise in the qMRI maps and the degradation of the raw 
images induced by head motion (see section 2.5.1). 

2.5 Image analyses 
Linear regression analysis was conducted on qMRI maps of R2*(2), R2*(3), R1 and MTsat. This allowed 
the assessment of noise heteroscedasticity in WLS and OLS analyses, separately for different MRI 
parameters and different numbers of raw image types involved in their estimation. The quantitative 
MRI data were modelled as the linear combination of 5 regressors that represented age, square and 
cubic values of age, gender and brain volumes. 

2.5.1 Noise model comparison 
The coefficients of the general linear model were estimated from the full dataset (N=1432). OLS 
analyses were conducted with 𝛼,-.= 0 in Eq.1, i.e. assuming uniform noise level across all datasets as 
would be done in a standard analysis. WLS analyses were conducted with 5 models of the noise 
covariance matrix: 𝛼,-.=2 to 5 with 𝜆 ∈ ℝ, and 𝛼,-.=4 with 𝜆 ∈ ℝ:. The latter model was considered 
to assess the effect of enforcing positivity of the λ hyperparameters on noise heteroscedasticity and free 
energy, and for consistency with [Lutti et al., 2022]. 

OLS and WLS analyses were compared by considering differences in heteroscedasticity and free 
energy. Across the WLS analyses, the optimal noise model was identified as that which led to the lowest 
values of heteroscedasticity and the largest increase in ELBO. 

2.5.2 Age sensitivity 
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We compared the sensitivity of WLS analyses against that of standard OLS analyses using statistical F-
tests of age-related differences in R2*(2), R2*(3), R1, and MTsat. The analyses were performed on a 
subsample of the full dataset, obtained by randomly selecting up to 10 images per age bin of 5 years. 
The size of the resulting dataset was 123, close to the typical cohort size of similar studies [Callaghan 
et al., 2014].  

The WLS analyses were conducted with the optimal noise model (see section 2.5.1). OLS analyses were 
conducted after exclusion of the datasets most degraded by head motion, i.e. with the highest MDI 
values averaged across the raw images involved in the calculation of the qMRI maps. Exclusion of 3, 
7, 13, 20 and 30% of the most degraded datasets was considered [Castella et al., 2018; Esteban et al., 
2017; Mortamet et al., 2009; Pizarro et al., 2016; Reuter et al., 2015; Rosen et al., 2018; Savalia et al., 
2017]. The optimal fraction of excluded datasets was identified as the smallest value leading to local 
and global heteroscedasticity estimates comparable to those obtained in WLS analyses with the optimal 
noise model. 

2.5.3 Specificity 
To assess the specificity of the OLS and WLS analyses, we recorded the rate of false positives in two 
types of analyses frequently conducted in neuroscience studies. I) In a subset of the full dataset with up 
to 10 images per age bin of 5 years (N = 123), the participants' age was randomly assigned from a 
uniform distribution ranging from the minimum to the maximum age of the data subsets and statistical 
F-tests of age-related differences in R2*(2), R2*(3), R1 and MTsat maps. II) In a subset of the full dataset 
within a narrow age range (56–58 y.o.; N = 129), we conducted unbalanced comparisons of a group of 
10 qMRI maps with a group of 119 maps, using two-sample T-tests. Given that no age-related effect 
would be expected in these analyses, any significant effects were deemed to be false positives. 

We conducted analyses I and II 1,000 times for different subsets of data and monitored the rate of 
significant results, i.e. false positives, across repetitions at the cluster level (p < 0.05, FWE-corrected), 
with a cluster forming threshold of p < 0.001 uncorrected. 

2.5.4 Inserting the Motion Degradation Index in the analysis design 

In a subset of data in a narrow age range (56–58 y.o.; N = 129), we considered an alternative method to 
QUIQI to correct motion degradation effects, which consists of inserting the MDI as a confounding 
factor in the analysis design. Here, powers of 1 to 4 of the MDI values were included as regressors in 
the design matrix. We compared noise heteroscedasticity between OLS analyses and WLS analyses 
with the optimal noise model (𝛼,-. = 4, 𝜆 ∈ ℝ, identified from 2.5.1). 

3. Results  
3.1 Noise model comparison 

With standard OLS analyses, global heteroscedasticity ranges from 0.44 to 0.7 across the different types 
of analysed qMRI data, and the fraction of voxels with significant local heteroscedasticity ranges from 
0.42 to 0.85 (Fig. 1). Global and local heteroscedasticity are largely comparable across the analyses of 
R2*(2) and R2*(3) maps, suggesting little effect of the number of raw images involved in the computation 
of the qMRI maps on heteroscedasticity. The generally lower level of heteroscedasticity in analyses of 
R1 and MTsat maps suggests a bigger effect of the type of analysed qMRI data. 

WLS analyses reduce global and local heteroscedasticity for all types of qMRI data, models of 
covariance matrix and tissue types (Fig.1). Local heteroscedasticity is below 0.05 with 𝛼,-. =
	2,4	or	5, 𝜆 ∈ ℝ). With these models, the global measure R2 is below 0.16. The two alternative models 
(𝛼,-. = 3, 𝜆 ∈ ℝ and 𝛼,-. = 4, 𝜆 ∈ ℝ:)	lead to higher global and local heteroscedasticity, 
particularly for MTsat data. 

Across the noise models with (𝜆 ∈ ℝ), the increase in ELBO compared to OLS analyses reach a 
maximum for	𝛼,-. = 3, closely followed by 𝛼,-. = 4. Noise models with 𝛼,-. = 2	and 𝛼,-. = 5 
lead to a decrease in ELBO in analyses of MTsat maps. The gains in ELBO compared to OLS analyses 
are higher in analyses of R2*(2) data followed by R2*(3), R1, and MTsat data, suggesting an effect of 
both the type of analysis data and of the number of raw image volumes involved in their computation. 
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Enforcing positivity for the REML hyperparameter (i.e.	𝜆 ∈ ℝ:) further increased the ELBO. However, 
noise heteroscedasticity is comparably high for this model of the noise covariance. 

Noise homoscedasticity is essential to ensure the validity of statistical inference and was the key 
requirement in our selection of the optimal model of the noise covariance. Among the models that 
ensure noise homoscedasticity (𝛼,-. = 	2,4	or	5, 𝜆 ∈ ℝ), we deemed 𝛼,-. = 4, 𝜆 ∈ ℝ to be optimal 
as it leads to the highest increase in ELBO compared to OLS analyses, for all types of analysis data and 
both tissue types. With this model, analysis residuals depend only weakly on the value of the MDI of 
the analyses data (i.e. global heteroscedasticity R2 ≤ 	0.16 see Fig.2A). The ELBO systematically 
increases compared to OLS analyses, by an amount that varies according to the type of qMRI data and 
number of raw image volumes involved in the map calculation (see Fig.2B). 

3.2 Age sensitivity 
Differences in age sensitivity between OLS and WLS analyses conducted on the full dataset show 
substantial effects, both positive and negative (Supporting Figure S1). This is consistent with the effect 
of noise heteroscedasticity in OLS analyses, which might lead to under- or over-estimation of the noise 
level - both of which invalidate associated inferences. To ensure a valid comparison of age sensitivity 
with WLS analyses, we investigated the exclusion from the OLS analyses of the datasets most affected 
by head motion, which we identified from their high MDI values. Overall, global and local noise 
heteroscedasticity decrease with increasing fraction of excluded datasets (Fig.3). After exclusion of the 
30% of the datasets with the highest MDIs, global heteroscedasticity lies in the same range as WLS 
analyses overall (R2~0.1-0.2), except for R2*(2) and R2*(3) data in white matter (R2=0.34). However, 
local heteroscedasticity remains generally higher than for WLS analyses (<0.05), and reaches 0.12 in 
R2* data and 0.25 in the white matter of MTsat data (solid bars in Fig.3). Higher exclusion fractions, 
which would have reduced local heteroscedasticity further, were deemed too prohibitive to be 
investigated. 

The age sensitivity of the WLS analyses was compared with that of OLS analyses after exclusion of the 
30% of datasets with the highest MDIs. Statistical F-maps of age-related changes in qMRI data, 
obtained from WLS analyses, exhibit predominant features that are consistent with previous findings 
from the literature (Fig.4, [Callaghan et al., 2014]). These include an increase in R2* with age in sub-
cortical areas attributed to a local increase in iron concentration, and a decrease in MTsat and R1 in 
frontal white matter attributed to fibre demyelination. With WLS analyses, statistical scores are larger 
and the significance threshold is lower due to the higher number of samples (see inset in Fig. 4). The 
number of voxels above significance increases by a factor 2.8 to 4.3 with WLS analyses, except for the 
R1 and MTsat parameters in white matter, where the increase is of 20% and 5% respectively (Fig. 5). 
With WLS analyses, the spatial distribution of significant voxels shows enhanced symmetry between 
the left and right hemispheres (Fig. 5). Regions of significant voxels also show improved spatial 
continuity. 

3.3 Specificity  
OLS analyses and WLS analyses with the optimal noise model (𝛼,-. = 4, 𝜆 ∈ ℝ) show equivalent 
rates of false positives in both F-tests and imbalanced two-sample T-tests (Table 1). On average, OLS 
and WLS analyses show significant results at the cluster level in 5.4% and 6.5% of the tests, in 
agreement with the expected rate of 5%. The rates of false positives are slightly lower for the tests with 
shuffled age regressor but remain comparable between OLS and WLS analyses (3.1% and 2.5% 
respectively). 

3.4 Inserting the Motion Degradation Index in the analysis design 
The level of noise heteroscedasticity in WLS analyses conducted with QUIQI was compared with that 
of OLS analyses after insertion of the MDI into the design matrix. Residual heteroscedasticity remains 
present in OLS analyses (R2

WLS< R2
OLS), for all data and tissue types (Fig. 6).  

4. Discussion  
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Analyses of MRI data using linear regression rely on the assumption of noise homoscedasticity to ensure 
the validity of statistical inference. Degradation of MRI data quality due to head motion invalidates this 
assumption. The resulting mis-estimation of the noise variance leads to erroneous statistical inference 
and increased risks of false positives or negatives. The QUIQI method restores the validity of statistical 
analyses by conducting weighted least-square estimations, with weights that are computed from an 
index of data degradation due to head motion. The benefit of QUIQI has recently been demonstrated 
from a large dataset of R2* maps computed from a single set of raw images [Lutti et al., 2022]. Here, 
we extended this method to brain maps of the MRI parameters R2*, R1 and MTsat, computed from 
multiple sets of raw images. The impact of restoring statistical validity is substantial and consistent with 
under- or over-estimation of the noise variance in OLS analyses (Supporting Figure S1). WLS analyses 
show higher sensitivity to brain differences across a dataset than OLS analyses that excluded the most 
corrupted data (Fig. 4-5). WLS analyses are also more effective at ensuring homoscedasticity than 
insertion of the MDIs as regressors in the design matrix of the analysis. 

QUIQI requires modelling of the noise covariance matrix from a Motion Degradation Index (MDI) of 
the analysis data. The relationship between analysis residuals and the MDI in an OLS analysis 
constitutes a good baseline to infer a suitable form for this model [Lutti et al., 2022]. For the current 
application, we chose to base this model on polynomial combinations of the MDI of each of the raw 
images involved in the computation of the R2*, R1 and MTsat maps. We compared candidate models, 
with different polynomial degrees and constraints on the hyperparameter 𝜆, from measures of local and 
global noise heteroscedasticity, and from ELBO - a measure of free energy. WLS analyses strongly 
reduced heteroscedasticity for all the types of qMRI data analysed here. Also, the same subset of models 
consistently led to optimal restoration of homoscedasticity. From this subset, we identified the optimal 
noise model that led to the highest increase in ELBO compared to OLS analyses. The use of higher 
powers of the MDI increased the complexity of the noise covariance model, leading to a decrease in the 
ELBO. 

The sensitivity of OLS analyses and WLS analyses conducted with QUIQI were compared in the 
context of age-related effects [MacDonald and Pike, 2021]. For our comparison, the 30% of datasets 
with the highest MDI were removed from the OLS analyses to achieve a similar level of 
homoscedasticity than the WLS analyses. The higher sensitivity of the WLS analyses conducted with 
QUIQI arises from its ability to exploit the full dataset to increase statistical power. With WLS analyses, 
the spatial distribution of significant voxels shows improved biological plausibility in the form of 
greater spatial continuity and enhanced symmetry between the left and right hemispheres. This increase 
in sensitivity preserves specificity, i.e. the rate of false positives in the statistical analyses remained 
under control.  

QUIQI is available for use within the hMRI toolbox (https://hmri-group.github.io/hMRI-toolbox/). This 
implementation relies on the REML algorithm of SPM12 that is commonly used to correct for temporal 
correlations and group-level analyses of fMRI data [Friston et al., 2002a]. Following specification of 
the design matrix (‘factorial design’), the QUIQI_Build module builds a dictionary of basis functions 
from MDI values provided by the user. By default, QUIQI_Build computes the basis functions as 
powers of the MDI that are specified by the user. Alternatively, the noise model can be readily adapted 
to different analysis datasets and MDIs (see hmri_quiqi_build.m). By default, no constraint is imposed 
on the hyperparameters (see [Lutti et al., 2022] for details on adding a positivity constraint). The 
QUIQI_Check module can be used after image analysis to estimate global heteroscedasticity in the data. 
Here, the degree of the polynomial used to estimate var(e)fit is independent of the powers of the MDI 
used to model the noise covariance matrix in QUIQI Build.  

5. Conclusion  

Degradation of image quality due to head motion invalidates the homoscedasticity assumption in the 
statistical analysis of MRI data. Here, we extended the QUIQI method to the analysis of brain maps of 
the MRI parameters R2*, R1 and MTsat, computed from multiple sets of raw images. QUIQI restores 
homoscedasticity and the validity of statistical inference, and allows for optimization of the noise model 
using specially-dedicated metrics of heteroscedasticity and free energy. QUIQI is more effective at 
ensuring homoscedasticity than regressing out the image quality indices, and yields higher sensitivity 
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than removal of the datasets most corrupted by head motion from the analysis. QUIQI is available in 
the hMRI toolbox for the study of brain differences from MRI data. 

References 

Ashburner J, Friston KJ (2005): Unified segmentation. NeuroImage 26:839–851. 
Ashburner J (2007): A fast diffeomorphic image registration algorithm. NeuroImage 38:95–

113. 
Bagnato F, Hametner S, Boyd E, Endmayr V, Shi Y, Ikonomidou V, Chen G, Pawate S, 

Lassmann H, Smith S, Welch EB (2018): Untangling the R2* contrast in multiple 
sclerosis: A combined MRI-histology study at 7.0 Tesla. PLOS ONE 13:e0193839. 

Balbastre Y, Aghaeifar A, Corbin N, Brudfors M, Ashburner J, Callaghan MF (2022): 
Correcting inter‐scan motion artifacts in quantitative R 1 mapping at 7T. Magn Reson 
Med. https://hal.science/hal-03646797. 

Beveridge JE, Machan JT, Walsh EG, Kiapour AM, Karamchedu NP, Chin KE, Proffen BL, 
Sieker JT, Murray MM, Fleming BC (2018): Magnetic resonance measurements of 
tissue quantity and quality using T 2 * relaxometry predict temporal changes in the 
biomechanical properties of the healing ACL. J Orthop Res 36:1701–1709. 

Boots EA, Castellanos KJ, Zhan L, Barnes LL, Tussing-Humphreys L, Deoni SCL, Lamar M 
(2020): Inflammation, Cognition, and White Matter in Older Adults: An Examination 
by Race. Front Aging Neurosci 12. 

Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R, 
Diedrichsen J, FitzGerald THB, Smittenaar P, Helms G, Lutti A, Weiskopf N (2014): 
Widespread age-related differences in the human brain microstructure revealed by 
quantitative magnetic resonance imaging. Neurobiol Aging 35:1862–1872. 

Carey D, Caprini F, Allen M, Lutti A, Weiskopf N, Rees G, Callaghan MF, Dick F (2018): 
Quantitative MRI provides markers of intra-, inter-regional, and age-related 
differences in young adult cortical microstructure. Neuroimage 182:429–440. 

Castella R, Arn L, Dupuis E, Callaghan MF, Draganski B, Lutti A (2018): Controlling 
motion artefact levels in MR images by suspending data acquisition during periods of 
head motion. Magn Reson Med 80:2415–2426. 

Draganski B, Ashburner J, Hutton C, Kherif F, Frackowiak RSJ, Helms G, Weiskopf N 
(2011): Regional specificity of MRI contrast parameter changes in normal ageing 
revealed by voxel-based quantification (VBQ). NeuroImage 55:1423–1434. 

Engle R (1982): Autoregressive Conditional Heteroscedasticity with Estimates of the 
Variance of United-Kingdom Inflation. Econometrica 50:987–1007. 

Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gorgolewski KJ (2017): 
MRIQC: Advancing the automatic prediction of image quality in MRI from unseen 
sites. PloS One 12:e0184661. 

Friston KJ, Glaser DE, Henson RNA, Kiebel S, Phillips C, Ashburner J (2002a): Classical 
and Bayesian inference in neuroimaging: applications. NeuroImage 16:484–512. 

Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J (2002b): Classical and 
Bayesian inference in neuroimaging: theory. NeuroImage 16:465–483. 

Fukunaga M, Li T-Q, van Gelderen P, de Zwart JA, Shmueli K, Yao B, Lee J, Maric D, 
Aronova MA, Zhang G, Leapman RD, Schenck JF, Merkle H, Duyn JH (2010): 
Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. 
Proc Natl Acad Sci 107:3834–3839. 

Gilmore AD, Buser NJ, Hanson JL (2021): Variations in structural MRI quality significantly 
impact commonly used measures of brain anatomy. Brain Inform 8:7. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2023. ; https://doi.org/10.1101/2023.03.16.532911doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532911
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

Glickman ME, Rao SR, Schultz MR (2014): False discovery rate control is a recommended 
alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol 67:850–
857. 

Hametner S, Endmayr V, Deistung A, Palmrich P, Prihoda M, Haimburger E, Menard C, 
Feng X, Haider T, Leisser M, Köck U, Kaider A, Höftberger R, Robinson S, 
Reichenbach JR, Lassmann H, Traxler H, Trattnig S, Grabner G (2018): The 
influence of brain iron and myelin on magnetic susceptibility and effective transverse 
relaxation - A biochemical and histological validation study. NeuroImage 179:117–
133. 

Hayes AF, Cai L (2007): Using heteroskedasticity-consistent standard error estimators in 
OLS regression: an introduction and software implementation. Behav Res Methods 
39:709–722. 

Helms G, Dathe H, Dechent P (2008a): Quantitative FLASH MRI at 3T using a rational 
approximation of the Ernst equation. Magn Reson Med 59:667–672. 

Helms G, Dathe H, Kallenberg K, Dechent P (2008b): High-resolution maps of 
magnetization transfer with inherent correction for RF inhomogeneity and T1 
relaxation obtained from 3D FLASH MRI. Magn Reson Med 60:1396–1407. 

Henkelman RM, Stanisz GJ, Graham SJ (2001): Magnetization transfer in MRI: a review. 
NMR Biomed 14:57–64. 

Honigberg MC, Pirruccello JP, Aragam K, Sarma AA, Scott NS, Wood MJ, Natarajan P 
(2020): Menopausal age and left ventricular remodeling by cardiac magnetic 
resonance imaging among 14,550 women. Am Heart J 229:138–143. 

Hu B, Cha J, Fullerton JM, Hesam-Shariati S, Nakamura K, Nurnberger JI, Anand A (2022): 
Genetic and environment effects on structural neuroimaging endophenotype for 
bipolar disorder: a novel molecular approach. Transl Psychiatry 12. 

Loued-Khenissi L, Trofimova O, Vollenweider P, Marques-Vidal P, Preisig M, Lutti A, 
Kliegel M, Sandi C, Kherif F, Stringhini S, Draganski B (2022): Signatures of life 
course socioeconomic conditions in brain anatomy. Hum Brain Mapp 43:2582–2606. 

Lutti A, Corbin N, Ashburner J, Ziegler G, Draganski B, Phillips C, Kherif F, Callaghan MF, 
Di Domenicantonio G (2022): Restoring statistical validity in group analyses of 
motion-corrupted MRI data. Hum Brain Mapp 43:1973–1983. 

Lutti A, Dick F, Sereno MI, Weiskopf N (2014): Using high-resolution quantitative mapping 
of R1 as an index of cortical myelination. NeuroImage 93:176–188. 

Lutti A, Hutton C, Finsterbusch J, Helms G, Weiskopf N (2010): Optimization and validation 
of methods for mapping of the radiofrequency transmit field at 3T. Magn Reson Med 
64:229–238. 

Lutti A, Stadler J, Josephs O, Windischberger C, Speck O, Bernarding J, Hutton C, Weiskopf 
N (2012): Robust and Fast Whole Brain Mapping of the RF Transmit Field B1 at 7T. 
PLoS ONE 7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299646/. 

MacDonald ME, Pike GB (2021): MRI of healthy brain aging: A review. NMR Biomed 
34:e4564. 

Mohammadi S, Streubel T, Klock L, Edwards LJ, Lutti A, Pine KJ, Weber S, Scheibe P, 
Ziegler G, Gallinat J, Kühn S, Callaghan MF, Weiskopf N, Tabelow K (2022): Error 
quantification in multi-parameter mapping facilitates robust estimation and enhanced 
group level sensitivity. NeuroImage 262. 
https://doi.org/10.1016/j.neuroimage.2022.119529. 

Mortamet B, Bernstein MA, Jack CR, Gunter JL, Ward C, Britson PJ, Meuli R, Thiran J-P, 
Krueger G, Alzheimer’s Disease Neuroimaging Initiative (2009): Automatic quality 
assessment in structural brain magnetic resonance imaging. Magn Reson Med 
62:365–372. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2023. ; https://doi.org/10.1101/2023.03.16.532911doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532911
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Oliveira R, Raynaud Q, Corbin N, Di Domenicantonio G, Callaghan MF, Lutti A (2023): 
QUIQI II Analysis Script - Statistical analyses of motion-corrupted MRI relaxometry 
data. Zenodo. https://zenodo.org/record/7612032. 

Ong T, Bharatha A, Alsufayan R, Das S, Lin AW (2021): MRI predictors for brain invasion 
in meningiomas. Neuroradiol J 34:3–7. 

Ong YY, Pang WW, Huang JY, Aris IM, Sadananthan SA, Tint M-T, Yuan WL, Chen L-W, 
Chan YH, Karnani N, Velan SS, Fortier MV, Choo J, Ling LH, Shek L, Tan KH, 
Gluckman PD, Yap F, Chong Y-S, Godfrey KM, Chong MF-F, Chan S-Y, Eriksson 
JG, Wlodek ME, Lee YS, Michael N (2022): Breastfeeding may benefit 
cardiometabolic health of children exposed to increased gestational glycemia in utero. 
Eur J Nutr 61:2383–2395. 

Panda A, Obmann VC, Lo W-C, Margevicius S, Jiang Y, Schluchter M, Patel IJ, Nakamoto 
D, Badve C, Griswold MA, Jaeger I, Ponsky LE, Gulani V (2019): MR fingerprinting 
and ADC mapping for characterization of lesions in the transition zone of the prostate 
gland. Radiology 292:685–694. 

Papadaki E, Kavroulakis E, Kalaitzakis G, Karageorgou D, Makrakis D, Maris TG, Simos 
PG (2019): Age-related deep white matter changes in myelin and water content: A T2 
relaxometry study. J Magn Reson Imaging 50:1393–1404. 

Pizarro RA, Cheng X, Barnett A, Lemaitre H, Verchinski BA, Goldman AL, Xiao E, Luo Q, 
Berman KF, Callicott JH, Weinberger DR, Mattay VS (2016): Automated Quality 
Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised 
Machine Learning Algorithm. Front Neuroinformatics 10. 
https://www.frontiersin.org/articles/10.3389/fninf.2016.00052. 

Plaikner M, Kremser C, Zoller H, Jaschke W, Henninger B (2018): Monitoring iron overload: 
Relationship between R2∗ relaxometry of the liver and serum ferritin under different 
therapies. J Clin Imaging Sci 8. 

van der Plas E, Gutmann L, Thedens D, Shields RK, Langbehn K, Guo Z, Sonka M, 
Nopoulos P (2021): Quantitative muscle MRI as a sensitive marker of early muscle 
pathology in myotonic dystrophy type 1. Muscle Nerve 63:553–562. 

Raynaud Q, Oliveira R, Draganski B, Kherif F, Corbin N, Di Domenicantonio G, Callaghan 
MF, Lutti A (2023): QUIQI II Dataset - Statistical analyses of motion-corrupted MRI 
relaxometry data. Zenodo. https://zenodo.org/record/7692074. 

Reuter M, Tisdall MD, Qureshi A, Buckner RL, van der Kouwe AJW, Fischl B (2015): Head 
motion during MRI acquisition reduces gray matter volume and thickness estimates. 
NeuroImage 107:107–115. 

Rosen AFG, Roalf DR, Ruparel K, Blake J, Seelaus K, Villa LP, Ciric R, Cook PA, 
Davatzikos C, Elliott MA, Garcia de La Garza A, Gennatas ED, Quarmley M, Schmitt 
JE, Shinohara RT, Tisdall MD, Craddock RC, Gur RE, Gur RC, Satterthwaite TD 
(2018): Quantitative assessment of structural image quality. NeuroImage 169:407–
418. 

Savalia NK, Agres PF, Chan MY, Feczko EJ, Kennedy KM, Wig GS (2017): Motion-related 
artifacts in structural brain images revealed with independent estimates of in-scanner 
head motion. Hum Brain Mapp 38:472–492. 

Schall M, Iordanishvili E, Mauler J, Oros-Peusquens A-M, Shah NJ (2020): Increasing body 
mass index in an elderly cohort: Effects on the quantitative MR parameters of the 
brain. J Magn Reson Imaging 51:514–523. 

Scott RC, King MD, Gadian DG, Neville BGR, Connelly A (2003): Hippocampal 
abnormalities after prolonged febrile convulsion: A longitudinal MRI study. Brain 
126:2551–2557. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2023. ; https://doi.org/10.1101/2023.03.16.532911doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532911
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Sereno MI, Lutti A, Weiskopf N, Dick F (2013): Mapping the Human Cortical Surface by 
Combining Quantitative T1 with Retinotopy. Cereb Cortex N Y NY 23:2261–2268. 

Stüber C, Morawski M, Schäfer A, Labadie C, Wähnert M, Leuze C, Streicher M, Barapatre 
N, Reimann K, Geyer S, Spemann D, Turner R (2014): Myelin and iron concentration 
in the human brain: a quantitative study of MRI contrast. NeuroImage 93 Pt 1:95–
106. 

Tabelow K, Balteau E, Ashburner J, Callaghan MF, Draganski B, Helms G, Kherif F, 
Leutritz T, Lutti A, Phillips C, Reimer E, Ruthotto L, Seif M, Weiskopf N, Ziegler G, 
Mohammadi S (2019): hMRI - A toolbox for quantitative MRI in neuroscience and 
clinical research. NeuroImage 194:191–210. 

Trofimova O, Loued-Khenissi L, DiDomenicantonio G, Lutti A, Kliegel M, Stringhini S, 
Marques-Vidal P, Vollenweider P, Waeber G, Preisig M, Kherif F, Draganski B 
(2021): Brain tissue properties link cardio-vascular risk factors, mood and cognitive 
performance in the CoLaus|PsyCoLaus epidemiological cohort. Neurobiol Aging 
102:50–63. 

Weiskopf N, Callaghan MF, Josephs O, Lutti A, Mohammadi S (2014): Estimating the 
apparent transverse relaxation time (R2*) from images with different contrasts 
(ESTATICS) reduces motion artifacts. Front Neurosci 8. 
https://www.frontiersin.org/articles/10.3389/fnins.2014.00278/full. 

Yao B, Li T-Q, Gelderen P van, Shmueli K, de Zwart JA, Duyn JH (2009): Susceptibility 
contrast in high field MRI of human brain as a function of tissue iron content. 
NeuroImage 44:1259–1266. 

 
 
 
 
 
 
 

 
Table 1 : Specificity is preserved with WLS analyses. Specificity of WLS and OLS analyses 
of R2*(2), R2*(3), R1 and MTsat data, in grey and white matter. The rate of false positive 
clusters (p < 0.05) were obtained with two tests: 1/ Group comparison of two sub-groups within 
a narrow age range with a two-sampled T-test 2/ Age-associated differences after random 
assignment of the participants’ age with an F-Test. Any positive result is a false positive. The 
cluster forming threshold was p < 0.001 uncorrected. 
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Figure 1: WLS analyses reduce heteroscedasticity and increase ELBO. Each graph shows 
heteroscedasticity and ELBO levels for different qMRI maps R2*(2) (top left), R2*(3) (top right), R1  
(bottom left) and MTsat (bottom right)). The top part of each graph shows local and global 
heteroscedasticity levels for OLS analyses and WLS analyses with different noise models (i.e. 𝛼,-.), 
in white matter (WM) and grey matter (GM). The bottom part shows differences in ELBO between 
WLS and OLS analyses. WLS analyses strongly reduce noise heteroscedasticity, for all noise models 
and qMRI maps. WLS analyses also lead to an increase in ELBO, except for two noise models in the 
GM of MTsat maps. 
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Figure 2: Noise homoscedasticity and ELBO increase with the optimal noise model.  (a) With the 
optimal noise model (𝛼,-. = 4, 𝜆 ∈ ℝ), global heteroscedasticity (R2) does not exceed 0.16, for all 
types of qMRI maps and in both grey and white matter. (b) WLS analyses lead to an increase in ELBO, 
for all types of qMRI maps and in both grey and white matter. This increase varies according to the 
type of qMRI data and the number of raw image volumes involved in the map calculation.  
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Figure 3: Exclusion of the most degraded datasets improves noise heteroscedasticity in OLS 
analyses. After exclusion of 30% of the datasets, global heteroscedasticity lies in the same range as 
WLS analyses overall (R2~0.1-0.2), except for R2*(2) and R2*(3) maps in white matter (R2=0.34). 
However local heteroscedasticity remains generally higher than for WLS analyses (<0.05), and reaches 
0.12 in R2* data and 0.25 in the white matter of MTsat data.  
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Figure 4: WLS analyses show increased sensitivity to brain differences. Statistical F-maps of age-
related changes (FWLS), obtained in WLS analyses of 123 samples of the full dataset, show predominant 
features that include an increase in R2* with age in sub-cortical areas and a decrease in MTsat and R1 
in frontal white matter (top). WLS analyses exhibit higher Fscores than OLS analyses after exclusion 
of 30% of the most corrupted data, in all types of qMRI data and throughout grey and white matter 
(bottom). For each type of qMRI maps, the inset indicates the threshold for statistical significance 
(p<0.05, FWE corrected). 
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Figure 5: WLS analyses increase the spread of significant voxels in statistical maps. Maps of 
voxels with significant age-related changes (blue) (p<0.05, FWE corrected) show increased spatial 
extent with WLS analyses (top) than OLS analyses with exclusion of 30% of the most corrupted data 
(bottom), for all types of qMRI data. The insets indicate the fraction of significant voxels in grey and 
white matter. 
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Figure 6: Including the motion degradation index as regressors in the design matrix does not 
restore homoscedasticity. Despite inserting the MDI in the design matrix, OLS analyses exhibit a high 
level of global noise heteroscedasticity (high R2), for all types of qMRI maps and in both grey and white 
matter. Homoscedasticity is restored with WLS analyses.  
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