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The HAInich: A multidisciplinary 
vision data-set for a better 
understanding of the forest 
ecosystem
Stefan Milz1,2 ✉, Jana Wäldchen3,4, Amin Abouee2, Ashwanth A. Ravichandran2,  
Peter Schall   5, Chris Hagen2, John Borer2, Benjamin Lewandowski2, Hans-Christian Wittich1 
& Patrick Mäder   1,4,6 ✉

We present a multidisciplinary forest ecosystem 3D perception dataset. The dataset was collected 
in the Hainich-Dün region in central Germany, which includes two dedicated areas, which are part 
of the Biodiversity Exploratories - a long term research platform for comparative and experimental 
biodiversity and ecosystem research. The dataset combines several disciplines, including computer 
science and robotics, biology, bio-geochemistry, and forestry science. We present results for common 
3D perception tasks, including classification, depth estimation, localization, and path planning. We 
combine the full suite of modern perception sensors, including high-resolution fisheye cameras, 3D 
dense LiDAR, differential GPS, and an inertial measurement unit, with ecological metadata of the 
area, including stand age, diameter, exact 3D position, and species. The dataset consists of three hand 
held measurement series taken from sensors mounted on a UAV during each of three seasons: winter, 
spring, and early summer. This enables new research opportunities and paves the way for testing forest 
environment 3D perception tasks and mission set automation for robotics.

Background & Summary
Accurate quantification of forest stand structure and dynamics is necessary to understand ecological processes 
and impacts of human activities. Forest site variables such as tree height, tree volume, and diameter at breast 
height (DBH), their spatial distribution and cover, are fundamental to ecosystem research and modeling of 
plant functional types, diversity, carbon balance, and ecophysiology1–3. For example, the biometric relationship 
between tree height and diameter is used to estimate biomass, which plays an important role in carbon cycling 
and climate modelling4. Ground-based forest inventories in which all trees in a forested stand are measured, are 
time-consuming, cost-intensive, and prone to human error5. To reduce the amount of field work required, for-
esters often use statistical and mathematical extrapolation based on measurements taken of sample circle plots. 
Typically the DBH and tree height are measured as they are strongly related to stem volume and above-ground 
biomass of the tree. Other tree parameters, such as the location, tree height, and height of the first living branch 
may also be recorded but are often not measured for every tree on sample plots because these measurements are 
labor-intensive6. Based on initial measurements, depending on the needs of research, foresters extrapolate the 
individual circles to the entire stand, which is liable to introduce large uncertainties5. Terrestrial laser scanning 
or Light Imaging Distance and Ranging (LiDAR)7 sensors have since simplified the acquisition process in some 
respects8.

These surveys must still be conducted by foresters and require a large amount of time and manpower, com-
pared to a full automated measurement, which is still not possible. In recent years the use of automated remote 
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sensing technologies for forest inventories has become the industry standard9. In particular, above canopy auto-
mated drone surveys have found widespread application however they still have limitations. Due to canopy 
occlusions it suffers from a lack of precision and is not capable of measuring the same attributes as ground based 
surveys. Automated ground based data acquisition with drones or ground rovers is currently an unsolved prob-
lem, as forest structures are extremely complex, unique, and congested spaces. This presents a huge challenge for 
autonomous robots, either air or ground based, to navigate and perceive their environment. However the benefit 
of introducing technologies that facilitate the automation of ground based high precision forestry surveys is so 
high that it is critical to closely study and solve the limiting technical factors.

In other disciplines with similar complex environments like automated driving, huge technical progress is 
being made both in commercialization and research. Similar data is collected and analyzed in real time to per-
ceive and act autonomously. This progress is in large part due to the fact that engineers and researchers have 
access to many public datasets acquired in the relevant environments with the relevant sensors. The KITTI10, 
NuScenes11, and Woodscape12 and many more are important pioneering works with multi-modal perception 
data including LiDAR and camera measurements. Such a robotics dataset does not exist in the field of forestry 
science. We present the first intensive data set for robotics in forests including the full suite of modern percep-
tion sensors acquired in a forest setting. It is composed of a series of handheld measurements on a drone setup. 
The first non-automotive 360 vision dataset with fisheye and LiDAR capturing complex robotics forest scenarios 
combined with stand metadata captured by foresters, including stand age, diameter, exact 3D position, and 
species. Furthermore, the data set includes measurements at different points in time (winter, spring, summer), 
as the structures change significantly over the year. In this way, we want to advance research into automated 
inventory using both ground robots and most importantly drones.

Methods
Explanation of the forest areas.  The study sites are located in the Hainich-Dün region in central 
Germany (see Fig. 1) and are part of so-called Biodiversity Exploratories, which are long-term research plat-
forms to investigate the effects of varying land-use intensities on functional biodiversity response13. The forests 
are Beech (Fagus sylvatica) dominated admixed with Fraxinus excelsior and Acer pseudoplatanus. We selected 

Fig. 1  Study sites in the Hainich-Dün region in central Germany HEW5 (a) and HEW45 (b) are mapped with 
the handheld sensor setup at three different times (blue: run one - February, green: run two - March, orange: 
run three - May). Red dots indicate the ground truth tree positions from the meta studies.

HEW5 HEW45

Management Age-class forest Age-class forest

Stand Age (years) 97 41

Wood volume (m3 ha1) 434.9 286.1

Stand density (stems ha1) 431 1379

Mean diameter at breast height (cm) 27.1 16.3

Basal area (m h−1) 30.5 34.3

% Beech 96.0 96.1

other species F. exc., A. pseud. F. exc., A. pseud.

Mineral soil pH 5.0 7.1

Soil texture (clay/silt /sand %) 46.0 48.5 5.9 8.8 85.4 6.0

Standing dead wood (m3 ha1) 1.3 4.0

Table 1.  An overview of the stand characteristics of the study sites. Data are given for all trees with a 
DBH > 7 cm.
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two one hectare (100x100m) plots of single-layered stands (HEW5 and HEW45). A full forest inventory was 
carried out in winter 2020–2021, recording geographic position, species identity and diameter at breast height 
(DBH) of all trees with DBH > 7 cm using the FieldMap system14. For a subsample of trees distributed across the 
DBH gradient additionally tree height was measured. These subsample was used to estimate heights of all trees 
based on the Petterson function15,16. Tree volume (above bark) was subsequently estimated using height, DBH 
and species specific form factors17 An overview of the forest structure of both study areas is given in Table 1.  
An important aspect of planning a forest inventory is also the choice of an appropriate scanning date. For exam-
ple, to see the difference between trees with foliage and without foliage, the images were repeated at three different 
times (see Figs. 2, 3) with accurate spatial ground truth (GPS and laser data).

Sensors and data acquisition.  A prototype UAV and 3D perception suite was used to acquire the sensor 
dataset. The configuration consists of an Ouster OS1-64 LiDAR sensor, two eCon e-CAM50 CUNX/NANO 5MP 
cameras with Lensagon 190° BF10M14522S118 (no IR-Filter), and a Holybro F9P RTK GPS. The sensor setup was 
mounted on a handheld Tarot Ironman 650FY drone. The experimental configuration is illustrated and annotated 
in Fig. 4. The embedded computing device is a Nvidia Jetson NX developer kit. ROS18 Melodic middleware was 
used to communicate with all sensors. The Ouster LiDAR and the cameras have their own ROS drivers. The entire 
setup was powered by a 6 S LiPo Battery.

Calibration and correction.  The two fisheye cameras were calibrated using Puzzlepaint camera cali-
bration19. The calibration pattern used is an A3 size Puzzlepaint pattern with 16 star segments, each square of  
length 1.2 cm. In the pattern center is an April-Tag of size 2 cm. The Puzzlepaint pattern can also be seen in Fig. 5. 
The calibration pattern is provided in calib_pattern.pdf and calib_pattern_config.yaml.  
It contains the configuration for the pattern. Image data was acquired using a lens with no IR-filter, we provide a 
color-correction module listed in Table 2 and shown in Fig. 5. Extrinsic calibrations of all sensors are shown in 
Fig. 6 (see also Fig. 4).

Fig. 2  Projection of tree GPS coordinates onto image frames. This view is from the back camera.

Fig. 3  Sample images with the projected LiDAR ground truth (winter left, spring middle, summer right). The 
first row shows data from HEW 5 and the second row from HEW 45.
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Data Records
The dataset is available under Dryad20 and Zenodo21. In both repositories the data is stored and zipped into 
a single file named forest.zip with a instruction file called README.txt. The data directory structure 
and all data content is shown in Table 2. A calibration sub-folder includes: the calibration pattern, the con-
fig and the calibration result (calib_pattern.pdf, puzzlepaint_config.txt, calib_pat-
tern_config_yaml) such as some drawings for a better understanding of the extrinsic configuration 
(sub-folder Extrinsic). The metadata is stored in the sub-directory meta_data in Ground_Truth.xlsx. This 

Fig. 4  The quad-copter UAV setup deployed for the forest data measurements. Two fisheye cameras, a RTK 
GPS and a LiDAR such as a computing device (NVIDIA Jetson NX) are mounted on it.

Fig. 5  Calibration pattern (top) and color correction (bottom).

Table 2.  Structure of the provided files.
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5Scientific Data |          (2023) 10:168  | https://doi.org/10.1038/s41597-023-02010-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

file includes the manual acquired data by foresters (see Table 1) for all 1967 trees in the areas with the follow-
ing fields: EP−area, Lat, Lon, GKR, GKH, Xm, Ym, Zm, ID, date, DBHmm, species, multistem, brakewood, year.  
A sub-directory Location includes optional geo-information of the areas. All raw sensor data are provided 
as rosbags (e.g. h1f1r1.bag, see ROS18). Three recordings were done during summer, spring and winter 
for HEW5 and HEW45 (forest_1 and forest_2). The naming, e.g. abc.bag, with a being either h1 
(winter), h2 (spring), h3 (summer) and b being f1 for HEW5 or f2 for HEW45. c is an id (r1 or r2). Due to space 

Fig. 6  Extrinsics.

Fig. 7  Automated bounding box extraction (right) for the fisheye rgb camera data object detection using the 
extrinsic calibration (left) which can be combined with the meta information like diameter or specie.

https://doi.org/10.1038/s41597-023-02010-8


6Scientific Data |          (2023) 10:168  | https://doi.org/10.1038/s41597-023-02010-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

limitations all meta data (including calibration) is published under Dryad20 and all raw sensor recordings under 
Zenodo21. Both repositories needs to be used for the full data-set.

Ground truth position.  RTK GPS was used to determine the global position of the UAV. GPS coordinates 
and IMU measurements are fused together with an Extended Kalman Filter to estimate ground truth 3D odome-
try. It is recorded at a frequency of 10 Hz. Odometry ground truth is shown in Fig. 1. The ground truth odometry 
is provided for each rosbag (gt_odom.txt). LiDAR data, shown in Fig. 3, provides the ground truth for depth 
estimation, and the extrinsic calibration provides a ground truth for object detection.

Fig. 8  Exemplary bounding box extraction for a LiDAR birds eye view projection (winter sample left, summer 
sample right) using standard width and height and the extrinsic localization of the meta data.

Fig. 9  High resolution mapping result using the accumulated lidar data of h1f1r1.

Fig. 10  Qualitative results using SOTA Monocular Depth estimation. The left column shows four samples on 
the spring collection of our data-set (two uncorrected IR images, two color corrected images). We cropped the 
area of the image as input for the used approach Monodepth25. These results are shown as overlay depth maps 
on the right column. The initial results are promising, paving the way towards autonomous forest navigation on 
cameras with 360 degree field of view.
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Technical Validation
The dataset is the first 360 vision dataset using fisheye camera imagery with LiDAR ground truth in the 
non-automotive sector (forestry) in combination with geo-localization sensors (see Fig. 1). Several meas-
urements were performed at different times of the year and therefore unique temporal environmental infor-
mation is also available. Furthermore, we publish manually but equally geolocated tree data by the foresters  
(see Table 1). For validation, we plotted the georeferenced pose data of all acquisition runs (several year times) 
in a common coordinate system along with the manually collected metadata. The results are conclusive and 
confirm the integrity of the data (see Fig. 1). Both sides HEW5 and HEW45 are clearly visible, overlap in all raw 
data, meta data and satellite imagery.

In the methods section (intrinsics see Fig. 5, extrinsics see Figs. 4, 6) our calibration of the sensors is 
explained along with our time synchronization. The calibration of these sensors is the base of every perception 
task. First we validate, intrinsic and extrinsic calibration including time synchronisation with the aid of LiDAR 
to image projection. In the optimal case, structures (e.g. trees) overlap perfectly in the entire projection image, 
i.e. identical structures are displayed by the LiDAR and RGB image at the same spatial location. In Fig. 3, we see 
perfect qualitative results for all acquisition runs an both cameras. We see an optimal overlap, any error in time 
synchronization or spatial calibration would result in a shifted projection. Furthermore, we have projected the 
manually measured 3D tree points into the camera images by means of geo-referencing (see Fig. 2) and calibra-
tion. The manually captured trees are perfectly visible in the camera image. This calibration and geo-referencing 
is the basis for automated annotation, i.e. the mapping of existing metadata in the spatial captured sensor data. 
This is shown in the Figs. 7, 8 for Camera and LiDAR data. Tree structures are clearly visible within the defined 
bounding boxes. The integrity of the inertial and GPS data was confirmed in Fig. 9. All LiDAR frames (h1lr1) 
were accumulated by positional data and a clear 3D map of the forest was obtained.

Usage Notes
This new dataset that for the first time combines multi-modal sensor data collection for autonomous vehicles 
and 3D perception with forest science and opens a broad array of bleeding edge research interests for scientists 
in the areas of interest presented here. Therefore, as Usage Notes, we demonstrate exemplary four experiments 
in perception for robotics in forestry: object detection, depth estimation, localization or path planning. These 
experiments show that this data set can be used to advance the relevant research interests. For the reason of 
usage, the data set is released with benchmark metrics with the intention that these will be built upon by the 
research community later on.

Object detection and classification.  Object recognition and classification is a critical ability for auton-
omous vehicles. Using this technology trees can be automatically located and classified using both camera and 
LiDAR. Recent state-of-the-art methods perform object detection on camera and LiDAR including SSD22, Yolo23, 
Complex Yolo24. The presented dataset’s metadata, extrinsics, and ground truth odometry allow for the labeling 
of forest features at scale, offering for the first time training data for forest environment recognition and classifica-
tion tasks. Numerous characteristics such as diameter or age of the tree can be directly based on image or LiDAR 
measurements. Figure 7 shows example camera images and Fig. 8 LiDAR data.

Dataset Duration Poses Camera Lidar

h1f1r1 1010 s 10110 6428 10109

h1f2r2 965 s 9658 6037 9658

h2f1r1 1380 s 13810 34629 13811

h2f2r2 599 6000 16652 6001

h3f1r2 999 9671 25903 10000

h3f2r2 641 0 17878 6420

Table 3.  Total number of messages in each dataset.

Fig. 11  Qualitative results from our baseline experiments. The image shows the trajectories of the A-LOAM 
algorithm (yellow) and GPS ground truth (red) such as the accumulated map (h1f1r1).

https://doi.org/10.1038/s41597-023-02010-8
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Monocular depth estimation.  The challenge of predicting a dense depth map from a single RGB image 
is known as “single image depth estimation”. Here we provide the first non-automotive public fisheye camera 
360-degree FOV dataset with LiDAR ground truth (Fig. 3). This enables further research as provided by25 on 
monocular depth estimation or26 on fisheye depth estimation. A baseline experiment using the Monodepth2 
approach of 25 pretrained on automotive data (KITTI10) on a crop of the a set of color corrected and uncorrected 
images showed potential, sample results are shown in Fig. 10. We ran the pretrained model on 100 sample test 
images, two times (with and without color correction) and calculated the sparse RSME as proposed by26 using 
the LiDAR ground truth (Fig. 3) capped at 30 m. We achieved an RSME of higher 5 for the raw data and around 4 
for the corrected images, which is promising and it shows that the color correction has a positive impact Table 3.

3D Mapping and localization.  3D Mapping (qualitative sample in Fig. 9) and Localisation is one of the 
most important tasks, as it calculates the position and a map simultaneously and therefore could be used for 

Fig. 12  Relative Pose Error (RPE) for our baseline method (ALOAM). The error represents the full 
transformation error between the ground-truth and estimated trajectories. The dashed gray illustrates the 
ground-truth while the colored is estimated by ALOAM.

https://doi.org/10.1038/s41597-023-02010-8
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analytical tasks like biomass calculation or tree segmentation in 3D as the position calculation of the robot for 
automated navigation. We present an extensive evaluation study for the pose error verification and qualitative 
results for the mapping, shown in Fig. 11. The pose error between the ground truth Q1:n ∈ SE(3) and estimated 
trajectories P1:n ∈ SE(3) is quantified with the absolute trajectory error (ATE), and relative pose error (RPE) met-
rics10,27. ATE measures the global consistency of a trajectory. It is determined by comparing the absolute distances 
between the estimated and the ground truth trajectory.As both trajectories might be defined in any coordinate 
frame, they must first be aligned. In this evaluation, the Umeyama28 alignment was used as a pre-processing step 
to find the 3D rigid-body transformation S, that maps the estimation P1:n onto the groundtruth Q1:n. The ATE at 
timestep i can be calculated as

�= = −ATE Q SP Q SP:i i i i i
1

The root mean square error (RMSE) is usually used for both translational and rotational parts of ATE sepa-
rately, and serves as the quality metric.
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where ⊖ represents the inverse compositional operator29 and ∠(․) is the rotation angle in degrees. The RPE 
measures the local accuracy of a SLAM trajectory over a fixed time interval Δ. The RPE at timestep i can be 
calculated as
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In this evaluation, we set Δ = 1 to perform the RPE for all consecutive frames (visual odometry). As exper-
iment for evaluation, we run A-LOAM (see code availability). A-LOAM is an optimized version of LOAM30 
which is one of the state-of-the-art algorithm in Lidar localization that can identify the pose and the map of the 
environment in real-time. The algorithm perform precisely in our dataset, results are presented in Table 4 and 
Fig. 12.

Path planning.  Autonomous robotic platforms build an internal representation of the observed world to plan 
and execute motion tasks within. This observation is real-time critical and needed to be handled with an high 
update rate. Accumulated or mapped point-clouds, as shown in Fig. 11, are too complex to be used for real-time 
path planning. Representations which use LiDAR as input, like Signed Distance Function (SDF) maps, are fast 
and have low overhead. In this section we use the Voxblox algorithm, proposed by31 using Volumetric Mapping 
using Truncated Signed Distance Fields (TSDF), to generate a map for planning. We perform this experiment 
on hlfr1 and generated competent maps for path planning in the complicated forest environment. The results 
are shown in Fig. 13. Trees as well as paths are clearly separated and are easy to recognize visually. Furthermore 
they can readily be identified by path planning algorithms and used to plan collision free navigation trajectories.  
This shows that our data is suited for path planning research in forest environments, bringing research in this area 
a decisive step forward.

ATE RPE

pos (m) rot(deg) pos(m) rot(deg)

HEW5
h1f1r1 3.867590 174.526263 0.157067 4.012467

h1f2r2 12.980364 177.575609 0.218814 5.403690

HEW45
h2f2r2 32.752117 175.992315 0.367303 4.803951

h3f1r2 15.751300 175.474383 0.279253 4.346198

Table 4.  A-LOAM results.

Fig. 13  Qualitative results of TSDF based map generation using Voxblox31. The figure shows the result 
of (h1f1r1). The left a global view and the right zoomed near-field. Trees and paves are clearly visible. The 
representation can be directly used for path planning.

https://doi.org/10.1038/s41597-023-02010-8
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Code availability
No explicit code has been developed in conjunction with the data-set. However, several resources are necessary 
to use the data. For replaying, using and developing the raw data and to perform sensor fusion such as individual 
tasks, it is recommended to install ROS18 (robot operating system) Melodic middleware documented at http://
wiki.ros.org/Documentation with all necessary download links. For our presented camera calibration, which 
is the base for several tasks, Puzzlepaint camera calibration19 is used with the codebase under https://github.
com/puzzlepaint/camera_calibration. For the depth estimation in this research-work we simply used the self-
supervised approach from Godard et. al25. The software is available under https://github.com/nianticlabs/
monodepth2. The localization algorithm A-LOAM from Zhang et. al30, available at https://github.com/HKUST-
Aerial-Robotics/A-LOAM, was used for the localization task. We used Voxblox31 for path planning (https://
github.com/ethz-asl/voxblox).
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Published: xx xx xxxx
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