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SUMMARY
Speech and song have been transmitted orally for countless human generations, changing over time under
the influence of biological, cognitive, and cultural pressures. Cross-cultural regularities and diversities in hu-
man song are thought to emerge from this transmission process, but testing how underlying mechanisms
contribute to musical structures remains a key challenge. Here, we introduce an automatic online pipeline
that streamlines large-scale cultural transmission experiments using a sophisticated and naturalistic modal-
ity: singing. We quantify the evolution of 3,424 melodies orally transmitted across 1,797 participants in the
United States and India. This approach produces a high-resolution characterization of how oral transmission
shapes melody, revealing the emergence of structures that are consistent with widespread musical features
observed cross-culturally (small pitch sets, small pitch intervals, and arch-shaped melodic contours). We
show how the emergence of these structures is constrained by individual biases in our participants—vocal
constraints, working memory, and cultural exposure—which determine the size, shape, and complexity of
evolving melodies. However, their ultimate effect on population-level structures depends on social dynamics
taking place during cultural transmission. When participants recursively imitate their own productions (indi-
vidual transmission), musical structures evolve slowly and heterogeneously, reflecting idiosyncratic musical
biases. When participants instead imitate others’ productions (social transmission), melodies rapidly shift to-
ward homogeneous structures, reflecting shared structural biases thatmay underpin cross-cultural variation.
These results provide the first quantitative characterization of the rich collection of biases that oral transmis-
sion imposes on music evolution, giving us a new understanding of how human song structures emerge via
cultural transmission.
INTRODUCTION

Singing—the vocal production of musical sounds—is a

unique feature of human culture, displaying an extraordinary

diversity of forms cross-culturally while also sharing certain

structural and functional properties.1–4 Singing obeys similar

acoustic and physiological principles to speech but nonethe-

less has distinctive features, such as the use of limited

sets of stable pitches that make up musical scales.5,6 This

form of vocal production is a universal communicative modal-

ity for music, playing important social functions across

cultures.7,8 Thus, singing is a fascinating phenomenon for

studying the biological and cultural foundations of music

evolution.

For most of our evolutionary history, oral transmission has

been the main mechanism by which songs are passed through

generations. However, this simple act of transmission—hearing
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and singing back a song—does not result in the perfect transfer

of information. Singers are likely to introduce some variation into

their vocal productions, either accidentally or on purpose.

Naively, one might expect that this variation is random, but in

practice, oral transmission is thought to shape musical systems

in non-random ways that reflect human transmission biases,

such as those imposed by motor constraints and cognitive abil-

ities.9–13 Crucially, the outcome of oral transmissionmay depend

not only just on biases of individual learners but also on the pat-

terns of social interactions by which cultural transmission takes

place, such as underlying social networks and population struc-

tures.14,15 Although such processes of oral transmission likely

played important roles throughout our evolutionary history,16–18

explaining how they contribute to the structures of human

song remains a key challenge for cognitive science.

It is possible to study oral transmission processes in controlled

experiments via iterated learning, a powerful experimental
, April 24, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Online iterated singing paradigm

(A) Participants hear a sequence of tones generated by a computer and reproduce it by singing back. Vocal reproductions are automatically analyzed, syn-

thesized, and played to the next participant as the input melody, using a pitch-roving technique to minimize inter-trial dependencies and adjust melodies to

participants’ singing range (see pitch roving procedure).

(B) On the left, a spectrogram of a three-tone melody and corresponding vocal reproduction (f0 indicated in pink). On the right, a schematic of the singing

transcription procedure to estimate MIDI notes from the recording using f0 extraction techniques (see singing transcription technology).

(C) Melodies can be transmitted across participants (social transmission) or within participants (individual transmission).

(D) The entire stimulus space of three-tone melodies can be defined along two continuous dimensions, one for each interval in the melody (dots represent

melodies). We initialize our experiments by randomly and continuously sampling melodies from this space (seemelody generation). Melodies on the top-right and

bottom-left corners are less likely due to the max pitch range parameter used to sample melody tones (see Table S2 for design parameters of all experiments).

Melodies are represented using standard MIDI notation (see melody representation).

ll
OPEN ACCESS

Please cite this article in press as: Anglada-Tort et al., Large-scale iterated singing experiments reveal oral transmission mechanisms underlying music
evolution, Current Biology (2023), https://doi.org/10.1016/j.cub.2023.02.070

Article
paradigm for studying the evolution of complex cultural phenom-

ena such as language and technology—also known as transmis-

sion chain experiments.19–22 Proof-of-concept iterated learning

experiments have also been conducted for musical domains,

including rhythm23–25 and melody.26–29 They have shown that

iterated transmission yields the emergence of particular struc-

tures that can be interpreted in terms of participants’ motor,

cognitive, or cultural biases. However, iterated learning experi-

ments in language and musical domains tend to suffer from a

limited scale, only testing a few tens of participants and trans-

mission chains at a time. This makes it particularly hard to sys-

tematically explore the vast space of evolutionary possibilities

or to draw statistically reliable conclusions about underlying

mechanisms.

Here, we introduce an automatic online pipeline that allows

us to scale up cultural transmission experiments in complex

production modalities by orders of magnitude. Our method is

unique in leveraging online data collection while preserving a

sophisticated and naturalistic task: singing. We focus in partic-

ular on the domain of musical melodies, short sequences of

tones that make up the identity of songs. Participants are
2 Current Biology 33, 1–15, April 24, 2023
initially presented with a random sequence of tones and asked

to reproduce it by singing (Figure 1A). Their reproductions are

automatically synthesized in real time to generate new input

melodies for the next participants (Figure 1B; see singing tran-

scription technology). To simulate cultural transmission, we

examine social transmission across participants, where chains

are completed by different individuals. In some experiments,

however, we also examine individual transmission, where the

entire chain is completed just by one participant (Figure 1C).

Importantly, our method does not assume culturally specific

knowledge about musical scale systems a priori, such as the

Western 12-tone chromatic scale. Instead, we randomly sam-

ple melodies from a continuous intervallic space (Figure 1D;

see melody generation). Our method is fully automated and

works efficiently over the internet using standard computers,

massively increasing the reach, diversity, and scalability of

data collection.

Mechanisms of melodic transmission
The oral transmission of melodies depends on several psycho-

logical and physical processes. First, a listener must ‘‘hear’’
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the melody, with their perception involving various auditory pro-

cesses such as pitch estimation and interval extraction. The re-

sulting mental representation of the melody must then be en-

coded in memory and retained for some period. At a later

point, the listener must reconstruct the melody from memory

and attempt to sing it. Their singing of the melody involves

translating from a mental representation to a set of physical

movements, most importantly of the diaphragm (for deter-

mining breath control) and the larynx (for determining pitch

content).5,6,30

The different steps of oral transmission may each contribute

particular biases to the transmission process. Melodic percep-

tion is naturally constrained by the frequency sensitivity of the

ear, and the spectral/temporal pattern-matching processes

responsible for pitch perception31,32; it is also heavily influenced

by the listener’s cultural background,33,34 which causes the

listener to interpret melodies in terms of prelearned schemata

such as pitch categories (scales)35 and temporal categories

(rhythms),23,36 as well as more dynamic expectations that

develop over the course of the melody (melodic expecta-

tions).37,38 These influences may be further magnified by mem-

ory encoding and retention, since culturally learned schemata

provide an important scaffolding for the parsimonious retention

of information in memory.39,40 Finally, the vocal reproduction of

a melody may induce further biases corresponding, for example,

to the individual’s limited vocal range or agility.12

These components may be responsible for inducing biases on

a ‘‘local’’ level, from one transmitted melody to the next. Howev-

er, cultural transmission requires learning information socially

from others, either via imitation, teaching, or mere exposure.41

How do population-level structures depend on the underlying

dynamics of social interactions? One possibility is that all individ-

uals share strong biases for music, constraining them to produce

only certain musical structures over generations. Computational

modeling of iterated learning19 predicts that this is indeed the

case when the stationary distribution of the model depends

only on the learners’ priors, which are assumed to be similar

across individuals and unchanged during the transmission pro-

cess. Another possibility is that individuals instead have weak

and diverse musical biases, which are amplified or attenuated

over time through multiple social interactions. This creates a

shared structural compromise that largely depends on the un-

derlying patterns of social interactions.42–44 Previous studies

on human and animal communication have tested these

competing hypotheses by comparing iterated learning results

in the presence and absence of social interactions.23,44–46

Although previous research has discussed how such pro-

cesses of oral transmission might have contributed to the evolu-

tion of human song,10,17,18 it has been thus far impractical to test

which mechanisms are important in practice and what

effects they end up having on musical structures. Here, we

address this with a series of 12 behavioral experiments with

1,797 online participants (see STAR Methods for details on

recruitment, demographics, and experiment implementations).

Our results have three primary contributions. First, we show

that our method efficiently characterizes the effects of oral trans-

mission on melody, shaping initially random sounds into more

structured systems that increasingly reuse and combine fewer

elements (small pitch sets, small intervals, and arch-shaped
contours). Second, we probe the relative contribution of underly-

ing individual mechanisms through a series of carefully designed

experimental comparisons that activate or bypass particular

mechanisms—i.e., production constraints, working memory,

and cultural exposure. Finally, we study the relationship between

individual and social transmission biases by comparing music

evolution in different participant populations (United States vs.

India) and transmission chain designs, where participants either

imitate their own (individual transmission) or other participants’

productions (social transmission).

RESULTS

Oral transmission shapes the evolution of melodies via
iterated singing
Short melodies

We begin by examining the effect of oral transmission on short

melodies composed of three tones (or two intervals). We

explored this space with 590 across-participant chains with 10

generations (5,900 singing trials) and a total of 188 US partici-

pants. Figure 2A shows the results of the iterated singing exper-

iment across generations. Oral transmission shaped initially

random tones into melodic structures that increasingly reused

fewer interval combinations. Indeed, melodies in the last three

generations of the experiment are concentrated around a few lo-

cations (Figure 2B), displaying a rich structure that resembles

Western discrete scale systems. For example, a popular area

in the space consists of arch-shaped melodies going up and

down in pitch (bottom-right quadrant), mostly peaking in the per-

fect fifth (intervals [7,�7]). We also used a peak-finding algorithm

to identify significant peaks in themarginal distribution of the two

melodic intervals (see peak finding; marginals are plotted at the

top and right of Figure 2B). Statistically significant peaks (indi-

cated as red dots) further reveal the existence of interval cate-

gories consistent with the Western 12-tone scale. For example,

we can see significant peaks near locations close to integer

semitones, such as peaks at �4.85 [�5.08, �4.62] and 4.80

[4.59, 5.02] semitones in the first interval and peaks at �7.10

[�7.42, �6.77] and 4.19 [3.92, 4.46] semitones in the second in-

terval, using 95% confidence intervals (CI).

Next, we looked at the effects of oral transmission on struc-

tural properties of melodies. Table S3 provides the summary sta-

tistics for all trend analyses conducted in this study, using linear

regressions with 95% CI derived from bootstrapping (1,000 rep-

licates; see trend analysis). First, to quantify the emergence of

melodic structure, we computed the entropy of the distribution

of intervals using Shannon’s entropy (see interval entropy). Inter-

val entropy decreased significantly over time (Figure 2C), sug-

gesting an increase in melodic structure. Second, we found

that melodies were biased toward a small vocabulary of intervals

(Figure 2D), shown by a significant decrease in themean number

of detected peaks in the distribution of intervals over generations

(see interval vocabulary size). Third, we observed that melodic

intervals became significantly smaller over time (Figure 2E), as

indicated by the mean absolute interval size. For example, the

proportion of intervals larger than 7 semitones declined from

36.38% [32.66, 40.09] in the baseline to 11.90% [8.06, 15.74]

in the last generation of the experiment (95% CI). Finally, we

calculated a measure of copying error corresponding to the
Current Biology 33, 1–15, April 24, 2023 3
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Figure 2. Oral transmission effects on short melodies

(A) The distribution of melodies over generations, using a two-dimensional kernel density estimate (see 1D and 2D Kernel Density Estimation (KDE)) over the

locations of the melodies (density is expressed relative to a uniform distribution; yellow areas represent high density).

(B) KDE over the last three generations of the experiment. We plot the marginals of each interval separately on the top and right panels of the figure (black line),

including the marginals of the random initial set of melodies (dark red line) and first three generations of the experiment (light gray line). Statistically significant

peaks (see peak finding) are indicated by the red dots and shaded areas (95% CI).

(C–F) The effects of oral transmission onmelodic features over generations (dashed lines indicate baseline values). Shaded areas correspond to ±1 standard error

derived from bootstrapping (1,000 replicates). See Table S3 for summary statistics.

ll
OPEN ACCESS

Please cite this article in press as: Anglada-Tort et al., Large-scale iterated singing experiments reveal oral transmission mechanisms underlying music
evolution, Current Biology (2023), https://doi.org/10.1016/j.cub.2023.02.070

Article
distance between the target melody and response (see copying

error). Copying error decreased significantly over time (Fig-

ure 2F), suggesting that melodies became increasingly easier

to learn and transmit. Overall, these findings are consistent

with large-scale quantitative data showing that melodies

cross-culturally tend to contain a small number of interval cate-

gories per octave (7 or less) and are composed of intervals of

small size (less than 7 semitones).1,4

Long melodies

We also generalized our investigation to longer melodies. Exper-

iment 2 studied five-tone melodies (159 chains, 51 US partici-

pants), whereas Experiment 3 studied variable-length melodies

ranging from 4 to 12 tones (216 chains; 83 US participants), al-

lowing melodies to change in their number of tones as they

were passed across participants. Figure 3A shows the evolution

of melodic features in the three singing experiments (statistics
4 Current Biology 33, 1–15, April 24, 2023
reported in Table S3). To keep the results comparable between

experiments with different baseline levels, we linearly normalized

the melodic features based on the baseline values at the start of

the experiments (we use this strategy in all subsequent analyses;

see comparing melodic features between experiments). As with

short melodies, longer melodies exhibited a significant increase

in melodic structure, manifesting as a significant decrease in the

entropy of the distribution of intervals (see "interval entropy" in

Figure 3A). Melodies also exhibited a bias toward a small vocab-

ulary of intervals ("vocabulary size"; except for the variable-

length experiment), and a bias toward small melodic intervals

("interval size"). Melodies in all experiments became increasingly

easier to transmit over time ("copying error"), but this effect was

larger in experiments with longer melodies, reflecting higher de-

mands in the task. However, we also see differences in the evo-

lution of melodic features depending on melody length. For
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Figure 3. Oral transmission effects on long melodies

(A) The effects of oral transmission onmelodies of different lengths (Experiment 1–3; see Table S3 for summary statistics). Melodic features are normalized based

on baseline values (dashed line), except for copying error (see trend analysis). Shaded areas represent bootstrapped standard error (1,000 replicates).

(B) Evolution of melodic contour in Experiment 2 (error bars represent SE; see melodic contours).

(C) Clustering results (k-means) over the five melody tones in the last three generations. Left plot: melodies colored by cluster and projected over a two-

dimensional PCA space (explained variance in brackets); right plot: average melodic contour in each cluster.

(D and E) (D) The average number of tones per melody over time (Experiment 3) and (E) the number of melodies of different lengths in the last generation of the

experiment.

(F) Melodic contours in melodies of different lengths in the last three generations of Experiment 3 (error bars represent SE).
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example, five-tone melodies exhibited the largest decrease in

the mean absolute interval size, suggesting a higher tendency

to use stepwise motion and small intervals.

Using data from Experiment 2 (five-tone melodies), we exam-

ined the evolution of melodic contours (the sequence of ups and

downs in pitch), a key feature in melody cognition.39 To visualize

melodic contours, we calculated the mean MIDI value (and SE)

for each tone in the melody across all melodies per generation
(transposing all melodies to the same register; see melodic con-

tours). As shown in Figure 3B, melodies evolved from flat

melodic contours to distinctive arch-shaped contours. Indeed,

a clustering analysis over the melody tones in the last three gen-

erations of the experiment (using k-means clustering over aver-

aged and centered MIDI notes) revealed that most melodies

eventually clustered around only two contour types, both con-

sisting of minor variations of an arch-shaped contour (Figure 3C).
Current Biology 33, 1–15, April 24, 2023 5
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Finally, we looked at the effect of oral transmission on melody

length (Experiment 3). The mean number of tones per melody

decreased significantly over generations (Figure 3D). By the

end of the experiment, the longest melodies (10–12 tones)

almost disappeared, whereas melodies with 6 to 7 tones

became the most popular (Figure 3E). We can also see that the

emergence of arch-shaped musical contours was similar across

melodies of different lengths, with the highest pitch near the third

tone in the melody (Figure 3F). The prevalence of simple and

arched musical contours has been found to be widespread

both in bird12 and human song across cultures.1,4

To summarize, we have demonstrated that oral transmission

has profound effects on the emergence of melodic structures,

shaping initially random tones into more structured systems

that become increasingly easier to learn and transmit. Impor-

tantly, structural features emerging artificially from our experi-

ments—small pitch sets, small pitch intervals, and arch-shaped

melodic contours—are largely consistent with widespread

musical features observed cross-culturally.1,4

Production constraints, working memory, and cultural
exposure cause oral transmission biases
Musical structures emerging from our experiments can be seen

as adaptations that arise from the transmission bottleneck

imposed by individuals’ capacity to process and produce music.

In the following experiments, we present a series of experimental

manipulations to probe underlying mechanisms at play and

study their effects on melodic transmission. Specifically, we

study the effect of vocal constraints, working memory, and cul-

tural exposure.

Production constraints

We combined different experimental paradigms with computer

simulations to explore the relative contribution of production

and perception. First, we examined melodic transmission in

the absence of vocal constraints by conducting an iterated

learning experiment where participants copied melodies with a

slider rather than their voice (Experiment 4: 369 chains and

327 US participants). We compared this experiment with a con-

trol singing experiment using a similar design (Experiment 5: 398

chains and 122 US participants). To keep the transmission pro-

cess comparable between sliders and vocalizations, we trans-

mitted stimuli composed of one melodic interval only (two

tones played sequentially); in the slider experiment, we also

implemented an aggregation technique to summarize the slider

responses of multiple participants using the median47 and a per-

formance incentive (see iterated slider imitation). These tech-

niques effectively reduced production noise in slider responses,

which was comparatively higher than in vocal productions. The

resulting stimulus space can be represented as a one-dimen-

sional horizontal line, where each location corresponds to a

unique interval. Participants were asked to match the target in-

terval simply by moving a slider horizontally along the line (Fig-

ure 4A), keeping the first tone of the interval constant within

each trial.

The aggregated results in the last generations of the two ex-

periments reveal striking differences (Figure 4B). Melodic inter-

vals in the singing experiment exhibited a relatively structured

distribution (dashed black line), similar to the one obtained in

Experiment 1. However, melodic transmission via sliders
6 Current Biology 33, 1–15, April 24, 2023
produced a comparatively less-structured distribution featuring

a strong bias toward large intervals (see significant peaks at

�12.07 [�12.38, �11.77] and 12.19 [11.96, 12.42] semitones).

Figure 4C shows the evolution of melodic features in the two

experiments (statistics reported in Table S3). Interval entropy

decreased more readily when intervals were transmitted orally

than with sliders. There was a similar but smaller trend in inter-

val vocabulary size. However, the largest difference between

the two experiments was the mean absolute interval size (see

"interval size" in Figure 4C): melodies transmitted via sliders

were significantly biased toward large intervals, whereas mel-

odies transmitted orally were biased toward small intervals.

Finally, copying error indicated that imitating melodies with

sliders was significantly harder than with the voice, but in

both conditions, melodies became significantly easier to trans-

mit over time.

These results show that vocal constraints strongly facilitate

melodic evolution, speeding the emergence of structural fea-

tures such as vocabulary reuse and small interval sizes. By

biasing transmission toward small intervals, vocal constraints

restrict the available stimulus space and enable it to be explored

more efficiently. One possible explanation is that large intervals

require sudden contraction/relaxation in the muscle controlling

vocal fold tension12 and thus are harder to produce by the

vocal system than smaller ones. To explore this kind of vocal

constraint, we conducted a simulation experiment to model

how melodies would evolve if oral transmission was shaped

only by a simple (polynomial) function based on the interval

size and direction, with additional independent stochastic pro-

duction noise (see experimental simulations). The results of

this simple model can account for important features observed

in human data (Figure 4G; see Figure S2 for an example of the

model across generations), such as the bimodal distribution of

intervals with two major modes and a relatively large dip in be-

tween. However, this model fails to capture more nuanced fea-

tures, such as the emergence of certain peaks observed in the

singing data.

One limitation of the slider experiment is that it introduces new

kinds of production biases—i.e., controlling and manipulating a

slider. To isolate the effects of perceptual biases and study

how they may relate to singing data, we ran a subjective prefer-

ence experiment that did not contain any production component

(Experiment 6). Specifically, we used a dense rating paradigm48

to construct a detailed map of subjective preferences for

melodic intervals, derived from 15,000 stimuli sampled randomly

and uniformly from the range [�15, 15] semitones (see dense rat-

ing paradigm). A total of 415 US participants contributed to the

experiment by listening and rating intervals using a ‘‘pleasant-

ness’’ scale (Figure 4D). The aggregated ratings provide a highly

detailed characterization of perceived melodic pleasantness in

Western music (Figure 4E). Despite sampling intervals continu-

ously from the space, we see clear peaks around integer loca-

tions that characterize the Western 12-tone chromatic scale,

such as the octave (peaking at 12.09 [11.97, 12.21]), perfect fifth

(peaking at�7.06 [�7.17, �6.95] and 7.10 [6.90, 7.29]), and per-

fect fourth (peaking at = �5.05 [�5.22 �4.86] and 5.10

[4.89, 5.31]).

We examined how well the intervals produced in the singing

experiments aligned with this melodic pleasantness profile.
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Figure 4. Production constraints

(A) Participants heard melodic intervals and were asked to match them using a slider (Experiment 4).

(B) The distribution of intervals in the last three generations of the slider (red line; Experiment 4) and control singing experiment (dashed black line; Experiment 5).

(C) The effects of oral transmission on melodic features (statistics reported in Table S3). Melodic features are normalized based on baseline values (dashed line),

except for copying error (see trend analysis).

(D) Participants heard melodic intervals and were asked to rate their pleasantness (Experiment 6).

(E) The aggregated results of the rating experiment provide a highly detailed characterization of melodic pleasantness in Western music. Statistically significant

peaks are indicated by the red dots and shaded areas (95% CI; see peak finding).

(F) Melodies in the singing experiments became increasingly more aligned with Western melodic pleasantness.

(G–I) Results in the last three generations of the simulation models based on (G) interval size and direction, (H) subjective preferences, and (I) a combined model

(see experimental simulations; see Figure 2S for data across generations). Shaded areas in all plots correspond to ±1 standard error derived from bootstrapping

(1,000 replicates).
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The results indicated that orally transmitted melodies in all ex-

periments became increasingly more aligned with Western

melodic pleasantness (Figure 4F). We then conducted a

simulation experiment to see how melodies would evolve if

oral transmission was shaped solely by subjective pleasant-

ness (see experimental simulations). This simulation translates

preferences (a subjective utility function) to a perceptual

‘‘prior’’ and then uses a Bayesian serial reproduction model

to predict participants’ responses.47,49,50 The results of this

simulation can account for some features of the data (see

Figure 4H; see Figure S2 for example data across
generations), such as the emergence of some interval cate-

gories (e.g., peaks at �5, 4, and 7 semitones) and avoidance

of others (e.g., the tritone). However, the preference-based

model is insufficient for capturing the structure obtained

from human singing.

Together, these results demonstrate that vocal constraints

are necessary to converge to melodic structures that charac-

terize human song. However, to account for more nuanced

features, it is necessary to also consider perceptual biases

(e.g., melodic pleasantness) and cognitive biases (e.g.,

learned schemata). Finally, we explored a model combining
Current Biology 33, 1–15, April 24, 2023 7
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Figure 5. Working memory

(A) In the memory interference conditions (Experiment 7 and 8), participants heard three-tone melodies, followed by a random sequence of tones played at fast

tempo (auditory interference) either for 5 or 10 s. In the control condition (Experiment 9), participants performed the same procedure but without any interference.

(B) The distribution of melodies produced in the last three generations of the three experiments (see 1D and 2D Kernel Density Estimation (KDE); see Figure S3 for

results across generations).

(C) The effects of oral transmission on melodic features (statistics reported in Table S3). Melodic features are normalized based on baseline values (dashed line),

except for copying error (see trend analysis). Shaded areas correspond to ±1 standard error derived from bootstrapping (1,000 replicates).
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both the interval size and preference models (see Figure 4I;

see experimental simulations) and found that it captures

important features from both models but still does not fully

predict the empirical data.

Working memory

To examine the effect of working memory, we conducted iter-

ated singing experiments manipulating the memory interfer-

ence between the target melody and the singing response

(Figure 5A). The magnitude of the memory interference was

controlled by playing an auditory distractor stimulus after

the target melody either for 5 s (Experiment 7: 240 chains

and 100 US participants) or 10 s (Experiment 8: 240 across-

participant chains; 105 US participants). The auditory distrac-

tor consisted of a sequence of random tones with an overall
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duration of 100 ms played at 250 ms inter-onset interval. We

compared the results of these experiments with a control

experiment with no additional memory interference (Experi-

ment 9: 240 chains; 95 US participants), everything else being

equal.

Figure 5B shows the aggregated results in the last three

generations of the three experiments (see Figure S3 for results

across generations). Melodic structure emerged in all condi-

tions, but the size and exact distribution of the resulting mel-

odies largely depended on the memory manipulation. We see

that the larger the constraints imposed on working memory,

the smaller the intervals and the simpler the melodic struc-

tures. Indeed, interval entropy indicated that melodic structure

emerged most rapidly in the high-interference condition (10 s),
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Figure 6. Cultural Exposure

(A and B) (A) The distribution of melodies produced in the last three generations of the singing experiments with participants recruited from the US (Experiment 1)

and (B) India (Experiment 10; see 1D and 2D Kernel Density Estimation (KDE)). We plot the marginals of each interval separately on the top and right panels of the

figure. Statistically significant peaks (see peak finding) are indicated by the red dots and shaded areas (95% CI).

(C–F) The effects of oral transmission on melodic features (statistics reported in Table S3). Melodic features are normalized based on baseline values (dashed

line), except for copying error (see trend analysis). Shaded areas correspond to ±1 standard error derived from bootstrapping (1,000 replicates).
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followed by medium interference (5 s) and no interference,

although they all converged to similar levels by the end of

the experiment (see "interval entropy" in Figure 5C). Interval

vocabulary size decreased similarly in the three experiments

("vocabulary size"), whereas the mean absolute interval size

showed a strong effect of memory: interval size decreased

more drastically in the two memory interference conditions

than in the control experiment, reaching an average size of

about 2 semitones less (’’interval size’’). Finally, copying error

reflected the difficulty of the experiments but improved signif-

icantly in all conditions ("copying error"; see Table S3 for the

statistics).

These results demonstrate that memory constraints are an

important bottleneck for evolution by oral transmission. Just

5 s of memory interference caused a substantial shift toward

melodies with smaller intervals and simpler structures; the
increased duration of memory interference further accentuated

this effect.

Cultural exposure

The last individual transmission bias we explored concerns cul-

tural exposure. We replicated the main iterated singing experi-

ment (Experiment 1; US participants) using an online cohort of In-

dian participants (Experiment 10; 120 chains and 54 participants).

A singing performance test conducted before the main task (see

singing performance test) ensured that participants in the two

groups were similar in singing accuracy (India: M = 0.77, SD =

0.32; US: M = 0.64, SD = 0.30, in semitones). Participants were

also similar in demographic information and levels of musical

expertise (see Table S1).

Figures 6A and 6B show the aggregated results in the last

three generations of the two experiments (see Figure S4 for re-

sults across generations). The main effect of oral transmission
Current Biology 33, 1–15, April 24, 2023 9
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clearly replicated with the new group of participants:

melodies evolved systematically toward more structured distri-

butions. However, there were also interesting divergences be-

tween groups. Specifically, interval entropy decreased simi-

larly in the two groups, but it was comparatively lower in the

last three generations of the Indian group (Figure 6C) . Both

groups were biased toward a small vocabulary of intervals

(Figure 6D) and intervals of small size (Figure 6E), but these ef-

fects became more pronounced in the Indian group over time.

Copying error indicated that both groups were comparable in

terms of their improvement in meldoic transmissibility over

time (Figure 6F; see Table S3 for statistics).

The largest difference between groups was found in the

mean absolute interval size: melodic intervals produced by In-

dian participants were significantly smaller (3.25 [2.93, 3.57]

semitones on average, 95% CI) than those produced by US

participants (5.71 [5.55, 5.86] semitones). This finding is

consistent with previous corpus studies showing that melodic

intervals in South Indian melodies are smaller in size than that

in Western Melodies.51 This may be explained by the existence

of different biases across participant groups favoring melodic

intervals of different sizes. For example, US participants

were biased toward ‘‘leap’’ intervals, including significant

peaks around the perfect fifth (7 semitones) and perfect fourth

(±5 semitones), which correspond to prototypical tonal inter-

vals in Western music. By contrast, Indian participants were

biased toward smaller intervals, including the major second

(2 semitones) and minor third (3 semitones), both of which

are key components of common Indian musical scales (e.g.,

pentatonic, hexatonic). These results clearly demonstrate cul-

tural differences in the oral transmission that are not simply

due to differences in singing abilities, presumably reflecting

lifetime differences in musical exposure.

Social interactions modulate oral transmission biases
We identified several individual transmission biases underlying

the effects of oral transmission on music evolution. We next

asked whether the ultimate effect of individual biases

depends on the dynamics of social transmission. We first

compared the results of Experiment 1 (social transmission)

with a new experiment using individual rather than social trans-

mission (Experiment 11: 615 chains and 184 US participants).

In individual transmission, each chain is completed only by one

participant, measuring melodic transmission in the absence of

social interactions (Figure 1C). To minimize memory effects,

participants completed 4 full chains in parallel, allowing us to

intersperse trials from different chains (see transmission chain

designs).

Figure 7A shows the aggregated results in the last three gen-

erations of the two experiments using social and individual tran-

mision in the United States. The transmission chain design had

profound effects on the outcome distribution of melodies:

musical structures exhibited significantly higher diversity and

less structure in individual rather than social transmission (see

Figure S4 for results across generations). Indeed, interval en-

tropy shows that melodic structure emerged more readily in so-

cial rather than individual transmission (Figure 7C; similar trends

occurred for interval vocabulary size and average interval size;

statistics are reported in Table S3). However, copying error
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decreased more drastically (and was overall smaller) when par-

ticipants copied their own rather than others’ productions (Fig-

ure 7C), suggesting that melodies were generally harder to learn

and transmit during social transmission. Overall, these results

show that the outcome of oral transmission largely depends on

how melodies are transmitted across generations (socially vs.

individually).

One possibility is that individual transmission created strong

contextual effects, giving opportunities for participants to

learn and evaluate their own productions (self-learning). How-

ever, we carefully designed our experiments to minimize

contextual effects as much as possible, interspersing trials

from multiple chains in parallel and randomly transposing mel-

ody tones in each trial. Another possibility is that the isolated

nature of individual transmission preserved individual idiosyn-

cratic biases over generations, causing slower convergence

to melodic structures and higher diversity. If true, individual

transmission may be a more effective method for uncovering

granular divergences in musical biases than social transmis-

sion.23 By contrast, social transmissions may speed up the

emergence of population-level structures because partici-

pants are exposed to variations introduced by others,

canceling out idiosyncratic biases that are not shared by all

participants.

To explore this, we repeated the individual transmission

experiment with a new group of online participants from India

(Experiment 12; 223 chains and 73 participants). The results

replicated cross-culturally (Figure 7B): melodies transmitted

within participants exhibited significantly more diversity and

less structure than melodies transmitted across participants

(see Figures 7D and S5 for replication results in all melodic fea-

tures; statistics reported in Table S3).

To directly compare the results in all conditions (social and in-

dividual transmission in the US and India), we plot the joint distri-

bution of melodic intervals in Figures 7E–7H. Individual transmis-

sion provided amore granular characterization of musical biases

in the two groups, shown by the higher number of significant

peaks. In the US (Figure 7E), these peaks tended to fall around

integer semitone categories that are largely consistent with the

Western 12-tone chromatic scale, including the octave (peaking

at�11.92 [�12.16,�11.69] and 12.19 [11.86, 12.52]) and perfect

fifth (peaking at -7.01 [�7.13, �6.89] and 6.87 [6.4, 7.11]).

Although some of these peaks were present in Indian melodies

as well (Figure 7F), the results highlighted important cross-

cultural differences. For example, there was an asymmetry in

the Indian data, whereby major seconds (2 semitones) were

rare in ascent but common in descent (peaking at �2.17

[�2.52, �1.81]. This may reflect aspects of Indian musical prac-

tice, where certain scales (often pentatonic or hexatonic) include

ascending leaps of thirds that are filled in with stepwise motion

when the scale descends. Indeed, the largest peak observed

in the Indian dataset corresponds to an ascending minor third

peaking at 3.25 [2.92, 3.58] semitones.

This cross-cultural comparison provides a particularly

intriguing result: cross-cultural differences between the two

groups were larger in social rather than individual transmission.

Jensen-Shannon divergence (JSD), a measure of similarity be-

tween two probability distributions (see comparing distribu-

tions), indicated that the difference between distributions was
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Figure 7. Social and individual transmission in the United States and India

(A and B) The distribution of melodies produced in the last three generations of the singing experiments during social and individual transmission in the United

States and India (Experiments 1 and 10–12; see Figure S4 for results across generations; see 1D and 2D Kernel Density Estimation (KDE)).

(C and D) The effects of oral transmission on interval entropy and copying error (see Figure S5 for trends in all melodic features; see Table S3 for statistics). Interval

entropy is normalized based on baseline values, whereas copying error is shown in absolute terms (see trend analysis).

(E–H) (E and F) The joint marginals of melodic intervals in the last three generations of the individual and (G and H) social transmission conditions in the United

States and India (see Figure S6 for results comparing US participants with varying levels of musical expertise). Statistically significant peaks (see peak finding) are

indicated by the red dots and shaded areas (95% CI). Shaded areas in all plots correspond to ±1 standard error derived from bootstrapping (1,000 replicates).
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statistically larger in social transmission (JSD = 0.17 [0.13, 0.22],

95% CI) rather than individual transmission (JSD = 0.05 [0.03,

0.06]). We also observed larger cross-cultural differences in

melodic features during social transmission (see Figure S5 for

trends in melodic features comparing the two groups). This so-

cial attractor effect is visually apparent in Figures 7G and 7H,

where social transmission caused a substantial shift toward

different attractors in the two groups (the two major peaks in

the US fell around �6.94 [�7.21, �6.67] and 4.33 [3.92, 4.75]
semitones, whereas the two major peaks in India fell around

-2.90 [-3.25, -2.56] and 2.47 [2.29, 2.65]). Interestingly, the over-

all topological distribution of melodies obtained in social tran-

mission is remarkably similar in the two groups, featuring two

prominent peaks with a dip in between.

Together, these results provide a clear cross-cultural replica-

tion of the effects of social transmission on melodic evolution:

musical structures emerge faster and are more homogeneous

when individuals copy others’ productions rather than their
Current Biology 33, 1–15, April 24, 2023 11
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own. However, we also found that social transmission produced

larger cross-cultural differences, suggesting that shared struc-

tural biases resulting from social interactions facilitate the emer-

gence of cross-cultural differences.

DISCUSSION

We introduced an automatic online pipeline to perform large-

scale cultural transmission experiments in the singing modality.

Our results provide a highly detailed characterization of how

mechanisms underlying oral transmission contribute to the

emergence of cross-cultural similarities and differences in hu-

man song. The most salient feature of our results is that oral

transmission shapes initially random sounds into structured sys-

tems. Over generations, participants introduced errors in their ef-

forts to replicate the melodies they heard, giving rise to melodic

features that were eventually easier to learn and transmit. Specif-

ically, melodies were biased toward (1) a small vocabulary of in-

tervals, (2) short lengths (5–6 tones per melody), (3) small interval

sizes (less than a perfect fifth), and (4) arch-shapedmelodic con-

tours. These features are largely consistent with melodic fea-

tures found in most musical traditions across the world.1,2,4

However, our results also revealed deep differences in emerging

structures across experiments and participant groups.

How can we explain the emergence of such structural similar-

ities and differences?We found that, at a minimum, the outcome

of oral transmission depends on a compromise between the

biases of individual learners—vocal constraints, working mem-

ory, and cultural exposure—and the process of social transmis-

sion. Individual biases were the bottleneck of music evolution by

oral transmission, determining the size, shape, and complexity of

transmitted structures. For example, melodic features that were

difficult to produce (Experiments 4–6) or remember (Experiments

7–9) were consistently less likely to survive the transmission pro-

cess. However, the ultimate effect of individual biases on popu-

lation-level structures depended on the dynamics of social inter-

actions taking place during social transmission. When

participants imitated their own vocal productions (individual

transmission), musical structures converged slowly and were

more diverse, reflecting idiosyncratic musical biases. When par-

ticipants instead imitated other participants’ productions (social

transmission), musical structures emerged rapidly and homoge-

neously, reflecting shared structural biases.

We replicated these findings in the United States and India and

found larger cross-cultural differences across groups during so-

cial rather than individual transmission. These results are surpris-

ing because they suggest that (1) population-level structures in

vocal music depend on the underlying dynamics of social inter-

actions and (2) shared structural biases resulting from social

transmission can explain the emergence of cross-cultural differ-

ences in human song.

Limitations and future directions
Melodies in our experiments were constrained in several ways:

they used discrete single-pitch tones, were fixed in rhythm,

and in most experiments were limited to short sequences of

three tones only. It is likely that additional mechanisms govern

the transmission of more complex melodies, such as rhythm

priors23,36 or tonal expectations.35 The use of discrete single
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pitches is also problematic because many musical traditions

use non-discrete ornaments and melodic gestures, such as

South Indian performance music.52 Moreover, we used a

pitch-roving technique to minimize inter-trial dependencies

and adjust melodies to the participants’ singing range (see pitch

roving procedure). This techniquemay further limit the ecological

validity of our experiments. Nonetheless, our paradigm can be

easily extended to incorporate more complex musical elements,

such as rhythm or longer melodies (see Experiments 2 and 3).

Another promising extension consists of naturalistic singing,

where instead of synthesizing melodies online, one could trans-

mit participants’ raw singing recordings. This will allow the study

of pitch, rhythm, and dynamic variations within a single paradigm

while also combining participants with different singing registers.

Finally, our paradigm could be extended to track continuous hu-

man vocalizations, such as those produced by speech. This will

enable exciting research into the intersection between speech

and song, two cultural systems that have evolved through oral

transmission.5,16

A priori, one might expect that peaks (frequent melodic inter-

vals) obtained in our experiments should map directly onto the

peaks in perceptual preferences and onto the prototypical inter-

vals from relevantmusical styles. Our results showed some over-

lap here (see peaks in Figure 7E), but they also revealed impor-

tant differences. For example, in a purely perceptual task (see

Figure 4E), we saw clear preferences for octaves and avoidance

of tritones, but these results were less clear in the singing exper-

iments (see Figures 7E and 7G). One potential explanation is pro-

duction noise, which will make peaks and troughs less clear,

especially when the interval is hard to produce. A second factor

is production bias (e.g., interval compression), which may pro-

duce an undesirable interval (e.g., the tritone) from an attempt

to produce a desirable one (e.g., the perfect fifth). A third relevant

factor is melody length. With short melodies, it is harder to pro-

duce a clear tonality without using large intervals (e.g., outlining

amajor triad), and hence, cognitive biases toward tonal melodies

may indirectly induce biases toward large intervals. Indeed, we

found that shorter melodies tended to use larger intervals than

longer melodies (see mean interval size between melody length

conditions in Figure 3A). We see great potential in exploring

further the interaction between tonality and melody length both

in iterated singing andmusic corpus studies. However, any com-

parison with corpus data should control for melody length, as

most corpora comprise long melodies primarily featuring small

intervals.51,53

One should also take caution with the applicability of our re-

sults to explaining historical cultural processes. Naturally, culture

is a complex and large-scale phenomenon, taking place in pop-

ulations over multiple generations. Here, we have instead

measured transmission events in a very short temporal scale

and highly restricted interactions between modern humans

(e.g., one-directional linear chains, absence of social context

and feedback). However, the goal of our work was not to repli-

cate the evolutionary history of music but rather to enable the

study of oral transmission mechanisms in a controlled experi-

mental setting. Iterated learning experiments have proven

particularly useful to probe complex cultural transmission pro-

cesses that would be otherwise hidden or very hard to infer

from historical records.20,21 We are excited about the potential
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of incorporating more complex transmission dynamics within

our iterated singing pipeline, studying for example the role of

popularity dynamics,54 selection biases,55 or social network

structures.14,15

Finally, we studied oral transmission processes across

different groups of participants recruited online from the United

States and India. This cross-cultural comparison is limited in

two ways: (1) online cohorts of participants overlap significantly

in their exposure to globalized media and (2) comparing only two

groups massively underestimates the vast cross-cultural diver-

sity of music and musicality.56 Despite this, our results revealed

significant cross-cultural differences in the evolution of musical

structures (see Figures 7, S4, and S5), likely reflecting differ-

ences in participants’ musical and cultural exposure. Future

research could extend our approach to run large-scale cross-

cultural experiments that include diverse samples of participants

around the world56 and potentially test the developmental trajec-

tory of emergent song structures by running iterated singing ex-

periments with children.57

Transmission mechanisms underlying music evolution
Previous cross-cultural research on human song has focused

either on individual psychological processes, investigating music

production/perception in highly controlled laboratory set-

tings,33,58–60 or on large-scale population-level phenomena,

analyzing cross-cultural datasets of music recordings or ethnog-

raphies.2,4 These studies have revealed striking differences and

similarities in music and musicality cross-culturally, but they

have generally overlooked the cultural transmission process. It

is thus unclear how population-level structures emerge from indi-

vidual psychological mechanisms via cultural transmission. By

combining these approacheswith large-scale iterated singing ex-

periments, we show that social interactions underlying cultural

transmission have a substantial explanatory role alongside the

contribution of individual biases. In particular, musical structures

emerging from our experiments largely depended on whether

participants imitated their own or other participants’ productions

(see Figure 7).

These results can be interpreted as evidence for the violation

of at least one of the assumptions of Griffiths and Kalish’s model

of iterated learning.19 Namely, either (1) learners do not share the

same priors (due to significant individual differences) or (2) there

is a failure of the Markov assumption that participants’ produc-

tions depend only on the data produced by the previous gener-

ation (i.e., no learning or context effects). We cannot rule out

either of these two explanations.

Regarding the first assumption, our results suggest that partic-

ipants within each cultural group had consistent melodic priors

(see common peaks emerging during individual transmission,

Figures 7E and 7F, reflecting shared priors). We also explored

the role of individual differences by comparing subgroups of par-

ticipants based on their self-reported levels of musical experi-

ence (see Figure S6), a prominent factor explaining individual dif-

ferences in singing abilities.61,62 This analysis revealed some

differences but generally similar melodic distributions across

subgroups, further suggesting that individual differences alone

cannot explain our results.

Regarding the second assumption, it remains a possibility that

participants learned their own productions during individual
transmissions due to learning or contextual effects. Although

our experiments were specifically designed to minimize such ef-

fects (see transmission chain designs), further investigation is

required to fully understand the mechanisms responsible for

differences between social and individual transmission, such

as memory and learning, individual differences, and fidelity of

copying.

Overall, our results suggest that population-level structures in

human song arise from the idiosyncratic biases of individuals

that change over time through multiple social interactions. This

is consistent with the interactive hypothesis,44,63 which pro-

poses that the structures of human language and music emerge

from the underlying dynamics of social interactions that occur

during cultural transmission. Over time, this cumulative process

generates stable structural compromises that are appealing and

easy to learn by all. Here, we support this hypothesis using a

highly sophisticated production modality: singing. Both in the

United States and India, social transmission rapidly shaped

melodies toward homogeneous and simplified structures. This

social attractor effect led to larger cross-cultural differences be-

tween groups. These results are significant because they pro-

vide a new understanding of how social interactions can amplify

shared individual biases, contributing to the vast diversity of

formswe observe in human song across cultures.2,4,56 The impli-

cations of these results may also be applicable to other behav-

iors resulting from cultural transmissions, such as language

and technology.14,63

More broadly, this work demonstrates the benefits of

combining large-scale online data collection with innovative psy-

chological paradigms to explore cultural transmission processes

in unprecedented detail. The advantage of this approach lies in

characterizing the rich collection of oral transmission mecha-

nisms underlying music evolution within a single coherent para-

digm that is cross-culturally generalizable. This presents impor-

tant advances compared with previous iterated learning

experiments conducted in the laboratory. For example, it allows

us to systematically cover the space of evolutionary possibilities

and causally explore the cognitive and environmental factors

that influence complex social behavior. Importantly, our study

relies on human singing, a key communicativemodality formusic

that is natural and cross-culturally widespread.2,4,8,62 Thus, our

study showcases how large-scale cultural transmission experi-

ments in complex production modalities can transform the

kind of research conducted in cognitive science.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
All participants provided informed consent in accordance with the Max Planck Society Ethics Council approved protocol (2021_42).

All participants were recruited online using Amazon Mechanical Turk (MTurk). We required four conditions to take part in our exper-

iments: (i) be at least 18 years old, (ii) use headphones or earphones with a working microphone, (ii) be in a quiet environment (e.g., a

roomwith low background noise), and (iii) use an up-to-date Google Chrome browser. These requirements guaranteed good listening

conditions and compatibility with our testing platform, PsyNet (see automated online implementation). To ensure high data quality,

we only recruited participants with at least 2,000 previously submitted tasks on MTurk with a 95% approval rate on average. Partic-

ipants were paid at a US $9/hour rate according to how much of the experiment they completed (e.g., if participants failed a pre-

screening task and left the experiment early, they were still paid proportionally for their time).

A total of 1,797 participants contributed to the 12 experiments reported in this paper, excluding those who failed pre-screening

tasks. Table S1 provides the demographic details of all experiments. Sample size estimation was determined based on a sample-

size analysis and is described in quantification and statistical analysis.

METHOD DETAILS

Automated online implementation
PsyNet

All experiments were implemented in PsyNet, a Python package for performing complex online behavioral experiments at large

scale.47,48,64,65 PsyNet is based on the Dallinger framework for hosting and deploying experiments. Participants interact with the

experiment via aweb browser, which communicates with a back-end Python server cluster responsible for organizing the experiment

and communicating with our singing transcription technology. In our experiments, this cluster was managed by Heroku, supporting

the experiment management and stimulus generation workload, as well as a Postgres database for sorting results. In those
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experiments with audio recordings, we also used Amazon Web Services (AWS) S3 storage for hosting stimuli. Code for the imple-

mented experiments can be found in the OSF repository: https://doi.org/10.17605/OSF.IO/UANGD

Recruitment

Participant recruitment was managed by PsyNet. In the iterated learning experiments (Experiments 1–5 and 7–12), participants were

recruited automatically until we collected the desired number of chains and a desired length for these chains. The number of chains

was determined by a sample-size analysis (see sample-size analysis). In the dense rating experiment (Experiment 6), participants

were recruited automatically until we obtained the desired number of ratings per stimulus (the total number of ratings was also deter-

mined by a sample-size analysis). Table S2 provides the design parameters of all experiments.

Pre-screening tests

An important source of noise in online experiments is the presence of fraudulent responders, including both computer ‘bots’ and non-

serious respondents, such as participants who do not follow the instructions. We used a combination of techniques to ensure high

data quality in online experiments using complex productionmodalities,64,65monitoring performance in real time to provide feedback

to participants and exclude fraudulent responders. These techniques were also used to familiarize participants with the main singing

procedure. We used three pre-screening tests, presented at the start of each experiment involving audio recordings in the following

order: (1) headphone test, (2) audio calibration tests, and (3) singing practice with feedback. For listening experiments, we only used

the headphone and volume calibration test.

Headphones test. This test, originally developed by Woods et al.,66 was intended to ensure that participants were wearing head-

phones and could perceive subtle sound differences. The test consists of a three-alternative forced-choice task to identify the quiet-

est of three tones. These tones are constructed to elicit a phase cancellation effect, such that when played on loudspeakers the order

of quietness changes. Thus, the test can only be passed if participants wear headphones. Participants took six trials and were

required to answer at least four trials correctly to pass the test.

Audio calibration tests. The goal of these tests was to ensure that participants were able to record audio in the browser and that the

volume level for the input sounds was adequate. The first test consisted of a recording calibration page to check whether we could

detect participants’ singing input. Since this page required audio recording, Google Chrome automatically triggeres a pop-up

window asking participants whether they want to record using their microphone. The experiment could only continue if they accept.

Participants were then asked to talk or sing using the microphone to ensure their signal could be recorded, using a sound meter to

visually indicate whether the signal had an appropriate sound level (volume). The second test consisted of a volume calibration page.

We played a random sequence of tones using our method to generate melodies and asked participants to adjust the volume of the

computer to a comfortable level. Participants could pass these tests unless they had technical problems related with audio recording

(e.g., having no microphone or not giving permission to record).

Singing practice with feedback. This test was intended to familiarize participants with the singing procedure and ensure they could

provide valid signing data. In the first page, we asked participants to sing two tones freely while we recorded them. We played their

recording right after, asking whether they could hear themselves (if they could not, we instructed them to make sure they met the

technical requirements). On the next page, we provided participants with the main instruction of the singing task:

In each trial, you will hear a melody with 2 notes: Your goal is to sing each note back as accurately as possible. Use the syllable ‘TA’

to sing each note and leave a silent gap between notes.

After the instructions, participants took two practice trials consisting of hearing a melody and singing it back while we recorded

their responses. We used a progress bar to visually indicate the different stages of the recording trial (listening, recording, and

finished). The recording was then analyzed using the singing transcription technology (see singing transcription technology). After

each trial, we provided feedback indicating the number of tones detected by the technology. In those cases where we could not

detect all tones, we provided feedback to participants reminding them of the main technical requirements and instructions of the

singing task.

Singing performance test

We developed a singing performance test that served three purposes: (1) measuring participants’ general singing abilities, (2)

excluding participants who could not provide minimal working data, and (3) detecting participants’ singing range (low vs high).

The performance test consisted of 10 singing trials, where participants were played two tones and asked to imitate them back

by singing, just like in the practice phase. The recordings were analyzed in real-time. Trials were failed if at least one of the three

following criteria was met (see failing criteria for details on each performance metric): (1) the number of tones in the target and

response were not equal, (2) the maximum absolute interval error (abs(IS � IR)) between target interval (IS) and response interval

(IR) was larger than 3 semitones, or (3) the direction of pitch change in the target interval was different from the direction in the

response (in case of unison stimulus we required the response to be between -0.5 and 0.5, as explained in failing criteria). Par-

ticipants were required to pass at least 5 out of the 10 trials correctly (those participants who did not pass this threshold were

excluded from the experiment).

The 10 stimuli of the test consisted of five melodic intervals [-1.3, -2.6, 0, 1.3, 2.6] played at two singing registers (low and high).

These interval values were intentionally chosen to avoid any integer semitones which could have primed participants in the subse-

quent singing task. Moreover, to avoid any effect of tonal context between trials, the tones of the intervals were transposed randomly

in each trial according to the center of each singing register condition (see melody generation for details). The order of the trials was

randomized for each participant.
Current Biology 33, 1–15.e1–e12, April 24, 2023 e2

https://aws.amazon.com/
https://doi.org/10.17605/OSF.IO/UANGD
https://www.psynet.dev/


ll
OPEN ACCESS

Please cite this article in press as: Anglada-Tort et al., Large-scale iterated singing experiments reveal oral transmission mechanisms underlying music
evolution, Current Biology (2023), https://doi.org/10.1016/j.cub.2023.02.070

Article
To determine the singing register of each participant, we calculated the distance in semitones between themedian of the produced

tones in the test trials and the center of the low (typical male) and high (typical female) singing registers; in this study set to 49 (or

138.59 Hz) and 61MIDI notes (or 277.18 Hz), respectively (see melody representation). If the distance between the median produced

tone and the center of the low register was smaller, participants were classified in the low-register condition for the subsequent parts

of the experiment, and vice versa.

Singing transcription technology
We used a four-step automated process to extract the fundamental frequency (f0) of tones in participants’ vocal productions (see

Figure 1B). This method is an adaptation of a similar setup extensively used in laboratory experiments with singing.33 We previously

piloted this technology in online singing experiments and found it is highly reliable to extract f0 automatically from audio recordings

produced by standard hardware and software available tomost participants online.65 Code for the implemented singing transcription

technology can be found in the OSF repository: https://doi.org/10.17605/OSF.IO/UANGD

The first step was to clean the audio signal to remove any artifacts. We empirically found that some recordings contain loud arti-

facts near the beginning of the recording. We therefore removed the first 100 msec of the recording and added a linear fade-in for

another 150 msec. To remove spectral components that do not contain singing information, we then applied a band-pass filter

with cutoff frequencies of 80-6000 Hz. Second, we applied an autocorrelation-based pitch estimation algorithm to extract f0 pitch

from sung segments,67 implemented using parselmouth,68 a Python interface to access Praat. Based on previous piloting with

singing data,65 the autocorrelation methodwas usedwith a pitch floor of 65 Hz and pitch ceiling of 622 Hz. The following parselmouth

parameters were also modified to non-default values: silence_threshold = 0.03, voicing_threshold = 0.045, octave_cost = 0.03,

octave_jump_cost = 0.55, voiced_unvoiced_cost = 0.14.

The third step consisted in segmenting the singing signal into individual isolated tones. We computed the envelope of the ampli-

tude of the singing signal by calculating the maximum square of the amplitude within non-overlapping windows of 20 msec. Then,

we used the detect_peak function by Marcos Duarte69 to detect peaks in the envelope corresponding to local maxima of the

amplitude (see Figure 1B), which are usually located in the louder sections of a sung tone. Next, we looked for non-overlapping seg-

ments of audio that containedmultiple peaks.We identified segments that were separated by 70msec of silence, defined as an audio

envelope that is less than -22 db when compared to the first peak identified within a segment (typically at the beginning of the

sung tone).

Finally, we filtered the list of segments based on simple heuristics that are useful to remove spurious audio segments (e.g.,

speaking or background noise). Specifically, we filtered segments with a duration of less than 35 msec. Within segments, we calcu-

lated the percentage of duration that exceeded 6 semitones from the median f0 and excluded segments where this threshold ex-

ceeded more than 20% of the segment’s total duration. The main purpose of this step was to remove octave jumps that occur

when the singer’s voice "cracks". In addition, a segment with a median pitch outside the allowed range (65-622 Hz) would be

excluded. To compute the median f0 for each segment (corresponding to one sung tone), we ignore the first 110 msec and the

last 70 msec of the segment, as these often contain less stable singing.

After extracting the f0s from the recordings, we calculated several performance metrics to assess participants’ singing accuracy

but also to provide feedback in real-time to participants (see automated online implementation) and exclude trials or participants that

did not meet basic performance requirements (see failing criteria).

We testedwhether the implementation of the singing transcription technology could have introduced some bias to the f0 extraction

analysis. We first generated the target audio by sampling pure tones covering the entire pitch space used in our experiments at 0.25

granularity (129 tones ranging in pitch from chromatic 39 to 71MIDI). We then used the singing transcription technology to extract the

f0 frequencies from the audio file. Figure S1 shows the detection accuracy of our technology across the pitch range. The overall mean

absolute detection accuracy (difference between target and detected pitches) was 0.0006 (SD = 0.0009; min-max = -0.0009–0.004),

demonstrating a high pitch extraction accuracy and only negligible extraction errors.

General procedures
Melody representation

Weparametrize the pitch space ofmelodies as lists of numbers usingMIDI notation, whichmaps each frequency to a positive integer.

For example, themiddle C in a piano keyboard (C4) is mapped to theMIDI note number 60. Formally, the frequency-to-MIDI mapping

is given by:

f = 440$2ðm� 69Þ=12 (Equation 1)

where m is the MIDI note and f is a frequency measured in Hz. MIDI notation is useful to express absolute pitches in a logarithmic

scale, which is shown in previous work to represent the nature of pitch perception.33 Thus, using MIDI numbers we can represent

melodies in absolute pitch representation (e.g., [64.12, 58.79, 63.24]) while also studying frequencies with high granularity, including

intermediate fractal values beyond the discrete frequencies typically used in theWestern 12-tone equal temperament scale (the keys

in a regular piano keyboard). However, most people represent melodies using relative pitch representation,39 where pitches are

expressed relative to each other rather than in absolute terms. Thus, melodies can also be represented as a sequence of intervals,

expressing each pitch relative to the previous one (in semitones; e.g., [-5.33, 4.45]).
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Melody generation

Previous research on melody cognition has traditionally used discrete musical systems, mostly consisting in the Western 12-tone

chromatic scale.35,39,40,58 Consequently, results obtained from this research are inherently biased towards Western music rules, ne-

glecting the use of microtuning (e.g., intervals smaller than a semitone) and other tuning systems beyond equal temperament which is

fundamental to many non-Western music traditions, such as the use of quartertones and 1/8th tones in Arabic and Turkish music. A

key feature of our method is that it does not assume any culturally specific knowledge about discrete scale systems a priori. Instead,

we take advantage of novel psychological testing methods (see automated online implementation) to study vast continuous melodic

spaces with high resolution - i.e., sampling melodic intervals or pitches continuously from a uniform distribution (see Figure 1D). This

method allows us to ensure that any effects observed in transmission chain experiments can be attributed to human reproduction

biases rather than to constraints imposed by the stimulus generation process. This method is also applicable to individuals from

any musical or cultural background.

Uniform pitch sampling. In most of our experiments (Experiment 1-3, 6-12, we used a uniform pitch sampling method to generate

melodies. This sampling method consisted of three steps. First, we obtained a singing register for each participant. In the singing

experiments (Experiment 1-3, 5, 7-12), this was determined automatically based on the participants’ performances in the singing

test completed at the start of the experiment (see singing performance test). Based on common singing registers used in previous

work,33 we set the center of the low and high registers (c) to 49 and 61MIDI notes, respectively, thereby separating the centers of the

two registers by an octave. In the listening experiments (Experiment 4 and 6), we set a middle register for all participants with a center

at 55 MIDI. Second, we used a roving technique (see pitch roving procedure) to obtain a virtual reference pitch for each melody by

uniformly sampling a real number around the center of the singing register (r). Finally, we obtained each tone in the melody by uni-

formly sampling a real number with a fixed pitch range centered on the reference tone (thus the reference tone was not directly

played). The pitch range consequently determined the max range of the pitch space in the initial set of melodies in each experiment

(see Table S2 for the exact parameters used in all experiments). However, participants were allowed to reproduce melodies outside

this range (see failing criteria). Formally, melody tones (ti) were randomized with the following formula: ti = c + r + ni, where c is the

center of the singing register, r is the roving value (sampled uniformly), and ni is the relative pitch value sampled uniformly within a

fixed pitch range.

Randomizing pitches uniformly is particularly useful when generating longer melodies because it guarantees that the distribution of

each tone (Tn) is uniform and identical regardless ofmelody length, and it also guarantees that the distribution ofmelodic intervals (the

difference between consecutive tones) is identical regardless of melody length. For example, the first interval (the difference between

the second and first tones in the melody) will have the same distribution as the fourth interval (the difference between the fifth and the

fourth tones). Formally: T2 - T1 � T5 - T4, where Tn is the random variable associated with the nth tone. However, the distribution of

consecutive melodic intervals using this method is not uniform. Instead, consecutive intervals obtained from uniform pitch sampling

will have the distribution of the convolution of two uniform variables (higher probability density in the center of the distribution and

linear decays away from the center). Thus, combinations of large consecutive intervals (e.g., [18, 18] semitones) are unlikely. It is

not possible to generate long melodies, so they have both uniform pitch and interval distributions, so we chose uniform pitch sam-

pling because it has more advantages – i.e., identical (uniform) distribution of pitches and identical (nonuniform) distribution of

consecutive intervals.

Uniform Interval Sampling. When studying single melodic intervals (two tones played sequentially), there is no need to worry about

the distribution of consecutive intervals. Thus, for those experiments using iterated learning with one-interval only (Experiment 4-5),

we used instead a uniform interval sampling method to generate stimuli. This procedure also consisted of three steps. First, we

sampled intervals uniformly within a range of [-15, 15] semitones. Second, we used a roving technique (see pitch roving procedure)

to obtain a reference tone for each melody by uniformly sampling a real number around the center of participants’ singing register (r).

Finally, we obtained the two melody tones by using the reference tone as the first tone and the reference tone plus the interval as the

second tone. Formally, the two tones here were given by: t1 = c + r and t2 = c + r + I, where c is the center of the singing register, r is the

roving value, and I is the interval (sampled uniformly within a range of [-15, 15] semitones).

Pitch roving procedure

When studying melody perception and production, there are important subtleties in the generation of melodies that should be ad-

dressed. First, there is the risk of generating contextual effects of implied tonality across melodies, where a given trial may be inter-

preted based on the tonal context from the preceding trial. Second, we found that it is important to consider participants’ singing

range. For example, asking participants to reproduce melodies outside their singing range would significantly increase the

complexity of the task, involving different cognitive mechanisms such as octave equivalence,33 and likely introducing additional pro-

duction noise. Indeed, it has been shown that non-musiciansmay struggle with octave equivalence (the transposition ofmelodies to a

comfortable singing range), and individuals differ largely in their ability to transpose melodies relying on octave equivalence.33 In our

experiments, it was important to avoid such situations for both practical reasons (e.g., avoiding extreme responses and audio arti-

facts) and ethical considerations (e.g., requiring participants to use their voice uncomfortably for prolonged time).

To address this, we used a roving technique to randomize the absolute pitches of melodeis in each singing trial, thereby

only transmitting intervallic information across generations (relative pitch representation). This procedure consisted of two steps.

First, we computed the difference between each absolute pitch in the target melody and the reference tone used to generate

them: ni = ti - (c + r). Second, we obtained a new reference tone by uniformly sampling a real number within a roving width

of ±2.5 semitones around the center of participants’ singing register (the singing register was determined automatically in a singing
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performance test prior to the main task, see singing performance test). We used a roving value of ±2.5 semitones because it was

found in previous singing experiments to provide a good tradeoff between values that were (1) not too small (so tonal context between

trials can be effectively removed) or (2) not too large (so that vocal range is not altered significantly).33 Third, we used the randomized

reference tone (r’) to create a new sequence of tones (t’i) is: t’i = c + r’ + ni, either using uniform pitch or interval sampling (see melody

generation).

This roving procedure preserves intervallic information: t’i -t’j = (c + r’ + ni) - (c + r’ + nj) = ti -tj, while resampling the absolute pitch

information. This means that successive melodies will typically correspond to different musical scales, and participants will therefore

be encouraged to hear each melody on its own terms instead of relating it to the previous melody. In other words, it minimizes the

implied tonal context between consecutive melodies. This technique also ensures that all melody tones remain within a comfortable

singing range. For example, if the max pitch range parameter used to sample tones is set to 10 semitones (like in Experiment 1), the

maximum possible pitch range in all melody tones (the intervals between the reference pitch and the highest or lowest possible pitch)

will be 20 semitones (see Table S2 for the pitch range parameters used in all experiments). By using the roving technique described

above, we canmake sure that this maximumpitch range of 20 semitones is centered around participants’ singing register throughout

the experiment. Moreover, this technique allows us to combine participants with different singing ranges within the same transmis-

sion chain.

Melody presentation

Melody tones in all experiments were 550 msec long and separated by 250 msec of silence (inter-onset-intervals were 800 msec

long). Tones were synthesized using complex tones containing 10 harmonics with 14 dB per octave exponential roll-off. Each

tone started with a 20 msec exponential raise in amplitude (attack), followed by a 50 msec decay to an amplitude of 0.8 of the

maximum amplitude. This followed by an exponential release of additional 480 msec. Thus, the overall duration of the sound was

550 msec. We played the stimuli using Tone.js, a Web Audio framework for generating sound in the browser.

Failing criteria

We used different failing criteria depending on the requirements of each experimental task to monitor participants’ performance in

real time, provide feedback, and exclude participants who did not provide valid responses. In the singing trials, the failing criteria was

based on the output of participants’ recordings calculated after each trial (see singing transcription technology). Table S2 specifies

the exact failing criteria used in each experiment.

Correct number of tones. For all singing experiments, the number of detected tones in each response was calculated and

compared against the number of tones in the target melody. As a universal failing criterion, trials failed when the number of detected

tones in the response did not match the number of tones in the target melody. The only exception was Experiment 3, where we

relaxed this failing criteria to allow participants to make small errors in the number of reproduced tones depending on the length

of each melody (if melodies had less than 5 tones, we allowed a difference of 3 tones between target and response, if melodies

had 6-8 tones, we allowed a difference of 4 tones, if melodies had 9 or more tones, we allowed for a different of 5 tones).

Max absolute interval error. In some experiments (Experiment 1, 10-12), it was fundamental to ensure that singing productions were

accurate, so any differences in the results could not be explained away by differences in singing performance among participants.

For example, this was particularly important when comparing different modes of transmission (across vs within) or participants from

different cultural backgrounds. Thus, in these experiments we used an additional performance metric to fail any trials that were not

accurate in terms of the distance between the target melodic intervals and sung response. In particular, we defined a max absolute

interval error as, E=|Is-Ir|, where Is and Ir are the stimulus and response intervals, respectively. We then failed any trial where the max

absolute interval error was larger than 5.5 semitones, effectively ensuring some degree of acurracy when copying melodies. We

found that 5.5 semitones was a good arbitrary threshold to ensure accuracy while not losing too many trials.

Max pitch range. In those singing experiments using uniform pitch sampling (Experiment 1-3, and 6-12), we also excluded trials in

which detected pitches were two times larger than the max pitch range used to sample melody tones. Note that max pitch range

determines themaximum possible interval between the reference tone used to generate melodies (randomized and centered around

participants’ singing range) and each tone in the melody (see melody generation and pitch roving procedure for details). Thus, if the

max pitch range was set to 10 semitones, we only excluded trials with pitches that were higher or lower than 20 semitones relative to

the reference tone of the melody (twice the size of max pitch range). Consequently, this would allow any melodic intervals within a

range of [-40, 40] semitones. This criteria is very relaxed, as it allowed responses well above the singing capacities of non-profes-

sional singers, ensuring that participants could freely use the pitch and intervallic space, but avoiding the detection of sound artifacts

from background noise at very low and high frequencies (see Table S2 for max pitch range parameters used in all experiments).

Max interval size. In those experiments using uniform interval sampling (Experiment 4-5; seemelody generation), we excluded trials

that were outside the interval range used to generate melodies - i.e., participants’ responses that were larger or smaller than [-15, 15]

semitones. This step guaranteed that all productions remained within the intervallic space under study. Note, however, that this

failing criterion was only used in the two experiments using uniform interval sampling (Experiment 4-5), as these were the only ex-

periments transmitting melodies composed of one interval (two pitches).

Direction accuracy. In the singing performance test (see singing performance test) and singing feedback trials (see pre-screening

tests), we also measured whether the direction of pitch change in the target interval of the test was the same as the direction in par-

ticipants’ responses. The direction of pitch change in each interval was categorized either as ascending (the second tone is larger

than 0.5 semitones compared to the previous tone), descending (the second tone is smaller than 0.5 semitones compared to the

previous tone), or the same (the first and second tone were both within 0.5 semitones distance).
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In experiments using across-participant chains, when a trial failed, a newparticipant was allocated to that trial until a valid response

was given. In experiments using within-participants chains, the same participants were allocated to the failed trial until a valid

response was given. To avoid fatigue in the within-participants experiments, we only allowed four failed trials per chain in each gen-

eration. If there was an instance exceeding this threshold, the entire chain was excluded from the experiment.

Validation of general procedures

We tested whether the general procedures described above –melody generation, pitch roving procedure, failing criteria – could have

introduced any significant biases to the behavioral results reported in the paper by running a simulation study. Using the same code

employed in the transmission experiments, we sampled 1,000 random melodies (composed of 3 tones) and simulated the iterated

learning procedure by transmitting thesemelodies across 100 generations. We used Gaussian noise (M = 0, SD = 1) to copy the input

melodies in each generation. The results of the simulation are shown in Figures S1B and S1C, including both the joint marginals of the

melodies and melodic features across generations. The results demonstrate that there are no biases in the implementation of the

general procedures that could account for the behavioral results obtained in our experiments. Indeed, the simulated data shows

trends in the opposite direction of what we observed when running the experiments with human participants (e.g., a gradual increase

in interval entropy andmean abs interval size over generations). This occurs because adding gaussian noise in each generation grad-

ually increases the distribution to be more uniform, thereby increasing interval entropy andmean absolute interval size. The results of

this simulation are interesting because they show how the data derived from our experiments could look in the absence of any sys-

tematic reproduction errors in our participants.

Experimental paradigms
We used a combination of experimental paradigms, consisting of variations of iterated learning and listening experiments. The main

design parameters for each experiment are summarized in Table S2.

Iterated singing

Experiments 1-3, 5, and 7-12. To study melodic transmission at a large scale, we developed an automatic online pipeline that

streamlines transmission chain experiments in the singingmodality. Participants are initially presented with a random ‘‘seed’’ melody

(a sequence of tones randomly generated from a continuous space) and asked to reproduce it by singing (Figure 1A). Their repro-

ductions are then synthesized on the fly to generate the stimuli for the next participants (Figure 1B; see singing transcription tech-

nology). Over generations, participants’ production biases are amplified, allowing us to measure human reproduction biases.

Iterated singing experiments were initialized by selecting a desired number of chains per experiment (see quantification and sta-

tistical analysis). Chains were then initialized by randomly and continuously sampling each melody tone from a uniform distribution

(see melody generation). Chains evolved for 10 generations, as we found this length to provide a good tradeoff between feasibility of

data collection and convergence of the results. Our experiments coveredmost of the singing range, with amaximum interval range of

[-20, 20] semitones in experiments with three-tone melodies (Experiment 1, 7-12) and a slightly reduced range of [-15, 15] semitones

in experiments with more complex transmission tasks (Experiment 2-5), such as transmitting longer melodies or using sliders. Partic-

ipant and experiment details are summarized in Tables S1 and S2.

From the participants’ point of view, all singing experiments were the same. All singing trials consisted of hearing a synthesized

target melody and singing it back as accurately as possible (see procedure for further details). Participants were not aware that

they were interacting with other participants or that they were taking part in a transmission chain experiment.

Transmission chain designs. A design feature in our experiments concern theway in which participants acquire information from the

previous generation. In particular, melodies can be either transmitted using across-participant chains or within-participant chains

(Figure 1C). In across-participant chains (social transmission), participants copy melodies produced by other participants. In

within-participant chains (individual transmission), the entire chain is completed just by one participant. We used across-participant

chains in most of our experiments (Experiment 1-5, 7-10) because our goal was to study cultural transmission, where melodies are

passed from one particiapnt to the next. However, we implementedwithin-participant chains in two experiments (Experiments 11-12)

to study the effect of social versus individual transmission.

Across-participant chains (Experiment 1-5, 7-10). Collecting data in across-participant chains is practically harder because

completing an entire chain depends on the interactions between multiple participants (e.g., if all participants provide 10 trials, an

experiment would need 100 active participants within one experimental session in order to complete 100 chains with 10 generations).

Thus, the pool of active participants within a single experimental session determines how many chains can be completed. When

running singing experiments with short melodies and recruiting online participants from the US (Experiment 1), we were able to com-

plete about 200 chains with 10 generations (a total of 2,000 singing trials) within a single experimental session, requiring approxi-

mately 50-60 participants per session and 40 trials per participant. However, in more complex singing experiments, such as with

longer melodies (Experiment 2 and 3) or using a memory perturbation task (Experiment 7-9), we required 30 trials per participant

because the trials were longer, consequently reducing the number of completed chains per experimental session. Thus, to obtain

the desired number of chains per experiment, we often ran multiple experimental sessions (e.g., in Experiment 1, we deployed three

experimental sessions to obtain a dataset of about 600 chains). In such cases, the same participants could participate more than

once in different experimental sessions. However, participants were not allowed to contribute to more than 3 experimental sessions

in any of the experiments.

Within-participant chains (Experiment 11-12). Collecting data in within-participant chains is comparatively easier because each

chain only depends on the performance of one participant. However, transmitting melodies in within-participant chains has a
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potential confound of memory that does affect across-participant chains: since participants take all trials in each chain, it is possible

that they learn their own previous productions.

To minimize potential memory confounds, participants always completed four transmission chains in parallel (e.g., we required 40

singing trials per participant, so participants could complete 4 full chains with 10 generations each). This allowed us to intersperse the

singing trials across the four chains andmake sure that trials from the same chain could not be taken in succession (e.g., participants

would need to take at least three trials from different chains before repeating a trial from the same chain). Second, the roving pro-

cedure described above (see pitch roving procedure) was intended to remove any tonal context between trials, thereby removing

any possible memory effects based on absolute pitch representations.

Procedure. After completing the pre-screening tests and singing performance test (see automated online implementation), partic-

ipants were presented with the instructions of the singing task:

In each trial, you will hear a melody with [NUMBEROF NOTES] notes. Your goal is to sing each note back as accurately as possible.

Use the syllable ‘TA’ to sing each note and leave a silent gap between notes.

They were also informed that their performance would be analyzed after each trial. Participants then took three practice trials and

were given verbal feedback after eacah trial based on their performance (using the "failing criteria" described above). After the prac-

tice phase, participants completed a singing test consisting of 3 further trials. This time, we excluded participants based on their per-

formance. Participants could only pass the test if they completed at least 2 trials correctly. This filtering step was intended to ensure

that data quality in the main singing task was high. In the main singing task, participants were reminded of the main instructions one

more time, and then started with the main experimental block consisting of 30 or 40 singing trials, depending on the experiment. In

each trial, participants were randomly allocated to one of the parallel transmission chains available in the experiment. Moreover, to

help participants record their singing productions, we implemented a progress bar to visually indicate the different stages in the

recording: listening and singing. At the end of the experiment, participants filled the generic demographic questionnaire (see

questionnaire).

Cross-cultural comparison. We compared the results of iterated singing experiments between US participants (Experiment 1 and

11) and Indian participants (Experiment 10 and 12). Participants’ nationality was selected using the MTurk qualification system. Par-

ticipants in the two experiments had similar demographic compositions and levels of musical expertise (see Table S1).

Online recruitment of Indian participants was practically harder because the pool of active MTurk participants in this location is

significantly smaller. In within-participant chains (Experiment 12), this was less problematic because we could deploy multiple exper-

imental sessions in different days. However, we still needed a total of 7 experimental sessions to recruit about 73 participants (col-

lecting data from 10 participants approximately in each session). To be consistent with the other experiments, we did not allow par-

ticipants to contribute to more than 3 experimental sessions. However, online recruitment is more constrained in across-participant

chain experiments, as it requires data from multiple participants (see transmission chain designs). To collect the dataset for the

across-participant chain experiment in India (Experiment 10), we ran the same experiment on different days, collecting data from

new participants until the desired number of chains was completed. In this method of deployment, we collected as much data as

possible per session and when there were no more active participants left, we exported the data. We then deployed the experiment

on a different day to recruit new participants but started with the data we previously obtained. Note that according to the sample-size

analysis we initially aimed to recruit 200 chains, but due to the these recruitment constraints, we were able to collect a total of 120

completed chains and 54 unique participants by running the experiment incrementally in three different sessions. In this experiment,

participants were not allowed to participate in different sessions.

Iterated slider imitation

Experiment 4. This experiment measured the effects of transmission using an iterated learning paradigm where participants copied

melodies with a slider (instead of their voice). Wemade a number of changes in the iterated paradigm tomake this task feasible with a

slider. First, we decreased the complexity of the stimulus space by only studying one-interval melodies. The rationale behind this

decision was to represent all melodies in a one-dimensional horizontal line, where each location represents a unique interval in

the space. In this way, participants could match the target interval simply by moving a slider horizontally along the plane, keeping

the first tone constant within each trial (see procedure). Second, we used an aggregation technique to reduce noise in experiments

using sliders while maximizing subtle perceptual effects.47 Namely, we aggregated the slider responses of three participants in each

trial and passed the median answer to the next generation. The result was that the aggregated copying error for the slider was closer

to the unaggregated copying error for the singing control experiment (Experiment 5). Figure 4C shows the trends in copying error in

the singing (unaggregated) and slider (aggregated) experiments. The results are more comparable due to the aggregation technique,

even though imitating melodies with sliders was still harder.

Procedure. After completing the pre-screening tests (headphones and volume calibration tests), participants were presented with

the main instructions of the task:

At the beginning of each trial, you will be played a particular melody. Your task will then be to copy that melody with your slider. You

will be awarded performance bonuses depending on how well you answer each question. You will only hear the reference melody

once, so listen carefully to do as well as possible!

Participants then took three practice trials, receiving feedback on their performance along with their bonus. Participants then

started the main task consisting of 60 trials. In each trial, participants were randomly allocated to one of the parallel transmission

chains available in the experiment and asked to imitate the target melody by moving a slider. Releasing the slider triggered the

new interval to be played corresponding to the updated position. To ensure participants explore the horizontal space minimally,
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we required that they interacted with the slider at least three times. Note, however, that the target melody only was played once at the

start of the trial. When participants were satisfied with their response, they clicked the ‘‘next’’ button to move to the next trial, storing

the slider location as the answer. Participants received feedback after each trial with a performance incentive depending on how ac-

curate their response was (see performance incentive). At the end of the experiment, participants were provided with the generic

demographic questionnaire (see questionnaire).

Performance Incentive. Since copying melodies with a slider is comparatively less intuitive than singing and there is no research

reporting copying accuracy in this modality, we avoided using any failing criteria in this experiment. To incentive participants to

perform the task honestly, we used a performance incentive strategy rewarding participants who performed accurately. In each trial,

we calculated the distance between the targetmelody and the given response using themean absolute interval size: abs(IS � IR). We

then assigned a financial bonus (in dollars) to each response by:

B = B0$maxð0; 1 � jIS � IRj =TÞ (Equation 2)

where B0 is 0.05 US dollars and the threshold T = 1 semitones. We ensured the result was always positive, and if the participant error

was larger than the threshold, no bonus was given. After each trial, the resulting bonus was presented to participants in a feedback

page also providing verbal feedback based on the performance: ‘‘excellent’’ (if the absolute interval error was smaller than 0.25 semi-

tones), ‘‘good’’ (smaller than 1 semitone), or ‘‘bad’’ (larger than 1 semitone). We found this procedure to work well in subjective rating

experiments performed online.47

Dense rating paradigm

The dense rating paradigm has been previously used to characterize the subjective pleasantness of harmonic intervals (tones played

simultaneously) covering vast stimuli spaces with high resolution.48 Here, we applied this paradigm for the first time to evaluate the

aesthetic appeal of melodic intervals (tones played sequentially) densely sampled from a continuous intervallic space of range

[-15, 15] semitones. In this paradigm, participants heard intervals that were randomly and densely sampled from a continuous inter-

vallic space (e.g., 1.87, 12.33, or 4.52 semitones), using the same procedure to generate melodies (see melody generation). Each

sample received a pleasantness rating on a scale from 1 (completely disagree) to 7 (completely agree). Based on a sample-size anal-

ysis, we found that 15,000 samples were sufficient to reliably estimate the distribution of melodic pleasantness (see "sample-size

analysis"quantification and statistical analysis).

Procedure. After completing the pre-screening tests (headphones and volume calibration tests), participants were presented with

the main instructions of the task:

In each trial, you will be presented with a word and a sound. Your task will be to judge how well the sound matches the following

word: pleasant.

Participants then started themain task consisting of 60 trials. In each trial, participants were played a sound and instructed to rate it

using the 7 choice options. At the end of the experiment, they filled out the generic demographic questionnaire.

Questionnaire

At the end of each experiment, participants were provided a general questionnaire asking for basic demographic information (i.e.,

nationality, self-reported gender identity, years of musical training, and overall feedback about the experiment). We also collected

general information about participants’ musical expertise using the standardized Musical Training factor from the Gold-MSI test.61

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample-size analysis
We performed a sample-size analysis to estimate the necessary number of transmission chains in iterated singing experiments to

produce stable estimates at two levels of analysis: (1) the distribution of singing responses in the last three generations of the exper-

iments and (2) changes in structural melodic features aggregated across generations. First, we used the data of Experiment 1 to

assess the stability of the results in these two levels as a function of the number of chains per dataset, ranging from 50 to 600 chains

in bins of 50 chains. In each bin, we estimated the stability of the distribution of responses by randomly splitting the dataset by half

and calculating the JSD of the two split distributions (see comparing distributions for details), a measure of overall similarity between

probability distributions. Second, to estimate the stability of the trend analysis in melodic features aggregated over generations in

each bin, we calculated the Pearson correlation between the aggregated interval entropy (see interval entropy) over generations

in the two split datasets using the cor.test function in R.

Figure S7 shows the results of the sample-size analysis, indicating that 600 chains were sufficient to reliably estimate the distribu-

tion of responses (JSD = 0.01), whereas 150-200 chains were sufficient to reliably estimate temporal changes in structural melodic

features aggregated across generations (r = 0.8). Thus, we aimed to collect 600 chains for the two main singing experiments with

short melodies in the US (Experiment 1: 590 chains; Experiment 11: 615 chains). For themore complex iterated learning experiments,

collecting high-powered datasets would have been practically harder and costly, so we aimed to collect 150-200 chains. This in-

cludes the iterated singing experiments with longer melodies (Experiment 2-3), the iterated learning experiments using a slider

and a control comparison (Experiment 4-5), and the memory interference experiments (Experiment 7-9). The number of chains in

the experiments with Indian participants (Experiment 10: 120 chains; Experiment 12: 223 chains) was determined based on the

maximum possible number of active participants we were able to recruit online (see cross-cultural comparison).
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We ran a second sample-size analysis for the dense rating experiment (Experiment 6), using the same procedure described

above to measure the reliability of the distribution of responses, but this time as a function of the number of stimuli sampled

from the space. The results indicated that 15,000 stimuli were sufficient to reliably estimate the distribution of responses (Fig-

ure S7; JSD = 0.0003).

1D and 2D Kernel Density Estimation (KDE)
We used a Gaussian kernel smoother to summarize the results from all trials in the iterated learning experiments and the dense rating

paradigm. The 1D and 2D KDEs were computed over a grid of 1,000 points spanning the interval range of interest (see Table S2 for

experiment details). For all statistical analysis and 1D KDEs, we used a bandwidth of 0.25 semitones (a quarter tone). We found this

parameter to provide an adequate degree of smoothing tomaximize interpretability. To estimate uncertainty, we computed the boot-

strapped standard error for the smoothed values through nonparametric bootstrapping with 1,000 replicates. In the iterated learning

experiments, we bootstrapped with replacement over transmission chains, whereas in the dense rating experiment (Experiment 6)

we bootstrapped over participants. For the 2D KDEs visualizations (Figures 2A and 2B, 5B, 6A and 6B, 7A and 7B, S3, and S4), we

used the default bandwidth estimator implemented in the function kde2 from the R package MASS70 but adjusted by a factor of 0.5

for greater precision. For visualization purposes, we plot all 2D KDEs using a range of [-12, 12] semitones. To aid interpretability

across datasets, 2D KDEs are expressed relative to a uniform distribution, where dark blue indicates low density and yellow indicates

high density.

Peak finding
To identify statistically reliable peaks frombehavioral data, we use the following steps: (1) we created 1,000 bootstrapped datasets by

sampling the last three generations of the input data with replacement over the chains; (2) for each bootstrap dataset, we computed

the kernel density estimate associated with the data (we used a bandwidth of 0.25 semitones in all analysis); (3) we then computed all

peak locations for a given bootstrapped dataset usingMATLAB’s findpeaks function with default parameters. To identify the average

number of detected peaks in each generation (see interval vocabulary size), we used the same procedure but identified peaks in each

generation of the input data separately and averaged the resulting number across bootstrapped datasets.

In some analyses, we were interested in estimating the reliability of these peaks in order to identify meaningful peak clusters or

interval categories (marked as red dots and shaded areas in Figures 2, 4, 6, and 7). This procedure had five steps:

1. We took the 1,000 bootstrap replicates of the kernel-smoothed behavioral profiles created previously, and ran the peak finding

algorithm on each of these, producing 1,000 sets of peak estimates.

2. To identify interval categories in each set of peak estimates, we computed the kernel density estimate of the peak locations

(with the same bandwidth of 0.25), rather than using the data directly. The resulting peak-density distribution corresponds

to the probability of finding a peak near a given interval. We then identify the peak categories by using Matlab’s findpeaks

on the average peak-density distributions over the bootstrapped datasets. This non-parametric method allowed us to estimate

peak category locations while avoiding the use of predefined sets of interval categories.

3. For each bootstrapping dataset and interval category, we then found the closest peak within a +/- 0.5 semitones window (if

such a peak existed).

4. We counted the proportion of bootstrap iterations where a peak was observed within that window. We considered that a peak

was statistically reliable if the proportion was greater than 90%. We found this threshold to achieve a good balance between

reliability and interpretability across all datasets.

5. Finally, we calculated the mean location of the bootstrapped peak locations and 95% CI by averaging the peaks associated

with that location.
Trend analysis
In all trend analyses conducted in this paper (see Table S3), we used linear regressions with 95% confidence intervals derived

from bootstrapping over chains (1,000 replicates, Gaussian approximation). For each bootstrapped dataset, we obtained the co-

efficient B indicating the slope of the regression line (the regression model was implemented using the lm function in R). We then

averaged the B coefficient of all bootstrapped datasets and obtained the final coefficient B reported in Table S3 along a measure

of uncertainty using 95 % CI. Thus, the resulting B represents the change in the dependent variable associated with each trend

analysis and if the CI does not include 0 (indicating no linear relationship), we infer that the relationship is statistically significant

(the sign of B indicates the direction of the trend). We measured four core melodic features: interval entropy, interval vocabulary

size, interval size, and copying error.

Interval entropy

To quantify the complexity of melodies using an appropriate summary statistic, we calculated the entropy (H) of the distributions of

intervals across all melodies in each generation It� p(It) using Shannon’s formula71:

HðItÞ = �
Z

pðitÞlog2pðitÞdit (Equation 3)
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To compute interval entropy, we discretized all intervals at 0.25 semitone granularity and computed this integral numerically with a

discrete grid.

Interval vocabulary size

We measured the interval vocabulary size by computing the average number of peaks in the distribution of intervals in each gener-

ation. We identified peaks using the procedure described above (see peak finding).

Interval size

To quantify the average interval size of melodies across generations, we calculated the absolute mean interval size ðaÞ of each
melody:

a =
1

N

X
n = 1;.;N

jInj (Equation 4)

where In are the N intervals of the melody. We then calculated the mean absolute interval size of all melodies in each generation.

Copying error

We computed copying error as the root mean square distance between the target melody and response: Formally, let ISn
and IRn

be the stimulus and response intervals of the nth tone of a melody of length N. We define the copying error (e) of a melody as

follows:

e =

�
1

N

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n = 1;.;N

ðIRn � ISn Þ2
s

(Equation 5)

We then calculated the average of e overall all melodies in each generation.

Comparing melodic features between experiments

When comparing the evolution of melodic features between different experiments (Figures 3A, 4C, 5C5F, 6C–6F, and 7C, 7D),

we linearly normalized the features based on the baseline values at the start of the experiments. This is because the experi-

ments differed in key design parameters as well as the total number of transmission chains (see Table S2), which caused

them to differ in their starting baseline levels in different melodic features. For example, the mean absolute interval size in Exper-

iment 1 (three-note melodies) was higher than the mean interval size in Experiment 4 (five-note melodies) because the maximum

pitch range used to sample melodies was larger in the former (20 semitones) than in the later (15 semitones). Such differences

also generated different starting values in the entropy of the interval distribution and the number of detected peaks. Thus, we

used this strategy to directly compare changes in melodic features’ trends between experiments. The only exception was

copying error, where we kept the absolute values across all figures. This is because copying error has no values at the start

of the experiment (generation 0) and because it is important to compare error in absolute terms, so we can interpret the overall

difficulty across experiments.

Melodic contours
We used two steps to calculate the average melodic contours of melodies in Experiment 2 and 3 (Figures 3B, 3C, and 3F). First, we

aligned the range of all melodies, by transposing each melody to the high singing register so that melodies in the low register were

transposed an octave above. Second, for each tone in themelody, we calculated themeanMIDI value (and SE) across all melodies in

each generation.

For the clustering analysis (Figure 3C; Experiment 2), we transposed the melodies to the high singing register and also centered

themby subtracting the average pitch of eachmelody from eachmelody tone.We then applied k-means clustering to the five notes of

the melodies in the last three generations of the experiment. To visualize the clusters, we performed a PCA on all note melodies and

used the two main components (explained variances of 56% and 29%, respectively) to plot all melodies along the two-dimensional

space, where dots represent melodies and the color represents their cluster.

Comparing distributions
For two distributions P, Q we compute the Jensen-Shannon divergence (JSD) as follows, implemented using the JSD function from

the philentropy package in R72:

JSDðP;QÞ =
1

2
DðP;MÞ+ 1

2
DðQ;MÞ (Equation 6)

Where M = 1
2 ðP +QÞ, and

DðP;QÞ =

Z
pðxÞlog2ðpðxÞ =qðxÞÞdx (Equation 7)

Note that the JSD is symmetric and always between 0 and 1, and that the JSD of two distributions is 0 when the two distributions

are identical. The JSD obtains the maximal value of 1 when the two distributions have non-overlapping support (regions with prob-

ability larger than 0). In practice we compute the JSD numerically over a discrete grid.
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Experimental simulations
Interval-size model

To simulate simple constraints that only depend on interval size and direction, we used a model where the response interval IR de-

pends only on the previous interval size and direction (IS) using a simple polynomial function b, and an additional independent

gaussian noise n. Formally:

IR = IS + bðISÞ+ n (Equation 8)

To find the function b, we used data (IS and IR) from the first generation of Experiment 5 (iterated singing with two-tone melodies)

and computed b’, a 7th-order polynomial function fitted with Matlab’s polyfit with default parameters (see Figure S2 for the resulting

polynomial function derived from empirical data). Since the overall magnitude of the bias changed slightly across generations, we

used a single scalar parameter to scale the fitted polynomial function (the same parameter and bias function was used across all

generations), namely bðIÞ = c$b0ðIÞ. The free parameters of the model are thus the noise magnitude s0 = stdðnÞ and the bias scaling

c. The parameters are optimized as described below (see model performance and parameter optimization). Figure 4G shows the

aggregated results of the model in the last 3 generations of the simulation (Figure S2 shows an example of the model across gener-

ations). The code for the simulations is part of the OSF repository associated with this paper: https://doi.org/10.17605/OSF.IO/

UANGD

Preference model

To simulate the role of subjective preferences on melodic transmission, we used a model for serial reproduction that translates

preferences (a subjective utility function) to a perceptual prior (see the development of the model in the appendix of Harrison

et al.47). The model takes as input the data from the subjective preference experiment (Experiment 6; see Figure S2 for the aggre-

gated function derived from empirical data) and predicts all data from the following iterations based on a standard serial repro-

duction Bayesian model with this function as a perceptual prior (a variant of Griffiths and Kalish49 model proposed in Langlois

et al.50).

First, we perform averaging (smoothing) of the raw preference data from Experiment 6 (Figure S2), which consists of 15,000 sub-

jective ratingsU(In) on 15,000 intervals (In) sampled uniformly in the range of [-15 to 15] semitones. To average the data, we computed

for every interval i the smoothed functionU’(i) using the following formula, which intuitively corresponds to smoothening the data with

a Kernel width of B semitones:

U0ðiÞ =
X
n

UðInÞwnðiÞ (Equation 9)

Where wnðiÞ are smoothing kernels:

wnðiÞ = CðiÞ$exp
�
ð � i � InÞ2

.
2B

�
(Equation 10)

C(i) is a normalization constant so that
P
n
wnðiÞ = 1, and B is the kernel width, set to 0.25 semitones.

This subjective pleasantness function U’(i) can be ‘‘translated’’ to a prior, via a normative model described in Harrison et al.47:

pðiÞ = C$expðgU0ðiÞÞ (Equation 11)

where C is a normalization constant so that
R
pðiÞdi = 1, and g is a constant that determines the ‘‘peakiness’’ of preference (how

sensitive the prior is to changes in the subjective utility).

We now use a normative Bayesian model that, given a prior, predicts participants’ responses. (see detailed justification and as-

sumptions in Langlois et al.,50 and another application of this model in Jacoby andMcDermott23). According to this process, the stim-

ulus interval at time t, it, is encoded with some sensory noise resulting in an internal representation i’t. The participant is assumed to

decode this internal representation and form a response interval it+1, which then becomes the input of a new iteration. For simplicity,

this model also assumes no production noise. This process can be described with the following Markov chain:

./It / I0t / It + 1/. (Equation 12)

Similar to signal detection theory, we assume that pðI0t
��ItÞ is an unbiased Gaussian noise with standard deviation of s (a free

parameter):

p
�
I0t
��It	 � N

�
It; s

2
	

(Equation 13)

We also assume a Bayesian decoding, which means that the response is sampled from the Bayesian inversion:

p
�
It +1 = it + 1

��I0t = i0t
	
= p

�
It = it + 1

��I0t = i0t
	
=

p
�
I0t = i0t

��It = it + 1

	
pðIt = it + 1ÞR

p
�
I0t = i0t

��It = it
	
pðIt = itÞdit

(Equation 14)

Note that this formula depends on the prior p(i). The only free parameters of the model are s (noise magnitude, originating from the

Gaussian likelihood pðI0t
��ItÞ) and g (prior sharpness). In the simulations, we analytically computed the conditional distributions using a

grid of width 0.1 semitones, and then sampled points from the model according to Equations 12, 13, and 14. Figure 4H shows the
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aggregated results of the model in the last 3 generations of the simulation (Figure S2 shows an example of the model across gener-

ations). The code for the simulations is part of the OSF repository associated with this paper: https://doi.org/10.17605/OSF.IO/

UANGD

Combined model

We also explored a combinedmodel. In this model we first used the preferencemodel to generate an expected target interval (PðISÞ).
We then added production noise just like in the interval-size model, resulting in the following equation:

IR = PðISÞ + bðPðISÞÞ + n (Equation 15)

Note that this model has 4 degrees of freedom: the noisemagnitude (s0) and the bias scaling (c) from the preferencemodel, and the

perceptual noise magnitude (s) and the prior sharpness (g). Figure 4I shows the aggregated results of the combined model in the last

3 generations of the simulation (Figure S2 shows an example of the model across generations).The code for the simulations is part of

the OSF repository associated with this paper: https://doi.org/10.17605/OSF.IO/UANGD

Model performance and parameter optimization

The interval-size model and preference model had each two free parameters (s0 and c for the interval-size model, and s and g for the

preference model), which were optimized empirically based on the data from the last 3 iterations of the singing data of Experiment 5.

In the case of the combinedmodel, we had 4 parameters, and thus used a lower resolution grid search on a restricted area of the large

search space where, based an exploratory analysis indicated that (a) both models contributed to the results so the parameters in that

area are not degenerated and (b) we could obtain relative high scores.

We found the best-performing parameters by performing a grid search over the parameter space as explained above and

computing the performance for each possible parameter combination. To compute the performance of the model, we bootstrapped

1,000 datasets by sampling chains with replacements from the initially randomized intervals of the singing data (generation 0), and

then computed the model predictions for generations 1-10 (see an example of the simulated data across generations in Figure S2).

Finally, we computed the marginal across all intervals with KDE with a bandwidth of 0.25 semitones and compared the average KDE

of the simulations with singing data using JSD (see comparing distributions).

Model interpretation

Ourmodels are not perfect in separating perception and production, but they provide a useful complementary approach in addition to

the behavioral data. In the Interval-size model, we used singing data from the first generation of the singing experiment to model a

production bias based on interval size and direction. This data includes a production bias but may also include a perceptual bias (or a

mixture of both). However, we only capture a simple form of this data (using the 7th order polynomial), so we can describe the dis-

tribution using a few parameters. More importantly, we only take the data from the first generation, and thus the projections for all

other iterations including the final distribution are not circular. An alternative approach would require using different theoretic con-

straints (e.g., vocal range), but the exact way in which these constraints produce biases is not known. In the preference model,

we model melodic preferences using data from a listening experiment collecting preference ratings for individual melodic intervals.

This task is very different to the production task involved in iterated singing. Despite this, our models provide a useful ‘‘first-order

approximation’’ to help interpret the precise contribution of perceptual and production biases on melodic transmission. Follow-up

work should extend our approach by testing more refined models of perception and production in singing.
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