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A B S T R A C T

I investigate the capability of passive infrared (IR) satellite observa-
tions to resolve elevated moist layers (EMLs), which denote signifi-
cant mid-tropospheric anomalies of water vapor in the tropics. EMLs
are thought to emerge from melting-level detrainment of moist air
from deep convective cells. They can span over several 100 km around
the convective cell’s usually dry environment, significantly altering
the spatial structure of radiative heating, which may have implica-
tions on convective aggregation and climate feedbacks. Up to now,
there have only been some measurement campaign based case stud-
ies dedicated to EMLs, leaving many unknowns about frequency of
occurence and variability in strength, spatial extend or lifetime. Pas-
sive satellite observations of hyperspectral IR instruments used to re-
trieve vertical profiles of water vapor globally on a 12 km resolution
may contribute towards closing these knowledge gaps about EMLs.
However, the starting point of my work is defined by the findings
of Stevens et al. (2017), which suggest fundamental limitations in the
ability of passive satellite observations to resolve EMLs.

In a first study, I setup a model-based retrieval based on simu-
lated satellite observations to reproduce the results of the EML case
study of Stevens et al. (2017) to understand what may cause the ap-
parent EML blindspot and find a way to resolve it. When running
the retrieval with a similar configuration as Stevens et al. (2017) I am
able to reproduce the absence of the EML in the retrieved humidity
profile. I find that errors in the retrieved water vapor profile correlate
with errors in the retrieved temperature profile in a way that they
cancel out radiatively in the water vapor band, making the EML diffi-
cult to detect in the satellite observation. However, by extending the
used spectral ranges to a broader range of channels sensitive to wa-
ter vapor and by adding independent temperature information from
channels sensitive to CO2, I find that errors in both temperature and
water vapor retrievals can be reduced and the EML can be resolved
well. I conclude that EMLs do not denote an inherent blindspot for
passive satellite observations.

To more quantitatively assess the ability of satellite retrievals to
resolve EMLs, I introduce a new method for identifying EMLs and
characterising them in terms of strength, vertical thickness and height.
When applying the method to results of my model-based retrieval
run on 1288 tropical ocean atmospheres, I find that it captures about
80 % as many EMLs as the reference data and underestimates EML
strength by 17 % and EML thickness by 15 %. This indicates a good ca-
pability of the retrieval to resolve EMLs, but should rather be viewed
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as an upper bound of what is possible to resolve when using real
satellite observations.

In a second study, I evaluate the ability of two operational satel-
lite retrieval products based on hyper-spectral IR observations of the
IASI (Infrared Atmospheric Sounding Interferometer) and AIRS (At-
mospheric Infrared Sounder) instruments. In addition, I evaluate the
ability ERA5 reanalysis data to capture EMLs. I do so by collocat-
ing the three datasets within 50 km in space and 30 minutes in time
with 2146 radiosondes launched over the course of 4 years on Manus
Island in the Western Pacific warm pool, a region where EMLs oc-
cur particularly often. By applying the method introduced in my
first study, I find that ERA5 captures the EMLs most reliably among
the investigated datasets, showing no significant biases in EML char-
acteristics when smoothing the radiosonde humidity profiles by a
1 km moving average. The IASI and AIRS retrievals capture 79 % and
92 % as many EMLs as collocated ERA5 data, respectively, indicat-
ing slightly worse but also a generally good reliability in capturing
EMLs. The IASI retrieval shows strongest smoothing among the in-
vestigated datasets with EML thickness being overestimated by about
82 % compared to collocated radiosonde data. The AIRS retrieval un-
derestimates EML height by on average 1.3 km, which I hypothesize
to be caused by a technical issue in the vertical coordinate assignment
of the retrieval data.

Finally, I quantify the usefulness of the different operational data
products to investigate the effect of EMLs on radative heating rates
and associated radiatively driven subsidence. Firstly, I find based on
the radiosonde reference data that EML associated subsidence is on
the order of 2.6 hPa hour−1, which is significant compared to mean
meso-scale subsidence rates on the order of 1 hPa hour−1 observed
during the EUREC4A field campaign. ERA5 and IASI retrievals un-
derestimate EML associated subsidence by 39 % and AIRS retrievals
by about 80 %, indicating limited usefulness of these datasets to asses
the dynamical impact of EMLs. However, my overall findings yield
the conclusion that operational satellite and reanalysis products are
already useful for illuminating some of the unknowns about EMLs
and motivate further research on the dynamical role of EMLs in their
meso-scale environment in the future.
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Z U S A M M E N FA S S U N G

Ich untersuche die Fähigkeit von passiven infrarot (IR) Satellitenbeobach-
tungen, gehobene Schichten erhöhter Feuchte (EMLs) aufzulösen, die
signifikante mitteltroposphärische Anomalien des Wasserdampfs in
den Tropen darstellen. Man nimmt an, dass EMLs durch das Auss-
cheren feuchter Luft aus hohen konvektiven Zellen in der Höhe des
Schmelzpunktes entstehen. Sie können sich über mehrere 100 km um
die normalerweise trockene Umgebung der konvektiven Zelle erstrecken
und die räumliche Struktur der Strahlungserwärmung erheblich verän-
dern, was Auswirkungen auf Aggregation von Konvektion un Klima-
Rückkopplungen haben kann. Bisher gab es nur einige auf Messkam-
pagnen basierende Fallstudien, die sich mit EMLs befassen, so dass
viele Unbekannte über die Häufigkeit des Auftretens und die Variabil-
ität in Stärke, räumlicher Ausdehnung oder Lebensdauer von EMLs
bestehen. Passive Satellitenbeobachtungen mit hyperspektralen IR In-
strumenten, welche global vertikale Profile des Wasserdampfs bei
einer räumlichen Auflösung von 12 km messen, könnten dazu beitra-
gen, diese Wissenslücken über EMLs zu schließen. Der Ausgangspunkt
meiner Arbeit liegt in den Ergebnissen von Stevens et al. (2017), die
auf grundlegende Einschränkungen bei der Fähigkeit passiver Satel-
litenbeobachtungen, EMLs aufzulösen, hindeuten.

In einer ersten Studie habe ich ein modellbasiertes retrieval auf
der Grundlage simulierter Satellitenbeobachtungen aufgesetzt, um
die Ergebnisse der EML-Fallstudie von Stevens et al. (2017) zu verste-
hen und eine Ursache für den vermeintlichen blinden Fleck gegenüber
EMLs zu finden und falls möglich eine Lösung. Wenn ich das re-
trieval mit einer ähnlichen Konfiguration wie Stevens et al. (2017)
durchführe, bin ich in der Lage, das Fehlen der EML im Feuchteprofil
des retrievals zu reproduzieren. Ich stelle fest, dass Fehler im Wasser-
dampfprofil des retrievals mit Fehlern im Temperaturprofil des re-
trievals so korrelieren, dass sie sich in der Strahlung in der Wasser-
dampfbande ausgleichen und die EML in der Satellitenbeobachtung
schwer zu erkennen ist. Durch die Ausweitung der verwendeten Spek-
tralbereiche auf weitere Wasserdampf empfindliche Kanäle und durch
Hinzufügen unabhängiger Temperaturinformationen aus CO2 empfind-
lichen Kanälen, stelle ich fest, dass die Fehler im retrieval von Temper-
atur und Wasserdampf reduziert werden und die EML gut aufgelöst
werden kann. Ich schließe daraus, dass EMLs keinen grundlegenden
blinden Fleck für passive Satellitenbeobachtungen darstellen.

Um die Fähigkeit von Satellitenmessungen, EMLs aufzulösen, quan-
titativer zu untersuchen, führe ich eine neue Methode zur Identi-
fizierung und Charakterisierung von EMLs in Bezug auf Stärke, ver-
tikale Dicke und Höhe ein. Bei der Anwendung der Methode auf die
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Ergebnisse meines modellbasierten retrievals für 1288 Atmosphären
über tropischen Ozeanen stelle ich fest, dass das retrieval etwa 80 %
so viele EMLs erfasst wie die Referenzdaten und die EML Stärke um
17 % und die EML Dicke um 15 % unterschätzt. Dies deutet auf eine
gute Fähigkeit des retrievals hin, EMLs aufzulösen. Die Ergebnisse
sollten aber eher als Obergrenze dessen angesehen werden, was bei
der Verwendung echter Satellitenbeobachtungen möglich ist.

In einer zweiten Studie untersuche ich die Fähigkeit zweier opera-
tioneller Satelliten retrievals, die auf hyperspektralen IR Beobachtun-
gen der Instrumente IASI (Infrared Atmospheric Sounding Interfer-
ometer) und AIRS (Atmospheric Infrared Sounder) basieren. Darüber
hinaus bewerte ich die Fähigkeit der ERA5-Reanalyse, EMLs zu er-
fassen. Dazu vergleiche ich die drei Datensätze in einem Abstand
von 50 km im Raum und 30 Minuten in der Zeit mit 2146 Radioson-
den, die im Laufe von vier Jahren auf der Insel Manus im Westpaz-
ifik gestartet wurden, einer Region, in der EMLs besonders häufig
auftreten. Durch Anwendung der in meiner ersten Studie vorgestell-
ten Methode stelle ich fest, dass ERA5 die EMLs unter den unter-
suchten Datensätzen am zuverlässigsten erfasst und keine signifikan-
ten Abweichungen der EML Eigenschaften zeigt, wenn die Feuchte
Profile der Radiosonden durch einen gleitenden 1 km Mittelwert geglät-
tet werden. Die IASI und AIRS retrievals erfassen jeweils 79 % bzw.
92 % so viele EMLs wie die kollokierten ERA5 Daten, was auf eine
etwas schlechtere, aber auch allgemein gute Zuverlässigkeit bei der
Erfassung von EMLs hindeutet. Das IASI retrieval zeigt die stärkste
Glättung unter den untersuchten Datensätzen, wobei die EML Dicke
im Vergleich zu kollokierten Radiosonden um etwa 82 % überschätzt
wird. Das AIRS retrieval unterschätzt die EML Höhe um durchschnit-
tlich 1,3 km, was meiner Hypothese nach auf ein technisches Problem
bei der vertikalen Koordinatenzuweisung der retrieval Daten zurück-
zuführen ist.

Zuletzt quantifiziere ich die Nützlichkeit der verschiedenen op-
erationellen Datenprodukte, um die Auswirkungen von EMLs auf
die Strahlungsheizraten und das damit verbundene strahlungsbed-
ingte Absinken von Luftmassen zu untersuchen. Zunächst stelle ich
anhand der Radiosonden-Referenzdaten fest, dass das EML bedingte
Absinken in der Größenordnung von 2,6 hPa Stunde−1 liegt, was im
Vergleich zu Beobachtungen der mittleren mesoskaligen Vertikal-
geschwindigkeiten während der EUREC4A Feldkampagne in der Größenord-
nung von 1 hPa Stunde−1 signifikant ist. ERA5 und IASI retrievals
unterschätzen das EML assoziierte Absinken um 39 % und AIRS re-
trievals um etwa 80 %, was darauf hindeutet, dass diese Datensätze
nur begrenzt geeignet sind, um die dynamischen Auswirkungen von
EMLs zu beurteilen. Meine Gesamtergebnisse lassen jedoch den Schluss
zu, dass operationelle Satelliten- und Reanalyseprodukte bereits nüt-
zlich sind, um einige der Unbekannten über EMLs zu beleuchten,
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und motivieren weitere Forschung zur Rolle von EMLs für die Dy-
namik in ihrer mesoskaligen Umgebung.

vii





P U B L I C AT I O N S

In this section, I give an overview of the scientific publications I was
involved in as first author or co-author during the time of my PhD.

first author

During my PhD, I produced the following peer-reviewed publications
as first author. They are included in the Appendices.

Prange, M., S. A. Buehler, and M. Brath (2023). “How adequately are
elevated moist layers represented in reanalysis and satellite obser-
vations?” In: Atmospheric Chemistry and Physics 23.1, pp. 725–741.
doi: 10.5194/acp-23-725-2023. url: https://acp.copernicus.
org/articles/23/725/2023/.

Prange, Marc, Manfred Brath, and Stefan A. Buehler (2021). “Are ele-
vated moist layers a blind spot for hyperspectral infrared sounders?
A model study.” In: Atmospheric Measurement Techniques 14.11,
pp. 7025–7044. doi: https://doi.org/10.5194/amt-14-7025-
2021.

major contribution

I applied the collocation procedure to all observational datasets and
did the formal analysis of those datasets to produce all observation-
based results presented in the study. I produced Figures 1, 2, 3 and 5

and wrote Sect. 6.

Buehler, Stefan A., Marc Prange, John Mrziglod, Viju O. John, Mar-
tin Burgdorf, and Oliver Lemke (2020). “Opportunistic Constant
Target Matching—A New Method for Satellite Intercalibration.”
In: Earth and Space Science 7.5. doi: 10.1029/2019EA000856.

I conducted the initial flight phase segmentation for the HALO re-
search flights during EUREC4A and led the following group efforts
to produce a stand-alone flight segment dataset. The flight segment
dataset is introduced by Konow et al. (2021a) and available on Zen-
odo (Prange et al., 2020).

Konow, Heike et al. (2021). “EUREC4A’s HALO.” In: Earth System
Science Data 13.12, pp. 5545–5563. doi: 10.5194/essd-13-5545-
2021.

Prange, Marc, Max Ringel, Geet George, Lutz Hirsch, Tobias Kölling,
Heike Konow, Theresa Lang, and Theresa Mieslinger (2020). “EU-
REC4A: HALO flight phase separation: Awesome Albatross.” en.
In: doi: 10.5281/zenodo.3906507.

ix

https://doi.org/10.5194/acp-23-725-2023
https://acp.copernicus.org/articles/23/725/2023/
https://acp.copernicus.org/articles/23/725/2023/
https://doi.org/https://doi.org/10.5194/amt-14-7025-2021
https://doi.org/https://doi.org/10.5194/amt-14-7025-2021
https://doi.org/10.1029/2019EA000856
https://doi.org/10.5194/essd-13-5545-2021
https://doi.org/10.5194/essd-13-5545-2021
https://doi.org/10.5281/zenodo.3906507


For calibration efforts of the HIRS satellite instrument using observa-
tions of the moon, I setup a procedure for finding moon intrusions
in HIRS deep space view data and filtering methods to find the most
relevant cases. I produced Fig. 1 for the publication of Burgdorf et al.
(2020).

Burgdorf, Martin J., Thomas G. Müller, Stefan A. Buehler, Marc Prange,
and Manfred Brath (2020). “Characterization of the High-Resolution
Infrared Radiation Sounder Using Lunar Observations.” In: Re-
mote Sensing 12.9, p. 1488. doi: https : / / doi . org / 10 . 3390 /

rs12091488.

minor contributions

I participated in the EUREC4A field campaign where I fulfilled sev-
eral different tasks. I was responsible for launching dropsondes from
the HALO aircraft during two research flights, conducted calibration
procedures for the HAMP instrument onboard of HALO, helped with
radiosonde launches on Barbados, took care of data distribution dur-
ing the campaign, presented the weather bulletin for the on-site crew
on one day and was involved in outreach activities for local schools
on Barbados.

Stevens, B. et al. (2021). “EUREC4A.” In: Earth System Science Data
Discussions 2021, pp. 1–78. doi: 10.5194/essd- 2021- 18. url:
https://essd.copernicus.org/preprints/essd-2021-18/.

For my efforts of conducting the flight phase segmentation for HALO
I had the pleasure of working closely with Geet George, who pub-
lished the overview paper of the EUREC4A dropsonde data (George
et al., 2021a). In the paper, the flight segmentation data is used riger-
ously to provide a first overview of the dropsonde data and provide
higher level products.

George, Geet et al. (2021). “JOANNE: Joint dropsonde Observations
of the Atmosphere in tropical North atlaNtic meso-scale Environ-
ments.” In: Earth System Science Data 13.11, pp. 5253–5272. doi:
10.5194/essd-13-5253-2021.

For satellite calibration efforts of microwave instruments using the
moon, I provided code to process meta-data that looks for deep space
view observations where the satellite viewing direction was particu-
larly close to the moon (Burgdorf et al., 2021).

Burgdorf, M. J., S. A. Buehler, and M. Prange (2021). “Calibration and
Characterization of Satellite-Borne Microwave Sounders With the
Moon.” In: Earth and Space Science 8.7. doi: 10.1029/2021EA001725.

x

https://doi.org/https://doi.org/10.3390/rs12091488
https://doi.org/https://doi.org/10.3390/rs12091488
https://doi.org/10.5194/essd-2021-18
https://essd.copernicus.org/preprints/essd-2021-18/
https://doi.org/10.5194/essd-13-5253-2021
https://doi.org/10.1029/2021EA001725


For efforts to verify thermo-physical models of the brightness temper-
ature of asteroids or minor bodies like the moon using satellite-based
infrared observations of the HIRS instrument, I provided methods to
find moon intrusions in the HIRS data. I produced Fig. 1 of the study
of Müller et al. (2021).

Müller, T. G., M. Burgdorf, V. Ali-Lagoa, S. A. Buehler, and M. Prange
(2021). “The Moon at thermal infrared wavelengths: a benchmark
for asteroid thermal models.” In: Astronomy and Astrophysics 650,
A38. doi: https://doi.org/10.1051/0004-6361/202039946.

xi

https://doi.org/https://doi.org/10.1051/0004-6361/202039946




A C K N O W L E D G E M E N T S

I believe it is fair to say that the PhD for the most part is an individual
project with the aim of developing the skills of conducting your own
research. However, I learned that this does in no sense imply that
one has to feel isolated - not even in COVID times - since you sit in
the same boat with many peers and find a lot of people helping and
cheering for you along the way.

I would like to thank my supervisor Stefan A. Bühler for shaping
my scientific education from the start of my Bachelor Thesis to the
end of my PhD. I am very grateful for the trust he gave me over
these years and also the scientific support and encouragements when
I needed it. I also want to thank my supervisor Manfred Brath for
always being there as a first point of contact when I felt stuck on
anything and being super approachable. Thank you also to Cathy
Hohenegger for reliably and efficiently steering us through the panel
meetings as panel chair, making sure that I am on track. I also want
to thank my previous supervisor Martin Burgdorf, who guided my
first scientific endeavors during my Bachelor and Master Thesis and
is a joy to work with to date. I also want to thank Oliver Lemke for
the friendliest and most patient technical guidance over the years I
could imagine. I also want to thank our server thunder for staying
alive over the course of 6 years of me processing buggy code and just
now shutting down when I am at the finish line.

I would like to thank the UTH community, in particular Theresa
Lang and Lukas Kluft, for focused scientific discussions about what
shapes the humidity in the upper troposphere. Our rounds gave the
early period of my PhD at least a bit more structure and actually felt
like a good place for informal discussions about what the heck our
results want to tell us. In the same sense I want to thank the RATM
community, in particular Manfred Brath, Jon Petersen, Florian Römer
and Lorena Kowalczyk for making Friday afternoons pass by a lot
quicker.

I want to thank all my friends and family who backed me up
over the last years with fun activities to get the mind in the right
place when it was needed. This involved many park beers, climbing
activities (indoor and outdoor), great hikes crossing entire islands,
cycling and kayaking trips, some virtual game nights and more. In
particular, I want to thank my parents and my brother Jan, who I
know always has my back if it counts and who feels basically like
a very good brother to me. I also want to thank my guitar teacher
Bernhard, not only for the great guidance in my guitar endeavors, but
also for his generally caring attitude and some extra hours of good

xiii



talks. Without everyone’s reassurance and welcome distractions my
path would have felt a lot more stony.

I am very thankful for the rich opportunities I was given in the
limited time of no COVID restrictions to visit workshops, conferences
and in particular the EUREC4A measurement campaign. These events
were always big boosts in motivation for my work and made me re-
alize that being in science means being around open, friendly and
genuinely interested people. Within this community it feels like no
coincidence to find persons that have meaningful and positive im-
pact in your life. Still, I would not have expected to find love at a
conference about a satellite instrument (thank you IASI). I could not
have felt more supported during my final months of thesis submis-
sion and defense preparation. Thank you, my petit coeur.

Talking about friendly and caring persons, I can not exclude the
people working in the scientific administration, in particular at the
offices of the IMPRS and the Meteorological Institute. Thank you for
helping out with administrative issues and whatever the everyday
office life confronts you with.

xiv



C O N T E N T S

i unifying essay 1

1 motivation 3

2 is there a moist layer blindspot in satellite ob-
servations? 7

2.1 Hyperspectral Infrared Observations . . . . . . . . . . . 7

2.2 Conceptualisation of the moist layer blindspot . . . . . 9

2.3 Demonstration of the moist layer blindspot and how to
resolve it . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 representation of moist layers in operational

retrieval products 14

3.1 Moist layers during EUREC4A . . . . . . . . . . . . . . 14

3.2 Moist layer reference dataset from Manus Island . . . . 17

3.3 Moist layer identification and characterisation . . . . . 18

3.4 Comparison of moist layer characteristics . . . . . . . . 20

3.5 Moist layers’ effect on meso-scale dynamics . . . . . . . 21

4 summary and conclusion 24

ii appendix 27

a are elevated moist layers a blind spot for hy-
perspectral infrared sounders? a model study 29

a.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 32

a.1.1 Previous moist layer retrievals . . . . . . . . . . 33

a.2 The retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 36

a.2.1 Spectral setup . . . . . . . . . . . . . . . . . . . . 36

a.2.2 Retrieval quantities . . . . . . . . . . . . . . . . . 38

a.2.3 Optimal estimation algorithm . . . . . . . . . . . 38

a.2.4 The forward model and representation of IASI . 38

a.2.5 A priori assumptions . . . . . . . . . . . . . . . . 39

a.3 Definition and characterisation of moisture anomalies . 42

a.4 Case study of a moist layer retrieval . . . . . . . . . . . 43

a.4.1 Importance of temperature information to re-
trieve a moist layer . . . . . . . . . . . . . . . . . 45

a.4.2 Retrieval resolution . . . . . . . . . . . . . . . . . 49

a.5 Retrieval performance . . . . . . . . . . . . . . . . . . . 51

a.5.1 Reference dataset and retrieval error . . . . . . . 52

a.5.2 Smoothing error . . . . . . . . . . . . . . . . . . 53

a.6 Retrieval of moisture anomalies . . . . . . . . . . . . . . 55

a.6.1 Moisture anomaly characteristics . . . . . . . . . 56

a.6.2 Implications of moisture anomalies for the heat-
ing rate profile . . . . . . . . . . . . . . . . . . . 57

a.7 Summary and conclusions . . . . . . . . . . . . . . . . . 60

a.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv



xvi contents

a.8.1 Temperature averaging kernels . . . . . . . . . . 63

b how adequately are elevated moist layers rep-
resented in reanalysis and satellite observations? 65

b.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 68

b.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

b.2.1 GRUAN radiosondes . . . . . . . . . . . . . . . . 70

b.2.2 ERA5 . . . . . . . . . . . . . . . . . . . . . . . . . 71

b.2.3 IASI L2 Climate Data Record . . . . . . . . . . . 71

b.2.4 CLIMCAPS-Aqua L2 product . . . . . . . . . . . 72

b.2.5 Collocation procedure . . . . . . . . . . . . . . . 73

b.3 Climatological mean . . . . . . . . . . . . . . . . . . . . 74

b.4 Moisture anomaly identification and characterisation . 77

b.5 Comparison of moisture anomaly characteristics . . . . 78

b.5.1 All-sky . . . . . . . . . . . . . . . . . . . . . . . . 79

b.5.2 Clear-sky . . . . . . . . . . . . . . . . . . . . . . . 82

b.6 Moist layers’ radiative implications on the dynamics . 84

bibliography 91



Part I

U N I F Y I N G E S S AY

In this essay I first motivate my specific research questions
by introducing their scientific background and context in
current literature. I then summarize the main contents of
my two studies in terms of specific scientific motivation,
methods and results. Finally, I summarize the main con-
clusions of my research and discuss how my results ad-
vanced the scientific field.





1
M O T I VAT I O N

Water in the Earth’s atmosphere is a uniquely powerful species. In
its vaporised phase it absorbs radiation throughout the infrared spec-
trum and makes up about 50 % of the natural greenhouse effect (Schmidt
et al., 2010). As water vapor is a strong infrared absorber it also ef-
ficiently emits infrared radiation, parts of which are directly lost to
space. This mostly water vapor driven infrared radiative flux towards
space cools the atmosphere by about 2 K day−1 throughout the mean
tropical free troposphere (Jeevanjee and Fueglistaler, 2020b). To ob-
tain an energetically balanced state in the tropics, this radiative cool-
ing is balanced by the release of latent heat when water vapor con-
denses to cloud droplets within convective cells, a state that is com-
monly referred to as radiative-convective-equilibrium (RCE). RCE is
a prime example for how water shapes the mean state of the atmo-
sphere through its radiative and thermodynamic interactions.

Manabe and Wetherald (1967) were the first to make an RCE–
based prediction of the future climate, taking into account the im-
portant effect of the water vapor feedback by assuming a fixed ver-
tical relative humidity (RH) structure. Their prediction of a 2 K in-
crease in surface temperature due to a doubling of CO2, referred
to as equilibrium climate sensitivity (ECS), remains close to state-of-
the-art climate model predictions. However, it has become clear that
more knowledge about feedback processes is required to reduce un-
certainty in current ECS estimates that range between 2.6 to 3.9 K at
66 % confidence (Sherwood et al., 2020). In particular, the response of
clouds to a warming climate contributes strongly to the remaining un-
certainty. Understanding these cloud feedbacks constitutes a complex
research objective because of the diversity of cloud types that vary in
their radiative effect on the atmosphere and also because processes
on scales of microns to thousands of kilometers are involved in cloud
formation (Zelinka et al., 2017).

A key cloud formation process is atmospheric convection. It oc-
curs when the atmosphere becomes sufficiently unstable for air parcels
to start bubbling up the atmospheric column. Depending on proper-
ties of the large-scale environment, convection can manifest in differ-
ent ways. In the inter-tropical convergence zone (ITCZ) near the equa-
tor, sea surface temperatures are high and surface winds converge
resulting in deep convective clouds that reach up to the tropopause.
In the sub-tropics, the free troposphere is stabilized and dried by sub-
siding airmasses, limiting convection to the boundary layer, resulting
in shallow cumulus clouds. In recent years, the spatial organisation

3
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of both deep and shallow cloud fields has gotten increased attention
because organisation can affect the large scale mean humidity and
cloud fraction, both of which are directly linked to the radiative bal-
ance of the atmosphere (Bony et al., 2017; Muller et al., 2022; Wing
et al., 2020). Hence, to constrain uncertainties in cloud feedbacks, we
need to understand under what circumstances cloud fields tend to
organise in specific patterns or aggregate to clusters and what states
will be favored in the future climate.

A mechanism thought to drive both deep and shallow convective
aggregation is a radiatively driven shallow circulation that feeds near
surface moist air into the convective cell while drying its environment
through subsidence. The circulation is driven by enhanced radiative
cooling in the vicinity of the convective cell due to an abrupt decrease
of moisture from the boundary layer to the free troposphere. There
is robust evidence for this mechanism to play a key role in both shal-
low convective aggregation (Naumann et al., 2019; Schulz et al., 2021;
Schulz and Stevens, 2018) and deep convective aggregation (Dingley
et al., 2021; Muller and Bony, 2015; Muller et al., 2022; Wing et al.,
2017). However, the boundary layer in the convective cell’s vicinity
can only cool to space effectively when the atmosphere aloft is suffi-
ciently dry, a condition that is not necessarily satisfied.

Previous studies based on in-situ measurement campaign data
showed evidence of the systematic occurence of mid-tropospheric
moist layers in the vicinity of deep convective cells (Johnson et al.,
1996; Stevens et al., 2017; Villiger et al., 2022). I refer to these layers
as elevated moist layers (EMLs). EMLs are thought to be a conse-
quence of enhanced stability near the melting level at around 5 km
altitude, causing detrainment of moist air into the convective cell’s
environment. A schematic overview of such a scenario is depicted
in Figure 1.1. EMLs can strongly affect the vertical structure of radia-
tive cooling by shifting the altitude of most effective cooling to space
from the boundary layer top to the mid-troposphere as indicated by
the red arrows in Fig. 1.1. The upward directed IR radiation from the
boundary layer top is mostly balanced by downward radiation from
above due to the abundance of water vapor in the presence of an
EML. The EML top, however, is able to radiate energy effectively to
space, causing strong cooling at the EML top since there is only little
water vapor above.

The described changes EMLs induce in the spatial structure of
radiative cooling affect the radiatively driven flow that is thought
to maintain and aggregate the convection. This flow is indicated by
the green arrow in Fig. 1.1 that reaches from the boundary layer top
along the surface to feed air into the deep convective cell. This mech-
anism may break in the presence of an EML since the boundary layer
becomes less effective at cooling radiatively. However, the strong cool-
ing at the EML top yields subsidence in the lower free troposphere
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(green arrow beneath EML) that may drive a similar return flow into
the convective cell as the shallow circulation. While it is clear that
EMLs have significant implications for the described mechanisms of
maintenance and aggregation of convective systems, and thereby on
cloud feedbacks, it is not clear how exactly their impact plays out.

Besides case studies based on in-situ observations from measure-
ment campaigns, EMLs have not been studied extensively, leaving
many unknowns, for example about their frequency of occurence,
their lifetime or how they vary in strength and horizontal extend.
Perhaps contributing to this gap is the fact that EMLs are difficult to
observe in satellite-based retrievals, possibly denoting a blindspot for
passive satellite observations (Stevens et al., 2017). Satellites enable
a consistent global and long-term sampling of the atmosphere that
might allow for addressing the mentioned unknowns about EMLs.
Hence, the research objective I address in my first study attached in
Appendix A lies in establishing whether EMLs can in principle be cap-
tured in satellite retrievals and to setup a framework of assessing to
which degree EMLs can be resolved. My second study attached in Ap-
pendix B revolves around the question of how EMLs are represented
in existing operational satellite retrieval products and reanalysis data.
In addition I conduct a first quantification of the effect of EMLs on
the meso-scale dynamics and evaluate the suitability of the different
operational datasets to quantify the EMLs’ dynamical impact. In the
following essay I give an overview of the scientific background of my
studies, the methodologies I deploy and summarize my findings.
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Boundary layer Radiative 
cooling

Figure 1.1: Schematic depiction of the typical meso-scale environment of an
EML (area with blue circles). A deep convective cloud detrains
moist air near the melting level (0 °C) into its environment, yield-
ing an EML. Radiative cooling is indicated by curved red arrows
at altitudes of strong humidity gradients, where arrow thickness
is proportional to temperature at which radiation is emitted. Hu-
midity of the boundary layer is indicated by blue shading. Green
arrows indicate radiatively driven flow that may contribute to
the maintenance of the convection.



2
I S T H E R E A M O I S T L AY E R B L I N D S P O T I N
S AT E L L I T E O B S E RVAT I O N S ?

In this section I will first give a brief introduction to the observing
principles of passive satellite observations and discuss their observing
capabilities, in particular of hyperspectral infrared (IR) sounders. This
will frame the initial research question about the possibility of an
inherent EML blindspot for passive satellite observations, the concept
of which I discuss in the second subsection. Finally, I summarize the
findings of my first publication where I reproduce the EML blindspot
and present a way to resolve it.

2.1 hyperspectral infrared observations

Satellite based remote sensing instruments offer rich spatiotemporal
observational sampling of key atmospheric variables such as the ver-
tical structure of temperature and water vapor. Information about at-
mospheric quantities is obtained indirectly through measurements of
electro-magnetic radiation escaping Earth’s atmosphere. On its path
from the Earth’s surface to the satellite’s sensor atmospheric absorp-
tion significantly alters the spectrum of outgoing longwave radiation.

To conceptualize how the radiation reaching the satellite sensor
is affected by atmospheric absorption it is useful to think of the radia-
tion as originating from a distinct atmospheric depth that depends on
the absorption strength and the amount of the absorber. The stronger
the absorption and the higher the amount of the absorber the less
deep the layer the radiation is emitted from. Since absorption strength
is mostly known for atmospheric molecules and stored in databases
like HITRAN (High-resolution Transmission Molecular Absorption
Database, Gordon et al., 2017), the satellite measurement can be used
to learn about the amount of the absorber in the atmosphere.

Since absorption strength is highly wavenumber dependent, in
particular in the infrared spectral range, the radiation measured by
the satellite at different wavenumbers originates from different atmo-
spheric depths. The intensity of the radiation emitted from a certain
atmospheric depth depends on the temperature of the emitting layer.
If the temperature is known, measuring spectra of infrared radiation
gives insight into vertical profiles of atmospheric constitution. Alter-
natively, temperature information can be deduced from the satellite
observation if the atmospheric concentration of the relevant absorber
at the specific wavelength is known. For example, CO2 is a species
with a well characterised atmospheric concentration, allowing for the

7
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deduction of temperature information from CO2 sensitive spectral
ranges.

Hyperspectral infrared sounders are designed to cover a large
range of wavenumbers at a high spectral resolution, yielding dense
information content about atmospheric constitution and temperature.
They achieve this by deploying a Michelson interferometer that –
broadly speaking – seperates incoming radiation into two beams that
are recombined at altered phases and hence produce an interfero-
gram that can be measured and Fourier transformed into spectral
radiances. For brevity, I refer to Physics textbooks for more detailed
descriptions of the working principles of such instruments (e.g. Hari-
haran, 2007).

The hyperspectral IR sounders used in this work are the Infrared
Atmospheric Sounding Interferometer (IASI) and the Atmospheric
Infrared Sounder (AIRS). They sample the thermal IR spectrum be-
tween 645 cm−1 and 2760 cm−1 at 0.25 cm−1 spectral resolution. Within
this spectral region various atmospheric species have absorption fea-
tures, yielding information about their atmospheric concentration. In
particular, water vapor shows absorption features throughout almost
the entire IR spectrum due to its asymmetric molecular structure and
associated modes of molecular vibration and rotation. The vibrational
ν2 absorption band around 1595 cm−1 (6.3µm) shows increasing wa-
ter vapor absorption from the band edge at around 1190 cm−1 to the
band center. Satellite observations made in this spectral region yield
information about the water vapor concentration throughout the tro-
posphere.

Despite the richness of water vapor lines in the IR spectrum, the
vertical resolution of water vapor retrievals is limited. This is because
there is ambiguity in inverting the spectral radiances into estimates
of water vapor concentration, which denotes an inherently ill-posed
problem. To still conduct the inversion, sophisticated methods to ob-
tain some best estimate of the atmospheric state are required.

Here, I follow the framework of the optimal estimation method
(OEM). For brevity, I will only give a qualitative overview of the
method here and introduce some more technical aspects important
for my work in Sect. 2.3. For a thorough description of the method I
refer to the textbook of Rodgers (2000). At its core, the OEM method
assumes the atmospheric state to be represented by a multivariate
Gaussian variable that can be described by a mean and a standard
deviation. The atmospheric state is represented by a vector that de-
scribes the vertical structure of the atmosphere in terms of tempera-
ture and constitution. The atmospheric variability is represented by
a block covariance matrix. Given some prior assumptions about the
atmospheric state and its variability, the method deploys a radiative
transfer model to simulate top of atmosphere spectra for a given at-
mospheric state. By minimising a cost function that balances devia-
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tions of the estimated atmospheric state from the prior and the simu-
lated spectrum of the estimated atmospheric state from the observed
satellite spectrum, the method finds an optimal estimation of the at-
mospheric state. This state is considered the retrieval.

A useful byproduct from conducting the radiative transfer sim-
ulations when deploying the OEM method are vertical weighting
functions that describe the sensitivity of the satellite spectrum to
slight deviations in the retrieved atmospheric variables. These ver-
tical weighting functions are often used to estimate the instrument’s
vertical resolution. For hyperspectral IR sounders the vertical resolu-
tion is found to be on the order of 1.5 km for water vapor throughout
the free troposphere (Lerner, 2002; Schneider and Hase, 2011; Smith
and Barnet, 2020). EMLs denote significant mid-tropospheric humid-
ity structures with vertical extends between 1 and 3 km (Johnson et
al., 1996; Stevens et al., 2017; Villiger et al., 2022). Hence, according to
generic weighting function based etimates of the hyperspectral IR in-
strument’s vertical resolution, EMLs should be detectable. However,
in the next subsection I will discuss an additional observational chal-
lenge that is special about EMLs and not captured in the vertical
weighting functions.

2.2 conceptualisation of the moist layer blindspot

Stevens et al. (2017) present a case study of a strongly pronounced
EML that was observed by dropsondes from the HALO (High Alti-
tude Long Range) aircraft during the NARVAL-2 (Next Generation
Remote Sensing for Validation Studies) measurement campaign that
took place in August 2016 in the vicinity of Barbados. They present
collocated satellite retrieval results based on IASI, finding that the
EML is not captured at all by the retrieval. This finding marks the
starting point of my first research project, where I address the ques-
tion of whether there is an inherent limitation in the satellite instru-
ment’s capability to resolve EMLs or whether EMLs can in principle
be captured.

Besides the satellite instrument’s vertical resolution being limited,
as discussed in the last subsection, there are factors that addition-
ally constrain the instrument’s observational capability. For example,
clouds present optically thick objects to IR sounders, denying the in-
strument to gather information about the atmosphere beneath the
cloud top. Another example of an additional error source is the spec-
tral interference of absorption lines that can cause ambiguity in the
interpretation of observed spectra (Sussmann and Borsdorff, 2007).
When trying to estimate the concentration of one species, spectral
interference with another species that is not well characterised will
cause errors in the estimation of the first species. In case of an EML, I
suggest that a special kind of interference is at play that makes EMLs
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difficult to observe, namely between water vapor and temperature.
This is a special kind of interference because temperature is not an
absorption species. However, not knowing the temperature structure
well induces errors in estimating the water vapor structure since both
determine the spectral radiance observed in the water vapor bands as
discussed qualitatively in Sect. 2.1.

My initial hypothesize is that unaccounted for temperature inver-
sions that are typically present at the EML top induce errors in the
water vapor retrieval and thereby reduce EML detectability. The in-
creased water vapor of the EML shifts the emission layer observed
by the satellite upward, where temperatures are usually lower, reduc-
ing the emitted spectral radiance observed by the satellite. However,
in the presence of a temperature inversion, the reduction in spectral
radiance is partly negated by the increased temperature with height
in the emission layer. If the retrieval system has no prior knowledge
about the temperature inversion, then this described mechanism will
shade the spectral signal of the EML, limiting its detactability. In the
next subsection, I summarize the findings of my first study that ad-
dress how the interference of temperature and water vapor signals
can cause the EML blindspot by deploying a model-based retrieval
case study using the same EML scenario as Stevens et al. (2017).

2.3 demonstration of the moist layer blindspot and how

to resolve it

In my first study (Appendix A) I show that EML detectability by hy-
perspectral IR sounders is limited when relying on information only
from the water vapor band as done by Stevens et al. (2017). I do so by
reproducing the EML case study of Stevens et al. (2017) in a model-
based retrieval setup. In this context, "model-based" refers to the fact
that instead of real satellite observations I use a radiative transfer
model to simulate the satellite observations. This has the benefit that
I can isolate sources of error by excluding uncertainties that would
inherently be part of real satellite observations. Such uncertainties
are for example in the concentrations of trace gases such as CH4 or
N2O that interfere with absorption lines of H2O or uncertainties as-
sociated with cloudiness. For the radiative transfer simulations I use
the line-by-line model ARTS (Atmospheric Radiative Transfer Simu-
lator Buehler et al., 2018), which is a particularly accurate type of
radiation model used as reference for more approximative but com-
putationally quicker radiation schemes (Pincus et al., 2020). ARTS in-
cludes a module to conduct optimal estimation based retrievals, the
concept of which I described briefly in Sect. 2.1 and in more detail in
Appendix A. This method was also deployed in the study of Stevens
et al. (2017) where the EML could not be retrieved. In the following,
I introduce the main assumptions I make within my retrieval setup
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and then summarize the results of my two most revealing retrieval
scenarios.

In an optimal estimation retrieval setup, the atmospheric state is
assumed to be a multivariate Gaussian variable that can be described
by a mean and a standard deviation. Hence, I introduce prior knowl-
edge about the atmospheric state that is independent of the informa-
tion from the satellite measurement, in terms of an "a priori" state
vector and a covariance matrix. I do so for the surface temperature,
the temperature profile and the profile of water vapor, which denote
my retrieval quantities. I define this a priori knowledge by making
use of different datasets and assumptions. For the humidity profile
I use a tropical mean profile of the FASCOD (Fast Radiative Signa-
ture Code) dataset (Anderson et al., 1986) and conduct the retrieval
in units of logarithmic volume mixing ratio (VMR), which makes the
variable’s distribution more Gaussian. I assume to know the surface
temperature precisely and apply a moist adiabatic temperature lapse
rate starting from the surface up to 100 hPa and I fit a mean strato-
spheric temperature profile above to obtain the a priori temperature
profile. For the tropics, a moist adiabatic temperature profile is a rea-
sonable approximation (Sobel and Bretherton, 2000). The resulting a
priori profiles are shown as blue lines in Fig. 2.1.

To represent the variability of the atmosphere around the mean
state, I calculate covariance matrices for temperature and water vapor
profiles. For water vapor, I deploy the method of Schneider and Hase
(2011), who set the diagonal elements of the matrix to unity (note the
log-transformation of the water vapor variable) and assume a corre-
lation length to calculate the off diagonal elements. For temperature,
I calculate the diagonal elements of the covariance matrix based on a
set of tropical ocean short range forecasts from the ECMWF IFS (Euro-
pean Center for Medium Range Weather Forecast Integrated Forecast
System) model provided by Eresmaa and McNally (2014). I make the
idealized assumption that other atmospheric species and variables
other than the three retrieval quantities are perfectly known, in par-
ticular O3, CH4 and N2O. Further details about the exact retrieval
setup can be found in Appendix A.

In my retrieval experiments shown in Fig. 2.1, I isolate the effect
of choosing different spectral ranges from the IASI spectrum. Usually,
retrievals do not use the full spectral range available because compu-
tational costs become high and information is redundant between
channels. Stevens et al. (2017) chose a quite limited spectral region
sensitive to water vapor between 1193 to 1223 and 1251 to 1253 cm−−1.
When running my retrieval with this spectral setup I obtain the re-
sults shown in the first row of Fig. 2.1. I find that the EML is not
resolved in the retrieved state, similar to the results of Stevens et al.
(2017). I also find significant errors in the retrieved mid-tropospheric
temperature profile in the layer of the EML, where temperature is
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underestimated by the retrieval. As conceptually outlined in the pre-
vious section, underestimated temperature and humidity balances in
the radiative signal in the water vapor band, yielding low costs in the
spectral term of the optimal estimation cost function, although errors
in the retrieved atmospheric state may be large.

The idea of the second retrieval scenario shown in the second
row of Fig. 2.1 is to introduce more water vapor information by using
the spectral range between 1190 to 1400 cm−1 suggested by Schnei-
der and Hase (2011) and in particular independent temperature infor-
mation from the CO2 band between 645 to 800 cm−1. Spectra of CO2

mainly contain information about temperature because CO2 is a well
quantified compound in the atmosphere. Applying this setup results
in a well resolved EML and temperature profile, even capturing the
temperature inversion located at the EML top. Hence, although EMLs
present a non-trivial vertical structure to resolve by satellite observa-
tions, I conclude that there is no inherent EML blindspot. As a next
step, I investigate how operational retrieval products perform in cap-
turing EMLs based on different reference datasets.
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Figure 2.1: Profiles of temperature and humidity for two retrieval scenarios
based on NARVAL-2 dropsonde profiles on August 12th 2016 de-
noted as "true" (green lines). The first retrieval scenario (first row)
uses the same spectral setup as Stevens et al. (2017), reproduc-
ing the absence of the EML in the retrieved profile (orange line).
The second retrieval (second row) uses a wider spectral range
of H2O lines and additional temperature information from the
CO2 band, yielding a well resolved EML in the retrieval.
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R E P R E S E N TAT I O N O F M O I S T L AY E R S I N
O P E R AT I O N A L R E T R I E VA L P R O D U C T S

I showed in my first study that EMLs do not pose an inherent blindspot
for satellite-based hyperspectral IR observations in an idealized model-
based setup. As a next research project, I address how well opera-
tional satellite retrieval products are able to capture EMLs. For that
purpose a robust database with suitable reference data denotes an
important premise. In the following, I discuss the suitability of two
reference datasets that I considered for this task. First, I evaluate
the usefulness of dropsonde data from the EUREC4A (Elucidating
the role of clouds–circulation coupling in climate) measurement cam-
paign. Then I introduce more long-term reference data from Manus
Island where 2146 radiosondes where launched over the course of 4

years. Finally, I introduce a method I deploy rigorously in my first
and second study to identify and quantify moist layers, allowing for
a statistical assessment of EML representation in different datasets
and also an evaluation of their dynamical impact.

3.1 moist layers during eurec
4
a

EUREC4A was an immense multi-national measurement campaign
that took place on and around Barbados in January and February of
2020 to address urgent questions about the response of trade wind
clouds to warming, which are thought to contribute significantly to
the intermodel spread in estimates of climate sensitivity (Bony et
al., 2015; Stevens et al., 2021). Several research aircraft, ships and
autonomous vehicles with a variety of observing systems were de-
ployed to capture the physical state of the tradewind atmosphere and
ocean. In particular, the research aircraft HALO was used to fly cir-
cles of about 200 km diameter while launching 12 dropsondes per
circle. A research flight was typically composed of 6 circles and a
diversion towards the East, into the upstream region of the trades.
With 15 conducted research flights, a total of 895 dropsondes were
launched from the HALO aircraft. In addition, 320 dropsondes were
launched by the Lockheed WP-3D Orion N43-RF aircraft (P3) run
by the National Oceanic and Atmospheric Administration (NOAA)
to constitute a total number 1215 dropsonde-based soundings dur-
ing EUREC4A, which are accesseble and published under the dataset
name JOANNE (Joint dropsonde Observations of the Atmosphere
in tropical North atlaNtic meso-scale Environments, George et al.,
2021a).

14



3.1 moist layers during eurec
4

a 15

With the spatial and temporal coverage of the meso-scale atmo-
spheric environment in the trades and its fine vertical resolution,
JOANNE constitutes an interesting reference dataset to conduct satel-
lite retrieval evaluation. However, for my purpose, the usefulness of
the dataset strongly depends on the number of observed EMLs dur-
ing the EUREC4A period. Johnson et al. (1996) show based on 10 year
Northwestern Caribbean sounding data that melting level associated
stable layers that may yield EMLs are rather expected to occur dur-
ing the summer months, while EUREC4A was conducted during the
winter months. Also the EML case study of Stevens et al. (2017) was
conducted based on summer month data from NARVAL-2. Hence,
the premise to find a lot of EML cases during EUREC4A was not op-
timal.

Nonetheless, some cases of increased mid-tropospheric humidity
were observed during EUREC4A, two of which were for example in-
vestigated in more detail by Villiger et al. (2022). They show that one
occurence on the 14th of February 2020 can be linked to melting level
associated outflow of deep convection over South America, making
it a typical EML scenario that fits the conceptual picture of Fig. 1.1.
However, for this exact day there are no collocations between satellite
overpasses and JOANNE data available.

In Fig. 3.1 I show cases of enhanced mid-tropospheric humidity
on three days of available JOANNE data where simultaneous (within
50 km and 30 minutes) observations of IASI and AIRS retrieval prod-
ucts are available (EUMETSAT, 2022; Smith and Barnet, 2020). The
AIRS L2 product is found to capture the moisture structures reason-
ably well, albeit that very sharp gradients are missed due to inher-
ently limited vertical resolution of the satellite data as discussed in
Sect. 2.1. It is also remarkable how within the mid-tropospheric moist
layers on the 24th of January and the 11th of February the AIRS
L2 product shows strong variability between the collocated scenes
(shaded areas), indicating that the retrieval distinguishes differently
pronounced moisture levels. The IASI retrieval shows only few collo-
cations and generally a worse agreement with the dropsonde profiles
compared to the AIRS product.

Although the found moist layer scenarios during EUREC4A are
interesting to explore and give a first impression of what the opera-
tional retrieval products are capable of, they remain quite limited to
very few cases. To allow for a more quantitative assessment of how re-
trieval products are able to capture EMLs I decided to choose a more
long-term reference dataset that suits my specific purpose better than
the EUREC4A data. In the following, I describe this reference dataset
in more detail, introduce a new method to quantify EMLs and sum-
marize the main results of my second study.
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Figure 3.1: Profiles of temperature and humidity for cases of enhanced mid-
tropospheric humidity where there are collocated observations
of AIRS/IASI and JOANNE dropsondes.
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3.2 moist layer reference dataset from manus island

With EUREC4A data not appearing to be the most suitable test ground
of assessing the representativeness of EMLs in satellite data, in par-
ticular for IASI, I decided to look for a more fitting refrerence dataset.
The two main criteria for this dataset are firstly that EMLs are well
represented in the sampled atmospheric cases and secondly that there
are simultaneous observations of the satellites I am interested in. With
the EMLs’ close association to deep convection, it appeared plausible
to choose a region where such events occur frequently such as the
Western Pacific warmpool. This region was also subject of previous
studies reporting the robust occurence of mid-tropospheric stable and
moist layers as well as enhanced cloudiness based on measurement
campaign data of TOGA COARE (Tropical Ocean - Global Atmo-
sphere Coupled Ocean Atmosphere Respsonse Experiment), which
took place over 4 months from November 1992 to February 1993

(Johnson et al., 1996, 1999; Mapes and Zuidema, 1996; Zuidema, 1998).
In addition, Romps (2014) show that the vertical humidity structure
in this region shows a mid-tropospheric maximum in the mean based
on ERA-Interim data, a clear sign of a strong climatological signal of
EMLs.

The second criterion of selecting a suitable reference dataset is
that it matches up well with overpasses of the satellites I am inter-
ested in. Given that the Western Pacific warmpool region is centered
around the equator I can make use of the fact that IASI is situated
on satellites with sun-synchronous orbits, meaning that they have
fixed local equator crossing times. For the MetOp satellites carrying
IASI this crossing time is 09:30 am/pm. The globally standardized
launch times of radiosondes are 00 and 12 UTC, which means that
the local launch times vary across the globe. The Western Pacific
warmpool region has local time zones that make the standardized
radiosonde launches matchup well with overpasses of IASI. In par-
ticular, Manus Island is located at UTC+10 hours, meaning that ra-
diosondes are launched at 10 am/pm local time, implying only a tem-
poral offset of 30 minutes to IASI overpasses.

On Manus Island radiosondes were launched from 2011 to 2014

on a daily basis as part of the GRUAN (Global climate observing sys-
tem Reference Upper Air Network) program. As part of my second
study I collocated the radiosonde data from Manus Island with the
IASI Level 2 climate data recod (CDR) produced by EUMETSAT and
also with ERA5 reanalysis data within 50 km and 30 minutes to assure
direct comparability. I find 648 and 1921 collocated humidity pro-
files for the IASI L2 CDR and ERA5 data with reference to GRUAN
soundings, respectively. For the AIRS retrieval product, the dataset
unfortunately shows almost no collocations due to the satellite’s lo-
cal crossing time at 01:30 am/pm when not a lot of radiosondes are
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launched on Manus Island. However, as I show in Sect. 3.4, ERA5 can
be used as another suitable reference to evaluate the AIRS retrieval
against.

To evaluate the representation of EMLs in the collocated datasets,
I deploy a method that I introduced in my first study to identify
EMLs and characterise them by means of their vertical position, their
thickness and their strength. In the following, I introduce this method
and summarize the main conclusions I draw from applying it in my
second study.

3.3 moist layer identification and characterisation

To effectively evaluate the representation of EMLs in the different
data products I want to consider hundreds of collocated cases as de-
scribed in the previous section. To identify and quantitatively com-
pare the EMLs in the different data products some dedicated method-
ology is required. In my first study I already introduced a method to
achieve this. The method relies on the introduction of a reference hu-
midity profile against which moisture anomalies can be identified.

A first naive approach of defining a reference humidity profile
would be to take a climatological mean profile of the tropics. However,
such a definition would not only be sensitive to the vertical moisture
variability I am interested in, but also to constant-in-height biases that
the datasets may be subject to. Hence, it is desirable to define the ref-
erence humidity profile in a more flexible way, where anomalies arise
only due to vertical humidity variability. I try to achieve this by defin-
ing the reference humidity profile as a fit against the humidity profile
of interest. For this I use a second order polynomial logarithmic fit in
the profile of water vapor volume mixing ratio (VMR). Such a fit cap-
tures the major tropospheric vertical variability of the humidity pro-
file without including secondary maxima, for example due to EMLs.
This way, EMLs can be identified as positive water vapor anomalies in
the mid-troposphere against the reference profile fit, as shown by the
blue shading for an example of a radiosonde profile in Fig. 3.2a. Note
that I only consider moisture anomalies that are fully captured in the
pressure range between 900 to 100 hPa and that have a minimum ver-
tical thickness of 50 hPa to avoid very small scale variabilities.

Having identified an EML as a water vapor anomaly against the
reference profile, I quantify the EML in terms of three scalar metrics,
namely the water vapor anomaly strength, thickness and height. The
EML strength is defined as the vertical integral over the anomalous
H2O VMR, divided by the vertical thickness of the EML. The EML
thickness is defined as the altitude difference between the upper and
lower intersection of the humidity and reference humidity profiles.
The EML height is defined as the altitude of the center of mass of
the water vapor anomaly. This way, EMLs in the collocated datasets
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can be identified and their characteristics in terms of EML strength,
thickness and altitude can be compared quantitatively.

The model-based framework of my first study provided a good
first testing ground for the new method since the reference state is
known and can be compared directly to the retrieved state. Hence, I
ran the retrieval on 1288 tropical ocean atmospheres from the short-
range forecast output of the ECMWF IFS model (Eresmaa and Mc-
Nally, 2014). I find that the retrieval captures about 80 % as many
EMLs as present in the reference data and underestimates EML strength
by 17 % and EML thickness by 15 %. These findings appear plausible
since some degree of smoothing is expected in the retrieval, as more
thoroughly discussed in Appendix A. In general, the findings indicate
a good capability of the retrieval to capture EMLs and provide a first
reference when applying the method to the operational data products
with reference to GRUAN radiosondes.

Finally, I expand the EML characterisation method to enable a
quantification of the EMLs’ dynamical effect. As outlined in Sect. 1,
EMLs are relevant atmospheric features because they significantly
affect the meso-scale spatial structure of radiative heating. By cool-
ing the mid-troposphere in the vicinity of convection, subsiding air
motion is induced, which may yield a shallow circulation that feeds
moist air into the convective cell, favoring convective aggregation as
sketched in Fig. 1.1. Hence, I am particularly interested whether the
way EMLs are represented in the investigated datasets is sufficient to
capture the EMLs’ impact on radiative cooling and the radiatively in-
duced subsidence. For this purpose, I calculate the radiative heating
rates based on the collocated profiles of humidity and temperature
using the radiative transfer model RRTMG (Rapid Radiative Trans-
fer Model for GCMs, Mlawer et al., 1997) through its implementation
in the radiative convective equilibrium model konrad (Kluft and Da-
cie, 2020). I then make use of the identified EMLs and quantify the
EML-associated heating rates and radiatively driven subsidence rates
ωrad as indicated for an example in Fig. 3.2b and d. To obtain the
EML-associated subsidence I divide the EML averaged heating rate
by the EML averaged static stability s as shown in equations 3.1 and
3.2, where Q is the radiative heating rate, T the temperature, Θ the
potential temperature and p pressure.

ωrad = −
Q

s
(3.1)

s = −
T

Θ

dΘ

dp
(3.2)

In the next section, I first summarize my findings about EML
strength, thickness and height in the different operational retrieval
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Figure 3.2: GRUAN sounding from 2012-15-02 at 12 UTC of (a) H2O volume
mixing ratio (VMR), (b) longwave heating rate, (c) static stability
and (d) radiatively driven vertical velocity. The dashed red line
in (a) is the reference humidity profile against which EMLs are
identified, which are highlighted by blue shaded regions. Thin
gray lines in (b), (c) and (d) indicate raw data and thick lines
500 m moving averages to visually remove some strong fluctua-
tions.

and reanalysis datasets with reference to GRUAN radiosondes. In
Sect.3.5 I summarize my findings about the representativeness of the
EMLs’ dynamical impact in terms of radiatively driven subsidence in
the different operational datasets.

3.4 comparison of moist layer characteristics

The first major result of my second study revolves around the quan-
tification of how EMLs are represented in operational IASI and AIRS
retrievals and in ERA5 reanalysis data. For that purpose, I quantify
the EMLs of the collocated datasets in terms of the strength, thickness
and height as described in the previous subsection. In the following,
I summarize my main findings for each dataset while referring to the
manuscript attached in Appendix B for the figures and a more de-
tailed discussion.

A first indicator of a dataset’s capability to capture EMLs is the
number of identified EMLs when applying the method described in
the previous section. I find that ERA5 captures about 99% as many
EMLs as the collocated radiosonde reference data, indicating a good
capabilty of ERA5 to capture free tropospheric vertical moisture vari-
ability. Comparing EML characteristics of ERA5 to GRUAN, I find
that moist layers are on average 50 % weaker and 28 % thicker than
moist layers in collocated radiosonde data. I find that these biases can
be eliminated by applying a 1 km moving average to the radiosonde
humidity profiles and then conducting the EML characterisation, indi-
cating an effective vertical resolution of about 1 km of ERA5 humidity
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profiles. Besides the limited vertical resolution there appear to be no
significant limitations in ERA5’s capability to capture EMLs.

The IASI retrieval dataset captures only about 75 % as many EMLs
as collocated radiosonde data, indicating a more limited capability
to capture free tropospheric vertical moisture variability than ERA5.
Identified EMLs are also 53 % weaker and 85 % thicker than those in
the collocated radiosonde data. Contrary to ERA5, these biases can
not completely be removed by vertically smoothing the radiosonde
profiles. In particular, EML thickness remains biased by about 30 %
when applying a 1 km moving average, indicating additional error
sources than smoothing in the IASI retrieval data in terms of captur-
ing EMLs.

Since I find ERA5 to capture EMLs well, I decide to rather use
ERA5 as reference data for the AIRS retrieval dataset than GRUAN
radiosondes because the number of closely collocated cases between
AIRS and GRUAN is very limited. The AIRS retrieval captures about
92 % as many EMLs as collocated ERA5 data, indicating more free
tropospheric humidity variability than the IASI retrieval. In addition,
EMLs are 26 % stronger and only 5 % thicker than those in ERA5.
However, I find a significant bias in EML height of 1.3 km towards
lower altitudes in the AIRS retrieval compared to ERA5. This explains
the enhanced strength of AIRS EMLs because moisture anomalies
tend to be stronger in the lower troposphere where absolute values
of water vapor are higher. Nonetheless, the AIRS retrieval captures
vertical moisture variability well as is also apparent in the examples
of the EUREC4A dropsonde collocations shown in Fig. 3.1. I speculate
that the bias in EML height is likely caused by a technical issue of
the retrieval’s height coordinate assignment. I see no fundamental
reason from an information content perspective for why the retrieval
should create such a significant systematic deviation in the vertical
position of the moisture anomalies. Concluding, I suggest that this
bias is traced in more detail by the AIRS retrieval product team.

3.5 moist layers’ effect on meso-scale dynamics

A first step towards quantifying the representation of EMLs in the
different operational data products was to quantify the EMLs them-
selves as summarized in the previous section. In addition, I want to
quantify the representation of EMLs in terms of their impact on the
meso-scale dynamics, which is what makes them relevant in their
environment. EMLs are thought to influence meso-scale dynamics
through their effect on the spatial structure of radiative heating as
outlined in Sect. 1. Enhanced mid-tropospheric radiative cooling in-
duces subsidence, which may drive a shallow circulation, favoring
convective aggregation. Hence, the final part of my second study re-
volves around quantifying the moist layer associated cooling and sub-
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sidence rates as captured by the different datasets using the method-
ology introduced in Sect. 3.3. Here, I summarize my findings about
the EML-associated subsidence, as calculated through Eq. 3.1, which
among my results is the quantity most closely describing the EMLs’
effect on the dynamics.

Based on GRUAN radiosonde data, I find that EML-associated
subsidence ranges between 1.5 to 4 hPa hour−1 with a mean of about
2.6 hPa hour−1. To put these values into some perspective, I compare
them to novel meso-scale subsidence observations based on JOANNE
dropsonde data from the EUREC4A field campaign. Using the method
of Bony and Stevens (2019), dropsonde profiles along the 200 km di-
ameter circle flown by the HALO aircraft can be used to derive circle-
integrated profiles of horizontal divergence. Using mass continuity,
horizontal divergence can be translated into estimates of the vertical
pressure velocity ω, some first EUREC4A averaged results of which
are presented by Stevens et al. (2021). They find that free tropospheric
meso-scale subsidence on the mean is on the order of 1 hPa hour−1,
indicating that EML-associated subsidence as derived from GRUAN
radiosondes denotes a significant deviation from the mean.

Although useful as a first comparison of order of magnitude, I
want to point out that comparability of the EMLs I characterise in the
moist, deep convective environment of Manus Island to EUREC4A
observations situated in the dry subsiding region of the trades may
be limited. The two factors controlling EML-associated subsidence
are EML-associated radiative cooling and static stability as shown by
Eq. 3.1. On the one hand, the generally more moist free troposphere
near Manus Island reduces the effectiveness of cooling to space by
the EMLs, limiting EML-associated subsidence compared to EMLs in
the trades. On the other hand, the free troposphere of the trades may
be more stably stratified due to the dry adiabatic warming associated
with the large-scale subsidence compared to the deep convective re-
gion. This would cause increased EML-associated subsidence near
Manus Island compared to the trades. It is not clear at this stage,
which effect may be more significant in determining the effect of
EMLs on subsidence in different regions, something that may be in-
vestigated by applying my methodology to different regions in the
future.

Besides assessing the magnitude of EML-associated subsidence,
which from comparison to EUREC4A data appears significant, I am
interested in how the IASI and AIRS retrieval products and ERA5

reanalysis data are able to capture it. Although ERA5 showed quite
promising results in terms of capturing EML characteristics, I find
that ERA5 underestimates the mean EML-associated subsidence by
38 % compared to collocated GRUAN radiosonde data. This bias re-
sults predominantly from overestimated static stability within the
EMLs in ERA5. For the IASI retrieval I find a similar bias in EML-



3.5 moist layers’ effect on meso-scale dynamics 23

associated subsidence, but underestimated radiative cooling in the
EMLs has a larger contribution than for ERA5. For the AIRS retrieval
product I find that EML-associated subsidence is underestimated by
43 % compared to collocated ERA5 data. Given that ERA5 already
showed a 38 % bias against GRUAN, the bias identified for AIRS
sticks out strongly among the investigated datasets. This is due to
both underestimated EML-associated radiative cooling and overesti-
mated static stability. I hypothesize that the underestimation of EML
height in the AIRS retrieval, as described in the previous section,
partly explains these biases. A lower EML height may reduce EML-
associated radiative cooling because more water vapor will be above
the EML, making it less efficient at cooling to space. It would be in-
teresting to see how EML-associated subsidence is represented in the
AIRS retrieval product when the root of the bias in EML height is
found and resolved.



4
S U M M A RY A N D C O N C L U S I O N

In the presented work I assess how Elevated Moist Layers (EMLs) are
captured by satellite-based hyperspectral infrared (IR) observations
and ERA5 reanalysis. EMLs are significant mid-tropospheric mois-
ture anomalies that typically occur in the vicinity of deep convection.
EMLs have only been studied based on a limited number of cases
in measurement campaign data although they may have significant
implications for meso-scale dynamics and possibly climate feedbacks
due to their strong effect on the spatial structure of radiative heating
(Johnson et al., 1996; Stevens et al., 2017; Villiger et al., 2022). This
marks a gap which may be filled by making use of satellite obser-
vations that provide consistent and long-term global sampling and
hence could contribute to a more complete picture of EMLs. However,
the starting point of my work is denoted by the fundamental question
of whether EMLs can actually be resolved by satellite observations or
whether they may denote an inherent blindspot as suggested by the
findings of Stevens et al. (2017).

In my first study I setup a model-based optimal estimation re-
trieval that is similar to the one deployed by Stevens et al. (2017).
The retrieval is setup for satellite observations of the IASI (Infrared
Atmospheric Sounding Interferometer) instrument, which provides a
wealth of water vapor information with an estimated vertical resolu-
tion of 1.5 km in the free troposphere (Lerner, 2002; Schneider and
Hase, 2011) and hence should in principle be capable of resolving
EMLs. By reproducing the EML retrieval case study of Stevens et al.
(2017) in my model-based retrieval I show that the absence of the EML
in the retrieved water vapor profile can be traced to the deployed spec-
tral setup. When relying on a limited number of channels only from
the water vapor band, interfering errors in the retrieval of the non-
trivial temperature structure associated with an EML yield the ab-
sence of the EML in the retrieved water vapor profile. By running the
retrieval with an altered spectral setup, using a broader range of chan-
nels from the water vapor band an adding independent temperature
information from the CO2 band, I find that the EML can be resolved
well. This is confirmed in case studies of increased mid-tropospheric
water vapor during the EUREC4A field campaign, where I compare
operational retrieval products to collocated dropsonde measurements.
Hence, to answer my first research question, there appears to be no
inherent EML blindspot for passive satellite observations.

Having shown that EMLs can in principle be captured, I wanted
to more quantitatively assess the capabilities and limitations of satel-
lite retrievals to resolve EMLs. For that purpose I introduced a new
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method for identifying and characterising EMLs in terms of their
strength, vertical thickness and height. The method also allows for
quantifying the EML-associated radiative heating and subsidence rates,
which are interesting quantities to assess the dynamical impact of
EMLs. The method is easy to apply to large humidity profile datasets
and enables a statistical comparison of the named moist layer charac-
teristics between satellite retrievals and reference data. Applying this
method to my model-based retrieval for a large reference dataset of
1288 tropical ocean atmospheres in my first study, I find that EMLs in
the retrieval dataset are about 17 % weaker and 15 % more thick than
EMLs in the reference dataset. This indicates a generally good capa-
bility of the retrieval to resolve EMLs since some degree of smooth-
ing is expected. The model-based results of my first study establish a
useful reference to compare the performance of operational satellite
products against, which I evaluate in the following work.

In my second study I assessed the capability of operational re-
trieval products of the IASI and AIRS (Atmospheric Infrared Sounder)
instruments and ERA5 reanalysis data to resolve EMLs. I first evalu-
ated the usefulness of dropsonde data from the EUREC4A measure-
ment campaign as reference, but found that there is only a limited
number of EML cases that collocate well in space and time with the
overpassing satellites. Instead, I decided to use a 4 year radiosonde
dataset from Manus Island in the Western Pacific warmpool as refer-
ence, which matches up well with IASI overpasses and contains a lot
of EML cases due to the abundance of deep convective events in this
region.

Among the investigated datasets, I find that ERA5 captures EMLs
most reliably, a first indicator of which is that it captures about 99 %
as many EMLs as the reference radiosonde data. When smoothing
the radiosonde data with a 1 km moving average, I find no signif-
icant biases in EML strength, thickness and altitude to collocated
ERA5 data, indicating that ERA5 captures EMLs well on a 1 km verti-
cal scale. Although the retrieval datasets also capture the majority of
EMLs, they show some more significant biases than ERA5. The IASI
retrieval shows the least amount of EMLs among the investigated
datasets with only 75 % as many as the collocated radiosonde data.
In addition, EMLs are about 85 % more thick in the IASI retrieval
compared to the radiosonde data, indicating strong smoothing. The
AIRS retrieval captures 92 % as many EMLs as collocated ERA5 data,
indicating a good capability to resolve vertical humidity structures.
The major drawback of the AIRS retrieval is an underestimated EML
height of 1.3 km, which is likely a technical issue of the vertical coor-
dinate assignment in the retrieval algorithm.

Finally, I investigate the dynamical impact of EMLs through the
subsidence they induce by enhancing radiative cooling. I find that
EML-associated subsidence is on the order of 2.6 hPa hour−1, which
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is significant compared to meso-scale vertical velocity estimates from
the EUREC4A field campaign, which are on the order of 1 hPa hour−1

(Stevens et al., 2021). Although ERA5 showed more promising capa-
bilities in resolving the EMLs than IASI retrievals, I find that both
datasets underestimate EML-associated subsidence by 39 %. This is
because ERA5 shows more significant biases in EML-associated static
stability than the IASI retrieval. The AIRS retrieval shows a 43 % un-
derestimated EML-associated subsidence compared to ERA5, which
is caused by both underestimated radiative cooling and overestimated
static stabilities. This bias may partly be attributed to the underesti-
mated EML height since more water vapor above the EMLs reduces
the effectiveness of the cooling.

With my studies I provide new scientific insights for satellite re-
trieval algorithms to enable a good representation of EMLs. I do so on
the one hand by suggesting a cause for the apparent EML blindspot
in the case study of Stevens et al. (2017) and proposing a solution
to resolve the EML. On the other hand I provide a quantitative pic-
ture of the representation of EMLs in operational satellite retrievals
and ERA5 reanalysis data, which can be used to diagnose issues in
the retrieval algorithms and act on them. In addition, I show that
EMLs are associated with significant radiatively induced subsidence,
which may have implications for convective aggregation and climate
feedbacks. Hence, I suggest that studying the role of EMLs for the dy-
namics of their meso-scale environment denotes a relevant research
question in the future.
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abstract

The ability of the hyperspectral satellite based passive infrared (IR)
instrument IASI to resolve Elevated Moist Layers (EMLs) within the
free troposphere is investigated. EMLs are strong moisture anomalies
with significant impact on the radiative heating rate profile and typ-
ically coupled to freezing level detrainment from convective cells in
the tropics. A previous case study by Stevens et al. (2017) indicated
inherent deficiencies of passive satellite based remote sensing instru-
ments to resolve an EML. In this work, we first put the findings of
Stevens et al. (2017) into the context of other retrieval case studies
of EML-like structures, showing that such structures can in principle
be retrieved, but retrievability depends on the retrieval method and
the exact retrieval setup. To approach a first more systematic analysis
of EML retrievability, we introduce our own basic Optimal Estima-
tion (OEM) retrieval, which for the purpose of this study is based
on forward modelled (synthetic) clear-sky observations. By applying
the OEM retrieval to the same EML case as Stevens et al. (2017) we
find that a lack of independent temperature information can signifi-
cantly deteriorate the humidity retrieval due to a strong temperature
inversion at the EML top. However, we show that by employing a
wider spectral range of the hyperspectral IR observation, this issue
can be avoided and EMLs can generally be resolved. We introduce a
new framework for the identification and characterisation of moisture
anomalies, a subset of which are EMLs, to specifically quantify the re-
trieval’s ability of capturing moisture anomalies. The new framework
is applied to 1288 synthetic retrievals of tropical ocean short-range
forecast model atmospheres, allowing for a direct statistical compar-
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ison of moisture anomalies between the retrieval and the reference
dataset. With our basic OEM retrieval, we find that retrieved moisture
anomalies are on average 17 % weaker and 15 % thicker than their true
counterparts. We attribute this to the retrieval smoothing error and
the fact that rather weak and narrow moisture anomalies are most fre-
quently missed by the retrieval. Smoothing is found to also constrain
the magnitude of local heating rate extremes associated with moisture
anomalies, particularly for the strongest anomalies that are found in
the lower to mid troposphere. In total, about 80 % of moisture anoma-
lies in the reference dataset are found by the retrieval. Below 5 km
altitude, this fraction is only on the order of 52 %. We conclude that
the retrieval of lower to mid tropospheric moisture anomalies, in par-
ticular of EMLs, is possible when the anomaly is sufficiently strong
and its thickness is at least on the order of about 1.5 km. This study
sets the methodological basis to more comprehensively investigate
EMLs based on real hyperspectral IR observations and their opera-
tional products in the future.
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a.1 introduction

The vertical structure of tropospheric water vapor is an important
driver for dynamical processes due to its effect on the radiative heat-
ing profile. In particular, Muller and Bony (2015) found that the spa-
tial variability of the radiative heating profile gives rise to spatial
self-aggregation of convection, which is thought to be a key factor
for uncertainties in climate projections (Bony et al., 2015; Mauritsen
and Stevens, 2015). A contributing phenomenon to the spatial vari-
ability in radiative heating profiles are moisture inversions in the
tropical lower to mid free troposphere, so called Elevated Moist Lay-
ers (EMLs). To our best knowledge, EMLs were first identified by
Haraguchi (1968) over the tropical eastern Pacific and independently
by Ananthakrishnan and Kesavamurthy (1972) over India. A first sys-
tematic connection of these EMLs to the freezing level was brought
to attention by Johnson et al. (1996), who formally distinguished be-
tween the commonly referred to trade wind inversion between 2 and
3 km (Cao et al., 2007) and another stable layer aloft that manifests
during summer months just below the freezing level. Both, the trade
wind inversion and the stable layer at the freezing level are capable of
trapping moisture beneath and forming strong vertical humidity gra-
dients. The stable layer around the freezing level has recently been
brought to attention again within the framework for assessing the
tropical lower tropospheric moisture budget introduced by Stevens
et al. (2017).

While the general role of EMLs within their meso-scale environ-
ment has not yet been assessed conclusively, there are conceptual
ideas about the emergence of EMLs and their impact on meso-scale
atmospheric dynamics. Johnson et al. (1996) and Stevens et al. (2017)
both hypothesise that EMLs preferably emerge in the vicinity of moist
convective cells that penetrate the freezing level, where enhanced sta-
bility leads to detrainment of the saturated air. Stevens et al. (2017)
further highlight the stabilising effect of glaciation above the freezing
level within the initial convective cell on the environment, which fur-
ther impedes nearby convection from penetrating the freezing level,
leading to increased cloudiness and moisture. Studies investigating
vertical modes of cloudiness in the tropics further support the idea of
preferred convective detrainment near the freezing level (Johnson et
al., 1999; Posselt et al., 2008; Zuidema, 1998). Following the findings
of Muller and Bony (2015), EMLs may also contribute to the mainte-
nance and aggregation of convection via the strong vertical gradient
they induce in the radiative heating profile. The strong cooling at the
EML top induces subsidence and horizontal mass convergence, while
near the surface a mass divergence is induced. The mass divergence
near the surface in the vicinity of convection may act to maintain the
convection.
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Stevens et al. (2017) conducted an observational case study of
an EML present during the NARVAL-2 (Next Generation Remote
Sensing for Validation Studies) measurement campaign. One method
they deployed was a satellite retrieval analysis based on passive mi-
crowave and hyperspectral infrared (IR) observations, both of which
showed poor performance in capturing the EML structure, suggest-
ing that EMLs present a somewhat fundamental blind spot for pas-
sive satellite observations.

We start out by providing additional scientific context to the find-
ings of Stevens et al. (2017) by briefly reviewing the results of other
hyperspectral IR retrieval studies that investigated EML-like cases in
Sect. A.1.1. In Sect. A.2, we introduce our own basic Optimal Estima-
tion (OEM) retrieval setup that we extensively use later on to investi-
gate a physical cause for missing the EML structure and to attempt
a first quantitative and comprehensive analysis of moist layer retriev-
ability. This study is based on forward modelled (synthetic) observa-
tions to reduce the complexity of error sources (e.g. by collocation
uncertainty, clouds, forward modelling errors) and to rather assess
inherent limitations in resolving vertical moisture structures with hy-
perspectral IR observations. Section A.3 introduces a framework for
identifying and characterising moisture anomalies, which we use to
specifically quantify the retrieval’s ability to the capture the moisture
anomalies’ vertical position, their thickness and their strength. In Sect.
A.4 we first apply our OEM retrieval to the EML scenario discussed
by Stevens et al. (2017) to assess whether the strong temperature in-
version at the EML top, when not properly resolved, is capable of
masking the EML in the humidity retrieval. We want to note that we
do not aim to reproduce the results of Stevens et al. (2017), but dis-
cuss a possible physical reason for their found EML blindspot. Then
the retrieval is applied to forward simulated (synthetic) IASI obser-
vations based on an ensemble of 1288 clear-sky atmospheric profiles
over the tropical ocean, which are part of the ECMWF diverse pro-
file database introduced by Eresmaa and McNally (2014). Based on
that, the absolute retrieval error and the smoothing error are quanti-
fied statistically in Sect. A.5. Based on the framework introduced in
Sect. A.3 for identifying and characterising moisture anomalies, the
retrieval’s ability to capture the moisture structures of the test dataset
and their footprint on the heating rate profile is assessed in Sect. A.6.
The results are summarized and final conclusions are drawn in Sect.
A.7.

a.1.1 Previous moist layer retrievals

Since mid-tropospheric moist layers are no uncommon phenomenon
in the tropics (Johnson et al., 1996), they have shown up in hyper-
spectral IR retrieval case studies in the past. Although none of these
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studies were explicitly dedicated towards a comprehensive and quan-
titative analysis of retrieving EMLs, they still give a qualitative im-
pression of the possibilities and limitations in resolving these features
based on various retrieval methods and give some context to the re-
sults of Stevens et al. (2017).

A particularly performant and versatile retrieval approach was
introduced by Smith et al. (2012) that is based on Empirical Orthog-
onal Function (EOF) regression and combines a clear-sky and cloud
trained retrieval to allow for retrievals above clouds and below thin
or broken clouds. The method is commonly referred to as Dual Re-
gression (DR) retrieval. In a case study of retrieving temperature and
humidity profiles in the eye of hurricane Isabel in 2003, Smith et al.
(2012) demonstrate the retrieval’s ability to capture the general tropo-
spheric moisture structure in the presence of shallow cumulus clouds
that go along with a vertically extended EML between 850 to 550

hPa. However, no highly resolved reference soundings are available
for this case study. Weisz et al. (2013) further elaborate on the DR
retrieval methodology, with particular focus on cloud top height re-
trieval and they present some additional case studies for clear-sky
and cloudy scenes. The NCEP (National Center for Environmental
Prediction) GDAS (Global Data Assimilation System) analysis prod-
uct is used as a reference for the retrieved profiles and particularly
large deviations are found for the clear-sky case, where a less pro-
nounced moist layer is not resolved by the retrieval in the mid tropo-
sphere.

Latest advances in the DR retrieval with regard to vertical resolu-
tion are presented by Smith and Weisz (2018), who try to account for
the effect that the regression tends to alias the retrieval towards the
mean state of the test data base, supressing vertical variability. They
do so by applying their DR retrieval to forward simulated spectra
of NCEP GDAS analysis, the resulting profiles of which are used to
dealias the observational retrieved profiles. Smith and Weisz (2018)
show in a case study that the DR retrieval by itself is not able to re-
solve a significant mid tropospheric moist layer, but the dealiasing
method allows to resolve it’s general structure. For this study a well
collocated radiosonde serves as reference.

Another EML retrieval case study is conducted by Zhou et al.
(2009), who use a slightly different retrieval scheme than the previ-
ously introduced DR method. While Zhou et al. (2009) also apply an
EOF regression retrieval with clear-sky and cloudy specific regression
coefficients in a first step, they additionally apply a physical OEM re-
trieval in a second step. The retrieval is applied to IASI observations
from the Joint Airborne IASI Validation Experiment (JAIVEx), where
dedicated collocations between in-situ soundings and IASI onboard
MetOp-A were achieved. A particularly well collocated dropsonde
profile shows a strongly pronounced EML between 3 to 6 km altitude,
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which the IASI retrieval is able to capture well, given the expected
smoothing error due to limited vertical resolution. It may well be that
the additional physical retrieval step is what makes the difference
in being able to retrieve an EML, when compared to the previously
discussed results of the DR retrieval. This is supported by results of
Calbet et al. (2006) who investigated the ability of different retrieval
algorithms implemented in the EUMETSAT (European Organisation
for the Exploitation of Meteorological Satellites) IASI L2 processor to
resolve vertical moisture and temperature structures based on AIRS
(Atmospheric Infrared Sounder) data. In particular, Calbet et al. (2006)
use a collocated clear-sky radiosonde that shows a mid tropospheric
moist layer. While the EOF regression retrieval shows no hint of the
moist layer, the iterative physical retrieval scheme is able to resolve
the structure quite well.

As a final reference, Chazette et al. (2014) investigated EUMET-
SAT’s IASI L2 product performance based on collocated ground based
Raman lidar observations from two field experiments. The compari-
son is done for clear-sky conditions and from ground up to about 6

km altitude. Some significant vertical moisture variability, including
moist layers, is captured by the lidar in the mid troposphere in sev-
eral cases, but appears to not at all be resolved by the IASI retrieval.
In their conclusions, Chazette et al. (2014) report that the IASI L2 pro-
cessor would be complemented by microwave sounder data from the
MetOp instrument suite in a future version, in particular to improve
vertical resolution. We can confirm that this has been implemented
to the current IASI L2 processor (EUMETSAT, 2017), but we are not
aware of a dedicated followup study on retrievability of the vertical
moisture structure.

From this discussion of mid tropospheric moist layer retrieval
case studies we conclude that such atmospheric features do not gen-
erally appear to pose a blindspot for hyperspectral IR observations.
While purely EOF regression based methods seem to systematically
struggle to resolve non-trivial moisture structures, OEM based meth-
ods show clear capabilities of resolving them. Hence, the absence of
the strongly pronounced EML investigated by Stevens et al. (2017) in
their OEM retrievals rather motivates a re-investigation of the exact
retrieval setup that was applied rather than be interpreted as a conse-
quence of inherent limitations in passive remote sensing observations.
By applying the basic OEM retrieval scheme introduced in the next
section to synthetic IASI observations of the dropsonde profiles dis-
cussed by Stevens et al. (2017) we want analyse whether temperature
induced errors act as a plausible physical cause for the absence of the
EML in the retrieval in Sect. A.4.
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a.2 the retrieval

Extracting atmospheric state variables such as the temperature or con-
centrations of atmospheric constituents from passive satellite observa-
tions generally poses an under-constrained inverse problem. Sophisti-
cated methods are required to regularise the problem, some of which
were already mentioned in the previous section. The OEM approach
showed the most promising results for resolving non-trivial moisture
structures in the studies discussed in Sect. A.1.1, but was also used
for the missed EML case of Stevens et al. (2017). This motivates the
introduction of our own OEM retrieval setup to more systematically
assess possibilities and limitations in resolving EMLs. Note that we
do not aim our retrieval to be particularly performant or as versatile
as operational retrieval schemes (Eumetsat2017; Berndt et al., 2020;
Smith and Barnet, 2020). Instead, we use the retrieval as a tool to
assess basic moist layer retrievability on a low level of complexity.
The formalism used in this work strongly follows the comprehensive
framework introduced by Rodgers (2000). Within the next subsections
the technical implementation of the retrieval setup used in this study
is introduced.

a.2.1 Spectral setup

The retrieval setup of this study aims at resolving the vertical struc-
ture of water vapor in the troposphere, with particular focus on EML
scenarios. The rotational-vibrational water vapor absorption band cen-
tered around 6.25 µm (1594.78 cm−1) (see Fig. A.1) offers rich verti-
cally distributed information. We use all IASI channels in the range
between 1190 to 1400 cm−1, following the work of Schneider and
Hase (2011), who demonstrated the suitability of this spectral range
for retrieving profiles of water vapor and its secondary isotopologues.

The spectral signal of water vapor depends not only on the at-
mospheric water vapor itself but also on the temperature, surface
emissivity and temperature, methane and nitrous oxide. Schneider
and Hase (2011) and Borger et al. (2018) concurrently found that tem-
perature induced errors can yield up to 15 % relative error for the
lower to mid tropospheric H2O retrieval, which is significant com-
pared to other sources of error, such as interfering species. There-
fore, unresolved temperature features may falsely be interpreted as
water vapor signals. We assume that this is particularly relevant for
EML scenarios because the strong vertical humidity gradients typi-
cally go along with temperature inversions. To reduce this error, we
add independent temperature information to the retrieval from the
spectral range between 645 to 800 cm−1, which is part of the CO2

absorption band centred around 15 µm (666.67 cm−1). The shading
in Fig. A.1 indicates the H2O degrees of freedom calculated as the
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trace of the averaging kernel matrix when only each respective chan-
nel is used (Rodgers, 2000). It is apparent that water vapor absorption
is significant throughout most of the thermal IR spectrum, yielding
DOF values close to unity . Blue shading indicates where water vapor
independent information can be extracted from the spectrum, which
is desirable to maximize temperature information content. Note that
channels are highly redundant, so DOFs of individual channels do
not add up. The total DOF for water vapor in the used channel set
is approximately 12.9, for temperature 23.5 and for surface temper-
ature 0.99. Interestingly, Fig. A.1 visually shows that the shortwave
CO2 band is associated with less water vapor interference in its flank
between around 2200 to 2300 cm−1 than the longwave CO2 band.
However, due to known daytime dependent non-LTE associated bi-
ases and a worse signal to noise ratio in the shortwave channels of
IASI (Clerbaux et al., 2009; Matricardi et al., 2018; Razavi et al., 2009),
we only use the longwave CO2 channels.

Figure A.1: Forward simulated spectrum in the spectral range of the IASI in-
strument. Colors denote the water vapor information content of
individual channels calculated as the trace of the averaging ker-
nel matrix when only each respective channel is used. Hence,
the colored shading does not account for redundancy of infor-
mation between channels, but simply conveys where water va-
por absorption is significant.

To assure that the radiative background of the surface is repre-
sented well in the retrieval, 5 window channels are added to the spec-
tral setup that have been identified by Boukachaba et al. (2015) as
suited window channels. The channels are located at wavenumbers
901.5 cm−1, 942.5 cm−1, 943.25 cm−1, 962.5 cm−1 and 1115.75 cm−1.
The complete spectral setup encompasses 1464 channels.

As a final note on the channel selection, the aim with our retrieval
is not to make it computationally efficient, but to use it as a tool to ex-
plore the limitations in resolving vertical moisture features with IASI.
Hence, we do not employ any channel selection method, although
we are aware of the rich literature in this context (Chang et al., 2020;
Collard, 2007; Fourrié and Rabier, 2004; Fourrié and Thépaut, 2003;
Martinet et al., 2013, among others).
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a.2.2 Retrieval quantities

The quantities targeted for retrieval in this study are the profiles of
water vapor volume mixing ratio ( ⃗VMRH2O), temperature (T⃗ ) and the
surface temperature (Ts). They are represented by the retrieval state
vector :

x⃗ =

log( ⃗VMRH2O)

T⃗

Ts

 (A.1)

The water vapor profile is retrieved in natural logarithmic units,
which is favourable for two reasons. Firstly, VMRH2O is a quantity
that ranges over several orders of magnitude from a few percent near
the surface to O(10−6) in the upper troposphere and above, which
is numerically inconvenient for the optimisation algorithm. Secondly,
the transformation to logarithmic units avoids the possibility of phys-
ically implausible negative VMR values.

The major interfering trace gas species in the chosen spectral re-
gion that are not part of the retrieval state vector x⃗ are CH4 and N2O.
Based on the error budget analysis conducted by Schneider and Hase
(2011) it is not expected that these species are significant sources of
error compared to errors in the temperature profile. Hence, for sim-
plicity, we include CH4 and N2O in the absorption setup, but use
fixed profiles and do not retrieve them.

a.2.3 Optimal estimation algorithm

Besides the state vector depicted in Eq. A.1, our OEM setup includes
profiles of other atmospheric absorption species, namely N2, N2O,
CH4, O2, CO2 and O3 as fixed forward model parameters. To ac-
count for nonlinearity, an iterative Levenberg-Marquardt (LM) solver
(Levenberg, 1944; Marquardt, 1963) is used, which as input, besides
the (synthetic) spectrum needs a priori and measurement covariance
matrices, an a priori state vector and Jacobians, calculated for each
iteration step by a forward model. We follow the notation introduced
by Rodgers (2000), who provides an elaborate description of the pro-
cedure.

a.2.4 The forward model and representation of IASI

The radiative transfer model used in this study is version 2.5.0 of
the Atmospheric Radiative Transfer Simulator (ARTS). A comprehen-
sive and compact description of ARTS is provided by Eriksson et al.
(2011) and Buehler et al. (2018) and more documentation can be found
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on the ARTS website (https://www.radiativetransfer.org). Here, only
the features that are directly relevant for the conducted retrieval cal-
culations are presented.

ARTS calculates the emitted radiation and its transmission through
a given atmospheric state on a line-by-line basis. Spectral line data
were taken from the HITRAN (High Resolution Transmission) molec-
ular spectroscopic database (Gordon et al., 2017) and continuum ab-
sorption of water vapor, oxygen, nitrogen and CO2 are represented by
the MT_CKD model for continuum absorption (Mlawer et al., 2012).

The radiative transfer simulations are conducted as monochro-
matic pencil beams on a frequency grid with a resolution of 0.25 cm−1,
which coincides with the spectral sampling interval of IASI. The ob-
tained spectra are then convolved with a Gaussian weighting function
with a Full Width at Half Maximum (FWHM) of 0.5 cm−1 to mimic
the spectral response function of IASI. These technical specifications
are taken from Coppens et al. (2019). Gaussian noise with a standard
deviation of 0.1 K is added to the forward simulated spectra to rep-
resent the radiometric noise of IASI within the spectral range used
in this study (Clerbaux et al., 2009). The sensor is assumed to be
in 850 km altitude and to have a nadir viewing direction. The atmo-
spheric cases simulated are limited to clear-sky and are above ocean
surfaces, where the surface emissivity in the spectral region covered
by IASI is assumed to be 1.

The ARTS internal OEM module, which is part of ARTS as of
version 2.4.0, is used to conduct the actual retrieval calculations.

a.2.5 A priori assumptions

The a priori assumptions about the atmospheric state are defined as
the knowledge about the state prior to the measurement. Although
the true state is always known within the frame of this model study,
the a priori knowledge is chosen based on information that would
also be available in the situation of a real measurement. The a priori
knowledge is represented by an a priori state vector x⃗a and a covari-
ance matrix Sa. For the definition of the a priori state the tropical
mean atmospheric state from the profile database of Anderson et al.
(1986) is used as a basis, which from now on will be referred to as
tropical FASCOD (Fast Radiative Signature Code) atmosphere.

Where not stated otherwise, the a priori surface temperature is
assumed to be the true surface temperature with an added Gaussian
noise of 1.5 K. The Gaussian noise aims to simulate the accuracy of
a real a priori surface temperature estimate, which can for example
be obtained from AVHRR (Advanced Very High Resolution Radiome-
ter), which together with IASI is part of the MetOp satellite’s payload.
Here, 1.5 K is a conservative assumption for tropical ocean surfaces
since uncertainties in AVHRR sea surface temperature data records
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are typically an order of magnitude lower, e.g. estimated at 0.18 K in
the dataset of Merchant et al. (2019).

The a priori temperature profile is assumed to be moist adiabatic
up to around 100 hPa. The a priori surface temperature is used as a
starting point for the moist adiabat. A moist adiabatic tropospheric
temperature profile is a reasonable assumption because the tempera-
ture lapse rate is mostly set to be moist adiabatic within the tropics
by deep convection and by the homogenisation of the temperature
field by gravity waves due to the lack of a Coriolis force (Sobel and
Bretherton, 2000). Around 100 hPa and above, the moist adiabat is re-
laxed to the tropical FASCOD atmosphere with a hyperbolic tangent
weighting function to represent the tropopause and the atmosphere
above. The a priori VMRH2O profile is defined by combining a fixed
relative humidity profile (RH) and the a priori temperature profile by
using the relation:

VMRH2O =
RH es(T)

p
(A.2)

The fixed tropical FASCOD RH profile is used and the equilib-
rium pressure of water vapor es(T) is calculated based on the a priori
temperature profile. p is the atmospheric pressure in a given altitude.
es(T) is calculated as the equilibrium pressure over water for tem-
peratures above the triple point and over ice for temperatures more
than 23 K below the triple point. For intermediate temperatures the
equilibrium pressure is computed as a combination of the values over
water and ice according to the IFS documentation (ECMWF, 2018).

The a priori assumption about the variability of the retrieval
quantities is encoded by Sa, which consists of blocks for each re-
trieval quantity. For the surface temperature, a variance of 100 K2 is
assumed. The diagonal elements of the temperature profile block of
Sa (Fig. A.2b) are calculated based on tropical ocean profiles from the
database provided by Eresmaa and McNally (2014), which is based on
the ECMWF IFS forecast model with a focus on a broad sampling of
temperature profiles. The nondiagonal elements are calculated based
on a correlation length that linearly increases from 2.5 km at the sur-
face to 10 km at and above the tropopause.

For the water vapor covariances (Fig. A.2c), the approach of Schnei-
der and Hase (2011) is adapted, where the diagonal elements of the
log-scale water vapor covariances are set to 1 in the troposphere and
linearly reduce to 0.25 within the stratosphere. An adjustment made
here is that below 2 km, which is a crude estimate for the bound-
ary layer height above ocean surfaces, the diagonal value linearly
decreases to 0.1 at the surface. This better represents the generally
fixed moisture structure near the tropical ocean surface. The nondi-
agonal elements are calculated based on the same correlation length
approach as for the temperature covariances.
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An additional constraint about the atmospheric variability is in-
troduced by filling in values for the cross-covariances between the
three retrieval quantities. The diagonals of the cross covariance blocks
are calculated as the product of the diagonals of the two respective
covariance blocks, multiplied with a scale factor that exponentially
decreases from 1 at the surface to 1/e in a given altitude. This alti-
tude is chosen to be 100 m for the cross covariance between surface
temperature and temperature to represent the dependence of the at-
mospheric temperature on the surface temperature. Between temper-
ature and water vapor the altitude is chosen to be 1000 m to represent
the dependence of water vapor on temperature within the boundary
layer, where the water vapor content is mainly constrained by the
saturation pressure, which is mainly a function of temperature. The
nondiagonal elements of the cross-covariances are calculated with the
same correlation length approach as for temperature and water vapor.
Figure A.2(a) shows the resulting cross-covariance matrix, which only
has significant values within the boundary layer.
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Figure A.2: Covariance matrices of log(VMRH2O) (c), temperature (b) and
the cross-covariance matrix between water vapor and tempera-
ture (a) used for the retrieval in this study. Each of these matri-
ces constitutes a block within the full covariance block matrix
Sa. Note that it is sufficient to show only one cross-covariance
matrix block, since Sa is block symmetric.
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a.3 definition and characterisation of moisture anoma-
lies

This section introduces a quantitative framework to identify and char-
acterise EMLs. This framework aims to provide an intuitive descrip-
tion of moisture anomaly features through a number of scalar mois-
ture anomaly characterisation metrics and allows for a more targeted
evaluation of retrieval results in Sect. A.4 and A.6.

At the core of this moisture anomaly identification method is the
definition of a reference humidity profile, against which the anoma-
lies occur. There are several ways a reference profile can be con-
structed and the suitability of a definition depends on the aim of
the analysis. For example, a simple climatological mean profile may
be a suited reference if one is interested in the mean anomaly (e.g.
the bias) of a test dataset of humidity profiles. However, for the pur-
pose of this study it is not of interest whether a humidity profile is
generally rather moist or dry, but instead only anomalous vertical
variability of humidity is of interest. This is because the vertical mois-
ture variability is what manifests as a footprint on the heating rate
profile (Q) and thereby affect the vertical stability or even yield verti-
cal motion (Albright et al., 2020).

To capture moisture anomalies closely related to the vertical mois-
ture variability, the reference profile is constructed by least-square
fitting a quadratic function to the log(VMRH2O) profile of the tropo-
sphere up to 100 hPa. A quadratic function is preferable over a linear
function because in many cases the VMRH2O profile shows large scale
non-exponential variability which should not interfere with the more
small-scale anomalies we want to characterise. The following function
is used as the reference water vapor profile:

log(VMRH2O, ref) = az2 + bz+ c (A.3)

The humidity at the surface is represented by VMRH2O, ref(z =

0) = exp(c) and is fixed to the surface value of the actual humid-
ity profile. The altitude z is used as a height coordinate for fitting
because compared to pressure it has the benefit that z = 0 at the
surface. The coefficients a and b are determined by least-square fit-
ting to the logarithm of the humidity profile between the surface and
100 hPa because the assumed relation becomes less valid closer to the
tropopause. After calculating the reference profile, moisture anoma-
lies can be identified and characterised.

To visualise the moisture anomaly identification and characteri-
sation procedure, we show an atmospheric scenario in Fig. A.3 that
includes an EML as an example. The EML associated structures in-
clude a distinct moisture inversion (increase of VMRH2O with height)
with maximum humidity at around 650 hPa. Temperature inversions
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at the EML top and at the distinct drop of moisture at around 900 hPa
are also present (not shown).

Figure A.3(b) shows the close relation between the vertical hu-
midity structure and the net heating rate Q (longwave + shortwave),
which is calculated with the radiative transfer model RRTMG (Rapid
Radiative Transfer Model for GCMs, Mlawer et al., 1997) through its
implementation in the radiative convective equilibrium model konrad
(Kluft and Dacie, 2020). Q is calculated for all conducted retrievals
throughout this study to assess whether the vertical humidity struc-
ture is captured in a way in which also Q is represented well.

The blue and orange shading associated with moist and dry anoma-
lies depicted in Fig. A.3 visualises that by definition layers of posi-
tive and negative moisture anomalies alternate in the vertical. Each
such layer can be viewed as a moisture anomaly object, which we
characterise by means of the scalar metrics introduced in Table 1.
These metrics include the vertical bounds of the moisture anomaly
in terms of altitude ( zbot and ztop), the difference of which denotes
the anomaly’s thickness (∆zanom). The anomaly height (zanom) is de-
fined as the mean over the anomaly’s height interval, weighted by the
anomalous humidity within the altitude bounds. Finally, the anomaly
strength (sanom) is defined as the mean anomalous VMRH2O within
the anomaly’s vertical bounds. We only consider positive (moist) anoma-
lies that are fully captured in the pressure range between 100 and
900 hPa, e.g. the positive anomalies at the very top and bottom of Fig.
A.3 are neglected (grey shading) to avoid tropopause and boundary
layer related anomalies.

a.4 case study of a moist layer retrieval

In this section the retrieval introduced in Sect. A.2 is applied to syn-
thetic IASI observations of the dropsondes that sampled the EML dis-
cussed by Stevens et al. (2017). This case study is of particular interest
because the found EML blindspot of Stevens et al. (2017) contradicts
the results of other OEM based studies discussed in Sect. A.1.1. Here
we first want to specifically assess the importance of temperature in-
formation for properly resolving the moisture structure in an EML
scenario. While in general it is well known that the humidity retrieval
depends on the quality of the assumed or retrieved temperature pro-
file, we argue that for EMLs this effect is of particular relevance. In
a next step, the averaging kernels for the EML scenario and a mean
tropical ocean atmosphere are compared to estimate the retrieval’s
vertical resolution and its dependence on the atmospheric state.
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Figure A.3: Humidity profile (a) of an atmospheric case with a strong EML
and the associated net heating rate (longwave + shortwave) pro-
file (b). The reference humidity profile used to identify humidity
anomalies is depicted as the dashed line in (a). Layers of moist
anomalies are highlighted by blue shading, dry anomalies by or-
ange shading. Anomalies that intersect with the grey shaded re-
gions are excluded to restrict anomalies to the free troposphere.
The green lines and brackets conceptually display the definition
of moisture anomaly characteristics from Table 1 for the strong
positive anomaly at around 650 hPa.

a.4.1 Importance of temperature information to retrieve a moist layer

We assess the possiblity whether a lack of independent temperature
information can cause the EML to not be resolved by running our
retrieval in slighlty altered setups. Each row of panels in Figure A.4
represents a variation of the retrieval. The setup introduced in Sect.
A.2 is used for the first row and serves as a basis for the other two
setups. We refer to this setup as retrieval setup 1. Retrieval setup 2

(Fig. A.4, second row) only deviates from retrieval setup 1 by using
the more narrow spectral region that was used by Lacour et al. (2012)
and Stevens et al. (2017), which is limited to 1193 to 1223 and 1251 to
1253 cm−1. Retrieval setup 3 (Fig. A.4, third row) only deviates from
retrieval setup 2 by omission of the temperature retrieval and instead
setting the a priori temperature to the true reference state. The pro-
files that the synthetic observations are based on are denoted as "true"
and the same for all retrieval setups. Based on these profiles, forward
simulated synthetic IASI observations are calculated, synthetic Gaus-
sian noise is added (see Sect. A.2.5) and the retrieval is performed.
As a technical note, we extrapolate the dropsonde profiles (launched
at about 350 hPa) into the upper troposphere and above by fitting a
tropical mean atmospheric state (Anderson et al., 1986). We fit these
profiles onto a 137 level vertical pressure grid of the ECMWF IFS
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model atmospheres that also come with an associated altitude grid
(Eresmaa and McNally, 2014).

As a note on comparability of our results to Stevens et al. (2017),
we want to be cautious. There are several differences in the exact
way the retrieval is setup, e.g. in the assumed a priori states and
covariances, the iteration scheme (Gauss-Newton vs. LM) and also
the radiative transfer model (Atmosphit vs. ARTS). Besides, our study
is conducted in a synthetic framework, since we aim to assess the
retrieval of EMLs more fundamentally than the discussed case studies
did up to now. With this in mind, we tried to seek out a retrieval
feature of the study of Stevens et al. (2017) that is capable of masking
the EML in our setup. This feature is the used spectral region that
is closely tied to the temperature information content as we want to
show in the following.

Looking at the retrieval results of Fig. A.4, the EML structure
is found to be resolved well with retrieval setup 1 while retrieval
setup 2 misses the EML almost completely, comparable to the re-
sults of Stevens et al. (2017). We hypothesize that the missing EML
with retrieval setup 2 is caused by the fact that with the limited spec-
tral setup, there is no sufficient independent temperature information
available for the retrieval to separate the moisture from the temper-
ature signal, causing large retrieval errors in both quantities. While
other previous retrieval studies deliberately try to account for this is-
sue by deploying either a simultaneous retrieval approach (Irion et
al., 2018; Smith et al., 2012; Weisz et al., 2013) or a sequential retrieval
approach (Smith and Barnet, 2019, 2020; Susskind et al., 2014), we
want to highlight the importance of doing so, specifically in an EML
scenario.

We find that the large water vapor and temperature errors ob-
tained with retrieval setup 2 around the EML altitude compensate
radiatively. While the underestimated humidity at the EML altitude
yields an increased spectral radiance in the used water vapor band
due to a lower emission height associated with a higher emission tem-
perature, the underestimated temperature yields a decreased spectral
radiance. Since this compensation leads to comparatively low y-costs
in the OEM scheme, it explains why retrieval setup 2 finds an optimal
solution that is associated with relatively large retrieval errors in both
temperature and water vapor.

We introduce retrieval setup 3 to exclude the possibility that re-
solving the EML with retrieval setup 2 is simply limited by vertical
resolution of the moisture retrieval, e.g. limited humidity informa-
tion content. The retrieval results of retrieval setup 3 show that with
a perfect prior temperature profile also the limited spectral range is
sufficient to resolve the general EML structure, albeit with reduced
EML amplitude. Hence, the EML blindspot of retrieval setup 2 and
possibly of Stevens et al. (2017) is a consequence of the ambiguity
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that lies in the limited spectral range with respect to temperature and
water vapor.

To exemplify the concept of the moisture anomaly identification
and characterisation method introduced in Sect. A.3 we apply the
procedure to this case study and present the derived EML character-
istics for each of the different retrieval setups in Table 2. To identify
the EML centered around 650 hPa in the true and retrieved profiles
in Figure A.4 we introduce the respective reference profiles against
which positive VMRH2O anomalies can be identified. While retrieval
setup 1 and 3 yield a moisture anomaly that can be characterised by
our method and compared to the characteristics of the true EML, re-
trieval setup 2 does not show a positive moisture anomaly around
650 hPa.

Table 2 shows that the EML in the true state is centered around
3.6 km altitude and has a vertical extent of 2.3 km. Retrieval setup
1 captures these characteristics reasonably well while retrieval setup
3 shows a strongly overestimated EML thickness of about 3.7 km, re-
flecting stronger smoothing caused by the limited spectral range used
in this setup. Both retrieval setups show a slightly increased EML
height when compared to the true state of about 200 m for reasons
we can only speculate on. We could see this being a systematic effect
caused a less pronounced effect of smoothing at the EML bottom due
to higher optical density than aloft. Since the atmosphere is optically
more dense near the surface, smoothing may smear the EML over a
larger altitude interval at the top than at the bottom, positively bias-
ing the EML altitude in the retrieval.

Table 2: Moisture anomaly characteristics of the EML shown in Fig. A.4. This
table is analogous to Table 1, where the exact definitions of the
different metrics are explained. The EML characteristics displayed
here are calculated for the true state and the retrieval results of
retrieval setup 1 and 3, corresponding to upper and lower rows of
Fig. A.4, respectively. Retrieval setup 2 does not feature a moisture
anomaly object as defined in Sect. A.3.

Metric Variable name True state Retrieval setup 1 Retrieval setup 3

Bounds zbot, ztop 2.5 km, 4.8 km 3.0 km, 5.1 km 2.3 km, 6.0 km

Thickness ∆zanom 2.3 km 2.1 km 3.7 km

Strength sanom 2.8 · 10−3 2.2 · 10−3 1.1 · 10−3

Height zanom 3.6 km 3.8 km 3.8 km

While the EML strength sanom may appear as the least trivial
moisture anomaly characteristic, being without units due to its defini-
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tion based on VMRH2O, it becomes more intuitive when values are put
into relation to each other. The true EML strength of 2.8 · 10−3, which
reflects the mean anomalous VMRH2O within the EML, is about about
30 % greater than the EML strength derived from retrieval setup 1 and
about 2.5 times greater than the EML strength derived from retrieval
setup 3. This reflects the notion that while retrieval setup 1 is able
to resolve the EML well, retrieval setup 3 yields a strongly smoothed
EML that is significantly less pronounced than its true counterpart.

We conclude that while the EML investigated by Stevens et al.
(2017) does not appear to pose a general blind spot for hyperspectral
IR satellite observations, we are able to find a retrieval configuration
that reproduces a similar result as theirs. The deciding property of
that configuration is the lack of independent temperature informa-
tion, which in an EML scenario can yield radiatively compensating
errors in temperature and water vapor. With retrieval setup 1 on the
other hand, we present a retrieval setup that is able to capture both
temperature and humidity profiles well, including the EML, which is
in line with other OEM based moist layer case studies (Calbet et al.,
2006; Zhou et al., 2009).

a.4.2 Retrieval resolution

With OEM, a more quantitative estimation of vertical retrieval resolu-
tion can easily be deduced by aid of the averaging kernel matrix A
(Rodgers, 2000). The rows of A describe the response of the retrieved
state to a perturbation in the true state, taking into account the spec-
ifications of the observing system. The averaging kernels presented
here are based on the spectral setup and a priori assumptions intro-
duced in Sect. A.2.

Several previous studies showed IASI averaging kernels for mean
atmospheric states (Lerner, 2002; Schneider and Hase, 2011; Smith
and Weisz, 2018). Here we want to highlight the dependence of ver-
tical resolution on the atmospheric state by contrasting the averaging
kernels of a tropical mean atmosphere to the reference EML case dis-
cussed in the previous subsection. Smith and Barnet (2020) also con-
sidered the dependence of A on the atmospheric state, which they
find can be quite severe. In contrast to their more general study, we
want to focus on comparing the variability of A with respect to a well
characterised mean and EML state. While we focus on discussing
the water vapor averaging kernels in this section, similar conclusions
can be made about the temperature averaging kernels which are ap-
pended in Appendix A.8.1.

Figures A.5(a) and (c) depict the rows of the H2O averaging ker-
nel matrix as colored lines for two different atmospheric setups. The
more blue lines correspond to kernels closer to the surface, while the
more yellow lines correspond to kernels higher up in the atmosphere.
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Figures A.5(a) and (b) are based on an average tropical ocean atmo-
sphere, namely the tropical FASCOD atmosphere introduced in Sect.
A.2.5. Figures A.5(c) and (d) only differ in their base atmospheric
state by the introduced EML, as described in Sect. A.3. The vertical
width of a kernel is a measure of the retrieval’s vertical resolution
in a specific height, which is shown in terms of Full Width at Half
Maximum (FWHM) of the respective kernels in Fig. A.5(b) and (d).
A measure for the retrieval’s ability to detect and respond to a water
vapor disturbance in the true state in a given height is the measure-
ment response, which is defined as the sum over all kernel rows and
depicted as the black line in Fig. A.5(a) and (c). Values close to unity
indicate that the retrieval is sensitive to disturbances in the true pro-
file (Rodgers, 2000).

The averaging kernels of the mean tropical ocean atmosphere in
Fig. A.5(a) expectably show a very smooth behaviour with height
and the deduced vertical resolution is similar to that of Smith and
Weisz (2018), e.g. it is on the order of 1.5 km throughout the free tro-
posphere between around 200 to 800 hPa. In the upper troposphere
(p ≲ 200 hPa) a significant decrease in vertical resolution is found.
In the boundary layer, the vertical resolution does not appear to di-
minish, but to improve, which is in agreement with Smith and Weisz
(2018). However, we find this to be misleading because the shape
of the averaging kernels associated with these altitudes is distorted
due to the strong signal of the surface, not allowing for a robust cal-
culation of the FWHM. Rather than the FWHM, the measurement
response is a more informative measure of the retrieval’s sensitivity
to disturbances in the boundary layer. For the tropical ocean atmo-
sphere, the measurement response is close to unity throughout most
of the free troposphere and shows a sharp decrease within the bound-
ary layer, indicating limited sensitivity to water vapor disturbances in
the true state only in the boundary layer.

The EML has a significant impact on all averaging kernels in the
lower and mid troposphere as shown in Fig. A.5(c) and (d). Around
the humidity maximum at the EML top the averaging kernels show
distinct peaks, which are caused by the strong radiative signal asso-
ciated with the EML. The EML signal is so strong that it also affects
the more sensitive channels that usually sample higher altitudes and
therefore decreases the vertical resolution from about 1.5 km to 2.5 km
between the EML top and about 200 hPa compared to the tropical
mean atmosphere. As the moisture decreases beneath the EML hu-
midity maximum, a clear reduction in vertical resolution down to
about 2.5 km at around 800 hPa is found, indicating a more limited
ability to resolve additional moisture features beneath the EML. This
state dependence of the averaging kernel reflects the nonlinear nature
of the retrieval problem and the limited expressiveness of the vertical
resolution deduced with this method. Retrievability of a moisture fea-
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Figure A.5: (a) and (c) show rows of the water vapor averaging kernel matrix
(Arows(VMRH2O)) as colored lines and their sum as a black line,
which denotes the measurement response. The rather blue lines
correspond to kernels closer to the surface, the more yellow lines
correspond to kernels in higher altitudes. (b) and (d) show the
FWHM of the averaging kernel rows, which is a measure for the
vertical resolution of the observing system. (a) and (b) are based
on a mean tropical ocean atmosphere, specifically the tropical
FASCOD atmosphere. The atmospheric setup used for (c) and
(d) differs only by the introduction of EML features, as described
in Sect. A.3.

ture not only depends on its vertical extent, but on the atmospheric
state it is embedded in. This motivates the statistical analysis pre-
sented in the next section of analysing the retrieval’s performance
with regard to its ability of capturing moisture anomalies as intro-
duced in Sect. A.3.

a.5 retrieval performance

After the exemplified investigation of an EML case in the previous
section, the retrieval performance is now assessed based on a larger
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test dataset. The major aim with this section is to first assess the valid-
ity of our simple retrieval setup, before using the synthetic retrieval
dataset in the next section to showcase some of the possibilities with
our new method for identifying and characterising moisture anoma-
lies introduced in Sect. A.3. In the following, we first introduce the
test dataset and investigate the vertical distribution of the retrieval
error in temperature and water vapor. Afterwards, the smoothing er-
ror, which is an intrinsic source of error for a given observing system
and a set of a priori assumptions, is calculated and discussed in the
context of the overall retrieval error.

a.5.1 Reference dataset and retrieval error

The retrieval is applied to tropical ocean atmospheres (between 30° S
to 30° N) that are part of the ECMWF IFS diverse profile database
made available by Eresmaa and McNally (2014). The database con-
sists of 25,000 short-range forecasts, which are divided into five even
subsets that focus on representing diversity in a particular atmospheric
quantity, such as temperature, specific humidity or precipitation. For
the purpose of this work, only the tropical ocean atmospheres of the
subset that focuses on a diverse sampling of specific humidity is con-
sidered. This yields a total number of 1599 atmospheric setups, for
1288 of which the retrieval converges to a solution. The following
analysis is based on these converged cases.

A statistical overview of the variability of temperature and hu-
midity profiles covered by the tropical ocean dataset is provided in
Fig. A.6(a), (b) and (c). The temperature profiles show very limited
variability, as is typical for tropical ocean regions. However, despite
this very smooth appearance of the vertical temperature structure,
the individual profiles do include significant temperature inversions,
for example the very prominent inversion in about 2 km height in
the trade wind region (not shown). The humidity profiles show weak
variability within the boundary layer, where the ocean acts as a hu-
midity source and humidity is mostly set by the saturation vapor
pressure controlled by temperature. The median RH is about 82 % at
the surface and reaches its maximum in about 500 m height in the
transition to the shallow cloud layer. In the free troposphere, the typ-
ical "C" shape structure of the RH profile is followed (Romps, 2014).
An interesting feature in the 75th and 90th percentiles of the RH pro-
files is the presence of positive RH anomalies in the layer between
around 500 and 700 hPa, indicating moisture anomalies that may be
tied to the freezing level.

Figures A.6(d), (e) and (f) show an overview of the retrieval’s de-
viations from the reference dataset, from now on referred to as the
retrieval error. In the context of these figures, the term bias refers to a
difference of the median values of the retrieved and the true datasets.



A.5 retrieval performance 53

The temperature profile shows a positive bias close to the surface,
which we attribute to the limited signal from these heights in the
satellite observation. The negative bias near the surface in RH is asso-
ciated with this positive temperature bias and with the slightly neg-
ative VMRH2O bias near the surface. Between around 900 to 700 hPa
the VMRH2O and RH biases are positive, while the temperature bias is
slightly negative. This positive moisture bias in the lower troposphere
is associated with an increased variability of the error, particularly to-
wards strong positive errors that indicate an overestimation of mois-
ture in the lower troposphere by the retrieval. This may be caused
by the typical hydrolapse that is coupled to the trade inversion in the
trade wind regions, which can in its sharpness not be captured by the
retrieval.

In the mid troposphere between about 700 to 300 hPa, which is
where typical EMLs are expected, no significant temperature or hu-
midity biases are found. A positive skewness in the VMRH2O error
distribution towards strong positive errors is found, indicating that
positive errors in retrieved VMRH2O are rare, but large compared to
the negative errors that occur. As an explanation for this error pattern,
we propose the idea that positive (moist) moisture anomalies tend to
be captured with a slight underestimation in their strength, while oc-
casionally strong negative (dry) moisture anomalies beneath are asso-
ciated with a strong overestimation of moisture by the retrieval due
to a lack of signal beneath a positive moisture anomaly (as shown
in Fig. A.5). This could explain less frequent but strong positive re-
trieval errors and more frequent, but relatively weak negative errors
that have a net bias close to zero.

In the upper troposphere errors in temperature and humidity are
generally larger. We believe that this has two causes. Firstly, the a pri-
ori moist adiabatic temperature assumption becomes worse closer to
the tropopause. Secondly, Fig. A.5 shows that there is only a weak
radiative signal from the upper troposhere as indicated by strongly
smoothed averaging kernels and a decreased vertical resolution. While
this may be improved by adjusting the a priori assumptions for the
upper troposphere and including even stronger absorption features
of water vapor, the upper troposphere is no major concern of this
study.

a.5.2 Smoothing error

Part of the retrieval error shown in Fig. A.6 can be attributed to the so
called Smoothing Error (SE, Rodgers 2000). Given a specific observing
system and a priori assumptions about the quantity to be observed,
the SE is a source of error that can not be avoided without chang-
ing the observing system or a priori assumptions themselves. In the
frame of the averaging kernel matrix, the SE expresses the error in
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Figure A.6: (a), (b) and (c) give a statistical overview of temperature,
VMRH2O and RH over 1288 tropical ocean model atmospheres
from the dataset of Eresmaa and McNally (2014), upon which
the retrieval is performed. Color scheming is based on Figure 5

of Eresmaa and McNally (2014), where bright orange indicates
10th and 90th percentiles, dark orange indicates 25th and 75th
percentiles. The median is depicted by a solid black line. (e),
(f), (g) show the respective statistics on the deviations of the
retrieved to the true profiles. Note the exception of relative dif-
ferences for VMRH2O, which is more suited for the dynamical
range of this quantity.

the retrieval that is associated with the non-delta-function shape of
the averaging kernel rows (see Fig. A.5) and the thereby limited abil-
ity to resolve vertical features. Here, it is calculated as

S⃗E = (⃗x− x⃗a)(A − In) (A.4)

where In denotes the identity matrix of order n and n is the
number of vertical levels of the profile retrieval.

Figure A.7 shows the SE statistics associated with the retrieved
temperature and humidity profiles of the tropical ocean dataset. The
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median of the SE with respect to the temperature profile (SE(T)) is
close to zero throughout most of the free troposphere, similar to the
retrieval bias shown in Fig. A.6(d). The positive retrieval bias in tem-
perature found near the surface is with smaller magnitude also found
in SE(T), indicating that this pattern is caused by a systematically un-
resolved vertical feature. The variability of the temperature retrieval
error found in Fig. A.6(d) in the lower and mid troposphere cannot be
attributed to smoothing, since the variability in SE(T) is very small.
In conclusion, this indicates that temperature error sources are un-
likely to be caused by uncaptured vertical temperature variability,
but rather vertically constant errors, which do not show up in SE(T).
In the upper troposphere, SE(T) increases towards the tropopause
where smoothing becomes the major contribution to the retrieval tem-
perature error.

For the water vapor profile in the lower and mid troposphere,
smoothing is a greater source of error than for the temperature pro-
file (Fig. A.7b). While the median of the water vapor smoothing error
(SE(log(VMRH2O))) is low throughout the lower and mid troposphere,
its variability (e.g. the shown percentile ranges) is on similar scale as
the variability of the retrieval error shown in Fig. A.6(e). This indi-
cates that a major contribution of error in the water vapor retrieval
is to capture vertical variability. The distribution of SE(log(VMRH2O))

in the mid troposphere also reflects the positive skewness that was
found in the overall error in Fig. A.6(e). This is consistent with the pre-
viously described idea that this skewness is linked to the retrieval’s
ability of capturing vertical moisture anomalies. In the upper tropo-
sphere, the median SE(log(VMRH2O)) increases to a similar magni-
tude as the retrieval error, while its variability even exceeds that of
the retrieval error, indicating that other sources of error are compen-
sating.

The SE(RH) statistics show the combined effect of the smoothing
errors in temperature and humidity (Fig. A.7c). It is apparent that
also in terms of RH the smoothing error has a strong contribution
to the retrieval error in the lower and mid troposphere, similar to the
VMRH2O error. In the upper troposphere the median SE(RH) is on the
same order as the retrieval error, while its variability appears to be
even stronger, following the behaviour found for SE(log(VMRH2O)).

a.6 retrieval of moisture anomalies

In this section the retrieval results for the previously introduced trop-
ical ocean test dataset (Sect. A.5) are assessed with specific focus
on the characteristics of moisture anomalies as introduced in Sect.
A.3. First, the moisture anomaly characteristics of the tropical ocean
dataset and of the retrieved dataset are compared to look for system-
atic limitations of the retrieval to resolve specific kinds of moisture
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Figure A.7: Smoothing Error (SE) as calculated by Eq. A.4 of retrieved tem-
perature (a), logarithmic VMRH2O (b) and RH (c) profiles over
1288 tropical ocean atmospheres. Lines and shadings are defined
as in Figure A.6.

anomalies. Then, the impact of moisture anomalies on the heating
rate profile is assessed and the retrieval’s ability to capture this im-
pact is investigated.

a.6.1 Moisture anomaly characteristics

Figure A.8 shows probability density distributions of the moisture
anomaly characteristics (defined in Sect. A.3) for the tropical ocean
dataset (green) and the associated retrieved dataset (orange). The
dashed lines indicate the mean values of the respective distributions.
The distributions of moisture anomaly height (zanom) displayed in Fig.
A.8(a) show that most moisture anomalies occur in the mid to upper
troposphere, which is somewhat surprising since EMLs are typically
thought to be coupled to the freezing level in around 5 km height
(Johnson et al., 1996; Stevens et al., 2017). However, note firstly that
strong EMLs and very slight moisture anomalies are treated evenly
here. Secondly, the distributions reflect the statistics of the underlying
dataset, which is based on the ECMWF IFS atmospheric model. This
dataset appears as a suitable starting point to assess the retrieval’s
ability to capture moisture anomalies, however, the analysis of the
dataset’s moisture anomaly statistics themselves are not the focus of
this study.

Figure A.8(a) shows a bias between true and retrieved zanom of
about 0.9 km, indicating that the found the zanom biases in the case
study of Sect. A.4 do indeed appear to be systematic and even greater
in amplitude. Besides the earlier proposed cause of a varying effect of
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smoothing with height, we believe this bias is also caused by a system-
atic underestimation of the fraction of moisture anomalies below 5 km
altitude by the retrieval, while the fraction of anomalies above 10 km
is overestimated. Only a fraction of about 52 % of the total number of
moisture anomalies below 5 km in the reference dataset is captured
by the retrieval. We attribute this deficiency to the fact that moisture
anomalies are typically more narrow in the lower to mid troposphere
than further aloft, as shown in Fig. A.9.

Figure A.9(a), (b) and (c) show the number of moisture anoma-
lies of the reference dataset in the lower, mid and upper troposphere,
respectively, as a function of anomaly width (∆zanom) and separated
into subsets of anomalies that either could or could not be retrieved.
An anomaly of the reference dataset is considered retrieved, if there is
a retrieved positive moisture anomaly with an anomaly height within
the vertical bounds of the anomaly of the reference dataset. While it
is apparent that the more narrow moisture anomalies are most fre-
quently missed in all three altitude regions, this means a particular
shortcoming for the retrieval between 0 to 5 km because cases with
∆zanom ≳ 2 km are especially rare. A technical cause for this is the
fact that we exclude all anomalies that reach as close to the surface as
900 hPa (see Sect. A.3). However, the lower to mid troposphere also is
subject of more small-scale variability due to its link to the boundary
layer and low level convection, making it more prone for small scale
moisture anomalies than the free troposphere aloft.

The distribution of the moisture anomaly strength (sanom) de-
picted in Fig. A.8(b) has a similar dynamical range as VMRH2O since
the anomalous VMRH2O scales with its absolute value. The distribu-
tion of sanom of the retrieved dataset is overall shifted towards lower
values yielding a negative bias of about −8.2 · 10−5 (17 %) against the
reference dataset, which can mostly be attributed to the smoothing
error of the retrieval. The smoothing error generally acts by a weak-
ening and thickening of anomalies, which also partly explains the
significant positive bias of about 0.4 km (15 %) in moisture anomaly
thickness (∆zanom) depicted in Fig. A.8(c). Another contributing effect
towards the found biases in sanom and ∆zanom is the fact that particu-
larly weak and narrow moisture anomalies are more often completely
missed by the retrieval as shown by Fig. A.9.

a.6.2 Implications of moisture anomalies for the heating rate profile

Moisture anomalies affect the heating rate profile by absorbing and
emitting IR radiation. Because of the exponential decrease of water
vapor with height, emission at the anomaly top is particularly effi-
cient and can yield a strong local radiative cooling rate (see Fig. A.3).
We consider this cooling effect to be the moisture anomaly’s most
prominent footprint on the heating rate profile. In the following, we
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Figure A.8: Probability density functions (PDFs) of moisture anomaly char-
acterstics of the tropical ocean reference dataset (denoted as
"true") and the retrieved dataset.

quantify this cooling effect by considering the minimum heating rate
within the vertical bounds of a moisture anomaly, min(Qanom). Since
min(Qanom) is a scalar metric, it can intuitively be viewed as a func-
tion of moisture anomaly characteristics.

Figure A.10(a) and (b) show the joint frequency distributions
of the moisture anomaly strength (sanom) and min(Qanom) for the
tropical ocean dataset and the retrieval dataset, respectively. Both
datasets show a clear correlation between the two quantities, namely
that stronger anomalies are associated with a stronger peak in ra-
diative cooling. While moisture anomalies with sanom ≲ 10−4 show
similar minimum cooling rates down to about -2.5 K day−1 in both
the reference and the retrieval dataset, larger differences between
the two datasets are apparent for stronger anomalies. The reference
dataset (Fig. A.10, a) shows min(Qanom) values between about -1 to
-5 K day−1 for moisture anomalies with sanom ≳ 10−4, while the re-
trieval dataset barely shows any min(Qanom) values smaller than -3 K
day−1.

We hypothesise that the increased variability in min(Qanom) for
sanom ≳ 10−4 in the reference dataset can be attributed to the variabil-
ity in the exact vertical shapes of the moisture anomalies. Anomalies
with a strong negative moisture gradient at their top yield a stronger
minimum in radiative cooling, while more smooth anomalies are as-
sociated with a less pronounced radiative cooling peak. This effect
introduces more variability in min(Qanom) the stronger the anomalies
are. It also explains why retrieved moisture anomalies do not show as
extreme min(Qanom) values as the reference dataset, since the vertical
shape of retrieved anomalies is always bound by the smoothing error.
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Figure A.9: Frequency distributions of moisture anomaly thickness of the
tropical ocean reference dataset, split up into cases where a mois-
ture anomaly could be retrieved and could not be retrieved. (a),
(b), (c) reflect three altitude regions, namely the lower (0-5 km),
mid (5-10 km) and upper (10-15 km) troposphere.

In the real world, much more extreme vertical moisture gradi-
ents associated with moisture anomalies can be observed than in the
model based reference dataset used here. Albright et al. (2020) dis-
cuss an EML scenario over the Northern Atlantic Trades with a sig-
nificant moisture drop that is associated with a minimum cooling
rate of about 20 K day−1. The results of Fig. A.10 indicate that while
the retrieval is able to broadly distinguish between differently strong
moisture anomalies and their associated heating rates, it is unable to
properly represent such extreme cooling rate minima due to smooth-
ing.

Figures A.10(c) and (d) show the joint frequency distributions of
the moisture anomaly strength and height (zanom). A clear relation be-
tween sanom and zanom is found in both datasets, namely that anoma-
lies are weaker the higher up they are in the troposphere. We explain
this by the dependence of sanom on the absolute humidity, which de-
creases exponentially with height. Combining this with the relation
found between anomaly strength and minimum heating rate, it is
clear that the radiatively most significant moisture anomalies occur
in the lower to mid troposphere. As pointed out in Sect. A.6.1 when
discussing Fig. A.9, the retrieval has particular deficiencies in resolv-
ing the rather narrow lower to mid tropospheric moisture anomalies.
It is now apparent that this deficiency is particularly relevant, since it
affects the strongest and radiatively most significant moisture anoma-
lies. However, the EML testcase investigated in Sect. A.4.1 shows that
when the anomaly is relatively strong and the atmosphere aloft has a
simple structure, also lower to mid tropospheric moisture anomalies
can be retrieved well. It may be worth investigating different cases of
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EMLs that are embedded in a more complex tropospheric humidity
structure in the future.
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Figure A.10: (a) and (b) show the joint frequency distributions of anomaly
strength and minimum heating rate within the anomaly lay-
ers of the reference dataset and the retrieved dataset, respec-
tively. (c) and (d) show the joint frequency distributions of the
anomaly strength and the anomaly height for the two respec-
tive datasets.

a.7 summary and conclusions

The question implicitly raised by the findings of Stevens et al. (2017),
whether or not passive satellite retrievals are capable of resolving
EMLs, is investigated based on a synthetic retrieval framework where
the IASI instrument is represented by the forward model ARTS. An
EML testcase based on dropsonde profiles from the NARVAL-2 mea-
surement campaign (Konow et al., 2019) and a set of 1288 tropical
ocean model atmospheres are used as input for the forward model
and as a reference to evaluate the retrieval results against. The scenes
are limited to clear sky.

To characterise an EML quantitatively (e.g. by strength, thickness
and height), the concept of a moisture anomaly against a loosely fitted
but clearly defined reference humidity profile is introduced. Follow-
ing the ideas of Johnson et al. (1996) and Stevens et al. (2017) about
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a coupling of EMLs to the freezing level, EMLs would in this frame-
work constitute a subset of rather strong, vertically confined, lower to
mid tropospheric positive moisture anomalies. However, for the scope
of this work no clear specification of what distinguishes an EML from
other moisture anomalies is attempted, which would require a more
dedicated selection and analysis of the test dataset. Instead, the aim
of this study is a first systematic evaluation EML retrievability based
on hyperspectral IR observations.

Based on the EML case of Stevens et al. (2017), we show that with
sufficient independent temperature and water vapor information, a
combined retrieval of the moisture and temperature profiles and the
surface temperature is capable of resolving the vertical EML structure.
This result is in line with previous OEM based case studies of similar
moisture structures (Calbet et al., 2006; Zhou et al., 2009). We show
that limited independent temperature information can cause the EML
to not be resolved by the retrieval due to compensating water vapor
and temperature errors. We suggest this as a possible reason for the
EML blindspot found by Stevens et al. (2017).

The EML signal for the IASI instrument is further characterised
by the averaging kernel and the deduced vertical resolution, which
is on the order of 1.5 km for an average tropical ocean atmosphere,
which is in agreement with previous studies (Lerner, 2002; Smith and
Weisz, 2018). However, in the presence of an EML, the strong signal
from the EML top weakens the signal from below and introduces a
strong gradient in vertical resolution from 0.5 km at the EML top to
3 km at the EML bottom. This state dependence of vertical resolution
motivates a statistical approach to evaluate the retrieval’s ability of
resolving moisture anomalies in various atmospheric states.

When applying the retrieval to the tropical ocean test dataset, it is
found that a large fraction of the absolute retrieval error in humidity
can be attributed to smoothing. In particular in the transition region
between the boundary layer and the free troposphere, the smooth-
ing error introduces a bias to the retrieved humidity and tempera-
ture profiles, which is most likely connected to the sharp humidity
drop associated with the stratified barrier between the moist bound-
ary layer and the dry free troposphere in the trade wind region. In
the free troposphere, say above 800 hPa, the retrieval shows no signif-
icant moisture bias, but a positively skewed error variability, indicat-
ing that moist anomalies are typically associated with smaller errors
than dry anomalies. This is coherent with the idea that dry anomalies
that occur beneath moist anomalies are prone to larger errors due to
the reduced sensitivity of the satellite measurement below a moist
anomaly.

The study is completed by a specific evaluation of the moisture
anomaly retrievability based on the new characterisation method in-
troduced in Sect. A.3. It is found that the retrieved moisture anoma-
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lies are on average 17 % weaker and 15 % thicker than the anomalies
of the reference dataset, which we attribute to smoothing and the fact
that rather weak and narrow anomalies are missed by the retrieval
more often. While overall about 80 % of the total number of moisture
anomalies in the reference dataset are found by the retrieval, a system-
atic underrepresentation of anomalies below 5 km is found, where the
retrieval only identifies about 52 % of the anomalies present in the ref-
erence dataset. Since it is shown that moisture anomalies in the lower
to mid troposphere are typically the strongest and radiatively most
significant, this issue may be quite significant.

The analysis of capturing the moisture anomalies’ footprint on
the heating rate profiles shows that the retrieval is able to capture
the general relation between anomaly strength and minimum cooling
rate. However, the retrieval shows a particular shortcoming in cap-
turing the most extreme cooling rates associated with strong lower
to mid tropospheric anomalies. We attribute this shortcoming to the
retrieval’s limited ability of resolving strong vertical moisture gradi-
ents that are necessary for the most extreme local cooling rates. Ver-
tical moisture gradients in the real world can be a lot stronger than
the ones available from the model test dataset (Albright et al., 2020),
which means that retrieval errors with respect to peaks in the cooling
rates can be large for rather extreme but realistic cases.

In summary, the retrieval result of the EML case study shows
that hyperspectral IR satellite instruments are in principle capable
of resolving a sufficiently strong EML in an otherwise simply struc-
tured atmospheric profile. The statistical evaluation of retrieved mois-
ture anomaly characteristics shows that the retrieval is able to rep-
resent moisture anomlies of various thickness, height and strength.
Significant shortcomings are found in the lower to mid troposphere
where about half of the moisture anomalies are missed by the re-
trieval and with regard to capturing particularly strong vertical gra-
dients, causing limitations to resolve extreme cooling rates. It would
be interesting to apply a similar analysis to operational retrieval prod-
ucts, such as the IASI L2 product (EUMETSAT, 2017), the NUCAPS
product (NOAA Unique Combined Atmospheric Processing System,
Berndt et al. 2020) or the CLIMCAPS product (Community Long-
term Infrared Microwave Combined Atmospheric Product System,
Smith and Barnet 2020). The benefit of our new method for analysing
moisture anomalies is that it allows for a direct statistical evaluation
of the different product’s capabilities to resolve EMLs and vertical hu-
midity structures in general by being easy to apply to large datasets.
As a next step we plan to apply our retrieval and evaluation tech-
niques introduced in this work to real hyperspectral IR observations,
with focus on EML-like cases that we identify based on dropsonde
observations from the NARVAL and EUREC4A (Stevens et al., 2021)
measurement campaigns. This may also serve as a good first testbed
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of data to assess operational products’ capabilities to resolve the ver-
tical moisture structures of interest.

a.8 appendix

a.8.1 Temperature averaging kernels

Since we highlight the importance of sufficient independent tempera-
ture information to resolve the water vapor structure, Fig. A.11 shows
the temperature averaging kernels and deduced vertical resolution
based on the retrieval setup introduced in Sect. A.2.
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Figure A.11: Same as Fig. A.5, but for temperature.
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abstract

We assess the representation of Elevated Moist Layers (EMLs) in ERA5

reanalysis, the IASI L2 retrieval Climate Data Record (CDR) and the
AIRS-based CLIMCAPS-Aqua L2 retrieval. EMLs are free tropospheric
moisture anomalies that typically occur in the vicinity of deep con-
vection in the tropics. EMLs significantly effect the spatial structure
of radiative heating, which is considered a key driver for meso-scale
dynamics, in particular convective aggregation. To our knowledge,
the representation of EMLs in the mentioned data products have not
been explicitly studied, a gap we address in this work. We assess
the different datasets’ capability of capturing EMLs by collocating
them with 2146 radiosondes launched from Manus Island within the
Western Pacific warmpool, a region where EMLs occur particularly
often. We identify and characterise moisture anomalies in the collo-
cated datasets in terms of moisture anomaly strength, vertical thick-
ness and altitude. By comparing the distributions of these characteris-
tics, we deduce what specific EML characteristics the datasets are cap-
turing well and what they are missing. Distributions of ERA5 mois-
ture anomaly characteristics match those of the radiosonde dataset
quite well and remaining biases can be removed by applying a 1 km
moving average to the radiosonde profiles. We conclude that ERA5

is a suitable reference dataset for investigating EMLs. We find that
the IASI L2 CDR is subject to stronger smoothing than ERA5 with
moisture anomalies being on average 13 % weaker and 28 % thicker
than collocated ERA5 anomalies. The CLIMCAPS L2 product shows
significant biases in its mean vertical humidity structure compared
to the three other investigated datasets. These biases manifest as an
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underestimation of mean moist layer height of about 1.3 km com-
pared to the three other datasets, a general mid-tropospheric moist
bias and an upper tropospheric dry bias. Biases found in the all-
sky scenes do not change significantly when limiting the analysis
to clear-sky scenes. We calculate radiatively driven vertical velocities
ωrad derived from longwave heating rates to estimate the dynami-
cal effect of the moist layers. Moist-layer-associated ωrad values de-
rived from GRUAN soundings range between 2 to 3 hPa hour−1 while
mean meso-scale pressure velocities from the EUREC4A field cam-
paign range between 1 to 2 hPa hour−1, highlighting the dynamical
significance of EMLs. Subtle differences in the representation of mois-
ture and temperature structures in ERA5 and the satellite datasets
create large relative errors in ωrad on the order of 40 to 80 % with ref-
erence to GRUAN, indicating limited usefulness of these datasets to
assess the dynamical impact of EMLs.
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b.1 introduction

The vertical structure of water vapor in the troposphere is a key driver
for meso-scale processes, such as the development and maintenance
of convective systems. In particular, it determines the vertical struc-
ture of radiative heating due to water vapor’s strong ability to absorb
and emit infrared (IR) radiation. The spatial structure of radiative
heating in the vicinity of convection is capable of driving circula-
tions that contribute to the maintenance of the convection (Muller and
Bony, 2015; Muller et al., 2022; Schulz and Stevens, 2018; Wing et al.,
2017). Hence, understanding the vertical structure of water vapor is
key for our understanding of convective aggregation, which remains
a large contributor of uncertainty to climate projections (Bony et al.,
2015).

A common meso-scale phenomenon affecting the vertical humid-
ity structure in the tropics are Elevated Moist Layers (EMLs) in the
lower to mid-troposphere, which frequently occur either in the vicin-
ity of deep convection or in association with extratropical dry air
intrusions (Villiger et al., 2022). EMLs can extend horizontally over
several hundred kilometers and have lifetimes of about a day (John-
son et al., 1996; Stevens et al., 2017). In the convection-dominated re-
gions near the intertropical convergence zone (ITCZ), especially over
the Western Pacific warmpool, EMLs are particularly common and
manifest as a secondary maximum of relative humidity (RH) in the
climatological profile near the melting level at around 5 km altitude
(Romps, 2014).

It is important to capture EMLs in observational and reanalysis
datasets, which serve as reference for modelling studies (Brands et
al., 2013; Eyring et al., 2016; Ferraro et al., 2015; Jiang et al., 2012;
Lang et al., 2021; Teixeira et al., 2014). In particular, Lang et al. (2021)
highlight the importance of reducing uncertainties in clear-sky mid-
tropospheric humidity in global storm resolving models that yield
significant differences in the models’ radiation budgets. Hence, hav-
ing suitable global and longterm satellite and reanalysis datasets to
assess such model differences is of great value.

In a case study, Stevens et al. (2017) found strong limitations of
passive satellite based humidity retrievals to resolve an EML, suggest-
ing a somewhat fundamental EML blindspot for such observations.
This is particularly surprising for the advanced hyperspectral IR in-
struments such as AIRS (atmospheric infrared sounder) or IASI (in-
frared atmospheric sounding interferometer), which offer rich vertical
information content about temperature and water vapor. In our re-
cent study (Prange et al., 2021b), we found a physical explanation for
the apparent EML blindspot, suggesting that the limited temperature
information available with the particular retrieval setup deployed by
Stevens et al. (2017) is responsible for the inability to resolve the EML
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with IASI. In the same article, we showed that EMLs do not pose an
inherent blindspot for hyperspectral IR retrievals based on simulated
observations.

In this work we follow up our previous analysis with an evalua-
tion of EMLs in operational hyperspectral IR retrieval products based
on the IASI and AIRS instruments. With hyperspectral IR observa-
tions being a significant data contribution to reanalysis products (e.g.
Cardinali, 2009; Dahoui et al., 2017) we also assess EMLs in ERA5

(ECMWF reanalysis v5). To our knowledge, EMLs have not been ex-
plicitly studied based on any of these data products. We address this
gap in this study.

The Western Pacific warmpool region is particularly suited to
study EMLs because of the frequent occurence of deep convection.
Hence, as reference dataset we use the GRUAN (global climate ob-
serving system upper air network) radiosondes launched on Manus
Island from 2011 to 2014. We collocate the datasets within 50 km in
space and 30 minutes in time to make the data directly comparable.
We first assess the mean profiles of humidity, temperature and static
stability to quantify the mean atmospheric state in the study region
for the different datasets. We then apply the moisture anomaly identi-
fication and characterization method of Prange et al. (2021b) to statis-
tically quantify the EMLs of the collocated datasets. This method al-
lows for a dedicated comparison of EML characteristics such as EML
strength, thickness and height. It also enables a direct quantification
of the moisture anomalies’ effect on the radiative heating rate, the spa-
tial structure of which is a key driver for the meso-scale dynamics of
the atmosphere. We do this quantification by calculating moist-layer-
associated radiatively driven vertical velocities, which we compare to
meso-scale measurements of pressure velocities from the EUREC4A
(elucidating the role of clouds-circulation coupling in climate) field
campaign (Stevens et al., 2021).

b.2 data

We investigate the vertical moisture characteristics of GRUAN ra-
diosonde data, ERA5 reanalysis and of two satellite retrieval products
based on the IASI and AIRS instruments. In the following, we high-
light the most important properties of these datasets for the context
of this work. This includes brief descriptions of the datasets’ spatial
and temporal sampling characteristics, a brief summary of their un-
derlying algorithms and our own processing steps. Fig. B.1 provides
a spatial overview of the research region and the typical sampling
over one day. Note that one processing step we apply to all datasets,
except GRUAN, is to filter out datapoints over land to assure homo-
geneous surface conditions.



70 moist layer blindspot in model-based retrieval

Figure B.1: Maps show the geographical location of Manus Island and spa-
tial sampling over one day (2012-03-28) of the four investigated
datasets. The satellite data is split into ascending and descend-
ing node data. Radiosonde pathways are shown as lines. Their
mean position is indicated by gray crosses that are used as col-
location locations. The transparent gray circle visually indicates
the collocation radius of 50 km.

b.2.1 GRUAN radiosondes

The GRUAN (global climate observing system reference upper air
network) measurement program consists of a network of about 30

quality controlled radiosonde measurement sites around the world to
detect trends in essential climate variables such as temperature and
humidity (Dirksen et al., 2014; Seidel et al., 2009). Here we pick out
the GRUAN site on Manus Island, where radiosondes were launched
from January 2011 to July 2014, run by the Atmospheric Radiation
Measurement program (Ackerman and Stokes, 2003). This is a par-
ticularly suited reference dataset for the scope of our work for two
reasons. Firstly, Manus Island is located at about 2° S in the West-
ern Pacific warmpool, a region where EMLs are expected to occur
frequently due to their link to deep convective events. Secondly, the
standard radiosonde launch times at 0 and 12 UTC with a local time
shift of UTC + 10 h turn out to coincide well with IASI overpasses
at the fixed equator crossing time (ECT) of the MetOp satellites at
around 9:30 local time.

The GRUAN sounding data used in this work is obtained from
the RS92-GDP.2 data archive. Uncertainty estimates are 6 % for rela-
tive humidity (RH) and between 0.15 to 0.6 K for temperature depend-
ing on daytime and altitude (Dirksen et al., 2014). When binning the
launch times of the full sounding dataset into hourly intervals, about
60 % of the soundings occur around the 0 and 12 UTC launch times.
A significant anomaly in radiosonde launch times occured from 24

September 2011 to 31 March 2012 with launches every 3 hours as
part of the DYNAMO campaign (Yoneyama et al., 2013).

As a first step of preparing the GRUAN sounding data for our
processing, relative humidity values are transformed from being de-
fined with respect to the saturation vapor pressure above water (GRUAN
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standard) to a mixed phase approach as described by ECMWF (2018).
We then linearly interpolate the sounding dataset to a fixed altitude
grid ranging from 0 m at the surface to 15 km altitude at 10 m in-
tervals. In case of missing values in the original data we interpolate
over intervals of up to 100 m and leave the missing values for larger
intervals. We then deduce H2O volume mixing ratios (VMRs) from
RH, temperature and pressure.

b.2.2 ERA5

We use the ECMWF Reanalysis v5 (ERA5) high resolution atmospheric
data on a 31 km spaced horizontal grid, on 137 vertical levels and in
hourly intervals. Detailed descriptions of spatial and temporal dis-
cretisation of ERA5 are provided in the overview paper and in the
IFS (version Cy41r2) documentation (ECMWF, 2016; Hersbach et al.,
2020).

We use a total of 21 ERA5 pixels around Manus Island as de-
picted in Fig. B.1. The data is originally stored on a T639 spectral grid
or a reduced gaussian grid depending on the variable. We transform
the grids of all variables to a 0.25 ° evenly spaced latitude/longitude
grid using bilinear interpolation. We deduce H2O VMR as our main
humidity quantity from the specific humidity that is originally pro-
vided in ERA5. We deduce altitudes for each ERA5 profile by assum-
ing a hydrostatic atmosphere and using the fixed pressure grid and
the temperature profiles as input.

b.2.3 IASI L2 Climate Data Record

The IASI Level 2 retrieval dataset used in this work is called the "IASI
All Sky Temperature and Humidity Profiles - Climate Data Record
Release 1.1 - Metop-A and -B" and is provided by EUMETSAT (2022).
We use only data from MetOp-A. We refer to this dataset as the IASI
L2 CDR in the frame of this study. The dataset is aimed to be a con-
sistently reprocessed longterm dataset based on the most recent ver-
sion of the statistical piecewise linear regression (PWLR) EUMETSAT
retrieval algorithm. The also available purely operational IASI L2 re-
trieval data is subject to significant jumps over the years due to algo-
rithm updates (EUMETSAT, 2017). Since the algorithm of the period
between 2011 to 2014 is not representative of today’s standard, we
use the reprocessed IASI L2 CDR.

Details about the IASI L2 CDR are provided in the product user
guide (EUMETSAT, 2022). Here we summarize some of its main prop-
erties. The retrieval algorithm makes use of IASI spectra and radi-
ances observed by the microwave sounders AMSU-A (Advanced Mi-
crowave Sounding Unit-A) and MHS (Microwave Humidity Sounder)
onboard of the same satellite to also retrieve information about atmo-
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spheric temperature and humidity in the presence of clouds. A re-
trieval pixel at nadir has a diameter of about 50 km and is made up
of a 2× 2 array of IASI pixels. To train the PWLR retrieval algorithm,
global sensing data of 4 days of each month of the years 2015 and 2016

are matched with ERA5 temperature, humidity and ozone profiles on
137 vertical levels. Cloudy scenes are included in the training step of
the algorithm to allow for the retrieval of atmospheric quantities in
all-sky scenes. The retrieval is conducted on 137 atmospheric levels
and an additional surface level. All-sky retrievals are conducted for
atmospheric temperature and specific humidity profiles as well as for
surface temperature and total column water vapor. A cloud fraction
estimate is also provided based on AVHRR (Advanced Very High
Resolution Radiometer) data that is integrated over the retrieval’s
field of view. The dataset also comes with uncertainty estimates for
temperature and humidity profile retrievals that reflect the mean un-
certainty of the surface level and the mid-troposphere (EUMETSAT,
2022). These uncertainties are provided in units of Kelvin in tempera-
ture and dew point temperature. As recommended in the user guide,
we filter cases considered highly defective with uncertainties > 4 K.
This filtering only removes about 1 % of data.

The only variable we add in our own processing is the height
associated with the retrieval’s vertical levels. For this purpose we as-
sume a hydrostatic atmosphere and use profiles of pressure and tem-
perature as input.

b.2.4 CLIMCAPS-Aqua L2 product

The CLIMCAPS-Aqua Level 2 product (Community Long-term In-
frared Microwave Combined Atmospheric Product System) is based
on AIRS spectra and AMSU-A radiances. The processing uses a so-
phisticated step-wise optimal estimation procedure following the for-
malism of Rodgers (2000) of various atmospheric quantities such as
temperature, moisture, cloud heights and fractions and concentra-
tions of trace gas species O3, CO, CH4, CO2, HNO3 and SO2. The
retrieval is conducted on about 50 km spatial pixels at nadir (150 km
at scan edge). One pixel is referred to as field of regard (FOR) and
is made up of 9 (3 × 3) AIRS field of views (FOVs). The retrieval
procedure and a characterisation of retrieval errors are described by
Smith and Barnet (2019). In an evaluation of the CLIMCAPS observ-
ing capability it is found that CLIMCAPS has sensitivity to multiple
narrow tropospheric layers in temperature and humidity, a promising
premise for our study (Smith and Barnet, 2020).

We limit our use of available CLIMCAPS variables to the re-
trieved surface temperature, temperature and humidity profiles, the
total cloud fraction, the geopotential height and the respective quality
control flags and error estimates. Temperature profiles are provided
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on 100 fixed vertical pressure levels from the surface to the top of
atmosphere, specific humidity on 66 levels from the surface to about
50 hPa. Since surface pressure is not a retrieval quantity and instead
MERRA2 reanalysis surface pressures are used as input to the re-
trieval, we calculate surface values of humidity following the bound-
ary layer adjustment procedure that is described in the CLIMCAPS
science application guide (Smith et al., 2021). Surface values of hu-
midity are important for our method of analysing moisture anomaly
characteristics that is described in Sect. B.4.

The quality control flags are provided for each variable on all
vertical levels. They subdivide the retrieval into "Best", "Good" and
"Rejected" quality. We filter cases where the specific humidity quality
control flag of the level closest to MERRA2 surface pressure is labeled
"Rejected" and cases with more than 10 "Rejected" vertical levels in hu-
midity between 900to to 100 hPa. These criteria are quite stringent as
they filter about 90 % of the data. However, we do not aim to analyse
data that is already flagged as being of deficient quality.

A significant difference between the IASI L2 product and the
CLIMCAPS product lies in the estimation of the total cloud fraction
and the way cloudy scenes are handled. While for the IASI L2 prod-
uct, cloud fraction is estimated based on an independent instrument
(AVHRR), CLIMCAPS estimates cloud fraction based on a subset of
cloud sensitive AIRS channels. CLIMCAPS does so for each AIRS
FOV and provides a derived FOR-integrated total cloud fraction, i.e.
over 3 × 3 FOVs. To retrieve atmospheric quantities in cloudy con-
ditions the CLIMCAPS and IASI retrieval products deploy concep-
tually different methods. While the IASI product attempts retrieval
through the cloud, CLIMCAPS deploys a cloud clearing technique
where information from the 3× 3 AIRS FOV spectra are combined to
represent the atmospheric state around the clouds throughout the to-
tal retrieval FOR. We specifically compare the retrievals’ capabilities
to resolve vertical moisture structures in all-sky and clear-sky condi-
tions in Sect. B.5.1 and B.5.2.

b.2.5 Collocation procedure

We collocate the datasets pairwise in space and time to assure direct
comparability of the investigated scenes. This is done using a colloca-
tion toolkit that is freely available as part of the “typhon” collection
of Python functions for atmospheric science
(https://www.radiativetransfer.org/tools/).

We conduct the collocation for four dataset pairs, namely ERA5/GRUAN,
IASI/GRUAN, IASI/ERA5 and CLIMCAPS/ERA5. With GRUAN be-
ing the gold standard reference dataset, we use it as reference where
sufficient collocations are available. The standard launch times at 12

UTC am/pm in conjunction with a local time difference on Manus of

https://www.radiativetransfer.org/tools/
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UTC+10 h yield launches at local times of about 10 am/pm, matching
up well with the IASI equator crossing time of about 09:30 am/pm.
Unfortunately for the AIRS based CLIMCAPS retrieval, there is a
systematic offset in GRUAN radiosonde launch time and the equa-
tor crossing time of the Aqua satellite at around 01:30 am/pm, yield-
ing almost no collocations between GRUAN and CLIMCAPS. How-
ever, since we find ERA5 to represent EMLs reasonably well (see Sect.
B.5.1), we use ERA5 as a reference for CLIMCAPS and as an addi-
tional reference for IASI.

As spatial and temporal collocation criteria we use 50 km and
30 minutes. These criteria are rather conservative since the EMLs of
interest are meso-scale phenomena that can extend horizontally over
several hundred kilometers and have lifetimes of about a day. The
temporal criterion of 30 minutes is also chosen due to the expected
30 minute offset of IASI overpasses and regular radiosonde launches.
In addition, 30 minutes assures temporal collocation with ERA5, which
has hourly sampling. Since the spatial resolution of ERA5 is higher
than the spatial collocation criterion of 50 km we usually find multi-
ple pixels of ERA5 to matchup with another dataset. In these cases,
we randomly select one of the matching pixels to assure that data-
points are only used once.

Applying these collocation criteria and the dataset specific filter-
ing criteria described above we obtain 1921 ERA5/GRUAN colloca-
tions, 648 IASI/GRUAN collocations, 37491 IASI/ERA5 collocations
and 2500 AIRS/ERA5 collocations.

b.3 climatological mean

To get a first overview of the vertical structure of humidity and tem-
perature in the vicinity of Manus Island and possible biases between
the different datasets we take a look at the mean profiles over the
four years of available data. Fig. B.2 shows (a) water vapor volume
mixing ratio (H2O VMR), (b) relative humidity (RH), (c) the deviation
of potential temperature (Θ) from a moist adiabat and (d) the static
stability calculated as

s = −
T

Θ

dΘ

dp
(B.1)

Higher values in s correspond to a more stable stratification.
Since all datasets can be collocated with ERA5 data, we base the

analysis of the mean profiles on the collocation datasets with refer-
ence to ERA5 to assure good comparability. This leaves us with three
different subsets of ERA5 data that collocate with the other respective
data products. We investigated how the mean profiles of ERA5 vary
among these subsets and find the variation to not be significant com-
pared to differences between the data products (not shown). Hence,
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for the ERA5 mean profiles depicted in Fig. B.2, we choose the collo-
cations with reference to IASI since they contain the most cases.

The mean vertical humidity structure depicted in Fig. B.2a+b
shows the typical moist conditions throughout the troposphere that
are expected in a deep convective region. RH values rarely drop be-
low 70 % in any of the datasets. A trimodal vertical RH structure is
apparent in all datasets with maxima near the surface, in the mid-
troposphere and near the tropopause. This vertical structure is in line
with previous studies of the vertical distribution of humidity, clouds
and detrainment in the ITCZ region (Johnson et al., 1996, 1999; Mapes
and Zuidema, 1996; Posselt et al., 2008; Romps, 2014). Here, we tar-
get the mid-tropospheric humidity structure as the primary research
object, where the presence of an RH maximum highlights the clima-
tological significance of EMLs in our research region.

Comparing the mean RH profiles of the different datasets, the
particular good agreement of ERA5 and IASI sticks out. Since the
IASI L2 retrieval is trained based on ERA5 data, it is not surprising
that the means of the two datasets are so similar. The additional good
agreement with GRUAN shows that the datasets are not only self-
consistent but also close to reference data. However, good agreement
in the mean is not indicative of the datasets’ capability to resolve verti-
cal moisture variability, which we investigate seperately in Sect. B.5.1.

AIRS on the other side shows significant biases in RH against the
other three datasets. The mid-tropospheric peak in RH is shifted to-
wards a significantly lower altitude while the lower RH peak of the
boundary layer is shifted a bit upwards. This yields a moist bias of
AIRS between about 600to to 800 hPa. In the upper troposphere, a
dry bias is observed. Taking the plots of H2O VMR (Fig. B.2a) and Θ

(Fig. B.2b) into consideration, the mid-tropospheric bias in RH can be
attributed to both a positive bias in humidity and a negative bias
in temperature. The upper tropospheric dry bias in RH is mostly
caused by a bias in humidity since Θ shows no clear bias against
the other three datasets in the upper troposphere. AIRS also shows
some unphysical RH and Θ variability in the upper troposphere. This
is particularly apparent in static stability since vertical gradients as-
sociated with this variability are strong between vertical levels. We
suggest that this variability may be caused by a numerical artifact
that is described in the CLIMCAPS science application guide (Smith
et al., 2021). There, the authors find an unphysical zigzag pattern in
the temperature profile retrieval error that increases in magnitude
with height and they attribute this pattern to their employed data
compression methods.

We highlight differences in the vertical structure of potential tem-
perature Θ between the datasets by subtracting a moist adiabat (Fig.
B.2c). We adopt this methodology of comparing the tropical vertical
temperature structure across different datasets from Keil et al. (2021),
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who applied this to CMIP6 data, ERA5 and long-term tropical ra-
diosonde data. It offers an interesting view since the moist adiabat
estimates the thermal structure in the tropics set by moist convection
quite well. As a difference to Keil et al. (2021), we subtract the same
moist adiabat from all datasets and initiate it at the 800 hPa level of
the GRUAN mean Θ profile instead of 700 hPa. This allows for a bet-
ter assessment of biases between the datasets and a comparison at
lower levels at the cost of losing some ability to assess the profiles’
resemblance of a moist adiabat, which is fine for our purpose.

We find similar vertical structures in Θ − Θmoist as Keil et al.
(2021) in their radiosonde and ERA5 results with negative deviations
throughout the free troposphere and strongly increasing positive de-
viations towards the tropopause. We also reproduce the vertical bias
structure between ERA5 and radiosonde data of Keil et al. (2021)
with almost no bias up to 550 hPa and then an increase to an almost
constant 0.6 K bias up to the tropopause. Taking a look at the static
stability profiles (Fig. B.2d) of ERA5 and GRUAN we see that they
are in good agreement, except for a distinct increase in stability of
ERA5 around 550 hPa, which is not present in the radiosonde data
and causes the bias in Θ of the two datasets aloft. The stability bump
found in ERA5 at this level appears plausible due to diabatic cool-
ing associated with melting of ice particles at this level. As outlined
in Sect. B.1, previous studies showed that preferred detrainment of
moist air from deep convection due to increased stability near the
melting level are what causes the mid-tropospheric humidity peak
beneath the stable layer (Johnson et al., 1996; Stevens et al., 2017; Vil-
liger et al., 2022). Hence, it is surprising to find the stable layer at
550 hPa less pronounced in GRUAN than in the ERA5 data. The IASI
L2 retrieval shows a slightly increased stability around 550 hPa com-
pared to the radiosonde data, but not as strong of a bump as ERA5.
On the other side, the AIRS CLIMCAPS retrieval shows a significant
stability increase at around 650 hPa, which coincides with the lower
mid-tropospheric RH maximum compared to the other datasets.
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Figure B.2: Mean profiles of (a) H2O volume mixing ratio (VMR), (b) relative
humidity (RH), (c) deviation of potential temperature (Θ) from
moist adiabat (Θmoist) based on mean Θ at 700 hPa of GRUAN
data and (d) the static stability s in the vicinity of Manus Island
based on the four investigated datasets. Only collocated data
with ERA5 is used. For the ERA5 profiles, collocated data with
IASI is used.

b.4 moisture anomaly identification and characteri-
sation

To assess vertical humidity structures in different datasets, comparing
their mean profiles only gives limited information. Positive and neg-
ative anomalies can average out and sharp gradients are smoothed.
Hence, we assess the representation of Elevated Moist Layers (EMLs)
by identifying them in each dataset and characterising them on a
case-by-case basis. We do so through metrics that describe the moist
layer strength, vertical thickness and height. Quantifying these prop-
erties of vertical moisture structures in the different datasets before
applying averaging operators yields more targeted information about
vertical moisture variability than averaging directly.

Besides the moisture characteristics described above, we also link
the moist layers to their impact on the radiative heating rate (Fig. B.3b),
where local maxima in cooling are found at the positions of the moist
layers. We calculate longwave radiative heating rates with the ra-
diative transfer model RRTMG (Rapid Radiative Transfer Model for
GCMs, Mlawer et al., 1997) through its implementation in the radia-
tive convective equilibrium model konrad (Kluft and Dacie, 2020). The
strong cooling of the moist layers can be translated into locally in-
creased subsidence rates, which we quantify through the radiatively
driven vertical velocity

ωrad = −
Q

s
(B.2)
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where s is the static stability defined in Eq. B.1. Since s stands in the
denominator of ωrad and fluctuates strongly on small vertical scales
about values near zero, ωrad also fluctuates strongly. To distill out the
radiatively driven dynamical effects in Fig. B.3 on the vertical scale of
the moist layers, we apply an evenly weighted 500 m moving average
to s and Q and calculate ωrad based on the smoothed profiles. This
way, local maxima are clearly visible in ωrad in the identified moist
laysers. It is also apparent that the static stability within the moist
layer is a key contributing factor for the magnitude of subsidence. Al-
though the upper tropospheric moist layer is associated with weaker
radiative cooling than the mid-tropospheric one, the lower stability
in the upper tropospheric moist layer results in a stronger subsidence
rate.

By calculating moist-layer-associated heating rates, static stabili-
ties and ωrad we estimate the dynamical effect of moist layers in the
different datasets and characterise possible differences in Sect. B.6.
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Figure B.3: GRUAN sounding from 2012-15-02 at 12 UTC of (a) H2O volume
mixing ratio (VMR), (b) longwave heating rate, (c) static stability
and (d) radiatively driven vertical velocity. The dashed red line
in (a) is the reference humidity profile against which moisture
anomalies are identified, which are highlighted by blue shaded
regions. Thin gray lines in (b), (c) and (d) indicate raw data and
thick lines 500 m moving averages.

b.5 comparison of moisture anomaly characteristics

We compare the distributions of moisture anomaly characteristics for
the four collocation pairs. To start off, the comparison is based on all-
sky scenes. In a next step, we distinguish clear-sky from cloudy cases
to assess whether cloudiness affects the datasets’ capability of captur-
ing moisture anomalies. This is of particular interest for the satellite
retrieval datasets, which employ different cloud handling schemes as
described in Sect. B.2.
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b.5.1 All-sky

The moisture anomaly identification and characterisation method in-
troduced in Sect. B.4 is applied to the humidity profiles of the four
collocation datasets. Fig. B.4 shows the resulting distributions of mois-
ture anomaly characteristics for the four collocation pairs. In the fol-
lowing, we discuss what these results tell us about the different datasets’
ability to capture EMLs. We start off with ERA5, then go to IASI and
finally to AIRS.

As a first indicator of a dataset’s ability to capture moisture anoma-
lies, we compare the number of detected moisture anomalies to the
reference dataset, i.e. the areas under the distributions depicted in
Fig. B.4. ERA5 captures about 99 % as many anomalies as collocated
GRUAN data, indicating a good amount of vertical water vapor vari-
ability in ERA5 (Fig. B.4, first row). Moisture anomalies in ERA5 are
about 50 % weaker and 28 % thicker than moisture anomalies in the
collocated GRUAN dataset. Moist layers that are less than 2 km in
thickness are particularly underrepresented by ERA5 while moist lay-
ers with thickness > 3 km occur more often. These biases suggest that
ERA5 is subject to some degree of smoothing due to limited vertical
resolution, which we quantify in the following.

To investigate to what extent smoothing alone can explain the
biases between the moisture anomaly characteristics of ERA5 and
GRUAN, we apply a running mean with vertical window size of 1 km
and constant weighting to the GRUAN profiles. The resulting distri-
butions are shown as thick lines in the first row of Fig. B.4. They show
that biases in all three moisture anomaly characteristics can mostly
be eliminated through the artificial smoothing. This indicates an ef-
fective vertical resolution of the ERA5 humidity profiles in the free
troposphere of about 1 km. We conclude that ERA5 captures vertical
humidity structures on scales of 1 km and greater well as no system-
atic deviations from the GRUAN distributions are apparent. Hence,
we argue that ERA5 is a suitable reference for assessing the satellite
retrieval datasets.

We assess the IASI L2 CDR by comparing it to GRUAN data
(Fig. B.4, row 2) and ERA5 data (Fig. B.4, row 3). The IASI L2 CDR
captures about 75 % as many moisture anomalies as in collocated
GRUAN data and about 79 % as many moisture anomalies as in col-
located ERA5 data. This is a first indicator that the IASI L2 CDR cap-
tures less vertical water vapor variability than ERA5. In addition, the
maximum in moisture anomaly thickness at around 2 km altitude de-
tected in both GRUAN and ERA5 data is missing in the IASI L2 CDR.
Instead, the anomaly thickness distribution is shifted towards signif-
icantly higher values with differences in the means of 85 % against
GRUAN and 28 % against ERA5. Moisture anomalies are also signifi-
cantly weaker in the IASI L2 CDR with mean differences of 53 % and
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10 % against GRUAN and ERA5 data, respectively. At this point we
want to highlight the added value of assessing the vertical moisture
structures of a dataset through moisture characteristics opposed to
just comparing the mean profiles (Fig. B.2). While we find a strikingly
good agreement of the IASI, ERA5 and GRUAN humidity profiles on
the mean, quite significant biases become apparent when applying
the moist layer characterisation method and then taking a statistical
look at how the resulting metrics compare.

As for ERA5, we investigate whether the found biases in anomaly
strength and thickness against GRUAN can be explained by smooth-
ing. We apply a 1 km moving average to the GRUAN profiles collo-
cated with the IASI L2 CDR and obtain the moisture anomaly dis-
tributions represented by the thick lines (Fig. B.4, row 2). While the
biases in anomaly strength and height against the IASI dataset are
significantly reduced, a strong bias remains in the anomaly thickness.
We also attempted to increase the smoothing window up to 5 km,
but do not find the anomaly thickness distribution to approach the
one of the IASI dataset much more (not shown). Hence, the bias in
anomaly thickness originates from some other source of error in the
IASI dataset than smoothing. We come back to this in the next sub-
section when concentrating on the clear-sky.

To assess the AIRS CLIMCAPS retrieval, we rely only on ERA5 as
a reference as outlined in Sect. B.2.5. The AIRS CLIMCAPS retrieval
captures about 92 % as many moisture anomalies as collocated ERA5

data, significantly more than the IASI L2 CDR. Moisture anomalies in
the AIRS CLIMCAPS retrieval are on average 26 % stronger and 5 %
less thick than those in collocated ERA5 data. Also, moist layers in
the AIRS CLIMCAPS retrieval are typically found significantly lower
in the troposphere compared to the three other datasets, in particu-
lar there are much more moist layer cases below 5 km compared to
ERA5. The mean moist layer height is about 1.3 km lower in the AIRS
CLIMCAPS retrieval compared to ERA5. We already saw this bias
in terms of a shift of the mid-tropospheric humidity peak towards
lower altitudes when comparing the dataset mean profiles in Fig. B.2.
Moisture anomaly strength is a somewhat height dependent quantity
with generally stronger anomalies in the lower troposphere than fur-
ther up (Prange et al., 2021b). Hence, the increased strength of moist
layers in the AIRS CLIMCAPS retrieval is to some degree also caused
by a bias in moisture anomaly height. Nonetheless, the number of
moisture anomalies in the AIRS CLIMCAPS retrieval speaks towards
a good capability of the dataset to capture vertical moisture variabil-
ity, more so than the IASI L2 CDR.

These findings are coherent with the notion of previous case stud-
ies that optimal estimation based retrievals are more capable of cap-
turing vertical moisture structures than regression based retrievals
(Calbet et al., 2006; Chazette et al., 2014; Prange et al., 2021a; Smith
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and Weisz, 2018; Smith et al., 2012; Weisz et al., 2013; Zhou et al.,
2009). A plausible explanation for the superiority of the optimal esti-
mation based AIRS CLIMCAPS retrieval is that capturing EMLs is not
sufficiently emphasized in the training of the regression-based IASI
retrieval. The fact that the retrieval is trained based on ERA5 data
may also set a somewhat upper limit in terms of resolvable vertical
structure. The AIRS CLIMCAPS retrieval is constrained by a priori
assumptions about mean and variability of the atmospheric state, but
if the optimal estimation setup is tweaked well, deviations from the
mean state can be captured well with this method.
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Figure B.4: Distributions of moist layer characteristics (columns) for the four
collocation datasets (rows). Moist layer characteristics are de-
fined by Prange et al. (2021b). The thin gray lines refer GRUAN
profiles on 10 m vertical resolution while the thick gray lines rep-
resent GRUAN profiles with an applied running mean with a
1 km evenly weighed vertical window.
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b.5.2 Clear-sky

The satellite retrieval products do operate in the presence of clouds,
but information content is limited with increased cloudiness and cloud
depth, in particular from the infrared instruments. Hence, we are
interested whether our analysis of moisture anomaly characteristics
yields different results when limited to clear-sky scenes compared to
the previously investigated all-sky scenes. Possible differences could
then potentially be linked to the different cloud handling schemes
deployed by the retrieval products (Sect. B.2).

The AIRS CLIMCAPS and IASI L2 retrievals come with an es-
timate of total cloud fraction for each retrieval pixel, which are ob-
tained based on quite different methods as outlined in Sect. B.2. ERA5

also provides a total cloud fraction variable, which we show in addi-
tion, but do not base our further analysis on since it appears quite bi-
ased against the satellite derived cloud fractions. As suggested in the
CLIMCAPS science application guide, we use a cloud fraction thresh-
old of 0.2 to distinguish clear-sky from cloudy scenes (Smith et al.,
2021). For the two collocation datasets IASI/ERA5 and AIRS/ERA5

this leaves about 22 % of the all-sky amount of data. For the IASI/-
GRUAN comparison, sampling becomes too limited, which is why
we limit this analysis to the satellite collocations with ERA5.

Fig. B.5 shows the resulting cloud fraction distributions of the two
collocation datasets. It is striking that when limiting satellite based
cloud fractions to 0.2, ERA5 cloud fraction estimates show maxima
near cloud fractions of 1. Without any applied thresholds, both satel-
lite datasets also have their global maxima near cloud fractions of 1

(not shown). However, the secondary maximum near 0 found in both
satellite datasets is not at all present in ERA5. We would have ex-
pected a stronger bimodality between high and low cloud fractions
in ERA5 due to the higher spatial resolution of ERA5 of 31 km com-
pared to about 50 km in the Nadir view of the two satellite products.
However, since cloud fraction requires subgrid-scale knowledge it is a
difficult to define this variable in a model framework. Hence, finding
significant differences to satellite derived estimates is not completely
surprising.
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Figure B.5: Cloud fraction distributions of the two collocation datasets (a)
IASI/ERA5 and (b) AIRS/ERA5 after applying a cloud fraction
threshold of 0.2 based on the IASI and AIRS cloud fraction esti-
mates.

Fig. B.6 shows the resulting moisture anomaly characteristics af-
ter application of the clear-sky filter. All datasets consistently show an
increase in mean anomaly strength of about 20 % compared to the all-
sky results. Note that our method for quantifying anomaly strength
is designed to capture the magnitude of vertical moisture variability
rather than absolute amount of humidity, which would be highest in
case of clouds (Prange et al., 2021b). The found increase in anomaly
strength in the clear-sky is in line with our expectations because in
cloudy conditions vertical humidity variability is limited by the satu-
ration humidity, leading to weaker moisture anomalies.

We also see a significant change in the shape of the anomaly
height distributions when comparing clear-sky to all-sky. IASI and
ERA5 both show a clear bimodal structure in anomaly height in the
clear-sky, which was not the case in the all-sky data. Physically, we
explain the position of the maxima near 5 km and 12 km by levels of
preferred detrainment of moist air from mid-level or deep convective
plumes into the clear-sky environment (Johnson et al., 1999; Romps,
2014). The mid-level detrainment is thought to be driven by enhanced
stability near the melting level and the upper tropospheric detrain-
ment is associated with increased stability towards the tropopause
as the atmosphere goes into pure radiative equilibrium aloft. We hy-
pothesize that the mid-tropospheric peak is more pronounced than
the upper tropospheric peak in ERA5 and IASI anomaly height distri-
butions because both deep (cumulo nimbuscumulonimbus) and mid-
level (cumulus congestus) convection causes mid-level detrainment
while only deep convection causes upper level detrainment. AIRS
also shows peaks in anomaly height near 5 km and 12 km and another
peak inbetween at around 7 km that we can not link to a physical
mechanism in this height. However, when interpreting the detailed
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shape of the distributions to this extend, we advice caution due to
the limited number of AIRS/ERA5 collocations, which is only about
10 % of the number of IASI/ERA5 collocations.

We do not find significant changes in biases between satellite re-
trievals and ERA5 in anomaly strength or thickness when limiting our
data to clear-sky. While we do see changes in the means of the dis-
tributions as described above, biases remain similar. Although biases
do not change much, we see that the all-sky secondary maximum at
large anomaly thickness values of IASI, which is not present in ERA5

(Fig. B.4), vanishes in the clear-sky, indicating better vertical resolu-
tion. However, going to clear-sky does not reduce the gap between
satellite retrievals and ERA5 at anomaly thickness values below 3 km.
We conclude that the retrievals’ observing capability of moist layers
is not significantly limited by clouds.
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Figure B.6: Same as Fig. B.4 but with cloud fraction < 0.2 in AIRS and
IASI datasets. Collocations with reference to GRUAN are omit-
ted due to limited clear-sky sampling. Vertical dashes indicate
the means.

b.6 moist layers’ radiative implications on the dynam-
ics

In this section we want to translate the datasets’ varying capabilites
to resolve EMLs found in Sect. B.5.1 into estimates of the moist lay-
ers’ effect on meso-scale dynamics. EMLs are thought to impact the
mesoscale dynamics of the atmosphere through their effect on the
spatial structure of radiative heating (Stevens et al., 2017). We attempt
to draw a direct connection between EMLs and dynamics by translat-
ing their effect on the heating rates into radiatively driven vertical
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velocities ωrad, for which to a first order the static stability is another
contributing factor (Sect. B.4).

Fig. B.7 shows distributions of moist-layer-associated longwave
heating rates, static stabilities (s) and radiatively driven vertical veloc-
ities (Eq. B.2). The same moist layers identified as basis for Fig. B.4 are
used here and the three additional quantities are calculated for each
moist layer. This is done by calculating the vertical median heating
rate across each identified moist layer (Fig. B.7, column 1). To calcu-
late the moist layer averaged static stability s according to Eq. B.1,
moist layer median temperatures, potential temperatures, and poten-
tial temperature gradients are used (Fig. B.7, column 2). The resulting
moist-layer-associated heating rates and static stabilities are used to
calculate the moist-layer-associated ωrad (Fig. B.7, column 3).

The typical tropical free tropospheric heating rate is on the order
of -2 K day−1 (Jeevanjee and Fueglistaler, 2020b). Moist-layer-associated
heating rates depicted in the first column of Fig. B.7 show their peak
at more negative values of around -3 K day−1 because of the locally
enhanced infrared opacity of the moist layers that cause increased in-
frared absorption and cooling to space. However, a saddle point in
the distributions is found at -2 K day−1 that is associated with par-
ticularly weak moisture anomalies that barely increase opacity. The
fact that most heating rates are found at values lower than -2 K day−1

shows that our method does in fact filter for the moisture features we
are interested in.

We expect biases in moist-layer-associated heating rates between
the collocated datasets to reflect biases in moist layer strength and
thickness, i.e. stronger and thinner moist layers go along with more
pronounced cooling. We find this to generally be the case as GRUAN
shows the strongest moist-layer-associated cooling, followed by only
a slight bias to ERA5 and slightly more cooling in the IASI L2 retrieval
than in the AIRS CLIMCAPS retrieval. Differences in heating rate dis-
tributions between ERA5 and GRUAN are small, indicating that the
found biases in moisture anomaly strength and thickness that could
mostly be eliminated by applying 1 km vertical smoothing to the ra-
diosonde data are not very significant for the moist-layer-associated
heating rates. However, we also find a 19 % difference in the means of
static stability between ERA5 and GRUAN that adds to the slightly
enhanced cooling in GRUAN to result in a 38 % difference in ωrad

means between the two datasets. Static stability values also showed
to be increased in ERA5 compared to GRUAN in the comparison of
the 4 year mean profiles in Fig. B.2.

For the IASI/GRUAN comparison similar biases are found as
for ERA5. The ERA5/IASI comparison reveals that slightly stronger
cooling rates found in ERA5 are balanced by slightly increased static
stabilities in ERA5 yielding only a 0.7 % difference in ωrad means
between ERA5 and IASI.
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Stronger biases are found between ERA5 and AIRS. Moist-layer-
associated cooling is weakest in the AIRS dataset among all investi-
gated datasets. In addition, AIRS shows significantly enhanced stabil-
ity with a 44 % mean difference against ERA5, while ERA5 already
showed enhanced stability compared to GRUAN. The moist-layer-
associated weaker cooling and enhanced stability in AIRS yield a 43 %
mean difference in ωrad against ERA5 and an about 80 % mean dif-
ference to the GRUAN mean ωrad obtained from collocations with
ERA5 and IASI.

To put the found values of ωrad and associated biases between
the datasets into some perspective we compare our results to mea-
surements of meso-scale vertical pressure velocities ω obtained from
dropsonde measurements of the EUREC4A field campaign. During
EUREC4A, the HALO aircraft flew 69 circles of about 200 km diame-
ter launching 12 dropsondes per circle (George et al., 2021b; Konow
et al., 2021b). Using the method of Bony and Stevens (2019), circle-
integrated profiles of divergence allow for a deduction of ω, some
first EUREC4A averaged results of which are presented by Stevens et
al. (2021). The campaign mean ranges between values of 1 to 2 hPa hour−1

throughout the free troposphere, while individual circles show maxi-
mum variations between -5 to 10 hPa hour−1. The moist-layer-associated
ωrad values we find based on GRUAN with values between 1.5 to 4 hPa hour−1

are generally higher than the mean meso-scale ω measurements. We
conclude that EMLs show a significant radiative impact on meso-scale
dynamics when compared to meso-scale measurements of ω. With
biases of moist-layer-associated ωrad in ERA5, IASI and AIRS data
ranging from 38 %to to 80 % compared to GRUAN and ωrad means
being on similar order as meso-scale ω measurements we conclude
that these datasets have limited usability to assess the dynamical im-
pact of EMLs.
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Figure B.7: Distributions of moist-layer-associated longwave heating rate,
static stability (s) and radiatively driven vertical velocity ωrad

for the different collocation datasets. Averaging measure for
heating rate is median. s is calculated based on moist layer me-
dian temperature, potential temperature and potential temper-
ature gradient. ωrad is calculated by division of moist-layer-
associated heating rate and static stability. Vertical dashes indi-
cate means.

We assessed ERA5 reanalysis data, the IASI Level 2 Climate Data
Record (CDR) and the CLIMCAPS-Aqua Level 2 retrieval product in
terms of their ability to capture vertical moisture structures, in par-
ticular EMLs. As reference, we use 2146 radiosonde soundings from
Manus Island of the years 2011 to 2014 that are part of the quality
controlled GRUAN network. We compared mean profiles of temper-
ature, humidity and static stability, then identified and characterised
collocated moist layers using the method of Prange et al. (2021a) as
basis and assessed the moist layers’ impact on the dynamics in terms
of radiative heating and radiatively driven vertical velocities. In the
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following we draw conclusions about our title main question, that is
how adequately EMLs are represented in the different data products.

1. The four-year mean profiles show a clear mid-tropospheric max-
imum in relative humidity in all data products that is asso-
ciated with EMLs. It is similarly pronounced in ERA5, IASI
and GRUAN. Only the AIRS CLIMCAPS retrieval shows sig-
nificant humidity biases against the other data products. The
mid-tropospheric humidity peak is not located near the melting
level as in the other datasets, but about 100 hPa lower causing
a significant moist bias in the lower to mid free troposphere. A
peak in mid-tropospheric static stability is also located about
100 hPa lower than in ERA5. In the upper troposphere between
about 400to to 100 hPa the AIRS CLIMCAPS retrieval shows a
dry bias against the other datasets.

2. The number of identified moist layers based on the method de-
scribed in Sect. B.4 is almost equal between collocated ERA5 and
GRUAN data, indicating a good amount of vertical water vapor
variability in ERA5. Moist layers in ERA5 are about 50 % weaker
and 28 % thicker than moist layers in GRUAN data. These bi-
ases can be completely negated by applying a 1 km moving
average to GRUAN profiles, indicating 1 km effective vertical
resolution of ERA5 humidity profiles. The AIRS retrieval shows
about 92 % as many moist layers as ERA5 and the IASI retrieval
only about 79 %, indicating slightly enhanced vertical moisture
variability in the AIRS retrieval compared to IASI. In addition,
the IASI retrieval shows about 53 % weaker and 85 % thicker
moist layers than collocated GRUAN data. We find that these
biases in IASI can not completely be negated by applying verti-
cal smoothing to the GRUAN data, indicating other sources of
error than pure smoothing. The AIRS retrieval shows stronger
and similarly thick moist layers as ERA5. However, moist lay-
ers are generally found about 1.3 km lower in the troposphere
than in ERA5, which limits the conclusiveness of comparing
moist layer strength, since moist layers further down are typi-
cally stronger.

3. Reducing the investigated collocated scenes between the two
retrieval datasets and ERA5 to clear-sky is found to not signif-
icantly change biases in moist layer strength and thickness, in-
dicating that the cloud handling schemes are not the limiting
factors for the retrievals’ ability to resolve moist layers. While
distributions of total cloud fractions are comparable between
the two retrieval datasets, collocated ERA5 total cloud fractions
show strong deviations towards cloud fractions of 1 while re-
trieval cloud fractions are limited to less than 0.2. These biases
merit further study.
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4. Moist-layer-associated heating rates are on average on the order
of -3 K day−1, showing enhanced cooling compared to the mean
tropical free tropospheric cooling of about -2 K day−1 (Jeevanjee
and Fueglistaler, 2020a). Slight biases in moist-layer-associated
heating rates are found between the datasets that are represen-
tative of the found biases in moist layer strength, thickness and
height. Consequently, we find strongest moist-layer-associated
cooling in GRUAN data and weakest cooling in the AIRS CLIM-
CAPS retrieval, which we attribute to its significant bias towards
lower moist layer heights where cooling to space is less effective
due to the bigger column of water vapor above the moist layers.

5. We find that on average, the moist-layer-associated radiatively
driven subsidence ωrad at 1.5 to 4 hPa hour−1 is higher than
mean meso-scale subsidence deduced from EUREC4A field cam-
paign measurements at about 1 to 2 hPa hour−1 (Stevens et al.,
2021). Hence, EMLs are relevant for meso-scale atmospheric dy-
namics. According to Eq. B.2, ωrad is controlled by both moist-
layer-associated radiative cooling and static stability. Biases be-
tween datasets in both of those quantities are significant for the
resulting biases in ωrad, which is 38 % for both ERA5 and IASI
with respect to GRUAN and 43 % for the AIRS CLIMCAPS re-
trieval with respect to ERA5. We conclude that due to these
significant relative biases, all datasets have limited usefulness
to assess the dynamical impact of EMLs.

Given the inherently limited vertical resolution of reanalysis and re-
trieval products compared to in-situ soundings, we find ERA5 to re-
solve EMLs well, while IASI and AIRS show some more significant
biases that can not be explained purely by vertical smoothing. The
IASI L2 CDR shows most significant biases in moist layer thickness
that may be possible to improve by more strongly emphasizing EMLs
in the retrieval’s training or by introducing an optimal estimation step
to the retrieval as for example found by Calbet et al. (2006), the down-
side of which would be the computational cost. We find the AIRS
CLIMCAPS retrieval to be subject to significant humidity biases, in
particular with respect to moist layer height. Studying the origins of
these biases remains a future task, but we see no inherent reason why
it would not be possible to eliminate them.



90 moist layer blindspot in model-based retrieval

Data availability The collocation datasets are publically available on
Zenodo (Prange et al., 2022). These include only the data that is used
to deduce our results, i.e. after quality control criteria and processing
steps as described in Sect. B.2 have been applied.

Author contributions MP conducted the data analysis and prepared
the manuscript. SAB and MB supervised the data analysis, contributed
ideas to the manuscript and revised it.

Competing interests The authors declare that they have no conflict of
interest.

Acknowledgements This work was funded by the German Research
Foundation (DFG) in the project ‘Elevated Moist Layers – Using HALO
during EUREC4A to explore a blind spot in the global satellite observ-
ing system’, project BU 2253/9-1, part of DFG priority programme
HALO SPP 1294, project number 316646266. This work contributes
to the Cluster of Excellence Climate, Climatic Change, and Society
(CLICCS) and to the Center for Earth System Research and Sustain-
ability (CEN) of Universität Hamburg.

The authors would like to thank the GRUAN community and
the Atmospheric Radiation Measurement Program for making the
sounding data from Manus Island freely available. The authors would
like to thank EUMETSAT for their support in making the analysed
IASI L2 CDR available to us. The authors would like to thank the
AIRS community for making the analysed CLIMCAPS-Aqua Level
2 dataset freely available for download and providing helpful docu-
mentation in their science application guide.



B I B L I O G R A P H Y

Ackerman, Thomas P. and Gerald M. Stokes (2003). “The Atmospheric
Radiation Measurement Program.” In: Physics Today 56.1, pp. 38–
44. doi: https://doi.org/10.1063/1.1554135.

Albright, Anna Lea, Benjamin Fildier, Ludovic Touzé-Peiffer, Robert
Pincus, Jessica Vial, and Caroline Muller (2020). “Atmospheric ra-
diative profiles during EUREC4A.” In: Earth System Science Data.
doi: https://doi.org/10.5194/essd-2020-269.

Ananthakrishnan, R. and R. N. Kesavamurthy (1972). “Some new fea-
tures of the vertical distribution of temperature and humidity
over Bombay, during the south-west monsoon season.” In: Journal
of the Marine Biological Association of India 14.2, pp. 732–742. url:
http://mbai.org.in/php/journaldload.php?id=681&bkid=45.

Anderson, G., Shepard Clough, F. Kneizys, J. Chetwynd, and Eric
Shettle (May 1986). “AFGL Atmospheric Constituent Profiles (0.120km).”
In: p. 46.

Berndt, Emily, Nadia Smith, Jason Burks, Kris White, Rebekah Es-
maili, Arunas Kuciauskas, Erika Duran, Roger Allen, Frank La-
Fontaine, and Jeff Szkodzinski (2020). “Gridded Satellite Sound-
ing Retrievals in Operational Weather Forecasting: Product De-
scription and Emerging Applications.” In: Remote Sensing 12.20,
p. 3311. doi: https://doi.org/10.3390/rs12203311.

Bony, Sandrine and Bjorn Stevens (2019). “Measuring Area-Averaged
Vertical Motions with Dropsondes.” In: Journal of the Atmospheric
Sciences 76.3, pp. 767–783. doi: 10.1175/JAS-D-18-0141.1.

Bony, Sandrine et al. (2015). “Clouds, circulation and climate sen-
sitivity.” In: Nature Geoscience 8.4, pp. 261–268. doi: 10 . 1038 /

ngeo2398.
Bony, Sandrine et al. (2017). “EUREC4A: A Field Campaign to Elu-

cidate the Couplings Between Clouds, Convection and Circula-
tion.” In: Surveys in Geophysics 38.6, pp. 1529–1568. doi: https:
//doi.org/10.1007/s10712-017-9428-0.

Borger, Christian, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira
E. García, Michael Sommer, Michael Höpfner, Stephen A. Tjemkes,
and Xavier Calbet (2018). “Evaluation of MUSICA IASI tropo-
spheric water vapour profiles using theoretical error assessments
and comparisons to GRUAN Vaisala RS92 measurements.” In: At-
mospheric Measurement Techniques 11.9, pp. 4981–5006. doi: https:
//doi.org/10.5194/amt-11-4981-2018.

Boukachaba, Niama, Vincent Guidard, and Nadia Fourrié (Sept. 2015).
“Land surface temperature retrieval from IASI for assimilation
over the AROME-France domain.” In.

91

https://doi.org/https://doi.org/10.1063/1.1554135
https://doi.org/https://doi.org/10.5194/essd-2020-269
http://mbai.org.in/php/journaldload.php?id=681&bkid=45
https://doi.org/https://doi.org/10.3390/rs12203311
https://doi.org/10.1175/JAS-D-18-0141.1
https://doi.org/10.1038/ngeo2398
https://doi.org/10.1038/ngeo2398
https://doi.org/https://doi.org/10.1007/s10712-017-9428-0
https://doi.org/https://doi.org/10.1007/s10712-017-9428-0
https://doi.org/https://doi.org/10.5194/amt-11-4981-2018
https://doi.org/https://doi.org/10.5194/amt-11-4981-2018


92 bibliography

Brands, S., S. Herrera, J. Fernández, and J. M. Gutiérrez (2013). “How
well do CMIP5 Earth System Models simulate present climate
conditions in Europe and Africa?” In: Climate Dynamics 41.3-4,
pp. 803–817. doi: 10.1007/s00382-013-1742-8.

Buehler, Stefan A., Jana Mendrok, Patrick Eriksson, Agnès Perrin,
Richard Larsson, and Oliver Lemke (2018). “ARTS, the Atmo-
spheric Radiative Transfer Simulator – version 2.2, the planetary
toolbox edition.” In: Geoscientific Model Development 11.4, pp. 1537–
1556. doi: https://doi.org/10.5194/gmd-11-1537-2018.

Burgdorf, M. J., S. A. Buehler, and M. Prange (2021). “Calibration and
Characterization of Satellite-Borne Microwave Sounders With the
Moon.” In: Earth and Space Science 8.7. doi: 10.1029/2021EA001725.

Burgdorf, Martin J., Thomas G. Müller, Stefan A. Buehler, Marc Prange,
and Manfred Brath (2020). “Characterization of the High-Resolution
Infrared Radiation Sounder Using Lunar Observations.” In: Re-
mote Sensing 12.9, p. 1488. doi: https : / / doi . org / 10 . 3390 /

rs12091488.
Calbet, Xavier, Peter Schlüssel, Tim Hultberg, Pepe Phillips, and Thomas

August (2006). “Validation of the operational IASI level 2 proces-
sor using AIRS and ECMWF data.” In: Advances in Space Research
37.12, pp. 2299–2305. doi: 10.1016/j.asr.2005.07.057.

Cao, Guangxia, Thomas W. Giambelluca, Duane E. Stevens, and Thomas
A. Schroeder (2007). “Inversion Variability in the Hawaiian Trade
Wind Regime.” In: Journal of Climate 20.7, pp. 1145–1160. doi: 10.
1175/JCLI4033.1.

Cardinali, Carla (2009). “Monitoring the observation impact on the
short-range forecast.” In: Quarterly Journal of the Royal Meteorolog-
ical Society 135.638, pp. 239–250. doi: 10.1002/qj.366.

Chang, Shujie, Zheng Sheng, Huadong Du, Wei Ge, and Wei Zhang
(2020). “A channel selection method for hyperspectral atmospheric
infrared sounders based on layering.” In: Atmospheric Measure-
ment Techniques 13.2, pp. 629–644. doi: https://doi.org/10.
5194/amt-13-629-2020.

Chazette, P., F. Marnas, J. Totems, and X. Shang (2014). “Comparison
of IASI water vapor retrieval with H&ltsub&gt2&lt/sub&gtO-
Raman lidar in the framework of the Mediterranean HyMeX and
ChArMEx programs.” In: Atmospheric Chemistry and Physics 14.18,
pp. 9583–9596. doi: 10.5194/acp-14-9583-2014.

Clerbaux, C. et al. (2009). “Monitoring of atmospheric composition
using the thermal infrared IASI/MetOp sounder.” In: Atmospheric
Chemistry and Physics 9.16, pp. 6041–6054. doi: https://doi.org/
10.5194/acp-9-6041-2009.

Collard, A. D. (2007). “Selection of IASI channels for use in numerical
weather prediction.” In: Quarterly Journal of the Royal Meteorolog-
ical Society 133.629, pp. 1977–1991. doi: https://doi.org/10.
1002/qj.178.

https://doi.org/10.1007/s00382-013-1742-8
https://doi.org/https://doi.org/10.5194/gmd-11-1537-2018
https://doi.org/10.1029/2021EA001725
https://doi.org/https://doi.org/10.3390/rs12091488
https://doi.org/https://doi.org/10.3390/rs12091488
https://doi.org/10.1016/j.asr.2005.07.057
https://doi.org/10.1175/JCLI4033.1
https://doi.org/10.1175/JCLI4033.1
https://doi.org/10.1002/qj.366
https://doi.org/https://doi.org/10.5194/amt-13-629-2020
https://doi.org/https://doi.org/10.5194/amt-13-629-2020
https://doi.org/10.5194/acp-14-9583-2014
https://doi.org/https://doi.org/10.5194/acp-9-6041-2009
https://doi.org/https://doi.org/10.5194/acp-9-6041-2009
https://doi.org/https://doi.org/10.1002/qj.178
https://doi.org/https://doi.org/10.1002/qj.178


bibliography 93

Coppens, Dorothee, Robert Meyer, Dieter Klaes, and Francois Mon-
tagner (2019). “IASI Level 1: Product Guide.” In: url: https://
www-cdn.eumetsat.int/files/2020-04/pdf_iasi_pg.pdf.

Dahoui, Mohamed, L. Isaksen, and Gabor Radnoti (2017). “Assess-
ing the impact of observations using observation-minus-forecast
residuals.” In: doi: 10.21957/51j3sa.

Dingley, Beth, Guy Dagan, and Philip Stier (2021). “Forcing Convec-
tion to Aggregate Using Diabatic Heating Perturbations.” In: Jour-
nal of Advances in Modeling Earth Systems 13.10. doi: 10.1029/
2021MS002579.

Dirksen, R. J., M. Sommer, F. J. Immler, D. F. Hurst, R. Kivi, and H.
Vömel (2014). “Reference quality upper-air measurements: GRUAN
data processing for the Vaisala RS92 radiosonde.” In: Atmospheric
Measurement Techniques 7.12, pp. 4463–4490. doi: 10.5194/amt-7-
4463-2014.

ECMWF (2016). “IFS Documentation CY41R2 - Part III: Dynamics and
Numerical Procedures.” In: doi: 10.21957/83wouv80.

ECMWF (2018). “IFS Documentation - Cy45r1.” In: ECMWF. Chap. Part
IV : Physical processes, p. 203. url: https://www.ecmwf.int/
node/18714.

EUMETSAT (2017). “IASI Level 2: Product Guide.” In: url: https:
//www.eumetsat.int/media/45982.

EUMETSAT (2022). “IASI All Sky Temperature and Humidity Profiles
- Climate Data Record Release 1.1 - Metop-A and -B.” en. In: doi:
10.15770/EUM_SEC_CLM_0063.

Eresmaa, Reima and Anthony McNally (Oct. 2014). Diverse profile
datasets from the ECMWF 137-level short-range forecasts. doi: 10 .

13140/2.1.4476.8963.
Eriksson, P., S.A. Buehler, C.P. Davis, C. Emde, and O. Lemke (2011).

“ARTS, the atmospheric radiative transfer simulator, version 2.”
In: Journal of Quantitative Spectroscopy and Radiative Transfer 112.10,
pp. 1551–1558. doi: 10.1016/j.jqsrt.2011.03.001.

Eyring, Veronika, Sandrine Bony, Gerald A. Meehl, Catherine A. Se-
nior, Bjorn Stevens, Ronald J. Stouffer, and Karl E. Taylor (2016).
“Overview of the Coupled Model Intercomparison Project Phase
6 (CMIP6) experimental design and organization.” In: Geoscien-
tific Model Development 9.5, pp. 1937–1958. doi: https://doi.org/
10.5194/gmd-9-1937-2016.

Ferraro, Robert, Duane E. Waliser, Peter Gleckler, Karl E. Taylor, and
Veronika Eyring (2015). “Evolving Obs4MIPs to Support Phase
6 of the Coupled Model Intercomparison Project (CMIP6).” In:
Bulletin of the American Meteorological Society 96.8, ES131–ES133.
doi: 10.1175/BAMS-D-14-00216.1.

Fourrié, Nadia and Florence Rabier (2004). “Cloud characteristics and
channel selection for IASI radiances in meteorologically sensi-
tive areas.” In: Quarterly Journal of the Royal Meteorological Society

https://www-cdn.eumetsat.int/files/2020-04/pdf_iasi_pg.pdf
https://www-cdn.eumetsat.int/files/2020-04/pdf_iasi_pg.pdf
https://doi.org/10.21957/51j3sa
https://doi.org/10.1029/2021MS002579
https://doi.org/10.1029/2021MS002579
https://doi.org/10.5194/amt-7-4463-2014
https://doi.org/10.5194/amt-7-4463-2014
https://doi.org/10.21957/83wouv80
https://www.ecmwf.int/node/18714
https://www.ecmwf.int/node/18714
https://www.eumetsat.int/media/45982
https://www.eumetsat.int/media/45982
https://doi.org/10.15770/EUM_SEC_CLM_0063
https://doi.org/10.13140/2.1.4476.8963
https://doi.org/10.13140/2.1.4476.8963
https://doi.org/10.1016/j.jqsrt.2011.03.001
https://doi.org/https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/BAMS-D-14-00216.1


94 bibliography

130.600, pp. 1839–1856. doi: https://doi.org/10.1256/qj.03.
27.

Fourrié, Nadia and Jean-Noël Thépaut (2003). “Evaluation of the AIRS
near-real-time channel selection for application to numerical weather
prediction.” In: Quarterly Journal of the Royal Meteorological Society
129.592, pp. 2425–2439. doi: https://doi.org/10.1256/qj.02.
210.

George, Geet et al. (2021a). “JOANNE: Joint dropsonde Observations
of the Atmosphere in tropical North atlaNtic meso-scale Environ-
ments.” In: Earth System Science Data 13.11, pp. 5253–5272. doi:
10.5194/essd-13-5253-2021.

George, Geet et al. (2021b). “JOANNE: Joint dropsonde Observations
of the Atmosphere in tropical North atlaNtic meso-scale Environ-
ments.” In: Earth System Science Data 13.11, pp. 5253–5272. doi:
https://doi.org/10.5194/essd-13-5253-2021.

Gordon, I.E. et al. (2017). “The HITRAN2016 molecular spectroscopic
database.” In: Journal of Quantitative Spectroscopy and Radiative Trans-
fer 203, pp. 3–69. doi: https://doi.org/10.1016/j.jqsrt.2017.
06.038.

Haraguchi, Paul Y. (1968). “Inversions over the tropical eastern pacific
ocean.” In: Monthly Weather Review 96.3, pp. 177 –185. doi: 10.
1175/1520-0493(1968)096<0177:IOTTEP>2.0.CO;2. url: https:
//journals.ametsoc.org/view/journals/mwre/96/3/1520-

0493_1968_096_0177_iottep_2_0_co_2.xml.
Hariharan, P. (2007). Basics of Interferometry. 2nd ed. Elsevier. isbn:

9780123735898. doi: https://doi.org/10.1016/B978- 0- 12-
373589-8.X5000-7.

Hersbach, Hans et al. (2020). “The ERA5 global reanalysis.” In: Quar-
terly Journal of the Royal Meteorological Society 146.730, pp. 1999–
2049. doi: 10.1002/qj.3803.

Irion, Fredrick W., Brian H. Kahn, Mathias M. Schreier, Eric J. Fet-
zer, Evan Fishbein, Dejian Fu, Peter Kalmus, R. Chris Wilson,
Sun Wong, and Qing Yue (2018). “Single-footprint retrievals of
temperature, water vapor and cloud properties from AIRS.” In:
Atmospheric Measurement Techniques 11.2, pp. 971–995. doi: https:
//doi.org/10.5194/amt-11-971-2018.

Jeevanjee, Nadir and Stephan Fueglistaler (2020a). “On the Cooling-
to-Space Approximation.” In: Journal of the Atmospheric Sciences
77.2, pp. 465–478. doi: 10.1175/JAS-D-18-0352.1.

Jeevanjee, Nadir and Stephan Fueglistaler (2020b). “Simple Spectral
Models for Atmospheric Radiative Cooling.” In: Journal of the At-
mospheric Sciences 77.2, pp. 479–497. doi: 10.1175/JAS- D- 18-
0347.1.

Jiang, Jonathan H. et al. (2012). “Evaluation of cloud and water va-
por simulations in CMIP5 climate models using NASA “A-Train”

https://doi.org/https://doi.org/10.1256/qj.03.27
https://doi.org/https://doi.org/10.1256/qj.03.27
https://doi.org/https://doi.org/10.1256/qj.02.210
https://doi.org/https://doi.org/10.1256/qj.02.210
https://doi.org/10.5194/essd-13-5253-2021
https://doi.org/https://doi.org/10.5194/essd-13-5253-2021
https://doi.org/https://doi.org/10.1016/j.jqsrt.2017.06.038
https://doi.org/https://doi.org/10.1016/j.jqsrt.2017.06.038
https://doi.org/10.1175/1520-0493(1968)096<0177:IOTTEP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1968)096<0177:IOTTEP>2.0.CO;2
https://journals.ametsoc.org/view/journals/mwre/96/3/1520-0493_1968_096_0177_iottep_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/96/3/1520-0493_1968_096_0177_iottep_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/96/3/1520-0493_1968_096_0177_iottep_2_0_co_2.xml
https://doi.org/https://doi.org/10.1016/B978-0-12-373589-8.X5000-7
https://doi.org/https://doi.org/10.1016/B978-0-12-373589-8.X5000-7
https://doi.org/10.1002/qj.3803
https://doi.org/https://doi.org/10.5194/amt-11-971-2018
https://doi.org/https://doi.org/10.5194/amt-11-971-2018
https://doi.org/10.1175/JAS-D-18-0352.1
https://doi.org/10.1175/JAS-D-18-0347.1
https://doi.org/10.1175/JAS-D-18-0347.1


bibliography 95

satellite observations.” In: Journal of Geophysical Research: Atmo-
spheres 117.D14, n/a–n/a. doi: 10.1029/2011JD017237.

Johnson, Richard H., Paul E. Ciesielski, and Kenneth A. Hart (1996).
“Tropical Inversions near the 0°C Level.” In: Journal of the Atmo-
spheric Sciences 53.13, pp. 1838–1855. doi: 10.1175/1520-0469(1996)
053<1838:TINTL>2.0.CO;2.

Johnson, Richard H., Thomas M. Rickenbach, Steven A. Rutledge,
Paul E. Ciesielski, and Wayne H. Schubert (Aug. 1999). “Trimodal
Characteristics of Tropical Convection.” In: Journal of Climate 12.8,
pp. 2397–2418. issn: 0894-8755. doi: 10.1175/1520-0442(1999)
012<2397:TCOTC>2.0.CO;2. eprint: https://journals.ametsoc.
org/jcli/article-pdf/12/8/2397/3775124/1520-0442(1999)

012\_2397\_tcotc\_2\_0\_co\_2.pdf. url: https://doi.org/
10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

Keil, P., H. Schmidt, B. Stevens, and J. Bao (2021). “Variations of Trop-
ical Lapse Rates in Climate Models and their Implications for Up-
per Tropospheric Warming.” In: Journal of Climate, pp. 1–50. doi:
10.1175/JCLI-D-21-0196.1.

Kluft, Lukas and Sally Dacie (2020). “atmtools/konrad.” In: doi: http:
//doi.org/10.5281/zenodo.3899702.

Konow, Heike, Marek Jacob, Felix Ament, Susanne Crewell, Florian
Ewald, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Mario Mech,
and Bjorn Stevens (2019). “A unified data set of airborne cloud re-
mote sensing using the HALO Microwave Package (HAMP).” In:
Earth System Science Data 11.2, pp. 921–934. doi: https://doi.
org/10.5194/essd-11-921-2019.

Konow, Heike et al. (2021a). “EUREC4A’s HALO.” In: Earth System
Science Data 13.12, pp. 5545–5563. doi: 10.5194/essd-13-5545-
2021.

Konow, Heike et al. (2021b). “EUREC&ampltsup&ampgt4&amplt/sup&ampgtA's
&amplti&ampgtHALO&amplt/i&ampgt.” In: Earth System Science
Data 13.12, pp. 5545–5563. doi: https://doi.org/10.5194/essd-
13-5545-2021.

Lacour, J.-L., C. Risi, L. Clarisse, S. Bony, D. Hurtmans, C. Clerbaux,
and P.-F. Coheur (2012). “Mid-tropospheric D observations from
IASI/MetOp at high spatial and temporal resolution.” In: At-
mospheric Chemistry and Physics 12.22, pp. 10817–10832. doi: 10.
5194/acp-12-10817-2012.

Lang, Theresa, Ann Kristin Naumann, Bjorn Stevens, and Stefan A.
Buehler (2021). “Tropical Free-Tropospheric Humidity Differences
and Their Effect on the Clear-Sky Radiation Budget in Global
Storm-Resolving Models.” In: Journal of Advances in Modeling Earth
Systems 13.11. doi: 10.1029/2021MS002514.

Lerner, Jeffrey A. (2002). “Temperature and humidity retrieval from
simulated Infrared Atmospheric Sounding Interferometer (IASI)

https://doi.org/10.1029/2011JD017237
https://doi.org/10.1175/1520-0469(1996)053<1838:TINTL>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<1838:TINTL>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
https://journals.ametsoc.org/jcli/article-pdf/12/8/2397/3775124/1520-0442(1999)012\_2397\_tcotc\_2\_0\_co\_2.pdf
https://journals.ametsoc.org/jcli/article-pdf/12/8/2397/3775124/1520-0442(1999)012\_2397\_tcotc\_2\_0\_co\_2.pdf
https://journals.ametsoc.org/jcli/article-pdf/12/8/2397/3775124/1520-0442(1999)012\_2397\_tcotc\_2\_0\_co\_2.pdf
https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
https://doi.org/10.1175/JCLI-D-21-0196.1
https://doi.org/http://doi.org/10.5281/zenodo.3899702
https://doi.org/http://doi.org/10.5281/zenodo.3899702
https://doi.org/https://doi.org/10.5194/essd-11-921-2019
https://doi.org/https://doi.org/10.5194/essd-11-921-2019
https://doi.org/10.5194/essd-13-5545-2021
https://doi.org/10.5194/essd-13-5545-2021
https://doi.org/https://doi.org/10.5194/essd-13-5545-2021
https://doi.org/https://doi.org/10.5194/essd-13-5545-2021
https://doi.org/10.5194/acp-12-10817-2012
https://doi.org/10.5194/acp-12-10817-2012
https://doi.org/10.1029/2021MS002514


96 bibliography

measurements.” In: Journal of Geophysical Research 107.D14. doi:
10.1029/2001JD900254.

Levenberg, Kenneth (1944). “A method for the solution of certain non-
linear problems in least squares.” In: Quarterly of Applied Mathe-
matics 2.2, pp. 164–168. doi: 10.1090/qam/10666.

Manabe, Syukuro and Richard T. Wetherald (1967). “Thermal Equi-
librium of the Atmosphere with a Given Distribution of Relative
Humidity.” In: Journal of the Atmospheric Sciences 24.3, pp. 241–259.
doi: 10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

Mapes, Brain E. and Paquita Zuidema (1996). “Radiative-Dynamical
Consequences of Dry Tongues in the Tropical Troposphere.” In:
Journal of the Atmospheric Sciences 53.4, pp. 620–638. doi: 10.1175/
1520-0469(1996)053<0620:RDCODT>2.0.CO;2.

Marquardt, Donald W. (1963). “An Algorithm for Least-Squares Esti-
mation of Nonlinear Parameters.” In: Journal of the Society for In-
dustrial and Applied Mathematics 11.2, pp. 431–441. doi: 10.1137/
0111030.

Martinet, P., L. Lavanant, N. Fourrié, F. Rabier, and A. Gambacorta
(2013). “Evaluation of a revised IASI channel selection for cloudy
retrievals with a focus on the Mediterranean basin.” In: Quarterly
Journal of the Royal Meteorological Society 140.682, pp. 1563–1577.
doi: https://doi.org/10.1002/qj.2239.

Matricardi, Marco, Manuel López-Puertas, and Bernd Funke (2018).
“Modeling of Nonlocal Thermodynamic Equilibrium Effects in
the Classical and Principal Component-Based Version of the RT-
TOV Fast Radiative Transfer Model.” In: Journal of Geophysical Re-
search: Atmospheres 123.11, pp. 5741–5761. doi: https://doi.org/
10.1029/2018JD028657.

Mauritsen, Thorsten and Bjorn Stevens (2015). “Missing iris effect as
a possible cause of muted hydrological change and high climate
sensitivity in models.” In: Nature Geoscience 8.5, pp. 346–351. doi:
10.1038/NGEO2414.

Merchant, Christopher J. et al. (2019). “Satellite-based time-series of
sea-surface temperature since 1981 for climate applications.” In:
Scientific Data 6.1. doi: https://doi.org/10.1038/s41597-019-
0236-x.

Mlawer, Eli J., Vivienne H. Payne, Jean-Luc Moncet, Jennifer S. De-
lamere, Matthew J. Alvarado, and David C. Tobin (2012). “De-
velopment and recent evaluation of the MT_CKD model of con-
tinuum absorption.” In: Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences 370.1968,
pp. 2520–2556. doi: https://doi.org/10.1098/rsta.2011.0295.

Mlawer, Eli J., Steven J. Taubman, Patrick D. Brown, Michael J. Ia-
cono, and Shepard A. Clough (1997). “Radiative transfer for inho-
mogeneous atmospheres: RRTM, a validated correlated-k model
for the longwave.” In: Journal of Geophysical Research: Atmospheres

https://doi.org/10.1029/2001JD900254
https://doi.org/10.1090/qam/10666
https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<0620:RDCODT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<0620:RDCODT>2.0.CO;2
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/https://doi.org/10.1002/qj.2239
https://doi.org/https://doi.org/10.1029/2018JD028657
https://doi.org/https://doi.org/10.1029/2018JD028657
https://doi.org/10.1038/NGEO2414
https://doi.org/https://doi.org/10.1038/s41597-019-0236-x
https://doi.org/https://doi.org/10.1038/s41597-019-0236-x
https://doi.org/https://doi.org/10.1098/rsta.2011.0295


bibliography 97

102.D14, pp. 16663–16682. doi: https : / / doi . org / 10 . 1029 /

97JD00237.
Muller, Caroline and Sandrine Bony (2015). “What favors convec-

tive aggregation and why?” In: Geophysical Research Letters 42.13,
pp. 5626–5634. doi: 10.1002/2015GL064260.

Muller, Caroline et al. (2022). “Spontaneous Aggregation of Convec-
tive Storms.” In: Annual Review of Fluid Mechanics 54.1, pp. 133–
157. doi: https://doi.org/10.1146/annurev-fluid-022421-
011319.

Müller, T. G., M. Burgdorf, V. Ali-Lagoa, S. A. Buehler, and M. Prange
(2021). “The Moon at thermal infrared wavelengths: a benchmark
for asteroid thermal models.” In: Astronomy and Astrophysics 650,
A38. doi: https://doi.org/10.1051/0004-6361/202039946.

Naumann, Ann Kristin, Bjorn Stevens, and Cathy Hohenegger (2019).
“A Moist Conceptual Model for the Boundary Layer Structure
and Radiatively Driven Shallow Circulations in the Trades.” In:
Journal of the Atmospheric Sciences 76.5, pp. 1289–1306. doi: 10 .

1175/JAS-D-18-0226.1.
Pincus, Robert et al. (2020). “Benchmark Calculations of Radiative

Forcing by Greenhouse Gases.” In: Journal of Geophysical Research:
Atmospheres 125.23. doi: https://doi.org/10.1029/2020JD033483.

Posselt, D. J., S. C. van den Heever, and G. L. Stephens (2008). “Tri-
modal cloudiness and tropical stable layers in simulations of ra-
diative convective equilibrium.” In: Geophysical Research Letters
35.8. doi: https://doi.org/10.1029/2007GL033029.

Prange, M., S. A. Buehler, and M. Brath (2023). “How adequately are
elevated moist layers represented in reanalysis and satellite obser-
vations?” In: Atmospheric Chemistry and Physics 23.1, pp. 725–741.
doi: 10.5194/acp-23-725-2023. url: https://acp.copernicus.
org/articles/23/725/2023/.

Prange, Marc, Manfred Brath, and Stefan A. Buehler (2021a). “Are ele-
vated moist layers a blind spot for hyperspectral infrared sounders?
A model study.” In: Atmospheric Measurement Techniques 14.11,
pp. 7025–7044. doi: https://doi.org/10.5194/amt-14-7025-
2021.

Prange, Marc, Manfred Brath, and Stefan Alexander Buehler (2021b).
“Supplementary data for "Are elevated moist layers a blind spot
for hyperspectral infrared sounders? - a model study".” en. In:
doi: 10.5281/zenodo.4501184.

Prange, Marc, Stefan A. Buehler, and Manfred Brath (2022). “Sup-
plementary data for "How adequately are elevated moist layers
represented in reanalysis and satellite observations?"” en. In: doi:
10.5281/zenodo.6940500.

Prange, Marc, Max Ringel, Geet George, Lutz Hirsch, Tobias Kölling,
Heike Konow, Theresa Lang, and Theresa Mieslinger (2020). “EU-

https://doi.org/https://doi.org/10.1029/97JD00237
https://doi.org/https://doi.org/10.1029/97JD00237
https://doi.org/10.1002/2015GL064260
https://doi.org/https://doi.org/10.1146/annurev-fluid-022421-011319
https://doi.org/https://doi.org/10.1146/annurev-fluid-022421-011319
https://doi.org/https://doi.org/10.1051/0004-6361/202039946
https://doi.org/10.1175/JAS-D-18-0226.1
https://doi.org/10.1175/JAS-D-18-0226.1
https://doi.org/https://doi.org/10.1029/2020JD033483
https://doi.org/https://doi.org/10.1029/2007GL033029
https://doi.org/10.5194/acp-23-725-2023
https://acp.copernicus.org/articles/23/725/2023/
https://acp.copernicus.org/articles/23/725/2023/
https://doi.org/https://doi.org/10.5194/amt-14-7025-2021
https://doi.org/https://doi.org/10.5194/amt-14-7025-2021
https://doi.org/10.5281/zenodo.4501184
https://doi.org/10.5281/zenodo.6940500


98 bibliography

REC4A: HALO flight phase separation: Awesome Albatross.” en.
In: doi: 10.5281/zenodo.3906507.

Razavi, A., C. Clerbaux, C. Wespes, L. Clarisse, D. Hurtmans, S. Payan,
C. Camy-Peyret, and P. F. Coheur (2009). “Characterization of
methane retrievals from the IASI space-borne sounder.” In: At-
mospheric Chemistry and Physics 9.20, pp. 7889–7899. doi: https:
//doi.org/10.5194/acp-9-7889-2009.

Rodgers, Clive D (2000). “Inverse Methods for Atmospheric Sound-
ing.” In: Oceanic and Planetary Physics 2. doi: https://doi.org/
10.1142/3171.

Romps, David M. (2014). “An Analytical Model for Tropical Relative
Humidity.” In: Journal of Climate 27.19, pp. 7432–7449. doi: https:
//doi.org/10.1175/JCLI-D-14-00255.1.

Schmidt, Gavin A., Reto A. Ruedy, Ron L. Miller, and Andy A. Lacis
(2010). “Attribution of the present-day total greenhouse effect.”
In: Journal of Geophysical Research 115.D20. doi: doi : 10 . 1029 /

2010JD014287.
Schneider, M. and F. Hase (2011). “Optimal estimation of tropospheric

H2O and &deltaD with IASI/METOP.” In: Atmospheric Chemistry
and Physics 11.21, pp. 11207–11220. doi: 10.5194/acp-11-11207-
2011.

Schulz, Hauke, Ryan Eastman, and Bjorn Stevens (2021). “Character-
ization and Evolution of Organized Shallow Convection in the
Downstream North Atlantic Trades.” In: Journal of Geophysical
Research: Atmospheres 126.17. doi: https://doi.org/10.1029/
2021JD034575.

Schulz, Hauke and Bjorn Stevens (2018). “Observing the Tropical At-
mosphere in Moisture Space.” In: Journal of the Atmospheric Sci-
ences 75.10, pp. 3313–3330. doi: 10.1175/JAS-D-17-0375.1.

Seidel, Dian J. et al. (2009). “Reference Upper-Air Observations for
Climate: Rationale, Progress, and Plans.” In: Bulletin of the Amer-
ican Meteorological Society 90.3, pp. 361–369. doi: https://doi.
org/10.1175/2008BAMS2540.1.

Sherwood, S. C. et al. (2020). “An Assessment of Earth's Climate Sensi-
tivity Using Multiple Lines of Evidence.” In: Reviews of Geophysics
58.4. doi: https://doi.org/10.1029/2019RG000678.

Smith, Nadia and Christopher D. Barnet (2019). “Uncertainty Char-
acterization and Propagation in the Community Long-Term In-
frared Microwave Combined Atmospheric Product System (CLIM-
CAPS).” In: Remote Sensing 11.10, p. 1227. doi: https://doi.org/
10.3390/rs11101227.

Smith, Nadia and Christopher D. Barnet (2020). “CLIMCAPS observ-
ing capability for temperature, moisture, and trace gases from
AIRS/AMSU and CrIS/ATMS.” In: Atmospheric Measurement Tech-
niques 13.8, pp. 4437–4459. doi: https://doi.org/10.5194/amt-
13-4437-2020.

https://doi.org/10.5281/zenodo.3906507
https://doi.org/https://doi.org/10.5194/acp-9-7889-2009
https://doi.org/https://doi.org/10.5194/acp-9-7889-2009
https://doi.org/https://doi.org/10.1142/3171
https://doi.org/https://doi.org/10.1142/3171
https://doi.org/https://doi.org/10.1175/JCLI-D-14-00255.1
https://doi.org/https://doi.org/10.1175/JCLI-D-14-00255.1
https://doi.org/doi:10.1029/2010JD014287
https://doi.org/doi:10.1029/2010JD014287
https://doi.org/10.5194/acp-11-11207-2011
https://doi.org/10.5194/acp-11-11207-2011
https://doi.org/https://doi.org/10.1029/2021JD034575
https://doi.org/https://doi.org/10.1029/2021JD034575
https://doi.org/10.1175/JAS-D-17-0375.1
https://doi.org/https://doi.org/10.1175/2008BAMS2540.1
https://doi.org/https://doi.org/10.1175/2008BAMS2540.1
https://doi.org/https://doi.org/10.1029/2019RG000678
https://doi.org/https://doi.org/10.3390/rs11101227
https://doi.org/https://doi.org/10.3390/rs11101227
https://doi.org/https://doi.org/10.5194/amt-13-4437-2020
https://doi.org/https://doi.org/10.5194/amt-13-4437-2020


bibliography 99

Smith, Nadia, Rebekah Esmaili, and Chris D. Barnet (2021). “Com-
munity Long-term Infrared Microwave CombinedAtmospheric
Product System (CLIMCAPS) Science Application Guides.” In:
url: https://docserver.gesdisc.eosdis.nasa.gov/public/
project/Sounder/CLIMCAPS_V2_L2_science_guides.pdf.

Smith, W.L. and E. Weisz (2018). “Dual-Regression Approach for High-
Spatial-Resolution Infrared Soundings.” In: pp. 297–311. doi: https:
//doi.org/10.1016/B978-0-12-409548-9.10394-X.

Smith, William L., Elisabeth Weisz, Stanislav V. Kireev, Daniel K. Zhou,
Zhenglong Li, and Eva E. Borbas (2012). “Dual-Regression Re-
trieval Algorithm for Real-Time Processing of Satellite Ultraspec-
tral Radiances.” In: Journal of Applied Meteorology and Climatology
51.8, pp. 1455–1476. doi: 10.1175/JAMC-D-11-0173.1.

Sobel, Adam H. and Christopher S. Bretherton (Dec. 2000). “Mod-
eling Tropical Precipitation in a Single Column.” In: Journal of
Climate 13.24, pp. 4378–4392. issn: 0894-8755. doi: 10.1175/1520-
0442(2000)013<4378:MTPIAS>2.0.CO;2. eprint: https://journals.
ametsoc.org/jcli/article-pdf/13/24/4378/3766524/1520-

0442(2000)013\_4378\_mtpias\_2\_0\_co\_2.pdf. url: https:
//doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;

2.
Stevens, B. et al. (2021). “EUREC4A.” In: Earth System Science Data

Discussions 2021, pp. 1–78. doi: 10.5194/essd- 2021- 18. url:
https://essd.copernicus.org/preprints/essd-2021-18/.

Stevens, Bjorn, Hélène Brogniez, Christoph Kiemle, Jean-Lionel La-
cour, Cyril Crevoisier, and Johannes Kiliani (2017). “Structure
and Dynamical Influence of Water Vapor in the Lower Tropical
Troposphere.” In: Surveys in Geophysics 38.6, pp. 1371–1397. doi:
https://doi.org/10.1007/s10712-017-9420-8.

Susskind, Joel, John M. Blaisdell, and Lena Iredell (2014). “Improved
methodology for surface and atmospheric soundings, error esti-
mates, and quality control procedures: the atmospheric infrared
sounder science team version-6 retrieval algorithm.” In: Journal of
Applied Remote Sensing 8.1, p. 084994. doi: https://doi.org/10.
1117/1.JRS.8.084994.

Sussmann, R. and T. Borsdorff (2007). “Technical Note: Interference
errors in infrared remote sounding of the atmosphere.” In: Atmo-
spheric Chemistry and Physics 7.13, pp. 3537–3557. doi: 10.5194/
acp-7-3537-2007.

Teixeira, Joao, Duane Waliser, Robert Ferraro, Peter Gleckler, Tsen-
gdar Lee, and Gerald Potter (2014). “Satellite Observations for
CMIP5: The Genesis of Obs4MIPs.” In: Bulletin of the American
Meteorological Society 95.9, pp. 1329–1334. doi: 10.1175/BAMS-D-
12-00204.1.

Villiger, Leonie, Heini Wernli, Maxi Boettcher, Martin Hagen, and
Franziska Aemisegger (2022). “Lagrangian formation pathways

https://docserver.gesdisc.eosdis.nasa.gov/public/project/Sounder/CLIMCAPS_V2_L2_science_guides.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/Sounder/CLIMCAPS_V2_L2_science_guides.pdf
https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.10394-X
https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.10394-X
https://doi.org/10.1175/JAMC-D-11-0173.1
https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2
https://journals.ametsoc.org/jcli/article-pdf/13/24/4378/3766524/1520-0442(2000)013\_4378\_mtpias\_2\_0\_co\_2.pdf
https://journals.ametsoc.org/jcli/article-pdf/13/24/4378/3766524/1520-0442(2000)013\_4378\_mtpias\_2\_0\_co\_2.pdf
https://journals.ametsoc.org/jcli/article-pdf/13/24/4378/3766524/1520-0442(2000)013\_4378\_mtpias\_2\_0\_co\_2.pdf
https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2
https://doi.org/10.5194/essd-2021-18
https://essd.copernicus.org/preprints/essd-2021-18/
https://doi.org/https://doi.org/10.1007/s10712-017-9420-8
https://doi.org/https://doi.org/10.1117/1.JRS.8.084994
https://doi.org/https://doi.org/10.1117/1.JRS.8.084994
https://doi.org/10.5194/acp-7-3537-2007
https://doi.org/10.5194/acp-7-3537-2007
https://doi.org/10.1175/BAMS-D-12-00204.1
https://doi.org/10.1175/BAMS-D-12-00204.1


100 bibliography

of moist anomalies in the trade-wind region during the dry sea-
son: two case studies from EUREC&ltsup&gt4&lt/sup&gtA.” In:
Weather and Climate Dynamics 3.1, pp. 59–88. doi: 10.5194/wcd-3-
59-2022.

Weisz, Elisabeth, William L. Smith, and Nadia Smith (2013). “Ad-
vances in simultaneous atmospheric profile and cloud parameter
regression based retrieval from high-spectral resolution radiance
measurements.” In: Journal of Geophysical Research: Atmospheres
118.12, pp. 6433–6443. doi: 10.1002/jgrd.50521.

Wing, Allison A., Kerry Emanuel, Christopher E. Holloway, and Car-
oline Muller (2017). “Convective Self-Aggregation in Numerical
Simulations: A Review.” In: Surveys in Geophysics 38.6, pp. 1173–
1197. doi: https://doi.org/10.1007/s10712-017-9408-4.

Wing, Allison A. et al. (2020). “Clouds and Convective Self-Aggregation
in a Multimodel Ensemble of Radiative-Convective Equilibrium
Simulations.” In: Journal of Advances in Modeling Earth Systems
12.9. doi: https://doi.org/10.1029/2020MS002138.

Yoneyama, Kunio, Chidong Zhang, and Charles N. Long (2013). “Track-
ing Pulses of the Madden–Julian Oscillation.” In: Bulletin of the
American Meteorological Society 94.12, pp. 1871–1891. doi: https:
//doi.org/10.1175/BAMS-D-12-00157.1.

Zelinka, Mark D., David A. Randall, Mark J. Webb, and Stephen A.
Klein (2017). “Clearing clouds of uncertainty.” In: Nature Climate
Change 7.10, pp. 674–678. doi: https : / / doi . org / 10 . 1038 /

nclimate3402.
Zhou, D. K., W. L. Smith, A. M. Larar, X. Liu, J. P. Taylor, P. Schlüs-

sel, L. L. Strow, and S. A. Mango (2009). “All weather IASI sin-
gle field-of-view retrievals: case study – validation with JAIVEx
data.” In: Atmospheric Chemistry and Physics 9.6, pp. 2241–2255.
doi: https://doi.org/10.5194/acp-9-2241-2009.

Zuidema, Paquita (June 1998). “The 600–800-mb Minimum in Trop-
ical Cloudiness Observed during TOGA COARE.” In: Journal of
the Atmospheric Sciences 55.12, pp. 2220–2228. issn: 0022-4928. doi:
10.1175/1520-0469(1998)055<2220:TMMITC>2.0.CO;2. eprint:
https://journals.ametsoc.org/jas/article-pdf/55/12/2220/

3433626/1520-0469(1998)055\_2220\_tmmitc\_2\_0\_co\_2.

pdf. url: https://doi.org/10.1175/1520-0469(1998)055<2220:
TMMITC>2.0.CO;2.

https://doi.org/10.5194/wcd-3-59-2022
https://doi.org/10.5194/wcd-3-59-2022
https://doi.org/10.1002/jgrd.50521
https://doi.org/https://doi.org/10.1007/s10712-017-9408-4
https://doi.org/https://doi.org/10.1029/2020MS002138
https://doi.org/https://doi.org/10.1175/BAMS-D-12-00157.1
https://doi.org/https://doi.org/10.1175/BAMS-D-12-00157.1
https://doi.org/https://doi.org/10.1038/nclimate3402
https://doi.org/https://doi.org/10.1038/nclimate3402
https://doi.org/https://doi.org/10.5194/acp-9-2241-2009
https://doi.org/10.1175/1520-0469(1998)055<2220:TMMITC>2.0.CO;2
https://journals.ametsoc.org/jas/article-pdf/55/12/2220/3433626/1520-0469(1998)055\_2220\_tmmitc\_2\_0\_co\_2.pdf
https://journals.ametsoc.org/jas/article-pdf/55/12/2220/3433626/1520-0469(1998)055\_2220\_tmmitc\_2\_0\_co\_2.pdf
https://journals.ametsoc.org/jas/article-pdf/55/12/2220/3433626/1520-0469(1998)055\_2220\_tmmitc\_2\_0\_co\_2.pdf
https://doi.org/10.1175/1520-0469(1998)055<2220:TMMITC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<2220:TMMITC>2.0.CO;2


D E C L A R AT I O N

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Disser-
tationsschrift selbst verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Hamburg, den 11.10.2022

Marc Prange



Hinweis / Reference

Die gesamten Veröffentlichungen in der Publikationsreihe des MPI-M
„Berichte zur Erdsystemforschung / Reports on Earth System Science“, 
ISSN 1614-1199   

sind über die Internetseiten des Max-Planck-Instituts für Meteorologie erhältlich: 
https://mpimet.mpg.de/forschung/publikationen

All the publications in the series of the MPI -M 
„Berichte zur Erdsystemforschung / Reports on Earth System Science“, 
ISSN 1614-1199 

are available on the website of the Max Planck Institute for Meteorology:
https://mpimet.mpg.de/en/research/publications




	Abstract
	Publications
	Acknowledgements
	Contents
	Unifying Essay
	1 Motivation
	2 Is there a moist layer blindspot in satellite observations?
	2.1 Hyperspectral Infrared Observations
	2.2 Conceptualisation of the moist layer blindspot
	2.3 Demonstration of the moist layer blindspot and how to resolve it

	3 Representation of moist layers in operational retrieval products
	3.1 Moist layers during EUREC4A
	3.2 Moist layer reference dataset from Manus Island
	3.3 Moist layer identification and characterisation
	3.4 Comparison of moist layer characteristics
	3.5 Moist layers' effect on meso-scale dynamics

	4 Summary and conclusion

	Appendix
	A Are elevated moist layers a blind spot for hyperspectral infrared sounders? A model study
	A.1 Introduction
	A.1.1 Previous moist layer retrievals

	A.2 The retrieval
	A.2.1 Spectral setup
	A.2.2 Retrieval quantities
	A.2.3 Optimal estimation algorithm
	A.2.4 The forward model and representation of IASI
	A.2.5 A priori assumptions

	A.3 Definition and characterisation of moisture anomalies
	A.4 Case study of a moist layer retrieval
	A.4.1 Importance of temperature information to retrieve a moist layer
	A.4.2 Retrieval resolution

	A.5 Retrieval performance
	A.5.1 Reference dataset and retrieval error
	A.5.2 Smoothing error

	A.6 Retrieval of moisture anomalies
	A.6.1 Moisture anomaly characteristics
	A.6.2 Implications of moisture anomalies for the heating rate profile

	A.7 Summary and conclusions
	A.8 Appendix
	A.8.1 Temperature averaging kernels


	B How adequately are elevated moist layers represented in reanalysis and satellite observations?
	B.1 Introduction
	B.2 Data
	B.2.1 GRUAN radiosondes
	B.2.2 ERA5
	B.2.3 IASI L2 Climate Data Record
	B.2.4 CLIMCAPS-Aqua L2 product
	B.2.5 Collocation procedure

	B.3 Climatological mean
	B.4 Moisture anomaly identification and characterisation
	B.5 Comparison of moisture anomaly characteristics
	B.5.1 All-sky
	B.5.2 Clear-sky

	B.6 Moist layers' radiative implications on the dynamics

	Bibliography
	Declaration
	Declaration




