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Abstract. Drought events are projected to become more severe and frequent across many regions in the future,
but their impacts will likely differ among ecosystems depending on their ability to maintain functioning during
droughts, i.e., ecosystem resistance. Plant species have diverse strategies to cope with drought. As a result, diver-
gent responses of different vegetation types for similar levels of drought severity have been observed. It remains
unclear whether such divergence can be explained by different drought duration; co-occurring compounding
effects, e.g., heat stress or memory effects; management practices; etc.

Here, we provide a global synthesis of vegetation resistance to drought and heat using different proxies for
vegetation condition, namely the vegetation optical depth (L-VOD) data from the ESA Soil Moisture and Ocean
Salinity (SMOS) passive L-band microwave mission and enhanced vegetation index (EVI) and kernel normal-
ized difference vegetation index (kNDVI) from NASA MODIS. Due to its longer wavelength, L-VOD has the
advantage over more commonly used vegetation indices (such as kNDVI, EVI) in that it provides different infor-
mation on vegetation structure and biomass and suffers from less saturation over dense forests. We apply a linear
model accounting for drought and temperature effects to characterize ecosystem resistance by their sensitivity to
drought duration and temperature anomalies. We analyze how ecosystem resistance varies with land cover across
the globe and investigate the potential effects of forest management and crop irrigation. We compare estimates
of ecosystem resistance to drought and heat as retrieved from L-VOD, kNDVI, and EVI products.

We find that regions with higher forest fraction show stronger ecosystem resistance to extreme droughts than
cropland for all three vegetation proxies. L-VOD indicates that primary forests tend to be more resistant to
drought events than secondary forests when controlling for the differences in background climate, but this can-
not be detected in EVI and kNDVI. The difference is possibly related to EVI and kNDVI saturation in dense
forests. In tropical primary evergreen broadleaf forests, old-growth trees tend to be more resistant to drought
than young trees from L-VOD and kNDVI. Irrigation increases the drought resistance of cropland substantially.
Forest harvest decreases the drought resistance of forests. Our results suggest that ecosystem resistance can be
better monitored using L-VOD in dense forests and highlight the role of forest cover, forest management, and
irrigation in determining ecosystem resistance to droughts.
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1 Introduction

Heat waves and drought events have become more frequent
since the last century, and this trend is expected to continue
across many regions under projected environmental changes
with high confidence (IPCC, 2021). These events disturb
ecosystems and can potentially weaken the land carbon sink
(Schwalm et al., 2012; Reichstein et al., 2013; Zhang et al.,
2019). During the past decade, the negative effects of cli-
mate variability and change contribute to a decline in the land
sink in tropical forests across Amazonia and counterbalanced
the CO2 effects in many regions (Friedlingstein et al., 2022).
However, drought impacts differ among ecosystems depend-
ing on the ability of ecosystems to maintain their function-
ing during adverse conditions, i.e., the ecosystem resistance
(Gessler et al., 2020; Ingrisch and Bahn, 2018) and recovery
trajectory following the disturbance (Schwalm et al., 2017;
Wigneron et al., 2020; Wu et al., 2022; Yao et al., 2023).
Ecosystem resistance is defined as the concurrent impact of a
disturbance on response parameters. However, event-specific
resistance may differ under different drought conditions. We
applied a long-term resistance definition as the vegetation
sensitivity to drought duration over multiple years, making it
consistent for spatial comparison. Therefore, gaining a thor-
ough understanding of the global patterns of ecosystem re-
sistance and identifying the potential drivers behind their
spatial variations is crucial for comprehending the impact
of drought events on the land carbon sink. Potential drivers
include climate background, plant species, biodiversity, tree
height and ages, land use, and land management. Land use
and land management can potentially affect ecosystem resis-
tance through changes in species composition, biodiversity,
and stand structure.

Ecosystem resistance to drought stress may vary with
ecosystem composition. Experimental and site-based studies
have compared the growth decline and mortality rate between
different plant species and functional types during drought
events. Gymnosperms show higher hydraulic safety margins
than angiosperms, suggesting a higher tolerance to drought
stress (DeSoto et al., 2020). On the other hand, higher biodi-
versity has been found to strengthen ecosystem resistance to
drought events in temperate beech and thermophilous decid-
uous forests in drought-prone environments (Grossiord et al.,
2014) and in grassland with stabilized ecosystem productiv-
ity (Isbell et al., 2015). However, previous studies provide
only regional results. Furthermore, inconsistency in defini-
tions of ecosystem resistance, considered drought duration
(Slette et al., 2019), measurement time, and frequency be-
tween plots make the samples available for comparison lim-
ited.

To achieve a broader coverage and make consistent com-
parisons, satellite products (e.g., enhanced vegetation index
(EVI), normalized difference vegetation index (NDVI), and
vegetation optical depth (VOD)) and dynamic global vegeta-
tion models (DGVMs) are used to evaluate the ecosystem re-

sponse during drought extreme events. With NDVI, Liu et al.
(2022) have found an enhanced drought resistance from tree
species diversity in dry forests such as xeric woodland, sub-
tropical dry forests, and Mediterranean forests. Taller tropi-
cal forests have been shown to be more vulnerable to vapor
pressure deficit (VPD) fluctuations during drought periods
because of smaller xylem transport safety margins in studies
based on Ku-band VOD (Liu et al., 2021) and sun-induced
chlorophyll fluorescence (SIF; Giardina et al., 2018). How-
ever, the opposite has been found when analyzing resistance
to precipitation variability (Giardina et al., 2018) and terres-
trial water storage anomalies (L. Liu et al., 2021), with taller
trees being associated with higher resistance to soil moisture
deficit based on the same vegetation proxies. However, some
satellite products are less capable of detecting vegetation dy-
namics in dense forests. NDVI and EVI show saturation in
dense forests (Li et al., 2021). The kNDVI is better corre-
lated with key vegetation parameters, such as leaf area index
(LAI), gross primary productivity (GPP), and SIF compared
to NDVI. It shows a higher resistance to saturation (Camps-
Valls et al., 2021), but the signal still reflects mostly the up-
per canopy layer and cannot detect above-ground biomass
changes within the vegetational volume, which represents
the amount of carbon stored in above-ground vegetation.
For complex ecosystems with a multi-layer structure, e.g.,
the Amazon rainforest, the impacts cannot be detected from
observations of the top canopy greenness (Walther et al.,
2019). Several studies have investigated the sensitivity of
GPP to drought events (Bastos et al., 2020; Flach et al.,
2018; Zscheischler et al., 2014). For example, in Europe both
DGVMs and upscaled FLUXCOM GPP have suggested that
GPP anomalies under low soil moisture conditions are less
negative or even positive in pixels with more than 80 % for-
est cover than in those pixels with lower forest cover. On
the contrary, pixels with higher crop cover show stronger
negative impacts on GPP anomalies compared to the pix-
els with low crop coverage in drought and heat events that
occurred in 2003, 2010, and 2018 in Europe (Bastos et al.,
2020). Over the globe, FLUXCOM GPP shows a reduced
sensitivity to depleted soil moisture with increased tree cover
(Walther et al., 2019). However, ecosystem fluxes are not di-
rectly observable at a regional scale beyond the footprint of
flux towers (a few hundred meters). Above-ground vegeta-
tion biomass changes, on the other hand, can be retrieved
globally from satellite data, and they are therefore useful to
quantify the ecosystem resistance worldwide (Araza et al.,
2023).

The majority of the land surface is managed by humans.
By changing the biophysical and biogeochemical proper-
ties of the land surface and the plant functional traits, man-
agement practices also affect ecosystem resilience to cli-
mate extremes. For example, based on a stand-alone for-
est gap model, modifying forest density and structure by
high-intensity overstory removal in conifer–broadleaf mixed
forests in central Europe considerably increased their growth
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Table 1. Overview of the satellite products included for investigating vegetation dynamics.

Variable Dataset Metadata period Sampling (time, space) Reference

SMOS L-VOD SMOS 2010–2020 Monthly, 0.25◦ Wigneron et al. (2021); Yang et al. (2023)
NDVI MODIS 2000–2020 16 d, 0.05◦ Didan (2015)
EVI MODIS 2000–2020 16 d, 0.05◦ Didan (2015)

resilience to droughts and decreased drought-induced mor-
tality by two-thirds (Zamora-Pereira et al., 2021). For crop-
land, irrigation has been proven to be an effective strategy
to mitigate the impacts of heat waves and drought events
(Jia et al., 2022). Aside from directly alleviating soil water
deficits and mitigating drought impacts, irrigation of land
causes a global increase in evaporation of 32 500 m3 s−1

(Sherwood et al., 2018) and a decrease in mean surface day-
time temperature (Mueller et al., 2016). Such cooling can lo-
cally mitigate the effect of heat waves. The dependence of
ecosystem resilience on tree species, height, size, age, and
land cover types also suggests that land management related
to the above parameters may strongly affect the ecosystem
response to extreme events (Condit et al., 1995; Nepstad
et al., 2007; McDowell et al., 2008; McDowell and Allen,
2015; F. Liu et al., 2021; L. Liu et al., 2021). Neverthe-
less, there is a lack of studies linking forest management to
ecosystem resistance at a global scale. With the projected
increased intensity and frequency of droughts and heat ex-
tremes in the coming decades, it is important to evaluate the
role of various land management practices in the resistance
and resilience of ecosystems to those events.

Aiming at a global analysis of ecosystem resistance based
on ecosystem state variables, we use the vegetation optical
depth product based on L-band microwave emission observa-
tions (L-VOD) from the ESA Soil Moisture and Ocean Salin-
ity (SMOS) satellite, which can be related to aboveground
biomass at annual timescales (Brandt et al., 2018; Fan et al.,
2019; Qin et al., 2021). For comparison, we use EVI and
kNDVI. Specifically, we use global L-VOD spanning from
2010 to 2020 to investigate the spatial variability of ecosys-
tem resistance to heat and drought events. Ultimately, we ex-
plore several possible effects of land cover and land manage-
ment, including dominant vegetation cover, forest fraction,
irrigation areas, and forest ages on the spatial variability of
ecosystem resistance to heat and drought events.

2 Data and methods

2.1 Satellite data

Table 1 presents an overview of the vegetation datasets in-
cluded in this study. We used vegetation optical depth (VOD)
data from the ESA SMOS low-frequency passive microwave
sensor (SMOS L-VOD) as an indicator of vegetation dynam-
ics (Wigneron et al., 2021). VOD parameterizes the attenu-

ation of the microwave radiation when passing through the
vegetation layer accounting for the effects of both the woody
and leafy components of the vegetation canopy. VOD varies
with both the mass of water contained in the canopy and the
canopy structure. Different VOD datasets have been inter-
preted to be dominantly sensitive to vegetation biomass at an
annual scale, based on the assumption that relative water con-
tent (RWC) in vegetation is stable from year to year (Brandt
et al., 2018). Therefore, VOD has been used as a proxy for
above-ground biomass (Brandt et al., 2018; Fan et al., 2019).
Since it is independent of any vegetation index, VOD is ro-
bust for application in ecology and climate change studies.
Compared to traditional vegetation indices (NDVI, EVI) and
Ku-, X-, or C-VOD, L-band VOD (L-VOD) is less sensitive
to saturation effects at high biomass densities and originates
from the entire canopy, not just the top layer as for higher-
frequency VODs (Fan et al., 2019).

The multi-year L-VOD products were filtered strictly
(Yang et al., 2023) in order to remove effects of radio fre-
quency interference (RFI) in some regions of the North-
ern Hemisphere. The strictly filtered L-VOD data with good
quality were then reconstructed using a curve-fitting method
used for CO2 measurements (Thoning et al., 1989). The spe-
cific process is as follows. First, the L-VOD data were fitted
using both a harmonic function (reflecting seasonal cycle)
and a polynomial function (reflecting long-term variability).
Second, the residuals of the fitting were further transformed
using a fast Fourier transform and then filtered using low-
pass filters to track the remaining seasonal oscillation and
long-term variations. The reconstructed L-VOD data can be
separated into two time series including the long-term vari-
ability only and the seasonal oscillation only. The first mainly
reflects vegetation carbon dynamics, while the latter is more
affected by the seasonality in the vegetation water content.

SMOS L-VOD data are more complex to interpret when
the ground is frozen (e.g., ice, snow); hence, we removed ob-
servations where the MODIS snow or ice cover fraction in
the specified pixel is larger than zero. We also filtered out
observations where the MODIS vegetation cover fraction is
less than 0.05 to focus on vegetated land pixels. L-VOD is
sensitive to the moisture content of vegetation, which may
be altered by water stress (Konings et al., 2021). Wigneron
et al. (2020) proposed that the yearly average of the moisture
content of vegetation is roughly constant between years at a
25 km scale. To limit the impact of variations in water con-
tent in estimates of vegetation resistance, we used the yearly
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Table 2. Overview of the land cover products included in this study.

Land cover Metadata period Sampling Reference

MCD12Q1 2001–2020 Yearly, 500 m Friedl and Sulla-Menashe (2019)
Land Cover CCI 1992–2020 Yearly, 300 m ESA (2022)
LUH2 v2h 850–2100 Yearly, 0.25◦ Hurtt et al. (2020)

maximum VOD as a proxy of the annual biomass that oc-
curs mostly in the wet month because relative vegetation wa-
ter content during wet months is likely to be relatively sta-
ble over 2010–2021, so that the annual maximum L-VOD
changes are closely related to vegetation biomass changes
(Qin et al., 2021). This method resulted in 11 yearly values
of L-VOD from 2010 to 2020.

Two optical vegetation indices, NDVI and EVI data, ac-
quired from NASA’s Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument aboard the Terra satellite,
were used to compare with the SMOS L-VOD product. The
MODIS-derived NDVI and EVI datasets are temporally and
spatially consistent as they are obtained from a single plat-
form and sensor and are regarded as state-of-art proxies for
green vegetation cover. We further calculated kNDVI, a non-
linear generalization of the NDVI following Eq. (1):

kNDVI= tanh(NDVI2). (1)

The kNDVI has been shown to perform better than NDVI,
with stronger correlations with flux tower estimates of gross
primary productivity and satellite retrievals of sun-induced
fluorescence. It has been evaluated to be more resistant to
saturation and noise (Camps-Valls et al., 2021). Compared to
NDVI, EVI is proposed to decouple the canopy background
signals and reduce the atmospheric influence. It presents
higher resistance to saturation over dense forest areas (Zeng
et al., 2022).

2.2 Climate drivers

The climate variables were acquired from the ERA5
reanalysis product at 0.25◦ spatial resolution for the
1979–2020 period (Hersbach et al., 2020) (https://www.
ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5, last ac-
cess: 15 November 2022). To assess the ecosystem sensitiv-
ity to droughts and temperature, we used monthly averaged
volumetric soil water in four soil layers at depths of 0–7, 7–
28, 28–100, and 100–289 cm and 2 m air temperatures. We
calculated total soil moisture (SM) using the depth-weighted
average of the volumetric soil water in the four layers.

Drought severity was quantified using the probability
P (x < SM) of the kernel density estimate (KDE) fitted using
the distribution of monthly total SM anomalies for the 1979–
2020 time period. We used KDE to fit the distribution (Flach
et al., 2018). The total SM anomalies were then linearly
detrended and deseasonalized. A given month (t) was de-
fined as a drought month when P (x < SM anomaliest)< 0.1

(monthly SM anomalies are less than the 10th percentiles of
the KDE fit).

2.3 Land cover and land management data

Given the uncertainties in the land-cover mapping (Hartley
et al., 2017; Li et al., 2018), we used three global land cover
maps in our study presented in Table 2. These were resam-
pled from their original resolution to 0.25◦ spatial resolution
for the 2010–2020 period to match the spatial resolution of
L-VOD.

We derived land cover based on the International
Geosphere-Biosphere Program (IGBP) scheme from the
MODIS land cover map. The ESA Land Cover CCI product
and LUH2 v2h use different land cover classifications. The
ESA Land Cover CCI product provided 37 classes based on
the United Nations Land Cover Classification System (UN-
LCCS; Di Gregorio, 2005). These were then converted to 14
plant functional types (PFTs) using the lookup table in Poul-
ter et al. (2015). To better account for the intrinsic bias and
classification differences among the three products, we fur-
ther aggregated the original classes into four vegetation cat-
egories (forests, shrublands, grasslands, and croplands) ac-
cording to Table 3. We categorized land cover in bins of
25 % fraction of each biome and, for each pixel, assigned
the land cover information with the highest agreement across
datasets (≥ 2 agree). To guarantee that our results are not bi-
ased by the land cover change (e.g., deforestation), we ex-
cluded those pixels showing changes in the 25 % bins during
2010–2020.

The LUH2 v2h dataset also provides land management in-
formation, for example, forested primary land and potentially
forested secondary land (Fig. 1). It also provides wood har-
vest area as a fraction of the total grid cell area. We con-
verted this to the fraction of wood harvest from forests (de-
scribed below as forest wood harvest intensity) by dividing
the wood harvest area by the forest area fraction of the total
grid cell area. We limit this analysis to pixels with > 50 %
forest cover. We also used the global map of irrigation areas
around 2005 at 0.0833◦ spatial resolution from FAO (Siebert
et al., 2013). The latter map provides areas equipped for ir-
rigation as the percentage of total grid cell area (fe) and the
percentage of area equipped for irrigation that was actually
irrigated (fa) based on national census surveys or irrigation
sector studies. We then assumed that the irrigation equipment
is totally located in cropland and calculated the percentage of
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Table 3. Overview of the merged input classes for the four vegetation categories used in this study.

Vegetation categories MCD12Q1 Land cover CCI LUH2 v2h

Forests Evergreen needleleaf forests,
evergreen broadleaf forests,
deciduous needleleaf forests,
deciduous broadleaf forests,
mixed forests

Tree broadleaf evergreen,
tree broadleaf deciduous,
tree needleleaf evergreen,
tree needleleaf deciduous

Forested primary land, poten-
tially forested secondary land

Shrublands Closed shrublands,
open shrublands,
woody savannas,
savannas

Shrub broadleaf evergreen,
shrub broadleaf deciduous,
shrub needleleaf evergreen,
shrub needleleaf deciduous

Grasslands Grasslands Natural grass Managed pasture, rangeland

Croplands Croplands,
cropland/natural vegetation
mosaics

Crops C3 annual crops,
C3 perennial crops,
C4 annual crops,
C4 perennial crops,
C3 nitrogen-fixing crops

Figure 1. Global map of forest management types in LUH2v2 and irrigation area ratio of cropland for minimum MODIS cropland > 50 %
in 2011–2020.

cropland actually irrigated fac as fa ·fe/fc, where fc is crop-
land percentage of grid cell area (Fig. 1). To explore the in-
fluence of tree characteristics on their resistance to droughts,
we used a global forest age map estimated from forest in-
ventories and biomass and climate data at 0.00833◦ spatial
resolution (Besnard et al., 2021).

All above datasets were resampled to 0.25◦ to make them
comparable to the relatively coarse L-VOD data. For the
global forest age map, we calculate the average of the for-
est age in pixels at 0.25◦.

2.4 Definition of ecosystem resistance

To calculate the ecosystem resistance to drought, we applied
a linear model for each pixel following Eq. (2):

Yanom(t)= αN (t)+βTanom(t)+ c+ ε(t), (2)

for the year t ranging from 2011 to 2020, in which Y repre-
sents either yearly maximum L-VOD, yearly mean kNDVI,
or yearly mean EVI. N is the number of drought months in
each year in 2010–2020. T is the yearly mean 2 m air temper-
ature. All anomalies were calculated through the subtraction
of linear trends and through the subtraction of the average for
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each month over the time period 2010–2020; c is the inter-
cept term and ε is the residual term. The anomalies were then
standardized as follows:

X′ =
X−µ

σ
, (3)

where µ is the average and σ is the standard deviation of the
anomalies.

We also analyzed the linear autoregressive model as fol-
lows:

Yanom(t)= αN (t)+βTanom(t)+ϕYanom(t−1)+c+ε(t), (4)

in which we also considered the memory effect with a
lag-1 autoregressive (AR1) term, which has been demon-
strated to be fundamental to understanding the daily car-
bon metabolism of terrestrial ecosystems (Y. Liu et al.,
2019; Cranko Page et al., 2022) and ecosystem resilience of
monthly NDVI (De Keersmaecker et al., 2016). We evalu-
ated if interannual memory effects influence drought sensi-
tivity, temperature sensitivity, and adjusted R2, but the ad-
ditional predictor does not carry new information for annual
L-VOD, EVI, and kNDVI anomalies. The drought sensitivity
and temperature sensitivity are similar and adjusted R2 does
not increase in general (Appendix B), so we used the most
parsimonious model in Eq. (2).

We note that radiation plays an important role in the
energy-limited boreal region. However, surface incoming
solar radiation strongly correlates with temperature and
drought duration. The air temperature at 2 m increases due to
a higher energy input when surface incoming solar radiation
is higher. Droughts are associated with clear-sky and sunnier
conditions that favor more incoming solar radiation (O et al.,
2022). To avoid the influence of collinearity on estimated
vegetation sensitivity to temperature and drought duration,
and given that only 10 years of data are available, we did not
incorporate radiation into our linear regression model.

The model coefficient α, also known as the sensitivity of
Y to N , can be closely related to the inverse of ecosystem
resistance during the drought period. We used α (per month)
as a metric for the ecosystem resistance to droughts. If α is
negative, the vegetation L-VOD, as an indicator for above-
ground vegetation biomass, and EVI and kNDVI as indica-
tors for greenness are negatively disturbed during the drought
period. On the contrary, if α is positive, the vegetation grows
better during the drought period than in normal SM condi-
tions. Higher α indicates stronger ecosystem resistance to
droughts. Similarly, we used β as a metric for the ecosys-
tem sensitivity to temperature anomalies. This approach also
partly controls for the covariance between drought and tem-
perature. α is in units of per month but β has no unit due
to standardization. Therefore, we cannot directly compare
α with β to assess the effect of droughts and temperature
anomalies. α and β were evaluated for each pixel.

2.5 Statistical analysis

As described above, we characterized ecosystem resistance
by the sensitivity of the vegetation state to the drought length
and 2 m temperature anomalies. We further masked pix-
els where no droughts occurred in the 2010–2020 period.
We aggregated the values of ecosystem resistance for IPCC
AR6 reference sub-regions (Iturbide et al., 2020a), dominant
IGBP vegetation cover classes (Fig. 3a), forest and crop-
land fraction, forest management types, and irrigation per-
centages. We only analyzed those pixels without changes in
the dominant IGBP vegetation cover class during the period
2010–2020. We only analyzed those pixels with less than
10 % change in primary and secondary forest, tropical ev-
ergreen broadleaf forests, and crop cover fraction in 2010–
2020. We used 10 % to avoid abrupt and substantial changes
in vegetation cover that might directly modulate the above-
ground vegetation biomass variations and therefore affect our
regression. We compared the distributions of these groups
and distinguished the effect of increasing coverage of specific
vegetation categories or some specific land management.

As the secondary forests dominate the midlatitudes and
the primary forests dominate tropical and boreal regions, to
minimize the potential confounding environmental effects on
the results, we extracted only pairs of primary and secondary
forests sharing similar long-term temperature and precipita-
tion averages. First, we define primary forests as those pix-
els with > 50 % forest fraction, and primary forests dom-
inate > 50 % of the forest fraction, similar for secondary
forests where secondary forests dominate > 50 % of the for-
est fraction in 2010–2020. These pixels were then catego-
rized according to ERA5 temperature and total precipitation
long-term averages. Temperature is divided into 25 groups
Ti (i= 1–25) from −10 to 30 ◦C uniformly, and precipi-
tation is divided into 25 groups Pj (j = 1–25) from 0 to
5000 mm uniformly, which results in 625 bins TiPj . Second,
if there are more than five pixels of primary forests PFk and
five pixels of secondary forests SFl in one bin TiPj , the dif-
ferences between the average of these pixels are calculated
as 1TiPj = PFk−SFl. We then showed the distribution of
these differences for different bins 1TiPj in the boxplot.

To compare the ecosystem resistance of forests with dif-
ferent mean ages, we selected pixels with dominant tropical
evergreen broadleaf forests for > 50 % of the forest fraction
to avoid confounding effects of management over secondary
forests. We then selected only pixels belonging to the pri-
mary forests we defined above and grouped the forest ages
into three groups [0,100), [100,300), and ≥ 300 years. We
only selected pixels with over 50 % forest fraction in 2011–
2020 and no variation in the dominant vegetation type (trop-
ical evergreen broadleaf forests). To minimize the potential
climate confounding effects on the dependence of α on for-
est age, we limited our comparison in the tropics due to lim-
ited pixels with ≥ 300 year old trees for other regions. We
only compared pixels where crop fraction is> 50 % in 2011–
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Figure 2. Ecosystem resistance to drought duration and temperature sensitivity. Spatial map of drought resistance α for (a) L-VOD, (b) EVI,
and (c) kNDVI. The same information but for temperature sensitivity β (e–g). The averages for different latitudes and their standard deviations
are shown on the right (d, h). The pixels with non-significant α and β at a 10 % significance level are masked with white color. The full-page
figures where pixels with non-significant α and β at a 5 % significance level are masked with white color are provided in Figs. S1–S3 in the
Supplement for better visualization.

Figure 3. Regional pattern of ecosystem resistance to drought duration. (a) Distribution of the IGBP land cover types based on MODIS
(MCD12Q1). The boxes with abbreviations indicate updated reference regions for IPCC AR6 WG1. Blue represents significant positive mean
of α, red represents significant negative mean of resistance, and black indicates regions whose means of the distribution are not significantly
different from zero (p value < 0.05). (b) Distribution of ecosystem resistance α to drought for different reference sub-regions; the number in
each box is the number of pixels in this category. Only regions with averages that are statistically different from zero are shown (two-sided
Student t test; p value < 0.05). (c) Distribution of ecosystem resistance to drought α for different dominant IGBP vegetation classes. Only
significant α from the linear model is selected (p value < 0.05) are selected.

2020 for irrigation effects. We compared the crop irrigation
ratio between bins < 10 %, 10 % to 50 %, and ≥ 50 % for
pixels with > 50 % cropland fraction, which is dominated by
cropland in India (Fig. 1). For the comparison between two
groups, we applied the unpaired two-sample Wilcoxon test
to test whether there is a significant difference between their
medians (p value < 0.05).

3 Results

3.1 Contrasting patterns of ecosystem resistance to
droughts and temperature over different regions and
dominant vegetation types

At the global scale, α based on Eq. (2) are negative in 55 %
of pixels with valid values from L-VOD, 56 % from EVI,
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and 59 % from kNDVI (Figs. A6a–c and 3a). Negative re-
sistance values predominate in midlatitudes, while positive
values are found for the boreal regions (Fig. 2d). In the trop-
ics, we find the largest divergences between the three in-
dices, where drought resistance based on L-VOD is posi-
tive in Amazon and Southeast Asian regions, but in South-
east Asia, EVI shows the lowest drought resistance with a
median of −0.12 per month in disagreement with L-VOD
which has a median of 0.03 per month. The kNDVI shows
the same sign as EVI, with a median of −0.05 per month.
In the Amazon, there are around 15 % and 18 % more pixels
showing negative resistance from EVI and kNDVI than L-
VOD, respectively. In the Amazon region, there are around
15 % and 18 % more pixels showing negative resistance from
EVI and kNDVI than L-VOD, respectively. In our analysis,
we observe that 12 % of pixels show significant drought re-
sistance at a 10 % significance level (6 %, 6 %, and 7 % at a
5 % significance level) from L-VOD, EVI, and kNDVI. We
only used the significant drought resistance at a 5 % signifi-
cance level to investigate the impacts of land cover and land
management, ensuring that the vegetation growth is impacted
by drought conditions. The standard error of the drought re-
sistance coefficient is relatively high for tropical regions with
higher uncertainties in the edge of the Amazon and central
Africa forests (Fig. A6e–h).

The temperature sensitivity shows a clearer spatial pattern
than the resistance to drought duration. The ecosystem re-
sistance to temperature is negative and lower in tropical re-
gions compared to midlatitudes (Fig. 2l), indicating a decline
in above-ground vegetation biomass and greenness during
hot weather and a weaker ecosystem resistance to high tem-
peratures in tropical regions. In boreal regions, the ecosys-
tem resistance is mostly positive, which indicates vegetation
growth during hot weather and thus a stronger resistance to
hot events. In the tropics, the forest regions and non-forest re-
gions show divergent resistance, with forest regions showing
mostly positive resistance to temperature and negative val-
ues predominating in grassland or savannas. L-VOD shows a
large deviation relative to kNDVI and EVI in boreal regions,
mostly because of missing data for L-VOD in those regions;
15 %, 26 %, and 31 % of pixels show significant temperature
sensitivity at a 10 % significance level (9 %, 17 %, and 21 %
at a 5 % significance level) from L-VOD, EVI, and kNDVI,
respectively. We only used these pixels to investigate the land
cover and land management effects to make sure that the veg-
etation growth is relevant to temperature. The standard error
is also relatively higher for the Northern Hemisphere with
higher land cover fraction but more pixels with missing val-
ues (Fig. A6m–p).

Our model performs better in some areas in eastern South
America, southern Africa, eastern Australia, and some boreal
regions, where the R2 is higher than 0.5 (Fig. A7). At the
global scale, approximately 15 %, 23 %, and 27 % of the pix-
els exhibit an R2 exceeding 0.5 when derived from L-VOD,
EVI, and kNDVI, respectively.

We summarize the results for each of the IPCC AR6 land
sub-regions in Fig. 3. The full name of each land sub-region
is shown in Table A1. A total of 32 regions colored red or
blue in Fig. 3a have mean values of α significantly different
from zero, as determined by the two-tailed Student’s t test
(p value < 0.05). The median values of α range from −0.20
to 0.07 per month across regions, and the average values from
−0.25 to 0.08 per month. Among these regions, 25 regions
show significant negative mean α. Only NWN, NEU, RAR,
and RFE in the boreal region, NSA, SAM, and SEA with
high forest cover fraction show positive mean α. By contrast,
most regions over midlatitudes (30–60◦) show negative mean
α (Fig. 3a and b).

In the tropics, SAS, CAF, WAF, and NAU, which have
lower forest cover, show negative mean α, while NSA, SEA,
and SAM, which are dominated by evergreen broadleaf
forests, show higher resistance and positive mean α. We
grouped α by different IGBP vegetated land cover types from
forests to cropland. Values of α based on L-VOD are higher
in evergreen needleleaf forests (ENF), shrublands (SH), and
evergreen broadleaf forests (EBF), but lower in cropland (C),
deciduous needleleaf forests (DNF), and crop/natural vegeta-
tion mosaic (CNVM) (Fig. 3c). The kNDVI and EVI agree
on the lower resistance in C and CNVM and high resistance
in SH, ENF, and mixed forests (MF) (Fig. A3).

3.2 The importance of forest cover fraction in
modulating ecosystem resistance

A given pixel can have a mixture of several land cover types
with very similar fractions, but the dominant land cover pat-
tern ignores this effect. Therefore, we further analyzed mean
α among different forest and crop cover fractions. In general,
the mean α is lower (more negative) with decreasing forests
and increasing cropland fraction. Pixels dominated by forests
are significantly (p value< 0.05; indicated by stars) more re-
sistant to droughts than those where cropland predominates
(Fig. 4a–c); α increases with increased forest fraction, from
a mean value of −0.07 per month (0 %–25 % forest cover)
to 0.07 per month (75 %–100 % forest cover), and decreases
with increased cropland fraction, from −0.07 per month for
0 %–25 % crop cover to −0.30 per month for 75 %–100 %
crop cover. The resistance is close to zero because pixels with
less than 25 % forest and less than 25 % cropland are dom-
inated by low-vegetated land or bare soil, meaning that the
signal of vegetation is weak.

In forest-dominated regions (> 50 % forest fraction), the
difference between results for L-VOD, EVI, and kNDVI be-
come more obvious than in crop-dominated regions. Ecosys-
tem resistance is the highest and even positive for L-VOD
and the lowest for EVI, and kNDVI shows similar ecosystem
resistance to that of L-VOD.

The contrast between forest-dominated regions and crop-
dominated regions also exists for ecosystem resistance to 2 m
air temperature from EVI and kNDVI (Fig. 4e and f). The
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Figure 4. Ecosystem resistance to drought and temperature binned for different levels of the aggregated forest and cropland fraction classes
from the three land cover products (a) L-VOD, (b) EVI, and (c) kNDVI for drought resistance coefficients α and (d–f) for temperature
resistance coefficients β. Only significant coefficients α in the linear model (p value< 0.05) are included and groups with less than 20 pixels
are excluded. The number in each bin is the number of pixels in this category. Only pixels with no change in 25 % bins of the four dominant
vegetation categories (forests, shrublands, grasslands, and croplands) are analyzed. The star in the upper right corner indicates significantly
higher resistance in forest > 75 % than crop > 75 % at the 0.05 significance level from the unpaired two-sample Wilcoxon test.

significant positive sensitivity to temperature predominates
in the regions with more than 25 % forests, while the sensitiv-
ity is negative in the regions with more than 50 % cropland.
The pattern is distinct for different climate zones and shows
strong latitudinal dependence. For tropical regions, except
for kNDVI in a small fraction of regions, most ecosystems
show negative resistance to temperature, which means that
higher temperatures lead to a negative impact over a large
area in the tropics (Fig. A5a–c). In temperate climate zones,
predominant in midlatitudes, all three vegetation products
agree on the negative resistance in the regions with less than
25 % forest cover, but kNDVI and EVI show a higher positive
resistance in the regions with more than 25 % forest cover
(Fig. A5d–f). In the boreal region, the resistance values are
generally positive (Fig. A5g–i), which confirms the variabil-
ity of resistance to temperature to latitudes.

3.3 The roles of forest management, crop irrigation, and
forest ages in modulating ecosystem resistance

The above results suggest that a transition between dominant
vegetation types modifies ecosystem resistance. Other an-
thropogenic disturbances, such as forest management, have
the potential to influence the ability of forest ecosystems to
maintain their functioning during drought heat extremes by
directly affecting tree species, age distribution, cover density,

rooting depth, and primary productivity. For croplands, irri-
gation is also an essential element to maintain and increase
yields during droughts.

To detect such effects, we analyzed ecosystem resistance
to droughts α for primary and potential secondary forests
from the LUH2 v2h land cover dataset (Fig. 5a). It should
be noted that to minimize the potential effects of the fact
that primary and secondary forests are distributed differently
across climate zones, we compare pairs of pixels with pri-
mary and secondary forests under similar temperature and
precipitation climatological conditions bins as described in
Sect. 2.5. The comparison between primary and potential
secondary forests shows that the averaged ecosystem resis-
tance α calculated from L-VOD is significantly higher in pri-
mary forests than in secondary forests. The median of the dif-
ference between primary and secondary forests (1α) is 0.382
per month and is significantly greater than 0 based on the
one-sample Wilcoxon test (p value< 0.05). However, we did
not detect such a large difference between EVI and kNDVI,
whose medians of 1α between forest types are −0.040 and
0.052 per month, but given the large spread of the distribu-
tion, their medians are not significantly greater than 0 based
on the one-sample Wilcoxon test (p value > 0.05).

We further tested the effect of forest ages in modulat-
ing the ecosystem resistance in the tropical primary ever-
green broadleaf forest. Based on L-VOD, forests older than
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Figure 5. Ecosystem resistance to droughts for (a) forest management located in a similar background climate and for different levels of
(b) forest ages in the tropical primary EBF, (c) crop irrigation, and (d) forest harvest area fraction. Only significant coefficients α in the linear
model (p value < 0.05) are included. Stars in (a) indicate the median value of this category is greater than 0 at the 0.05 significance level
from the one-sample Wilcoxon test. Stars indicate the median value of this category is greater than the median of the previous category, while
triangles indicate the median of this category is greater than the median of the first category at the 0.05 significance level from the unpaired
two-sample Wilcoxon test. The number in each box is the number of bins or pixels in this category. Only pixels with unchanged dominant
primary and secondary forest, tropical primary EBF, and crop cover in 2011–2020 were selected, as defined in Sect. 2.5.

100 years are substantially more resistant to drought than
forests younger than 100 years. The median of α for forests
younger than 100 years is −0.549 per month, while the me-
dian values of α for forests aged 100–300 years and older
than 300 years are 0.455 and 0.360 per month, respectively.
We also find a significant (p value < 0.05) increase in α in
kNDVI between forests aged 100–300 years and older than
300 years, but the effect is not as large as in L-VOD, and
we found no significant differences based on EVI. These re-
sults indicate that VOD is more sensitive to water volume
and biomass than reflectance indices in general.

We also investigated the ecosystem resistance α for dif-
ferent irrigation levels (Fig. 5c). The result also shows an
increasing resistance for L-VOD with the irrigation levels,
with the median of α for L-VOD increasing from −0.342
to 0.023 per month between less than 10 % actually irri-
gated cropland and more than 50 % actually irrigated crop-
land (p value < 0.05). For kNDVI and EVI, the change in
the median of α is negligible, but we still found a higher per-
centage of pixels with close to zero or positive resistance for
higher irrigation fractions.

We finally explored the potential role of forest wood har-
vest intensity (Fig. 5d). All three satellite products agree on a
significant decrease in drought resistance (α) with increased
forest wood harvest intensity, from a median of −0.21 per
month under < 1 % harvest area ratio, to −0.34 per month
under 1 %–10 % wood harvest intensity, and −0.40 per
month for> 10 % harvest intensity based on L-VOD. Results
from EVI and kNDVI are consistent with those of L-VOD.

4 Discussion

4.1 Spatial variability of ecosystem resistance to
drought and temperature

Ecosystem resistance during a disturbance phase plays a key
role in determining resilience. In this study, we evaluated the
ecosystem resistance to drought and temperature with their
sensitivity to 10th percentile soil moisture drought duration
and temperature anomalies at 2 m in a linear model. The
IPCC AR6 sub-regions, whose averages of drought resis-
tance are significantly negative, mainly correspond to semi-
arid regions with high coverage of grassland, cropland, sa-
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vannas, and temperate deciduous forests (Fig. 3a). In these
semi-arid regions dominated by grassland, cropland, savan-
nas, vegetation dynamics is more sensitive to water availabil-
ity and therefore is more impacted by drought events (Poul-
ter et al., 2014; Ahlström et al., 2015; Walther et al., 2019).
In temperate forests over midlatitudes, previous studies have
suggested that short seasonal droughts are more likely to
induce dieback of broadleaved deciduous angiosperm trees
(e.g., DBF in Fig. 3c) than conifer trees (i.e., ENF in Fig. 3c)
because of the higher vulnerability to xylem cavitation of an-
giosperm trees (Maherali et al., 2004; Allen et al., 2010). On
the contrary, areas with significantly positive resistance to
drought correspond to dense tropical evergreen broadleaved
forests and boreal continental regions with shrublands and
evergreen needleleaved forests. For boreal regions, the soil
is generally humid, meaning that the drought defined as
the 10th percentile likely still provides critical water stor-
age for vegetation. The potential environmental limitations
to vegetation growth in these areas are temperature and radi-
ation rather than water availability (Boisvenue and Running,
2006).

We also evaluated whether limiting drought duration to
the growing season of each year. The resulting α and β

values over pixels where the coefficients are significant
(p value < 0.05) are strongly correlated to α and β calcu-
lated based on whole-year drought duration and results still
hold.

The resistance to temperature highly depends on latitude.
For extratropical regions, vegetation L-VOD and greenness
normally increase with higher temperatures. Warming gen-
erally leads to an earlier growing season onset and results in
increased early-season vegetation productivity (Forkel et al.,
2016). Although we removed the confounding effect of ex-
treme soil water deficit from L-VOD, this trend can still be
adversely affected by climate variability and other emerging
limitations from energy and nutrients on vegetation produc-
tion (Piao et al., 2017; Buermann et al., 2018; Z. Liu et al.,
2019).

4.2 Contrasting ecosystem resistance to drought and
temperature in forests and cropland

Forests and cropland respond differently to extreme drought
events. Ecosystem resistance increases with increased forest
and decreased cropland fraction. This is also observed in pre-
vious studies based on GPP datasets over Europe (Zhang
et al., 2016; Bastos et al., 2020) and SIF (Walther et al.,
2019). The increasing pattern in L-VOD for dominant forests
might be a result of increased insolation and photosynthetic
activity light and weak changes in greenness during the
drought period (Zhu et al., 2018; Walther et al., 2019). In
addition, the light use efficiency (LUE) decreased less with
lower soil moisture contents in forests compared to non-
forest vegetation, which could be linked to deeper and more
extensive root systems with higher access to available soil

water (Walther et al., 2019). The pattern is consistent for the
tropical, temperate, and continental climate regions except
for results from EVI in the temperate climate (Fig. A4) and
can be explained by the intrinsic structural and physiological
differences between trees and crops, for example, the deeper
rooting depth of trees (Canadell et al., 1996), higher wa-
ter storage capacity in the stems for forests (Matheny et al.,
2015), and different water use strategies between forest and
grassland or cropland (Teuling et al., 2010).

Compared to drought resistance, the ecosystem resistance
to temperature shows a weaker contrast in L-VOD between
forests and cropland; latitude dependence instead plays a
more important role here (Fig. A5). Nevertheless, from EVI
and kNDVI, we still observe a divergent response to tempera-
tures between forest-dominated regions and crop-dominated
regions in tropical and temperate climate zones. In the tem-
perate regions, forests may benefit from higher temperatures
through warming-induced changes in their phenology, while
crops might show a nonlinear response of photosynthesis to
temperature, due to a weaker resistance to hot extreme days.
A strong trend of earlier spring growing season onset and
later autumn senescence has been observed in the temperate
forests in the eastern USA (Keenan et al., 2014). In boreal
climate zones in the Northern Hemisphere, L-VOD, EVI,
and kNDVI generally show a strong positive relationship
with an increase in temperature, which can be interpreted as
an increase in photosynthesis in response to warming when
enough water is available (Piao et al., 2006).

At the same time, croplands can be affected by differ-
ent management practices, for example, crop rotation that
changes from year to year and the variable timing of planting
and harvesting also has an influence on vegetation biomass.
By taking the yearly maximum L-VOD value, we partly al-
leviate such an influence and expect interannual variations to
better correspond to biomass changes.

4.3 Effects of land management and forest age on
ecosystem resistance

After accounting for the potential effect of climate back-
ground, primary forests still show significantly higher re-
sistance than the potential secondary forests from L-VOD
(Fig. 5a). The pixel number is different due to a different ra-
tio of significant resistance for primary and secondary forests
located in similar climate backgrounds. Primary forests have
substantially higher biodiversity values compared to sec-
ondary degraded forests even after partly accounting for con-
founding colonization and succession effects from the iso-
lation, composition of surrounding habitats, and time since
disturbance (Gibson et al., 2011). High tree species diver-
sity helps strengthen the ecosystem resistance to droughts
(Liu et al., 2022). Primary forests also show higher hydraulic
diversity than secondary forests, which buffers impacts in
ecosystem flux during dry periods across temperate and bo-
real forests (Anderegg et al., 2018). Secondary forests in the
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Brazilian Amazon are vulnerable to drought stress with a
lower carbon balance and growth rates, and they only reached
56 % of the tree diversity in the nearest primary forests (Elias
et al., 2020). In Amazon forests, forest greening in degraded
forests disturbed by fire has been found to be more depen-
dent on water resources than in mature forests (Roux et al.,
2022). The new forest edges in much more fragmented de-
graded forest landscapes increase canopy desiccation, tree
mortality, and fire frequency (Briant et al., 2010; Broad-
bent et al., 2008), especially during drought events (Roux
et al., 2022). In boreal forest ecosystems in Sweden, primary
forests have been found to be less affected by drought com-
pared to secondary forests (Wolf et al., 2023). Primary forests
also likely harbor older trees, which also show higher resis-
tance to drought (Fig. 5b). Besides, primary forests might
have a more extensive rooting system with higher availabil-
ity of soil water. However, it remains difficult to disentangle
the above factors for the complex ecosystem due to limited
data.

Apart from the effect from land cover due to different sen-
sitivity to drought stress for different vegetation types, at the
ecosystem scale, we illustrate that over tropical EBF, older
trees tend to be more resistant to droughts (Fig. 5b). Young
trees sometimes exhibit high drought-induced mortality rates
due to limited rooting depth (McDowell and Allen, 2015).
Young fast-growing and light-wooded trees are recorded to
be especially vulnerable to drought by cavitation or car-
bon starvation (McDowell et al., 2008; Phillips et al., 2009).
Older mature forests could develop a more complex ecosys-
tem with higher species diversity (e.g., Amazon rainforest).
Tree species diversity may enhance the drought resistance in
global forests with a stronger effect over tropical forests (Liu
et al., 2022).

Irrigation helps attenuate drought impacts and enhance the
cropland resistance to drought extremes. This effect is also
reflected in SIF and GPP anomalies (Gampe et al., 2021;
Cheng et al., 2022). It increases the mean SM during drought
events and alleviates drought heat stress through an increase
in total evapotranspiration because it will increase atmo-
spheric water vapor amount and decrease the mean surface
daytime temperature (Mueller et al., 2016).

Our results indicate that forests with higher harvest in-
tensities tend to be less resistant to drought globally. In situ
studies in different biomes show that forest management can
influence forest resistance to disturbances such as drought
(Silva Junior et al., 2020; Fawcett et al., 2022). This could
be linked to the more complex structure of dense forests,
whose below-canopy microclimate might help to buffer for-
est stands from macroclimatic temperature extremes, e.g.,
in temperate broadleaved and mixed forest biome (Sanczuk
et al., 2023). Forest thinning, depending on its intensity, has
also been reported to result in lower drought resistance and
resilience in older mature forests in northern temperate forest
ecosystems. This might be due to trees reaching larger sizes

during stand development, which in turn increases water de-
mand during droughts (D’Amato et al., 2013).

4.4 Ecosystem resistance difference between kNDVI,
EVI, and L-VOD

L-VOD responds differently to drought stress with EVI and
kNDVI, especially in dense forests. As shown in Fig. 4, the
mean of ecosystem resistance is closer for dominant crop-
land but differs more for the dominant forests for the three
products. Similarly, enhanced ecosystem resistance is not de-
tected in kNDVI and EVI for primary forest (Fig. 5a), which
is supposed to be denser with a more complex canopy struc-
ture than secondary forest. Such discrepancies can be related
to the intrinsic difference in measurements between L-VOD
and traditional vegetation indices. The ESA SMOS L-VOD
product is calculated from low-frequency, large-wavelength
microwave emissions. It has superior sensitivity to carbon
density than NDVI, EVI, and other higher-frequency VOD
products. L-VOD signals originate from deeper volumes of a
multi-layer canopy and thus correspond better to the above-
ground biomass (Rodríguez-Fernández et al., 2018; Tian
et al., 2018; Fan et al., 2019; Wigneron et al., 2020). As
a result, it is better capable to retrieve the overall biomass
in dense tropical ecosystems, when EVI, NDVI, and high-
frequency L-VOD saturate (Liu et al., 2015). The kNDVI
overcomes the greenness saturation with increased forest
cover empirically but still does not detect biomass change
under a top canopy layer other than leaf biomass. Gener-
ally, in dense forests L-VOD is sensitive to woody biomass
where EVI and kNDVI only detect top-layer canopy green-
ness dynamics. Therefore, correlation between L-VOD and
kNDVI is much lower in forests than in cropland and grass-
land (Fig. 6). This is confirmed in this study in the difference
between L-VOD, EVI, and kNDVI in dense forests under
the tropical climate (Fig. A4a–c), where canopy structure is
generally more complex and taller. However, the ecosystem
resistance to droughts is similar for dominant forests under
continental climate (Fig. A4g–i) because the forest canopy
structure is generally simple and the forest canopy height is
lower.

4.5 Limitations and outlook

Our method assumes a close relationship between L-VOD
and vegetation biomass at an annual scale, as in other studies
using VOD products (Tian et al., 2017; Brandt et al., 2018;
Fan et al., 2019; Wigneron et al., 2020; Qin et al., 2021).
This assumption is questioned by Konings et al. (2021), and
they showed a weak temporal correlation between biomass
anomalies calculated from a new biomass dataset from Xu
et al. (2021) and L-VOD anomalies. However, the ability of
the new dataset to represent the inter-annual variability of
biomass has not been tested. Several studies also reported a
strong near-linear relationship between L-VOD and biomass
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Figure 6. Correlation between yearly maximum L-VOD and
kNDVI for different land cover types.

for woody vegetation independent of the year (Rodríguez-
Fernández et al., 2018; Brandt et al., 2018), indicating a
relatively constant RWC. In our study, we used the annual
maximum L-VOD values in order to minimize potential con-
founding effects by variations in vegetation water content.
The comparison between primary and secondary forests from
yearly maximum L-VOD fits better with in situ studies than
EVI and kNDVI (Nunes et al., 2022), which reveals the po-
tential of L-VOD to detect vegetation dynamics, especially
in dense forests. To better disentangle the effect of RWC on
L-VOD, continuous biomass measurements are required.

Even though we controlled for similar climate back-
grounds by aggregating pixels based on their long-term tem-
perature and precipitation averages, there are other climate
effects that were not considered in our statistical analysis,
for example, the interannual variability of precipitation and
climate seasonality of temperature. With only limited areas
exhibiting significant drought resistance α and given the need
to ensure a large enough number of pixels for comparison in
a similar climate space, it remains challenging to disentangle
the potential confounding effects of all the climate variables
and their variabilities.

Drought duration shows a high correlation with yearly
mean temperature in some regions in the northern Amazon,
southern Africa, and southern Asia (Fig. A8), so the mul-
tiple linear regression model might not perfectly disentan-
gle their effects in these areas. We avoid these issues by
analyzing those pixels with significant values of α and β
(p value < 0.05).

Other factors related to land management, e.g., different
crop rotations or harvest intensities, also play an important
role in changing the vegetation biomass or greenness, espe-
cially in croplands, and might influence drought resistance
and temperature sensitivity. The LUH2 v2h dataset provides
additional information about crop and wood harvest prac-
tices. Crop harvest in LUH2v2 is spatially homogeneous
so that it cannot be used to evaluate spatial differences in
drought and temperature sensitivity over croplands. Forest
wood harvest in LUH2 v2h is smaller than 1 % of the respec-

tive forest area for more than 90 % of vegetated pixels (veg-
etation cover ≥ 5 %). Therefore, we tested that the effect on
our main results for primary forests and forest age is residual.
For a more detailed analysis of other management practices,
higher-resolution data on vegetation and management would
be needed.

In general, regions showing significant negative mean val-
ues of drought sensitivity α, which indicate negative im-
pacts on vegetation during drought periods, are mostly lo-
cated in water-limited regimes (Denissen et al., 2022), except
for EAS, with relatively small coverage of available L-VOD
data, and CAF, which is less homogeneous. Under climate
change, the widespread shift from an energy-limited regime
to a water-limited regime (Denissen et al., 2022) will put
more ecosystems under threat of drought. The effects of spe-
cific land cover and land management on drought resistance
are thus important for these regions in the future. Deforesta-
tion and a transition to cropland might potentially weaken
the ecosystem resistance to extreme drought events. The pro-
tection and maintenance of primary forests is also impor-
tant to sustain tropical biodiversity and its high drought re-
sistance. For cropland, a higher irrigation ratio significantly
increases the ecosystem resistance, but further precise and
efficient practices of irrigation for agriculture are required to
avoid a waste of water resources (Shukla et al., 2022).

5 Conclusion

This study analyses how land cover and common land
management practices modulate the ecosystem responses to
drought and heat based on different remote sensing products,
namely L-VOD, EVI, and kNDVI. Areas with predominant
forest cover show stronger ecosystem resistance to extreme
soil droughts than those predominated by croplands. Forests
do not show obvious changes in canopy greenness indices
during dry conditions compared to normal conditions, while
L-VOD, as a proxy for biomass, tends to show a slight in-
crease. This is possibly because of enhanced photosynthesis
activity and a smaller decline in LUE compared to crops. Dis-
tinct responses are found between primary forests and sec-
ondary forests from L-VOD. Primary forests, typically asso-
ciated with higher biodiversity, tend to show stronger resis-
tance to droughts than secondary forests. Our findings from
L-VOD show that tree age potentially contributes to the dif-
ference in drought resistance in tropical EBF, with ecosys-
tems with older trees better mitigating drought stress.

Our results show the advantage of L-VOD in detecting
vegetation dynamics in dense forests where EVI and kNDVI
only detect the upper leaf canopy, which can therefore be
a promising approach. In summary, we found that canopy
greenness correlates well with canopy biomass and photo-
synthesis for nonwoody vegetation and that forest biomass
may fluctuate when canopy greenness is relatively stable.
Irrigation helps improve the ecosystem resistance for crop-
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lands. Deforestation and afforestation leading to a change in
forest cover and primary forest destruction might therefore
modulate regional changes in ecosystem resistance. Forest
management changes forest age distribution, possibly modu-
lating the response of forests to droughts. The effect of forest
management and crop irrigation on ecosystem resistance has
important implications for the monitoring and management
of ecosystems under climate change.

Appendix A: Appendix figures and tables

Figure A1. Distribution of ecosystem resistance α from (a) EVI and (b) kNDVI to drought for different dominant IPCC AR6 sub-regions.
The boxes with abbreviations indicate updated reference regions for IPCC AR6 WG1. Blue represents significant positive resistance, and red
represents significant negative resistance; the number in each box is the number of pixels in this category.
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Figure A2. Distribution of ecosystem sensitivity to 2 m air temperature β from (a) L-VOD, (b) EVI, and (c) kNDVI to drought for different
dominant IPCC AR6 sub-regions. The boxes with abbreviations indicate updated reference regions for IPCC AR6 WG1. Blue represents
significant positive sensitivity, and red represents significant negative sensitivity (p value < 0.05); the number in each box is the number of
pixels in this category.
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Figure A3. Distribution of ecosystem resistance α from (a) EVI and (b) kNDVI to drought for different dominant IGBP vegetation classes.
Only significant α values from the linear model (p value < 0.05) are shown.
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Figure A4. Ecosystem resistance to drought binned for different levels of the aggregated forest and cropland fraction classes from the three
land cover products (a) L-VOD, (b) EVI, and (c) kNDVI for Köppen main climate class tropical climate and (d–f) for the temperate climate
and (g–i) for the continental climate. Only significant coefficient α values in the linear model (p value < 0.05) are included, and groups with
less than 20 pixels are excluded.
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Figure A5. Ecosystem sensitivity to 2 m air temperature binned for different levels of the aggregated forest and cropland fraction classes
from the three land cover products (a) L-VOD, (b) EVI and (c) kNDVI for Köppen main climate class tropical climate and (d–f) for the
temperate climate and (g–i) for the continental climate. Only significant coefficient β values in the linear model (p value< 0.05) are included,
and groups with less than 20 pixels are excluded.
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Figure A6. Ecosystem resistance to drought duration and its standard error. Spatial map of drought coefficients α for (a) L-VOD, (b) EVI,
and (c) kNDVI and their standard error (e–g). The same information but for temperature coefficients β (i–k) and their standard error (m–o)
is also shown. The averages for different latitudes and their standard deviations are shown on the right (d, h, l, p).

Figure A7. Spatial map of R2 for (a) L-VOD, (b) EVI, and (c) kNDVI. The averages for different latitudes and their standard deviations are
shown on the right (d).
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Figure A8. Temporal correlation between yearly mean temperature and drought duration (months per year) in 1979–2020.

Table A1. IPCC AR6 reference sub-regions of land.

Abbreviations Full name Abbreviations Full name

GIC Greenland/Iceland SEAF S.Eastern-Africa
NWN N.W.North-America WSAF W.Southern-Africa
NEN N.E.North-America ESAF E.Southern-Africa
WNA W.North-America MDG Madagascar
CNA C.North-America RAR Russian-Arctic
ENA E.North-America WSB W.Siberia
NCA N.Central-America ESB E.Siberia
SCA S.Central-America RFE Russian-Far-East
NWS N.W.South-America WCA W.C.Asia
NSA N.South-America ECA E.C.Asia
NES N.E.South-America TIB Tibetan-Plateau
SAM South-American-Monsoon EAS E.Asia
SWS S.W.South-America ARP Arabian-Peninsula
SES S.E.South-America SAS S.Asia
SSA S.South-America NAU N.Australia
NEU N.Europe CAU C.Australia
WCE West&Central-Europe EAU E.Australia
EEU E.Europe SAU S.Australia
SAH Sahara NZ New-Zealand
WAF Western-Africa EAN E.Antarctica
CAF Central-Africa WAN W.Antarctica
NEAF N.Eastern-Africa
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Appendix B: Comparison between linear models with
and without the AR1 term as memory effects

We tested the model form with a lag-1 autoregressive (AR1)
term to consider the memory effects at an annual scale, which
is the dependence of a vegetation state (i.e., L-VOD, EVI,
kNDVI) anomaly on the previous year’s anomaly. This term
relates to the speed of the vegetation to return to its normal
state and thus can be associated with the ecosystem resilience
in an environment driven by climate factors dominantly (De
Keersmaecker et al., 2016). This term is also interpreted as
biological memory (Y. Liu et al., 2019), which may reflect
intrinsic ecosystem feedbacks such as biomass accumulation
or loss (Barron-Gafford et al., 2014). It also reflects the ef-
fects of other environmental and climate drivers or nonlin-
ear responses not explicitly considered in our model (Y. Liu
et al., 2019). Based on flux tower data, biological memory is
found to contribute to increased R2 on daily net ecosystem
exchange (NEE) prediction (Cranko Page et al., 2022) and is
important to account for the above internal feedbacks, espe-
cially disturbances and human activities (Y. Liu et al., 2019).
Therefore, we used the linear autoregressive model Eq. (2).

Figure B1. Difference between linear regression model with and without the memory term (model with ϕ minus model without ϕ) for
ecosystem resistance to drought duration α from L-VOD, EVI, and kNDVI (a–c). Similar information but for temperature sensitivity β (e–g)
and adjusted R2 (i–k) is also shown. The averages for different latitudes and their standard deviations are shown on the right (d–l).

However, this memory effect might differ when we con-
sider the different vegetation indices and when we analyze at
an annual scale. We have again tested whether adjusted R2

generally increases when we include the lag-1 autoregres-
sive term Y(t-1) compared to the model without this term.
The spatial distribution of the differences in drought resis-
tance α, temperature sensitivity β and adjusted R2 is shown
in Fig. B1.

The overview of the differences is shown in Table B1. The
averages of drought resistance differences 1α are close to 0.
The spatial correlation between α calculated with and with-
out the memory term ϕ is close to 1. The averages of tem-
perature resistance 1β differences are also close to 0. The
spatial correlation between β is also close to 1. The averages
of the adjusted R2 are all close to 0 and even negative, which
means that introducing the memory term does not contribute
to explain more variance of yearly vegetation state in 2011–
2020. Because the drought resistance and temperature resis-
tance are similar and we only have 10 year time series, we
have decided to use Eq. (2) without the AR1 term to avoid
overfitting.
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Table B1. Overview of the differences in coefficients and adjusted
R2 between models with and without the memory term ϕ.

L-VOD EVI kNDVI

Mean 1α (month−1) 0.0002 −0.0013 −0.0021
Mean 1β −0.0064 −0.0049 −0.0023
Mean 1 adjusted R2

−0.017 −0.012 −0.014
Spatial correlation (α) 0.88 0.93 0.93
Spatial correlation (β) 0.90 0.95 0.96

Code and data availability. The reconstructed SMOS L-VOD
data are available upon request from Hui Yang (huiyang@bgc-
jena.mpg.de). MODIS EVI and NDVI data are freely available
from https://doi.org/10.5067/MODIS/MOD13C2.006 (Di-
dan, 2015). ERA5 reanalysis data are freely available from
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
(ECMWF, 2022). The MCD12Q1 land cover product is freely
available from https://lpdaac.usgs.gov/products/mcd12q1v006/ (LP
DAAC, 2022). The ESA Land Cover CCI product is freely available
from https://www.esa-landcover-cci.org/?q=node/164 (ESA-CCI,
2022). The LUH2 v2h land cover product is freely available from
https://luh.umd.edu/data.shtml (Land Use Harmonization, 2022).
The definitions of the AR6 reference sub-regions, the required code,
and the spatially aggregated datasets are available at the GitHub AT-
LAS repository: https://github.com/SantanderMetGroup/ATLAS,
https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020b)
under the Creative Commons Attribution (CC-BY) 4.0 li-
cense. The global map of irrigation areas is freely available
from https://www.fao.org/aquastat/en/geospatial-information/
global-maps-irrigated-areas/latest-version (FAO, 2022).
The global forest age map is freely available from
https://www.bgc-jena.mpg.de/geodb/projects/Home.php (MPI-
BGC, 2022). Select analysis codes used in this study are available
at https://doi.org/10.5281/zenodo.8434669 (Xiao et al., 2023).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-14-1211-2023-supplement.
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