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Due to the general pursuit of technological advancement, structural components need to meet increasingly higher standards.
In order to optimize the performance behavior of the used materials, detailed knowledge of the overall as well as microscopic
material behavior under certain mechanical and thermal loading conditions is required. Hence, we present a two-scale finite
element (FE) and fast Fourier transformation (FFT)-based method incorporating finite strains and a thermo-mechanically
coupled constitutive model for elasto-viscoplastic polycrystalline materials. Assuming that the length scale of the microscale
is sufficiently smaller compared to the length scale of the macroscale, we consider the macroscopic and microscopic boundary
value problem as two coupled subproblems. The macroscopic boundary value problem is solved utilizing the finite element
method. In each macroscopic integration point, the microscopic boundary value problem is embedded as a periodic unit
cell whose solution fields are computed utilizing fast Fourier transforms and a Newton-Krylov solver. The scale transition
is performed by defining the macroscopic quantities via the volume averages of their microscopic counterparts. In order
to demonstrate the use of the proposed framework, we predict the macroscopic and microscopic fields of a polycrystalline
material within a numerical example using an efficient and accurate FE-FFT-based two-scale method.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

As components used in the aerospace or automotive industry are usually exposed to complex thermal and mechanical load-
ing conditions, high-strength and high-temperature-resistant materials are required. Therefore, metals which are generally
characterized by polycrystalline microstructures are frequently used. Their material properties can be modified within metal
machining processes such as deep rolling, drilling or induction hardening, which change the underlying microstructure and
therefore influence the macroscopic material response. Over the years, different constitutive models have been established
to predict the overall material behavior of polycrystals. Prominent examples are the publications of Taylor [1], Hill [2] and
Hill and Rice [3]. In 1982, Peirce et al. were the first authors who investigated the deformation behavior of single crystals by
utilizing the finite element method [4]. Since their pioneering work, the crystal plasticity finite element method has become
a wide research field and macroscopic as well as multiple different microscopic phenomena of polycrystalline materials have
been investigated [5].

However, as the macroscopic material response is strongly influenced by the microstructural effects, multi-scale models
have been developed. Focusing on two-scale simulations, the classical FE2 [6] method and the FE-FFT-based [7] simulation
approach are two well-known examples. Among several others, Miehe et al. [8] and Kouznetsova et al. [9] utilized the FE2-
method to capture the material behavior of polycrystals at finite strains. Instead of using the finite element method on both
scales, Spahn et al. [7] introduced a fast Fourier transformation (FFT)-based simulation method to compute the microscopic
solution. The first FFT-based simulation method has been proposed by Moulinec and Suquet [10, 11]. Detailed information
on these FFT-based methods can be found in the review papers of Schneider [12] and Lucarini et al. [13].

Although the computational efficiency of two-scale simulations can be increased by performing the microstructure simu-
lation utilizing FFT-based methods instead of the finite element method (for example cf. [14]), two-scale simulations are still
numerically costly. Assuming linearized kinematics, Kochmann et al. proposed an efficient solution strategy, which is based
on a coarse microstructure discretization and modeled the material behavior of three different metals [15]. Later, Gierden
et al. extended this model to the finite deformation regime [16]. In order to decrease the computational costs further, model
order reduction techniques can be exploited. In this context, Kochmann et al. presented an approach, in which the microscopic
solution is computed using only a reduced set of Fourier modes, which is identified based on a fixed, for example star-shaped,
sampling pattern [17]. Later, it has been shown in the work of Gierden et al. that more accurate results can be obtained by
defining the set of Fourier modes utilizing sampling patterns that are based either on the geometry of the microstructure [18]
or on the current strain state [19]. More information and an detailed overview of the state-of-the-art regarding FE-FFT simu-
lations can be found in [20].
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So far, the cited literature focuses on purely mechanical boundary value problems. Considering fully coupled thermo-
mechanical two-scale simulations only a few works have been published. Among these, the work of Sengupta et al. who
considered the behavior of shape memory alloys [21] and Li et al. who investigated the material response of tantalum [22]
can be mentioned. Both authors considered the FE2-method. In our work, we will propose a thermo-mechanically coupled
full-field two-scale FE-FFT simulation approach for elasto-viscoplastic polycrystalline materials at finite strains. The present
paper is organized as follows: After defining the two-scale thermo-mechanically coupled boundary value problem in Section
2, the thermo-mechanical constitutive model is briefly derived in Section 3. Then, the numerical methods are discussed in
Section 4. In Section 5 a numerical example is presented. Finally, the presented work is summed up and conclusions as well
as an outlook are given in Section 6.

2 Two-scale boundary value problem

Assuming a geometric nonlinear, non-isothermal and quasi-static process, the governing equations in the reference configura-
tion of a macroscopic continuum body B̄0 are given in accordance to Fig. 1, in which the macroscopic quantities are indicated
with a bar.

Balance of linear momentum

Div
(
F̄ S̄

)
+ f̄ = 0 in B̄0

F̄ S̄ · N̄ = t̄0 on ∂tB̄0

ū = ū0 on ∂uB̄0

Balance of internal energy

− ˙̄e + S̄ : ˙̄E − Div (q̄) + r̄ = 0 in B̄0

q̄ · N̄ = −q̄0 on ∂qB̄0

θ̄ = θ̄0 on ∂θB̄0

Fig. 1: Governing equations of the macroscopic boundary value problem.

The primary unknowns are given by the displacement ū and the temperature θ̄. F̄ , Ē and S̄ denote the deformation
gradient, the Green-Lagrange strain and the second Piola-Kirchhoff stress, respectively. The vector f̄ represents the body
forces, while the scalar quantities ē and r̄ refer to the internal energy and external heat sources. The tractions t̄0 and the heat
transfer q̄0 are defined on their associated Neumann boundaries denoted by ∂tB̄0 and ∂qB̄0. The displacement ū0 and the
temperature θ̄0 are prescribed on the corresponding Dirichlet boundaries ∂uB̄0 and ∂θB̄0. N̄ denotes the outward unit normal
vector.

Since the body forces f̄ and the external heat sources r̄ are already considered on the macroscale, they can be neglected
in the formulation of the microscopic boundary value problem. Hence, the resulting set of balance equations in the reference
configuration of a microscopic continuum B0 is depicted in Fig. 2.

Balance of linear momentum

Div (FS) = 0 in B0

S = S
(
X̄,X,F

(
X̄,X

)
, ζk

(
X̄,X

)
, θ

(
X̄

))

F = F̄
(
X̄

)
+ H̃

(
X̄,X

)

Balance of internal energy

− ė + S : Ė − Div (q) = 0 in B0

rint = rint
(
X̄,X,F

(
X̄,X

)
, ζk

(
X̄,X

)
, θ

(
X̄

))

θ = θ̄
(
X̄

)

Fig. 2: Governing equations of the microscopic boundary value problem.

The microscopic second Piola-Kirchhoff stress S as well as the internal heat sources rint are defined with dependence on the
macroscopic position X̄ , the microscopic position X , the internal variables ζk and the temperature θ. While the deformation
gradient F is additively decomposed into a constant part F̄ , which is dictated by the macroscale, and a spatially fluctuating
part H̃ , the temperature field θ is assumed to be constant on the microscale.

In order to solve the two-scale boundary value problem, the governing equations need to be fulfilled on both scales. The
scale transition is performed by defining the macroscopic stress and deformation quantities, such as the second Piola Kirchhoff
stress S̄ and the deformation gradient F̄ , as the volume averages of the corresponding microscopic fields:

S̄(X̄) =
1

V0

∫

B0

S(X̄,X)dV, F̄
(
X̄

)
=

1

V0

∫

B0

F
(
X̄,X

)
dV. (1)

The macroscopic internal heat sources r̄int are defined analogously:

r̄int(X̄) =
1

V0

∫

B0

rint(X̄,X)dV. (2)
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3 Thermo-mechanically coupled constitutive model

In the following, the thermo-mechanically coupled constitutive model is briefly presented. Therefore, we introduce the com-
monly used multiplicative split of the deformation gradient F = F eF p into an elastic part F e, which represents the elastic
distortions and rigid body rotations of the crystal lattice, and a plastic part F p, which refers to the irreversible lattice defor-
mations (e.g., [23, 24]). In this work, it is assumed that the plastic lattice deformations are solely caused by dislocation glide.
Hence, the plastic velocity gradient Lp is defined in analogy to the simple shear velocity gradient

Lp =

nα∑

α=1

γ̇α dα ⊗ nα, (3)

where the scalar quantity γ̇α denotes the slip rate and the vectors dα and nα describe the slip direction and slip plane normal
of the associated slip system α. The accumulated plastic slip γacc and its rate γ̇acc are defined as follows

γacc =

nα∑

α=1

∫ t

t0

|γ̇α| dt and γ̇acc =

nα∑

α=1

|γ̇α|. (4)

Furthermore, the elastic right Cauchy Green tensor Ce = F−T
p CF−1

p with C = F TF can be introduced.
With these definitions at hand, the constitutive model can be derived. Therefore, the Helmholtz free energy

ψ = ψ̌ (Ee, γacc, θ) = ψe (Ee, θ) + ψp (γacc, θ) + ψθ (θ) (5)

is assumed to be an additive composition of the elastic energy ψe, the plastic energy ψp and the caloric energy ψθ. Inserting
the first time derivative of the Helmholtz free energy ψ̇ into the second law of thermodynamics

S : Ė − ψ̇ − ηθ̇ − 1

θ
q0 · Grad (θ) ≥ 0, (6)

the second Piola-Kirchhoff stress S and the entropy η can be defined as

S = F−1
p

∂ψe

∂Ee
F−T

p = F−1
p Se F

−T
p and η = −∂ψ̌

∂θ
, (7)

by following the standard arguments of Coleman and Noll [25]. In the latter equation, the elastic second Piola-Kirchhoff stress
is denoted by Se. The heat flux q0 is assumed to be described by Fourier’s law:

q0 = −Kθ J C−1 Grad (θ) , (8)

in which the scalar quantities Kθ and J refer to the heat conductivity of the material and the determinant of the deformation
gradient. By further introducing the elastic Mandel stress M e = Ce Se and the thermodynamic conjugated driving force
qp = ∂ψp/∂γacc, the remaining inequality is given by

M e : Lp − qp γ̇acc ≥ 0. (9)

In order to satisfy the upper equation, the specific terms of the elastic and plastic part of the Helmholtz free energy are chosen
in line with the literature (e.g., [26, 27]). The slip rate γ̇α evolves following a Perzyna-type flow rule:

γ̇α =





0 if τα ≤ τc

sgn (τα) γ̇0

( |τα| − τc
τD

)p

if τα > τc ,
(10)

in which γ̇0 and τD denote the reference shear rate and the drag stress, respectively. According to the latter equation, the
considered slip system α starts to glide through the crystal lattice, if the associated resolved shear stress τα = M e : (dα ⊗ nα)
exceeds the critical resolved shear stress τc = τ0c + qp, where τ0c refers to the initial critical resolved shear stress. Apart from
the rate sensitivity parameter p, the previously introduced elastic, plastic and thermal material parameters are temperature
dependent.

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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4 of 6 Section 8: Multiscales and homogenization

B̄

X̄

σ̄

r̄int

F̄

θ̄

B0

X

η

ξ

Homogeneous
macroscale

Heterogeneous
microscale

Fig. 3: Schematic overview of the two-scale FE-FFT-based approach.

4 Numerical methods

As mentioned before, the two-scale boundary value problem is solved utilizing two different simulation methods. The macro-
scopic solution fields are obtained using the finite element method, while the microscopic solution is computed applying
FFT-based simulation methods. As schematically shown in Fig. 3, a periodic microstructure is embedded in each macro-
scopic integration point. In order to obtain the overall as well as the local solution fields, the deformation gradient F̄ and
the temperature θ̄ of the considered integration point are applied to the associated unit cell. Once the microscopic solution
has converged, the macroscopic stress S̄ and internal heat sources r̄int can be determined according to equation (1) and (2),
respectively. These quantities are then given back to the macroscale and the resulting macroscopic solution is checked for
convergence.

4.1 Macroscopic boundary value problem

In order to obtain the global system of linear equations the weak forms as well as the linearizations of the weak forms of the
governing equations, given in Fig. 1, need to be derived. Considering the arbitrariness of the test functions and the Dirichlet
boundary conditions, the macroscopic system of linear equations is defined as follows

[
Kūū Kūθ̄

K θ̄ū K θ̄θ̄

] [
∆ū
∆θ̄

]
=

[
Rū

Rθ̄

]
. (11)

The incremental values of the primary unknowns ū and θ̄ are determined using a Newton-Raphson iteration.

4.2 Microscopic boundary value problem

The main advantage of fast Fourier transformation based simulation methods is the increase of computational efficiency by
solving the so-called Lippmann-Schwinger equation in Fourier space. In order to obtain the Lippmann-Schwinger equation,
the balance of linear momentum (cf. Fig. 2) needs to be rewritten. Therefore, let us introduce a homogeneous isotropic
linear elastic reference material whose elasticity matrix is denoted by C0 and define the polarization stress τ as the difference
between the real stress P = FS and the stress in the reference material subjected to the same deformation state:

τ
(
X̄,X

)
= P

(
X̄, X

)
− C0 : F

(
X̄, X

)
. (12)

Utilizing the Green’s operator Γ0
(
X,X ′) leads to a convolution integral which reduces to a simple double contraction in

Fourier space:

F̂ (ξ) =

{
− Γ̂

0
(ξ) : τ̂ (ξ) if ξ ̸= 0

F̄ if ξ = 0.
(13)

Since the Green’s operator associated to an isotropic linear elastic reference material is explicitly known in Fourier space,
the upper equation can be solved directly. In this work, we utilize a conjugate-gradient based Newton-Krylov solver which

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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combines a Newton-Raphson iteration and a conjugate-gradient based Krylov solver to compute the solution of the following
system of linear equations:

G (F ) +
∂G (F )

∂F
∆F = 0

with G (F ) = F − F̄ + Γ0 ∗
(
P − C0 : F

)

∂G (F )

∂F
= I4 + Γ0 ∗

(
∂P

∂F
− C0

)

F n+1 = F n +∆F ,

(14)

in which I4 denotes the fourth-order identity tensor and the operator ∗ refers to the convolution integral. More detailed
information on the solver are given in the work of Kabel et al. [28].

5 Numerical examples

In the following, the previously derived thermo-mechanically coupled two-scale approach is utilized to determine the elasto-
viscoplastic material behavior of a beam-like specimen subjected to a displacement load. As depicted in Fig. 4, the 2 mm by
20 mm specimen is subdivided into 160 finite elements. Displacement boundary conditions are applied to the nodes located
on the left hand side. While the displacement of the left bottom node is restricted in both directions, the upper nodes can
move freely in vertical direction. Within 20s a displacement of 4 mm is applied to the tip of the specimen with a constant
displacement rate. The body is modeled as copper and the material parameters are chosen in line with the literature. The
simulation is performed at room temperature θ = 293.15 K.

2
m

m

20 mm

X1

X2

u2

Fig. 4: Beam-like specimen subdivided into 160 finite elements and subjected to a displacement load at the tip of the specimen.

In order to increase the computational efficiency of the two-scale FE-FFT simulation, Kochmann et al. proposed an efficient
solution stragety [15]. In his work and also in a later work of Gierden et al. [16], it has been shown that the overall constitutive
behavior can already be accurately captured using a coarse microstructure discretization. Highly resolved micromechnical
and microthermal fields can then be obtained by storing the deformation gradient and the temperature value of the integration
point of particular interest during the two-scale simulation and by appyling these quantities to a highly resolved microstructure
in a postprocessing step.

In the crystal plasticity framework, the elastic deformations are, compared to the plastic deformations of the material,
typically small. Hence, the material starts to plasticize early. In Fig. 5, the distribution of the macroscopic and microscopic
stress and accumulated plastic slip as well as the distribution of the macroscopic temperature difference and microscopic
internal heat sources are depicted at the end of the simulation. The microscopic solution fields are associated to the finite
element located in the top left corner. As expected, the bending-like behavior of the specimen leads to tensile stresses in the
upper part of the material and to compression stresses in the lower part of the material. The microscopic stress values fluctuate
around the associated macroscopic stress of 49.1 MPa and local stress minima and maxima arise within the microstructure.
Regions characterized by higher stresses are naturally also characterized by higher plastic deformations. The microscopic
accumulated plastic slip reaches values of up to 25%. Since the elastic deformations are, as mentioned before, relatively
small, the elastic heat sources are neglected in this work. Hence, only the plastic deformations, meaning the dislocation glide
of the individual slip systems, contribute to the heat generation. By comparing the microscopic fields of the accumulated
plastic slip and internal heat sources, it can nicely be seen that more heat is generated in the regions where the accumulated
plastic slip is higher. Macroscopically more heat evolves in the vicinity of the elements whose displacements are restricted by
the Dirichlet boundary conditions. Hence, the temperature difference is higher at the left side of the material and then spreads
through the body.

6 Conclusion and outlook

In this work, a geometric nonlinear thermo-mechanically coupled two-scale FE-FFT model for elasto-viscoplastic polycrys-
talline materials has been proposed. After briefly deriving the constitutive framework, the numerical methods were presented
and finally, a numerical example was given. As seen in the previous section, the considered model leads to reasonable results
and is capable of capturing the temperature increase due to plastic deformation. However, in the future, we would like to

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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Fig. 5: Distribution of selected macroscopic and microscopic solution fields of a beam-like specimen subjected to a displacement load at its
tip shown at the end of the simulation.

compare and validate our results with experimental data, too. Furthermore, additional microstructural mechanisms, such as
martensite phase transformation and mechanical twinning, which are influenced by the temperature and also generate more
heat, could be incorporated into the model.
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