
Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of

the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/20597991231160281https://doi.org/10.1177/20597991231160281

Methodological Innovations
2023, Vol. 16(2) 138–148

© The Author(s) 2023
Article reuse guidelines:

sagepub.com/journals-permissions
DOI: 10.1177/20597991231160281

journals.sagepub.com/home/mio

Introduction

In the social and psychological sciences, there has been a
recent uptake in the application of theory and methods from
social network analysis and network science. Researchers
have begun to collect a host of different kinds of social net-
work data—for example, data that capture social relation-
ships or interactions, measure the flow of goods or ideas
between individuals, and/or record inter-personal percep-
tions—in a variety of cultural and ecological settings (e.g.
Gervais, 2017; Koster and Leckie, 2014; Pisor et al., 2020;
Power, 2017; Ready and Power, 2018; Rucas et al., 2010). At
the same time, applied mathematicians, complexity scien-
tists, and statisticians have been developing increasingly
sophisticated tools for the analysis of such network data (e.g.
Hoff et al., 2002; Redhead et al., 2023; Robins et al., 2007;
Snijders, 2017). The rising popularity of social network anal-
ysis has been driven by the framework’s ability to answer a
plethora of fundamental questions about the roles of social
relationships and dyadic attributes in many socio-cultural
(Lin, 2002; Redhead and Power, 2022), economic and finan-
cial (Allen and Babus, 2009; Jackson, 2010), evolutionary
(Croft et al., 2008; Ohtsuki et al., 2006), and health-related

(Liljeros et al., 2003; Smith and Christakis, 2008) phenom-
ena, observed across human communities, and in other social
species.

Despite the fact that network analysis has been involved
in far-reaching theoretical and methodological advances in
the social sciences—both pure and applied (Borgatti et al.,
2009; Buyalskaya et al., 2021)—and the fact that the analyti-
cal methods used in network analysis have been constantly
improving (e.g. Carrington et al., 2005; Newman, 2018), dis-
cussions on the methodology and tools used to generate
social network data itself have somewhat lagged behind.
Specifically, there is an existing need in the social sciences
for tools that simplify the process of collecting and accu-
rately coding social network data and dyadic peer-ratings
data gleaned from interviews with respondents. More

Automatic entry and coding of social
networks and dyadic peer ratings

Cody T Ross and Daniel Redhead

Abstract
In small-scale communities, social-scientists can use photo-rosters to collect social network and dyadic peer-ratings data.
In past work, we introduced an R package to automate photo-standardization, survey construction, and data-entry. This R
package, however, lacked two key features required for fully-unsupervised data-entry. First, respondent IDs needed to be
manually linked to cellphone photographs of the photo-roster before DieTryin could process the data; second, users
needed to identify the locations of the photo-roster in each cellphone photograph using a point-and-click interface. To
address the first shortcoming, we introduce a new Android application, DieTryinCam, which facilitates annotation of cell-
phone photographs with respondent, question, and panel IDs. To address the second shortcoming, we add new functionality
to the DieTryin R package, which allows for the precise location of the photograph roster to be automatically identified.
Automated data entry in DieTryin now requires no user input beyond a single function call from R.

Keywords
Social networks, behavioral economics, social relations, economic games, automated data entry, peer report data

Department of Human Behavior, Ecology, and Culture, Max Planck
Institute for Evolutionary Anthropology, Leipzig, Germany

Corresponding author:
Cody T Ross, Department of Human Behavior, Ecology, and Culture, Max
Planck Institute for Evolutionary Anthropology, Duetscher platz 9, Leipzig
04103, Germany.
Email: cody_ross@eva.mpg.de

1160281 MIO0010.1177/20597991231160281Methodological InnovationsRoss and Redhead
research-article2023

Original Article

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/mio
mailto:cody_ross@eva.mpg.de
http://crossmark.crossref.org/dialog/?doi=10.1177%2F20597991231160281&domain=pdf&date_stamp=2023-03-18

Ross and Redhead	 139

generally, issues related to methodological generalizability,
cross-study comparability, data curation and provenance,
and reproducibility still persist. Many of these issues, how-
ever, can be addressed with software that standardizes, sim-
plifies, and automates the social network data-collection
workflow.

Currently, the most popular instruments for measuring
social networks are self-report name generator surveys
(Marsden, 1990). With these surveys, researchers ask partici-
pants in a given sample to freely list the names of other indi-
viduals, in response to a battery of questions about particular
relationships (e.g. “Who do you consider to be your friend?,”
or “Who do you go to when you need to borrow money?”).
Such name generator methods have several strengths
(reviewed in Ross and Redhead, 2022). For example, they
provide a logistically feasible, and relatively fast, approach
for collecting network data from large samples. Likewise,
they allow researchers to capture potentially important rela-
tionships with individuals outside of the community
boundaries.

Name generators approaches do, however, come with
substantial limitations, which may squander research time,
introduce noise, and even substantially bias downstream
analyses. Most importantly, there are key logistical hurdles
involved in making name generator data usable for analysis.
First, researchers must identify unique individuals from
within the set of free-list nominations, where some survey
respondents (or researchers recording interview data) might
use different spelling variations of a given name, some
respondents might use different combinations of first and last
names when referring to a given person, and some respond-
ents might even use nicknames rather than legal names. This
process of individual identification (or entity resolution) is
normally onerous—often taking longer than data collection
itself—and is notoriously inaccurate. Researchers may fail to
detect when the same individual is listed under multiple
names—leading to a phenomena called duplication, where
the same individual is included twice under different identi-
ties, inflating the apparent size of the dataset. Or, just as eas-
ily, researchers may inadvertently link the records of distinct
individuals with similar names—leading to a phenomena
called collision, where the apparent size of the database is
deflated and some individuals are treated as statistical
hybrids of multiple respondents. Either of these—very com-
mon—errors can have highly non-linear impacts on down-
stream network measures. These validity concerns are only
multiplied when researchers attempt to conduct further
record linkages between the free-list data and other databases
containing additional covariate information.

To avoid the limitations associated with name generators,
practitioners may instead implement roster-based designs
for measuring social networks. This entails researchers ask-
ing all participants to report on their relationships to all other
individuals listed on a community roster (Marsden, 2005).
Roster-based approaches allow for greater confidence in the

measurement of relationships within a given network, and
free the researcher from having to grapple with complicated
entity resolution procedures to make the data usable.
Nonetheless, roster-based methods have traditionally been
more limited in applicability across the social and behavioral
sciences, in part because researchers need to determine a full
roster of community residents prior to data collection. More
importantly, the time burden of data collection and entry
tends to scale with the square of sample size, making the
process prohibitively burdensome for studies that contain
even moderately large samples. This scaling issue, however,
is being tackled through the introduction of photograph ros-
ter designs, which permit automated data entry and coding
with machine learning algorithms (Ross and Redhead, 2022).

Here, we explore and build upon a recently released R
software package, DieTryin, that facilitates the collection
and provenance management of social network data (see
Ross and Redhead, 2022). DieTryin records network ties
using token placement on a physical photograph roster; cell-
phone images are used to record ties, and replicable, audita-
ble machine learning algorithms are used to classify and
visualize these ties, returning labeled edge-list data to the
user automatically. The approach to network data collection
and provenience management introduced in DieTryin
helps to standardize research protocols both across study
locations and across interviewers within study locations, and
provides a fully transparent and reproducible history of data
provenance. By using a roster, it also circumvents the need
for use of error-prone entity resolution protocols, increasing
the accuracy of the resulting data.

To facilitate the dissemination of the new and improved
DieTryin software, we first briefly review the functional-
ity of the tools introduced in Ross and Redhead (2022), and
comment on two major inefficiencies in the original
DieTryin workflow. We then provide a step-by-step tuto-
rial on how to use our new Android app to collect data, and
the new and improved version of DieTryin—which now
requires no time-consuming manual steps—to enter data.

Measuring dyadic ties with DieTryin v1.0

In Ross and Redhead (2022), we introduced an R package,
DieTryin, designed to simplify the process of collecting
and entering roster-based network and dyadic peer-ratings
data. This package included functions for respondent photo-
graph standardization, survey tool construction, manual data
entry, and semi-automated data entry and coding from sim-
ple cell-phone photographs (see Figure 1 for a review of the
workflow). This package aimed to make roster-based data
collection more rapid, thus permitting use of roster-based
methods in research contexts where sample-size constraints
would generally push researchers toward use of name-gener-
ator methods and/or partial round-robin designs. By using a
full community roster, DieTryin helps to minimize the
validity concerns associated with these more restrictive

140	 Methodological Innovations 16(2)

methods. Specifically: (i) recall bias is attenuated by provid-
ing a visual prime for each and every community member,
(ii) record linkage and de-duplication issues associated with
post-processing of name-generator-based data are bypassed
through the use of a full-community roster, and (iii) the in
situ speed of name-generator-based data collection is main-
tained, reducing respondent fatigue.

The original package was only partially successful, how-
ever, in facilitating automatic data entry and coding.
Specifically, in steps (5) and (6) of the workflow presented in
Figure 1, some manual steps are required of end-users, and
the time burden of these steps can be prohibitive for research-
ers working in large field-sites, and/or collecting numerous
networks or peer-ratings during a single interview. In step (5)

of Figure 1, for example, users must photograph each panel of
the roster for each question. Alone, this is not very time con-
suming. However, for DieTryin to process these images,
users must manually process the file names of each image to
include the respondent ID, the question ID, and the panel ID.
If the field project requires a large number of photographs to
be taken, the process of renaming images can becoming quite
burdensome. Similarly, in step (6) of Figure 1, users must
manually identify the location of the photo-roster in every
cell-phone image using a point-and-click graphical user inter-
face. Although this data entry method is much faster than
manual entry in a spread-sheet, permitting entry and classifi-
cation of up to a hundred data points with only four mouse-
clicks, it can still become burdensome when the number of

Figure 1.  Collection of roster-based network ties or dyadic ratings using DieTryin v1.0. DieTryin is designed to facilitate
photograph standardization, roster creation, and data entry. However, steps 5 and 6 above can become inefficient for social scientists
working in large field-sites and/or collecting a large number of network layers, as both of these steps require manual tasks. In step 5,
users must annotate their cell-phone images with key ID codes, and in step 6 users must use a point-and-click interface to identify the
location of the roster in the image. (a) Step 1, the user creates a database of respondent photographs. (b) Step 2, the user standardizes
the photographs to include only the face of each respondent. (c) Step 3, the user compiles a survey tool, which lists the respondents’ ID
codes in a specific order. (d) Step 4, the user creates a physical photograph roster, with photographs appearing in the same order as on
the survey tool. (e) Step 5, the user asks the participant to place tokens on the roster to indicate social ties and/or dyadic ratings, and
then takes a cell-phone picture of the token allocation. (f) Step 6, the user uses DieTryin to automatically code edge-list data from
the cell-phone photographs, but must manually identify the location of the roster in the image using a point-and-click interface.

Ross and Redhead	 141

photographs to be classified is very large. In this paper, we
introduce methods to resolve each of these productivity bot-
tlenecks. Photograph annotation is handled through the use of
a new Android application, DieTryinCam, as described in
the next section. Unsupervised data entry is made possible by
the introduction of an algorithm in DieTryin v2.0 that
automatically identifies the position of the photo-roster in
each cell-phone image.

Data collection using DieTryinCam v1.0

The default camera on most Android or iOS devices does not
permit users to easily change the file names of photographs
in situ using a comfortable user interface, which makes
organized data collection via cell-phone photographs diffi-
cult. The DieTryinCam v1.0 Android app is thus designed
to simplify the process of annotating cell-phone photographs
with respondent ID codes, question ID codes, and game-
board ID codes, as these three pieces of information are
essential for accurately coding network ties or dyadic peer-
ratings using DieTryin.

DieTryinCam v1.0 provides a simple graphical inter-
face in which users can input relevant ID codes (see Figure 2),
before calling the Android camera. Once the user photo-
graphs a particular game-board/photo-roster, the image will
be saved in a dedicated folder with a file-name that includes
all the information that DieTryin v2.0 needs to automati-
cally code labeled edge-list data from the cell-phone image.

The DieTryinCam APK file is located at: https://github.
com/ctross/DieTryin, and Android users can install it by per-
mitting the installation of third party apps, and then opening
the downloaded APK file.

Automatic data entry using DieTryin v2.0

Fully automatic data entry in DieTryin v2.0 is made pos-
sible by an algorithm that detects the corners of the photo-
roster in each cell-phone image, and then passes the roster
sub-image into the classification algorithms discussed in Ross
and Redhead (2022). The differences in the point-and-click
versus unsupervised corner-detection algorithms are dis-
cussed in Figure 3. DieTryin v2.0 supports both manual

Figure 2.  Collection of roster-based network ties or dyadic peer-ratings using DieTryinCam. In frame (a), the researcher opens the
app. In frame (b), the researcher enters the ID code of the respondent along with the ID code of the game or question; in this example,
individual FKA is being asked to name her friendship/adversary network (by placing green tokens on the roster to indicate friendships
and purple tokens to indicate adversaries). In frame (c), the researcher takes a photograph of the distributed tokens to record the data,
and then confirms the photograph in frame (d). Upon confirmation, DieTryinCam will save the photograph with a file name that
includes the respondent ID (e.g. “FKA”), the question ID (e.g. “Friendship”), and the panel ID (e.g. “A”)—resulting in a file-name like
“Friendship_FKA_A.jpg”. This data will be used by the DieTryin R package in order to create edge-list data labeled with game ID
codes and token colors. (a) Step 1, the user opens the DieTryinCam app. (b) Step 2, the user enters the respondent/player ID code
and the game/question ID code, and then clicks one of the four “panel ID” buttons, A, B, C, or D. (c) Step 3, the phone’s camera app
will be opened, and the user can then photograph the appropriate game board panel. (d) Step 4, the user can either confirm the photo
by pressing OK, or click retry to retake the photograph (if needed).

https://github.com/ctross/DieTryin
https://github.com/ctross/DieTryin

142	 Methodological Innovations 16(2)

and automatic corner detection, as the manual approach is
sometimes needed to handle low-quality cell-phone images,
or images captured under harsh or problematic lighting.

In order for automatic classification to be possible, the
user must print out a simple matrix bar-code, which we will
refer to as the “reference chip,” and place a copy in each
corner of each roster panel (see Figure 4). The reference chip
contains a specific distribution of hues, which can be detected
by the corner detection algorithm in DieTryin v2.0. We

provide the computational details in the Technical Methods
section for interested readers.

A complete workflow with DieTryin
v2.0

In what follows of the paper, we provide step-by-step instruc-
tions on how to use DieTryin to prepare, collect, and pro-
cess roster-based dyadic data. We also provide an accessible

Figure 3.  Tie classification using DieTryin v2.0. In frame (a), the social scientist uses DieTryinCam, and records, for example,
the generosity ratings of a given respondent (with green tokens representing generous peers, and purple tokens representing selfish
peers). DieTryinCam will save the photograph with a file name that includes the respondent ID (e.g. “FKA”), the question ID (e.g.
“Generosity”), and the panel ID (e.g. “A”)—resulting in a file-name like “Generosity_FKA_A.jpg”. In frame (b), DieTryin v2.0 is
used to automatically detect the corners of the game board. The details regarding the algorithm used to perform this classification
are discussed in the Technical Methods section. In contrast, in frame (c), DieTryin v1.0 requires users to identify the corners of
the game board using a point-and-click interface. Finally, in frame (d), the game-board/photo-roster is cropped out of the cellphone
image, rotations and skews are corrected, and the image is fed into the token detection algorithm. DieTryin then builds and returns
a color-labeled edge-list, linking the respondent ID code and the ID codes of each prospective token recipient on the game-board. (a)
Step 1, a cell-phone photograph is taken using DieTryinCam, and respondent, game, and panel ID codes are stored in the file name.
(b) Step 2, DieTryin v2.0 is used to automatically detect the edges of the game-board/photo-roster with zero user input. (c) Step 2,
if DieTryin v1.0 is used, users must indicate game-board/photo-roster corners using a point-and-click interface. (d) Finally, image is
cropped, corrected to remove rotation and skew, and then fed into the token detection algorithm.

Figure 4.  In order for the roster to be automatically separated from the background image, DieTryin v2.0 identifies where a specific
combination of colors occurs. The users must print out reference chip stickers and attach them to each corner of each roster panel.
We provide a field-tested example of a reference chip in frame (b) above, but other patterns can be used by practitioners. (a) Step 1, the
user creates a photograph roster. (b) Step 2, the user prints out a “reference chip,” an approximately 2 cm by 2 cm square that contains
a specific combination of hues. (c) Step 3, the user places the reference chip in each corner of the roster.

Ross and Redhead	 143

tutorial workflow at: https://github.com/ctross/DieTryin,
which contains additional annotated R code and example
photograph datasets. Our tutorial trains end-users to run a
full network study using DieTryin. Bug-reports, feature
requests, and other relevant comments should be made
through GitHub, where the package will be maintained.

Most of the functionally of DieTryin is already dis-
cussed in Ross and Redhead (2022). Here, we focus on the
functionality related to data collection with DieTryinCam,
and data entry with the unsupervised token detection
algorithm.

Installation and setup

Much of the functionality of DieTryin is made possible by
R (R Core Team, 2019) and the imager (Barthelme, 2019),
philentropy (Drost, 2021), MASS (Venables and Ripley,
2002), and xtable (Dahl et al., 2019) packages and their
dependencies, as well as by the LaTeX software system. The
user must install these programs in order to reproduce our
workflow.

Installation and loading of DieTryin is then simple:
just run three lines of code from R:

Next, we set a path to where we will save all of the files
related to our project, and initialize a directory structure
there:

To add an extra folder to store data on peer ratings, we set:
add=games_to_add, where games_to_add is a vector
of folder names (in this case, we only add a single folder).

Next, the user must copy-and-paste respondent photo-
graphs into the RICH/RawPhotos folder. These should be
jpg-formatted images. The filenames must include the unique
identifier (ID) codes for the respondents: for example, FKA.
jpg. If needed, the full directory of images can be rapidly
processed to yield a database of standardized photos (see
Ross and Redhead, 2022, for details). The user can then print
these photographs and assemble the photo-roster.

Data collection with DieTryinCam

Once the photo-roster has been assembled, researchers can
use it to collect social network data or dyadic peer-ratings.

As an example, individuals might be asked to conduct peer
ratings by placing green tokens on peers who are very gener-
ous, and purple tokens on peers who are very selfish. Then,
following the example in Figure 2, researchers can use
DieTryinCam to record the distribution of tokens, while
simultaneously annotating the cell-phone photographs with
respondent IDs, question IDs, and panel IDs. Once each
panel of the roster is photographed, the researcher can ask
the same respondent another question: for example, to indi-
cate the wealthiest individuals on the roster by placing green
tokens on their pictures, and indicate the poorest individuals
by placing purple tokens on their pictures. The researcher
then simply changes the question ID, while leaving the
respondent ID unchanged, and records the data again. A
complete interview must include a picture of each panel of
the photo-roster with no tokens placed (the control condi-
tion; the question ID must be set to “Blank”), and images of
each panel of the photo-roster for every other question asked.

Upon completion of the interview, the researcher will
have a folder titled “RICH” in the images folder of their
Android device, and this folder will contain all of the col-
lected data. In order to automatically enter and code these
data into a labeled edge-list, the researcher must transfer all
key data to a computer where R has been installed and the
installation and setup steps for DieTryin have been com-
pleted. In particular, the data photographs must be placed
into the RICH/ResultsPhotos folder. Once this is done,
the data are ready to enter.

Automatic data entry with DieTryin v2.0

For a user to implement automatic data entry, all photographs
of a given respondent’s game boards must be pasted into the
RICH/ResultsPhotos directory. To account for varia-
tion across respondents in the lighting of the photo-rosters,
there should also be a photograph of each panel for each indi-
vidual with no tokens placed (the control condition). Cell-
phone photographs of the game boards, however, will
normally suffer from rotation, skew, or shearing that can
complicate automated data entry. To correct these visual dis-
tortions, DieTryin uses a two step process in R. First, the
corners of each game board must be identified. Then,
DieTryin will identify the camera position relative to the
game board, and apply an algorithm that corrects any distor-
tions and crops out the photo-roster.

To speed up the token detection and classification algo-
rithms, photographs of the game boards can—optionally—
be resized to smaller dimensions (e.g. 2000 by 1500 pixels):

This line of code will copy all game board photographs,
downsize them by a factor of 2, and save them in a new
folder. If the files do not need to be resized, set scaler = 1.

library(devtools)
install_github("ctross/DieTryin")
library(DieTryin)

path = "C:/Users/NoetherAE/Desktop"
games_to_add = c("PeerRatings")
setup_folders(path=path, add=
games_to_add)

downsize(path=path, scaler=2)

https://github.com/ctross/DieTryin

144	 Methodological Innovations 16(2)

If automatic classification is to be used, several pictures
of the reference chip must be placed into the RICH/
ReferenceChip folder; we recommend 5–10 images
taken under a variety of lighting conditions (see Technical
Methods section for details).

Next, the user can process all images for each respondent
with a single function call:

The classify function has two main blocks of input
arguments. The first block consists of header data that are
typically respondent-specific. PID is a string giving the per-
sonal ID code of the respondent. HHID is a string giving the
household ID code of the respondent. RID is a string giving
the ID code of the researcher administering the interview.
The arguments day, month, and year are numeric varia-
bles giving the date on which the interview was conducted.

The next block of arguments are typically invariant across
all respondents, and are used to define which images should
be classified, and control/tune the classification algorithms.
The argument panels is a vector which contains the list of
panel ID codes used in the study (DieTryinCam supports
up to four panels). The argument questions is a vector
which contains the list of question ID codes used in the study
(this can be an arbitrarily long vector). The argument auto-
mate is a boolean variable which determines whether the
roster is extracted from the image automatically using

“reference-chip” detection, or manually using the version 1.0
point-and-click interface. The argument revise is a
boolean variable; when set to TRUE, it allows the token
detection algorithm to be run with updated parameter values,
without requiring the user to re-run the corner detection
algorithms.

There are three main parameters that control classification
performance: thresh Î (0,1) , which controls how much
the percent difference in hue density must diverge between
control and treatment cases for a tie to be declared, and
lower_hue_threshold Î (0,360) and upper_hue_
threshold, which give the lower and upper bounds of the
hue range corresponding to the token color (see Ross and
Redhead, 2022, for more details). To identify good hue
threshold values for a given token color, it is helpful to use a
color picker app. We provide a simple interactive application
in R—via the function: get_hue(file.choose())—for
this purpose, but many online tools are also available. The
argument plot_colors is a vector which contains the
string “empty,” followed by the colors corresponding to the
hue thresholds given above. These strings must be legal color
values in R, as they will be used to label the edge-list data
with token colors and used to plot inferred token placements
back onto the photograph roster. Additionally, there are sev-
eral other more technical parameters that can be modulated
from their defaults to control classification (see Technical
Methods).

Running the classify function on the images included
in the supplementary materials, yields a csv file with labeled
edge-list data (see Table 1) and jpeg files that plot the pre-
dicted ties back on to the photograph roster. The plots of pre-
dicted ties allow users to rapidly check that the data have

classify(
path=path,
PID = "SS1",
HHID = "SKA",
RID = "CR",
day = 12, month = 4, year = 2020, name

= "Cody",
panels = c("A", "B"),
questions = c("A","B","C","D"),
game = "PeerReports",
order = "AB",
revise = FALSE,
pattern = ".jpg", start = 1, stop = 3,
seed = 1,
n_panels = 2, n_rows = 4, n_cols = 5,
ordered_ids = NULL,
thresh = c(0.065, 0.065, 0.065),
lower_hue_threshold = c(110, 285, 175),
upper_hue_threshold = c(155, 341, 215),
plot_colors = c("empty", "seagreen4",

"purple", "navyblue"),
lower_saturation_threshold = 0.1,
lower_luminance_threshold = 0.12,
upper_luminance_threshold = 0.88,
border_size = 0.22, iso_blur = 0,
direction = "forward",
alert_mode = "50_Cent",
automate = FALSE,
d_x = 15, d_y = 15

)

Table 1.  Directed ties as inferred by the classifier. Inferred ties
should always be checked visually, by checking the results in the
ClassifiedPhotos folder.

PID AID Question TokenColor

SS1 CT1 Trust purple
SS1 KW1 Trust seagreen4
SS1 AOC Trust purple
SS1 RBG Trust seagreen4
SS1 EM1 Trust seagreen4
SS1 LF1 Wealth seagreen4
SS1 CCM Wealth purple
SS1 RKM Wealth seagreen4
SS1 CT1 Wealth purple
SS1 JK1 Wealth purple
SS1 KW1 Wealth seagreen4
SS1 EM1 Wealth seagreen4
SS1 LF1 Friendship navyblue
SS1 KC1 Friendship navyblue
SS1 RKM Friendship navyblue
SS1 KW1 Friendship navyblue
SS1 FN1 Friendship navyblue

Ross and Redhead	 145

been classified correctly (e.g. see Figure 3d). These files are
stored in the RICH/ClassifiedPhotos folder.

The classification model with default settings generally
works well, but performance can be sensitive to input param-
eters, including the legal range of hues attributable to each
token, and the required divergence in hue density between
control and treatment photographs. These parameters can be
optimized by the user prior to fieldwork using simulated
allocations. Tokens of the cool hues like green, blue, and pur-
ple are generally easier to correctly classify, as they are less
likely to overlap with skin hue than tokens of warm colors,
like red or orange. Surprisingly, use of black-and-white
recipient photos can decrease classification accuracy, since
the hue of values of such photos in the control condition can
vary a lot based on ambient lighting.

Summary

Collecting and managing social network data in a generaliz-
able and reproducible fashion has traditionally been difficult
and time consuming. Nonetheless, such data are important
for theoretical and empirical progress in a variety of disci-
plines. As such, there is value in advancing methods that
make such data collection protocols more feasible. Building
upon recent workflows and software for semi-automated
data collection and processing of social network data (Ross
and Redhead, 2022), we have developed an updated version
of DieTryin that supports fully automated data entry and
coding, easing the data entry and management burden of
roster-based social network data collection. The DieTryin

package provides a platform for generalizable and reproduc-
ible workflows in social network research. Alongside this,
we have developed an Android app that simplifies data col-
lection, and provides an intuitive interface that improves
ease-of-use.

Technical methods

Much of the functionally of DieTryin is discussed in Ross
and Redhead (2022). Our principle contributions here are the
addition of an Android app to simplify data collection, the
addition of under-the-hood functions to automatically seg-
ment cell-phone images and extract the photo-rosters, and
the addition of some wrapper functions to simplify the work-
flow for end users. For example, the new classify func-
tion automatically implements the entire classification,
validation, and annotation workflow that was presented
piece-wise in Ross and Redhead (2022). Below, we provide
some important technical details about the app and classifi-
cation algorithm that may be of limited interest to most end-
users, but may be important for a subset of researchers who
seek to extend our software.

DieTryinCam

DieTryinCam is based on source code published by
Tamada (2018) and made publicly available at: https://
github.com/ravi8x/AndroidCamera. In turn, we have made
our source code publicly available at: https://github.com/
ctross/DieTryinCam.

Figure 5.  Construction of a reference set hue distribution.

https://github.com/ravi8x/AndroidCamera
https://github.com/ravi8x/AndroidCamera
https://github.com/ctross/DieTryinCam
https://github.com/ctross/DieTryinCam

146	 Methodological Innovations 16(2)

In some Android devices, the app may return an error:
“User canceled image capture.” This error is remedied by
creating a directory called “RICH” inside of the images
folder on the Android device.

Other classification parameters

In the classify function, there are several other more-tech-
nical parameters that can be modulated from their defaults to

control classification: lower_saturation_threshold
Î (0,1) controls the limit of saturation at which hue values are
excluded from measurement (because they are essentially
gray), lower_luminance_threshold Î (0,1) and
upper_luminance_threshold Î (0,1) control the val-
ues of luminescence at which hue values are excluded from
measurement (because they are essentially black or white,
respectively), iso_blur controls the width (in pixels) of the
isoblur applied to a target photo (a value of 0 turns off isoblur),

Figure 6.  Measuring KL divergence between the focal image and the reference set. (a) The negative log KL divergence for a kernel set taken
at a random position of the focal image. (b) The negative log KL divergence for a kernel set which covers the reference chip on focal image.

Ross and Redhead	 147

border_size Î (0,1) controls the width (in percent) of the
excluded border zone (to minimize the effects of clothing or
background colors), and direction Î{"forward",
"backward"} indicates whether the distortion correction
algorithm should be run in forward or backward mode.
Forward mode is fast but produces lower-quality images, and
backward mode is slower but produces higher-quality cor-
rected images (see imager documentation for further details
about these modes).

Corner detection and image segmentation in
DieTryin

Corner detection and image segmentation in DieTryin is
accomplished by using a reference chip (see main text) with
a known hue distribution, and then measuring the KL diver-
gence (Kullback and Leibler, 1951) between the reference
pixel set and a kernel pixel set.

More specifically, we first build up a reference hue distri-
bution, ψ̆ , by taking several JPG images of the photograph
roster with the reference chip attached (it helps if there is
some variance in lighting conditions between these photos).
We then crop out only the reference chip, and save these files
in the RICH/ReferenceChip folder. Under-the-hood,
the grab_points_automatic function reads each of
these files into R, standardizes their sizes and converts them
into HSL images (Hue is represented in degrees around the
unit circle and Saturation/Luminosity are represented as
magnitudes on the unit interval). The hue layer is extracted
from each image, i , binned into one-degree intervals, and
then normalized to yield a discrete probability mass distribu-
tion, ψ i . We then average across images to get the final ref-
erence distribution ψ̆ These steps are illustrated in Figure 5.

Next, the grab_points_automatic function reads
the focal game-board image to be processed. A w by h
pixel sub-image is then extracted from the focal image at

coordinates (,)x y ; we will refer to this set of pixels as the
kernel set. This kernel set is then converted into an HSL
image, and the hue density, θx y, , calculated as described
above. We then calculate the (negative log of the) KL diver-
gence, Ωx y x yKL, ,= ((,))− log ˘θ ψ , between the kernel and
reference sets using the KL function in the philentropy
R package (Drost, 2021). The x and y values can then be
incremented, and the process repeated. Figure 6 illustrates
some values of Ω for two positions of the kernel set on the
focal image.

After the grab_points_automatic function has
iterated KL divergence calculations across full sweeps of x
and y values, we are left with a map, Ω , of the similarity of
each local pixel region to the reference set. We plot Ω  as a
heat map in Figure 7a. Next, the focal image is broken into
quadrants, and the location of the maximum of Ω  within each
quadrant is determined, Figure 7b. Finally, the photograph
roster is extracted from the focal image using the locations of
the per-quadrant maxima.

Acknowledgements

C.T.R. and D.R. were supported by the Department of Human
Behavior, Ecology, and Culture at the Max Planck Institute for
Evolutionary Anthropology. Leipzig, Germany.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, author-
ship, and/or publication of this article.

ORCID iD

Cody T Ross https://orcid.org/0000-0002-0067-4799

Figure 7.  Image segmentation based on KL divergence. (a) Similarity between the focal image and the reference chip. (b) The focal
image is divided into quadrants and the location of the maximum of Ω within each quadrant is determined. (c) The original focal image is
segmented on the basis of the per-quadrant maxima.

https://orcid.org/0000-0002-0067-4799

148	 Methodological Innovations 16(2)

Supplemental material

Supplemental material for this article is available online See:
https://github.com/ctross/DieTryin and https://github.com/ctross/
DieTryinCam

References

Allen F and Babus A (2009) Networks in finance. In: Kleindorfer
PR, Wind Y and Gunther R (eds) The Network Challenge:
Strategy, Profit, and Risk in an Interlinked World. Philadelphia,
PA: Wharton School Publishing, pp.367–382.

Barthelme S (2019) Imager: Image Processing Library Based
on ‘CImg’. Available at: https://CRAN.R-project.org/
package=imager

Borgatti SP, Mehra A, Brass DJ, et al. (2009) Network analysis in
the social sciences. Science 323(5916): 892–895.

Buyalskaya A, Gallo M and Camerer CF (2021) The golden age
of social science. Proceedings of the National Academy of
Sciences of the United States of America 118(5): e2002923118.

Carrington PJ, Scott J and Wasserman S (2005) Models and
Methods in Social Network Analysis, vol. 28. Cambridge:
Cambridge university press.

Croft DP, James R and Krause J (2008) Exploring Animal Social
Networks. Princeton, NJ: Princeton University Press.

Dahl DB, Scott D, Roosen C, et al. (2019) Xtable: Export Tables to
LaTeX or HTML. Available at: https://CRAN.R-project.org/
package=xtable

Drost HG (2021) Philentropy: Similarity and distance quantifi-
cation between probability functions. Available at: https://
github.com/drostlab/philentropy.

Gervais MM (2017) RICH Economic games for networked rela-
tionships and communities: Development and preliminary
validation in Yasawa, Fiji. Field Methods 29(2): 113–129.

Hoff PD, Raftery AE and Handcock MS (2002) Latent space
approaches to social network analysis. Journal of the American
Statistical Association 97(460): 1090–1098.

Jackson MO (2010) Social and Economic Networks. Princeton, NJ:
Princeton University Press.

Koster JM and Leckie G (2014) Food sharing networks in lowland
Nicaragua: An application of the social relations model to
count data. Social Networks 38: 100–110.

Kullback S and Leibler RA (1951) On information and Sufficiency.
The Annals of Mathematical Statistics 22(1): 79–86.

Liljeros F, Edling CR and Nunes Amaral LA (2003) Sexual net-
works: Implications for the transmission of sexually transmit-
ted infections. Microbes and Infection 5(2): 189–196.

Lin N (2002) Social Capital: A Theory of Social Structure and
Action, vol. 19. Cambridge: Cambridge University Press.

Marsden PV (1990) Network data and measurement. Annual
Review of Sociology 16: 435–463.

Marsden PV (2005) Recent developments in network measurement.
In: Carrington PJ, Scott J and Wasserman S (eds) Models and
Methods in Social Network Analysis. Cambridge: Cambridge
University Press, pp.8–30.

Newman M (2018) Networks. New York: Oxford University Press.
Ohtsuki H, Hauert C, Lieberman E, et al. (2006) A simple rule for

the evolution of cooperation on graphs and social networks.
Nature 441(7092): 502–505.

Pisor AC, Gervais MM, Purzycki BG, et al. (2020) Preferences and
constraints: The value of economic games for studying human
behaviour. Royal Society Open Science 7(6): 192090.

Power EA (2017) Social support networks and religiosity in rural
South India. Nature Human Behaviour 1(3): 1–6.

R Core Team (2019) R: A language and environment for statistical
computing. Available at: https://www.R-project.org/.

Ready E and Power EA (2018) Why wage earners hunt: Food shar-
ing, social structure, and influence in an Arctic mixed econ-
omy. Current Anthropology 59(1): 74–97.

Redhead D, McElreath R and Ross CT (2023) Reliable network
inference from unreliable data: A tutorial on latent network
modeling using STRAND. Psychological Methods. Epub
ahead of print 6 March 2023. DOI: 10.1037/met0000519.

Redhead D and Power EA (2022) Social hierarchies and social
networks in humans. Philosophical Transactions of the Royal
Society B 377(1845): 20200440.

Robins G, Pattison P, Kalish Y, et al. (2007) An introduction to
exponential random graph (p*) models for social networks.
Social Networks 29(2): 173–191.

Ross CT and Redhead D (2022) DieTryin: An R package for
data collection, automated data entry, and post-processing
of network-structured economic games, social networks, and
other roster-based dyadic data. Behavior Research Methods
54: 611–631.

Rucas SL, Gurven M, Kaplan H, et al. (2010) The social strategy
game. Human Nature 21(1): 1–18.

Smith KP and Christakis NA (2008) Social networks and health.
Annual Review of Sociology 34: 405–429.

Snijders TAB (2017) Stochastic actor-oriented models for network
dynamics. Annual Review of Statistics and Its Application 4:
343–363.

Tamada R (2018) AndroidCamera. Available at: https://github.
com/ravi8x/AndroidCamera

Venables WN and Ripley BD (2002) Modern Applied Statistics
With S, 4th edn. New York: Springer.

Author Biographies

Cody T Ross is a group leader in the Department of Human
Behavior, Ecology, and Culture at the Max Planck Institute for
Evolutionary Anthropology. He holds a PhD in Anthropology from
the University of California, Davis (2015). His research interests
include social networks, inequality, and human well-being.

Daniel Redhead is a group leader in the Department of Human
Behavior, Ecology, and Culture at the Max Planck Institute for
Evolutionary Anthropology. He holds a PhD in Psychology from
the University of Essex (2018). His research interests include coop-
eration, the dynamics of social relationships, inequality, and social
hierarchy.

https://CRAN.R-project.org/package=imager
https://CRAN.R-project.org/package=imager
https://CRAN.R-project.org/package=xtable
https://CRAN.R-project.org/package=xtable
https://github.com/drostlab/philentropy
https://github.com/drostlab/philentropy
https://www.R-project.org/
https://github.com/ravi8x/AndroidCamera
https://github.com/ravi8x/AndroidCamera

