Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Search-based Recommendation : The Case for Difficult Predictions

MPG-Autoren
/persons/resource/persons231571

Torbati,  Ghazaleh Haratinezhad
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons206666

Yates,  Andrew
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Torbati, G. H., Weikum, G., & Yates, A. (2023). Search-based Recommendation: The Case for Difficult Predictions. In Y. Ding, J. Tang, J. Sequeda, L. Aroyo, C. Castillo, & G.-J. Houben (Eds.), The ACM Web Conference 2023 (pp. 318-321). New York, NY: ACM. doi:10.1145/3543873.3587374.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-DC45-F
Zusammenfassung
Questions on class cardinality comparisons are quite tricky to answer and
come with its own challenges. They require some kind of reasoning since web
documents and knowledge bases, indispensable sources of information, rarely
store direct answers to questions, such as, ``Are there more astronauts or
Physics Nobel Laureates?'' We tackle questions on class cardinality comparison
by tapping into three sources for absolute cardinalities as well as the
cardinalities of orthogonal subgroups of the classes. We propose novel
techniques for aggregating signals with partial coverage for more reliable
estimates and evaluate them on a dataset of 4005 class pairs, achieving an
accuracy of 83.7%.