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Abstract: The high uncertainty and incomplete knowledge of kinetic parameters is a major
challenge for using kinetic metabolic models. Literature values are scarce and fitting procedures
require large experimental data sets and complex computations. In this study we show that
Monte-Carlo sampling of kinetic parameters allows the identification of system’s properties
such as stability and flux control patterns. Applying this computationally simple method to the
anaerobic central metabolism of E. coli we determine that only few network parameters are
directly correlated with stability. We show that low enzyme concentrations often correspond
to positive eigenvalues, suggesting that enzyme-optimized pathways lack in flexibility. Analysis
of the distribution of flux control coefficients reveals that the highest control on the network
rates is exerted by reactions utilizing ATP. Finally, a comparison with experimental evidence
confirms this method’s potential to qualitatively analyze networks for which no information on
parameters are available.
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1. INTRODUCTION

The main issue when dealing with kinetic models of
metabolism is the high number and uncertainty of pa-
rameters and the extensive amount of experimental data
required to fit them. Throughout the years many param-
eter estimation techniques have been established, but still
the highly non-linear nature of kinetic models does not
guarantee univocal numerical identifiability of all param-
eters (i.e. local minima in optimization routines, biases
in experimental data, etc). This issue can be overcome
using stochastic methods to exploit network properties.
One possibility is to employ a Monte-Carlo procedure to
sample model variables, as first applied by Wang et al.
(2004) and Steuer et al. (2006), and subsequently adapted
by Murabito et al. (2011), to randomly sample kinetic
constants. This latter method provides a probabilistic ap-
proach to analyze stability properties and control patterns
of the network, knowing only the concentrations and fluxes
of a reference steady state. Additionally, it does not require
any expensive calculations, and can therefore be applied
to very complex and large networks. In this study, starting
from the network structure of a known E. coli kinetic
model, and without any prior knowledge on the kinetic
constants, we (i) identify sources of stability and instability
for the system, (ii) analyze the control patterns in the

⋆ This work was founded by the European Research Council
(721176)

network, (iii) compare it with literature data and (iv) show
the importance of the regulatory structure.

2. SAMPLING PROCEDURE

The Monte-Carlo sampling procedure used here is based
on the method of Murabito et al. (2014) and can be
summarized in four main steps.

1) Defining system structure. To begin, network stoichiom-
etry and rate laws are defined. Note that if no information
is available on the reaction mechanism, also simplified or
standardised rate equations can be used e.g. convenience
kinetics (Liebermeister et al., 2010). Next, steady state
fluxes v0, concentrations S0, thermodynamic constants
keq and turn over constants kcat are retrieved. These
values can be directly measured, computed or found in
the literature.

2) Parameters sampling. Random sampling is performed
inside the sampling intervals. For parameter ki,j partici-
pating in reaction j and being related to metabolite i the
sampling space in this study is expressed as

ki,j ∈ [bL · S0
i , bU · S0

i ], (1)

with relative bounds bL and bU .

3) Anchoring sampled instances to the given steady state.
Enzyme concentrations are computed (Eq. (4)) to ensure
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sampling space in this study is expressed as

ki,j ∈ [bL · S0
i , bU · S0

i ], (1)

with relative bounds bL and bU .

3) Anchoring sampled instances to the given steady state.
Enzyme concentrations are computed (Eq. (4)) to ensure
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1. INTRODUCTION

The main issue when dealing with kinetic models of
metabolism is the high number and uncertainty of pa-
rameters and the extensive amount of experimental data
required to fit them. Throughout the years many param-
eter estimation techniques have been established, but still
the highly non-linear nature of kinetic models does not
guarantee univocal numerical identifiability of all param-
eters (i.e. local minima in optimization routines, biases
in experimental data, etc). This issue can be overcome
using stochastic methods to exploit network properties.
One possibility is to employ a Monte-Carlo procedure to
sample model variables, as first applied by Wang et al.
(2004) and Steuer et al. (2006), and subsequently adapted
by Murabito et al. (2011), to randomly sample kinetic
constants. This latter method provides a probabilistic ap-
proach to analyze stability properties and control patterns
of the network, knowing only the concentrations and fluxes
of a reference steady state. Additionally, it does not require
any expensive calculations, and can therefore be applied
to very complex and large networks. In this study, starting
from the network structure of a known E. coli kinetic
model, and without any prior knowledge on the kinetic
constants, we (i) identify sources of stability and instability
for the system, (ii) analyze the control patterns in the

⋆ This work was founded by the European Research Council
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network, (iii) compare it with literature data and (iv) show
the importance of the regulatory structure.

2. SAMPLING PROCEDURE

The Monte-Carlo sampling procedure used here is based
on the method of Murabito et al. (2014) and can be
summarized in four main steps.

1) Defining system structure. To begin, network stoichiom-
etry and rate laws are defined. Note that if no information
is available on the reaction mechanism, also simplified or
standardised rate equations can be used e.g. convenience
kinetics (Liebermeister et al., 2010). Next, steady state
fluxes v0, concentrations S0, thermodynamic constants
keq and turn over constants kcat are retrieved. These
values can be directly measured, computed or found in
the literature.

2) Parameters sampling. Random sampling is performed
inside the sampling intervals. For parameter ki,j partici-
pating in reaction j and being related to metabolite i the
sampling space in this study is expressed as

ki,j ∈ [bL · S0
i , bU · S0

i ], (1)

with relative bounds bL and bU .

3) Anchoring sampled instances to the given steady state.
Enzyme concentrations are computed (Eq. (4)) to ensure
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consistency of parameter sets with the observed reference
steady state v0 and S0.

For a generic reaction (
∑

Rj ↔
∑

Pj), characterized by
enzyme concentration E and mass ratio Γ,

ν =Ei · kcat,i ·
∏ Rj

ki,j
· (1− Γ

keq,i
)

1 +
∏ Rj

ki,j
+
∏ Pb

ki,j

(2)

=Ei · kcat,i · f(S,k) (3)

hence

Ei =
νi

kcat,i · f(S,k)
(4)

4) Evaluating stability and further system properties. The
stability of the sampled sets is evaluated. Stability is
ensured if all real parts of the eigenvalues of the Jaco-
bian matrix (Eq. (5)) are negative. Further information
on network dependencies can be gathered by computing
concentration (Eq. (6)) and flux control coefficients (Eq.
(7)).

J′ = NR · ∂v
∂S

∣∣∣
S0

· L (5)

CS = −(DS)−1 · L · J′−1 ·NR ·DJ (6)

CJ = 1 + (DJ)−1 · ∂v
∂S

∣∣∣
S0

·DS ·CS (7)

HereNR and L are respectively the reduced stoichiometric
and link matrices, respectively. DS and DJ are diagonal
matrices with the steady state concentrations and fluxes
values on the diagonal. For more information on metabolic
control analysis see Hofmeyr (2000). For a more extensive
and complete description of the method see Murabito et al.
(2011).

3. RESULTS

The aforementioned sampling and analysis procedure has
been applied to a kinetic model of the anaerobic central
metabolism of E coli. The network structure (Fig. 1) as
well as rate equations and steady state reactions and
concentrations vectors have been retrieved from the model
used in Boecker et al. (2021) (PTS and PPC kinetic laws
have been slightly modified). All Michaelis-Menten as well
as inhibition and activation constants have been sampled
one order of magnitude around the concentration value of
the related metabolic compound (Eq. 1). The sampling
procedure has been performed for 2 · 104 iterations using
Matlab R2021a.

3.1 Stability analysis

Of all sampled parameter sets a very high percentage
(85%) results in stable models (all eigenvalues have nega-
tive real parts). Even increasing the sampling interval to
two orders of magnitude above and below the reference
concentration, the stable sets remain almost 70%. This
broad network stability can be investigated in more detail
by analyzing the ensemble of Jacobian matrices.

Firstly, we observed that throughout all sampled parame-
ter sets, diagonal elements of the Jacobian matrix are al-
ways negative. Ivanov et al. (2016) demonstrated that such
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Fig. 1. Scheme of the E. coli anaerobic metabolism used
in this study. Metabolites are shown in black, red
and green circles represent inhibitors and activa-
tors respectively, reaction names are set in boxes.
For the complete description of the model struc-
ture see Boecker et al. (2021). Abbreviation of re-
action names: PTS: phoshotransferase system; PGI:
glucose-6-phosphate isomerase; PFK: phosphofruc-
tokinase; FBA: fructose-bisphosphate aldolase (the
associated reaction was lumped with the reaction
of the triose-phosphate isomerase (TPI) thus yield-
ing two molecules of GAP); GHD: glyceralde- hyde-
3-phosphate dehydrogenase; PGK: phosphoglycerate
kinase; ENO: enolase (the reaction of this enzyme
was lumped with the reaction of the phosphoglycer-
ate mutase); PYK: pyruvate kinase; PFL: pyruvate
formate lyase; LDH: lactate dehydrogenase; PTACK:
lumped reaction of acetate kinase and phosphate
acetyltransferase; ALDH: acetaldehyde-CoA dehydro-
genase; ADH: alcohol dehydrogenase; PCK: phospho-
enolpyruvate carboxykinase; PPC: phosphoenolpyru-
vate carboxylase; CSICD: lumped reaction of citrate
synthase, aconitate hydratase A, aconitate hydratase
B and isocitrate dehydrogenase; MDH: lumped re-
action of malate dehydrogenase and fumarase; FRD:
lumped reaction of fumarate reductase and of other
reactions involved in fumarate reduction.
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consistency of parameter sets with the observed reference
steady state v0 and S0.

For a generic reaction (
∑

Rj ↔
∑

Pj), characterized by
enzyme concentration E and mass ratio Γ,

ν =Ei · kcat,i ·
∏ Rj

ki,j
· (1− Γ

keq,i
)

1 +
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+
∏ Pb

ki,j

(2)

=Ei · kcat,i · f(S,k) (3)

hence

Ei =
νi

kcat,i · f(S,k)
(4)

4) Evaluating stability and further system properties. The
stability of the sampled sets is evaluated. Stability is
ensured if all real parts of the eigenvalues of the Jaco-
bian matrix (Eq. (5)) are negative. Further information
on network dependencies can be gathered by computing
concentration (Eq. (6)) and flux control coefficients (Eq.
(7)).
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CS = −(DS)−1 · L · J′−1 ·NR ·DJ (6)

CJ = 1 + (DJ)−1 · ∂v
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∣∣∣
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·DS ·CS (7)

HereNR and L are respectively the reduced stoichiometric
and link matrices, respectively. DS and DJ are diagonal
matrices with the steady state concentrations and fluxes
values on the diagonal. For more information on metabolic
control analysis see Hofmeyr (2000). For a more extensive
and complete description of the method see Murabito et al.
(2011).

3. RESULTS

The aforementioned sampling and analysis procedure has
been applied to a kinetic model of the anaerobic central
metabolism of E coli. The network structure (Fig. 1) as
well as rate equations and steady state reactions and
concentrations vectors have been retrieved from the model
used in Boecker et al. (2021) (PTS and PPC kinetic laws
have been slightly modified). All Michaelis-Menten as well
as inhibition and activation constants have been sampled
one order of magnitude around the concentration value of
the related metabolic compound (Eq. 1). The sampling
procedure has been performed for 2 · 104 iterations using
Matlab R2021a.

3.1 Stability analysis

Of all sampled parameter sets a very high percentage
(85%) results in stable models (all eigenvalues have nega-
tive real parts). Even increasing the sampling interval to
two orders of magnitude above and below the reference
concentration, the stable sets remain almost 70%. This
broad network stability can be investigated in more detail
by analyzing the ensemble of Jacobian matrices.

Firstly, we observed that throughout all sampled parame-
ter sets, diagonal elements of the Jacobian matrix are al-
ways negative. Ivanov et al. (2016) demonstrated that such
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Fig. 1. Scheme of the E. coli anaerobic metabolism used
in this study. Metabolites are shown in black, red
and green circles represent inhibitors and activa-
tors respectively, reaction names are set in boxes.
For the complete description of the model struc-
ture see Boecker et al. (2021). Abbreviation of re-
action names: PTS: phoshotransferase system; PGI:
glucose-6-phosphate isomerase; PFK: phosphofruc-
tokinase; FBA: fructose-bisphosphate aldolase (the
associated reaction was lumped with the reaction
of the triose-phosphate isomerase (TPI) thus yield-
ing two molecules of GAP); GHD: glyceralde- hyde-
3-phosphate dehydrogenase; PGK: phosphoglycerate
kinase; ENO: enolase (the reaction of this enzyme
was lumped with the reaction of the phosphoglycer-
ate mutase); PYK: pyruvate kinase; PFL: pyruvate
formate lyase; LDH: lactate dehydrogenase; PTACK:
lumped reaction of acetate kinase and phosphate
acetyltransferase; ALDH: acetaldehyde-CoA dehydro-
genase; ADH: alcohol dehydrogenase; PCK: phospho-
enolpyruvate carboxykinase; PPC: phosphoenolpyru-
vate carboxylase; CSICD: lumped reaction of citrate
synthase, aconitate hydratase A, aconitate hydratase
B and isocitrate dehydrogenase; MDH: lumped re-
action of malate dehydrogenase and fumarase; FRD:
lumped reaction of fumarate reductase and of other
reactions involved in fumarate reduction.

Fig. 2. Details of the Gershgoring circles for an unstable
parameter set. Each diagonal element of the Jacobian
matrix is a circle center with a radius given by the sum
of the absolute values of the off-diagonal elements in
the respective row. Red points denote the real part of
the eigenvalues, the red line splits the positive from
the negative abscissa.

a peculiarity is always granted for networks characterized
by monotonic reactions without regulations. Furthermore,
Du et al. (2017) showed that for mass action kinetics
negative diagonals favour stability. These considerations
together with the observations made all over random-
chosen kinetic sets, suggest an intrinsic tendency towards
stability also of networks characterized by non-monotonic
regulated reactions.

Secondly, the eigenvalues position (hence sign) can be
explained testing the rows of the Jacobian matrix for
diagonal dominance and applying the Gershgoring circle
theorem (Flach and Schnell, 2010). Diagonal dominance
is defined when the absolute value of the sum of the off-
diagonal elements is smaller than the absolute value of the
diagonal element itself (|Jii| >

∑
k ̸=i |Jik|). Similarly, each

row of the Jacobian matrix forms a Gershgoring circle,
with the diagonal element Jii being the center and the
absolute value of the off-diagonal sum

∑
k ̸=i |Jik| being the

radius. The theorem states that all eigenvalues fall inside
a Gershgorin circle, eventhough not all Gershgorin circles
will contain an eigenvalue. Therefore, if a row is strongly
diagonally dominant, with a negative diagonal value, it
constraints the eigenvalue to be negative, and therefore
stable (Du et al., 2017). On the other hand in absence of
diagonal dominance the radius of the circle gets larger and
reaches possibly positive values of the x-axis, increasing
the probability of the eigenvalues to be positive (see Fig.
2).

In all sampled sets (even without regulation) only 6
rows of the Jacobian matrix show diagonal dominance,
particularly the ones corresponding to GAP, SUC, FOR,
LAC, ACE and ETH. Interestingly, with exception of
GAP, diagonal dominance is related only to fermentation
products. These metabolites are situated in the network
periphery and are characterized just by a production and

a consumption rate. Being the Jacobian matrix directly
related to the matrix of flux derivatives (dv/dS), follows
that by an enhanced model complexity (i.e. increased
stoichiometric matrix density) also the number of the off-
diagonal elements increases and thus also their absolute
sum. Consequently, with exception of some species, the
elements causing instability are spread across the system.

3.2 Correlation between parameters and stability.

As a next step, the effect of single parameter variations on
stability has been studied. For its assessment, Spearman
correlation has been used, and parameters ranked accord-
ing to the absolute value of their correlation coefficient. As
a result, parameters of the PFK, PTS and PYK reactions
show the highest degree of correlation with the maximum
real part of the eigenvalues (see Fig. 3). As expected,
the majority of those parameters are part of glycolysis.
Glycolysis is known to be tightly controlled by feed-back
and feed-forward allosteric regulations that are required
to readily adjust metabolism in case of disturbances (Mu-
lukutla et al., 2014). Repeating the same analysis in the
model without allosteric regulations shows a shift in the
correlation hierarchy. In this case parameters related to
PTACK, CSICD and FBA show the highest ranking. It
is more likely that in the absence of control loops the
metabolism is governed by equilibrium reactions (FBA)
or by the flux-demand of the end-reactions (CSICD and
PTACK). Interestingly, even without allosteric control,
the parameters with the highest absolute correlation co-
efficients remain the ones participating in reactions that
would otherwise be regulated, a phenomena also observed
in (Grimbs et al., 2007). Such a result could help to
explain why evolution selected regulation mechanisms on
some reactions but not on others.

corr = .

corr = . corr = -. corr = -.

corr = . corr = -.

Fig. 3. Relationship between kinetic parameters and the
relative frequency in which the corresponding mod-
els are stable. Shown are three parameters with the
highest correlation coefficients, for the scenario with
regulation (upper row), and without regulation (lower
row). The respective value of the correlation coeffi-
cient is shown in each subplot.
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3.3 Enzyme concentration and relaxation time

Next, starting from Eq. (4) the total enzyme amount
required for each parameter set is calculated as

∑
Ei. As

shown in Fig. 4, it emerges that high enzyme concentra-
tions are usually related to stable models. More precisely,
the third quantile for the stable parameter sets is almost
30% higher than the one of the unstable ones. As an
explanation we hypothesize that, when the enzymes are
very low, or, equivalently, if the enzymes operate close
to saturation, not much flexibility is left to the network.
Hence in case of perturbations, very long relaxation times
are required, pushing the system towards instability.

3.4 Distribution of flux control coefficients

The reliability of predictions made by random parameter
sampling are here explored using the fitted quantitative
model of Boecker et al. (2021). Computing the flux control
coefficients according to Eq. (7) provides the probabilistic
flux control distributions shown in Fig. 5a. Columns repre-
sent the controlling enzyme, rows represent the affected re-
actions. Red lines indicate the value of the FCCs obtained
using the quantitative model of Boecker et al. (2021).

First of all, the width of the distribution is analyzed.
Broad distributions imply reactions very sensitive to pa-
rameter changes, vice versa, narrow distributions imply
that control coefficients are rather insensitive to parameter
variations. Typically, reactions close to equilibrium have
narrow profiles centered around zero (Steuer and Junker,
2009), here confirmed by PGI and ENO. In general, in
this study, distributions are not very broad, hinting to a
model that is robust with respect to parameter variations.
Exception is made for the very broad control distributions
exerted by several reactions on the rows of MDH and FRD.
These reactions of the succinate branch on the one hand
benefit from increased metabolic fluxes, on the other hand
depend on PEP as substrate. In any case, such spread
profiles indicate a great sensitivity to parameter variations
and suggest that kinetic rate equations and regulations
should be further investigated.

Fig. 4. Relationship between the maximal real part of the
eigenvalues and the total enzyme concentration for
each sampled parameter set.

Next, the analysis of the probabilistic distributions pro-
vides information on the control pattern in the network,
and is in good agreement with experimental evidences
and intuitive expectations. As an example, growth rate
and glucose uptake rate have a positive control on almost
all fluxes as reported also in Millard et al. (2017). Simi-
larly, PFK is one of the reactions with the largest control
spectrum and has a positive average value of the control

coefficient on glycolysis (cglycolysisPFK,average = 0.23) supported

by the measurement of Emmerling et al. (1999). In the
same study it was reported that overexpression of the
PFK increases lactate production with decreased ethanol
synthesis, confirmed by the higher control coefficient for
LDH (cLDH

PFK,average = 0.38, cADH
PFK,average = 0.16). Also the

reaction producing acetate shows a predominantly positive
control on metabolism, pulling a higher flux through gly-
colysis and matching the experimental measurements of
Schütze et al. (2020). Less intuitive is the negative control
that PYK exerts on the glucose uptake rate. In fact, its
increase diminishes the concentration of PEP, confirmed
by a negative average concentration control coefficient
cPEP
PYK,average = −0.22. Such a reduction, even if hampering
allosteric inhibitions through the glycolysis, considerably
depletes substrate availability for PTS, thus decreasing its
rate.

Interestingly, even if more than 35% of the fitted model’s
parameters do not fall into the intervals used for the
sampling in this study, its FCCs (red lines in Fig. 5a-b) fall
always within the probabilistic distribution, and in many
cases match the distribution center. This fact confirms that
the network structure has a higher impact on the system
physiology than the particular choice of parameter values.
Such an observation is confirmed computing the FCCs for
the scenario in which regulatory interactions are removed
(Fig. 5b). In this case almost all distributions are, on
average, broader, especially the ones for GROWTH, PFL
and PTACK. This denotes an enhanced sensitivity to pa-
rameter change, hence a loss in model robustness. A clearer
demonstration on how the lack of regulation degrades
prediction capability is obtained analyzing the change in
FCCs distribution’s signs (Fig. 5c-d). For instance, in the
regulated network, the NGAM reaction accounting for
ATP hydrolysis for non-growth associated maintenance,
has over 80% of positive flux control coefficients. Indeed,
a forced decrease in ATP levels was shown in (Boecker
et al., 2021) to activate the PFK reaction and induce
a higher glycolytic flux. Contrarily, without regulations
NGAM FCCs are mainly negative, differing from experi-
mental evidences. Also GDH and PGK, reactions proven
to have a negative control on the glucose uptake rate (Jian
et al., 2017), get in the unregulated scenario a positive
effect, probably because of the absence of the inhibition
action of PEP on the upper glycolysis, and the possibility
of its accumulation.

4. CONCLUSION

In this study we have shown how it is possible to analyze
key properties of E. coli anaerobic metabolism using a
Monte Carlo sampling technique without any prior knowl-
edge of kinetic parameters values. The evaluation of the
ensemble of Jacobian matrices delivers insights into the
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the third quantile for the stable parameter sets is almost
30% higher than the one of the unstable ones. As an
explanation we hypothesize that, when the enzymes are
very low, or, equivalently, if the enzymes operate close
to saturation, not much flexibility is left to the network.
Hence in case of perturbations, very long relaxation times
are required, pushing the system towards instability.

3.4 Distribution of flux control coefficients

The reliability of predictions made by random parameter
sampling are here explored using the fitted quantitative
model of Boecker et al. (2021). Computing the flux control
coefficients according to Eq. (7) provides the probabilistic
flux control distributions shown in Fig. 5a. Columns repre-
sent the controlling enzyme, rows represent the affected re-
actions. Red lines indicate the value of the FCCs obtained
using the quantitative model of Boecker et al. (2021).

First of all, the width of the distribution is analyzed.
Broad distributions imply reactions very sensitive to pa-
rameter changes, vice versa, narrow distributions imply
that control coefficients are rather insensitive to parameter
variations. Typically, reactions close to equilibrium have
narrow profiles centered around zero (Steuer and Junker,
2009), here confirmed by PGI and ENO. In general, in
this study, distributions are not very broad, hinting to a
model that is robust with respect to parameter variations.
Exception is made for the very broad control distributions
exerted by several reactions on the rows of MDH and FRD.
These reactions of the succinate branch on the one hand
benefit from increased metabolic fluxes, on the other hand
depend on PEP as substrate. In any case, such spread
profiles indicate a great sensitivity to parameter variations
and suggest that kinetic rate equations and regulations
should be further investigated.
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eigenvalues and the total enzyme concentration for
each sampled parameter set.

Next, the analysis of the probabilistic distributions pro-
vides information on the control pattern in the network,
and is in good agreement with experimental evidences
and intuitive expectations. As an example, growth rate
and glucose uptake rate have a positive control on almost
all fluxes as reported also in Millard et al. (2017). Simi-
larly, PFK is one of the reactions with the largest control
spectrum and has a positive average value of the control

coefficient on glycolysis (cglycolysisPFK,average = 0.23) supported

by the measurement of Emmerling et al. (1999). In the
same study it was reported that overexpression of the
PFK increases lactate production with decreased ethanol
synthesis, confirmed by the higher control coefficient for
LDH (cLDH

PFK,average = 0.38, cADH
PFK,average = 0.16). Also the

reaction producing acetate shows a predominantly positive
control on metabolism, pulling a higher flux through gly-
colysis and matching the experimental measurements of
Schütze et al. (2020). Less intuitive is the negative control
that PYK exerts on the glucose uptake rate. In fact, its
increase diminishes the concentration of PEP, confirmed
by a negative average concentration control coefficient
cPEP
PYK,average = −0.22. Such a reduction, even if hampering
allosteric inhibitions through the glycolysis, considerably
depletes substrate availability for PTS, thus decreasing its
rate.

Interestingly, even if more than 35% of the fitted model’s
parameters do not fall into the intervals used for the
sampling in this study, its FCCs (red lines in Fig. 5a-b) fall
always within the probabilistic distribution, and in many
cases match the distribution center. This fact confirms that
the network structure has a higher impact on the system
physiology than the particular choice of parameter values.
Such an observation is confirmed computing the FCCs for
the scenario in which regulatory interactions are removed
(Fig. 5b). In this case almost all distributions are, on
average, broader, especially the ones for GROWTH, PFL
and PTACK. This denotes an enhanced sensitivity to pa-
rameter change, hence a loss in model robustness. A clearer
demonstration on how the lack of regulation degrades
prediction capability is obtained analyzing the change in
FCCs distribution’s signs (Fig. 5c-d). For instance, in the
regulated network, the NGAM reaction accounting for
ATP hydrolysis for non-growth associated maintenance,
has over 80% of positive flux control coefficients. Indeed,
a forced decrease in ATP levels was shown in (Boecker
et al., 2021) to activate the PFK reaction and induce
a higher glycolytic flux. Contrarily, without regulations
NGAM FCCs are mainly negative, differing from experi-
mental evidences. Also GDH and PGK, reactions proven
to have a negative control on the glucose uptake rate (Jian
et al., 2017), get in the unregulated scenario a positive
effect, probably because of the absence of the inhibition
action of PEP on the upper glycolysis, and the possibility
of its accumulation.

4. CONCLUSION

In this study we have shown how it is possible to analyze
key properties of E. coli anaerobic metabolism using a
Monte Carlo sampling technique without any prior knowl-
edge of kinetic parameters values. The evaluation of the
ensemble of Jacobian matrices delivers insights into the
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Fig. 5. (a−b)Probabilistic distributions of scaled flux control coefficients, for the model with (a) and without regulation
(b). The red lines indicate the FCCs computed with the model of Boecker et al. (2021), with modifications described
in the main text (Section 3). Columns indicate the controlling enzyme (cause) and rows the controlled reaction
(effect). The x-asis spans between [-1 1].
(c − d) Sign distributions of the flux control coefficients for the model with (c) and without regulation (d). Dark
colors indicate mainly negative distributions, while light color indicates that almost all FCCs lie on the positive
abscissa.

stability properties of the network. In particular, analyz-
ing for diagonal dominance we could identify metabolites,
which are not linked with instability. We concluded that
parameters related to glycolysis and regulated reactions
have the highest influence on the model eigenvalues. Fur-
thermore, we could note that low total enzyme concen-
trations (i.e. enzymes operating close to saturation) often
correspond to unstable responses, while unsaturated path-
ways are more frequently stable. We identified and vali-
dated, using literature data, important control properties
of the network. Moreover, we showed that the flux control
coefficients calculated with the fitted model (in which half
of the parameters are taken from the literature) fall in the

stochastic FCCs distributions, often matching the center.
Finally, we observed that a deletion of allosteric regula-
tions causes an increased number of unstable parameter
sets and in a degradation of the accuracy of the flux control
predictions.
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