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Abstract: Precise and accurate online monitoring methods are needed to enable smart
biomanufacturing and automation. Most of the sensors available focus on process parameters
such as metabolite and dissolved gas concentrations, cell density or viability, among other
variables like pH, temperature, etc. In this work, we develop a soft sensor algorithm to
estimate the cell composition online, a very important aspect often overlooked in the bioprocess
monitoring literature. Our strategy is based on full information estimation, an optimization-
based estimator that takes into account the dynamics of the cell metabolism and considers all
the available measurements from the beginning of the process, thus it has a memory effect.
Being able to track dynamic changes in cell composition can open the door to promising
applications, e.g., predictive control and automation of biosystems. As a case study, we consider
the Escherichia coli ’s metabolism growing on glycerol under different levels of oxygen supply.
We compare the performance of our soft sensor method against resource balance analysis, a
previously proposed estimator based on steady-state assumptions. Overall, the presented full
information estimator was able to track the dynamic changes in cell composition significantly
more accurately. We also discuss how our estimation strategy can be transformed into a moving
horizon estimation, where only the available measurements in a fixed and moving window are
considered, thereby reducing possible computational burdens.
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1. INTRODUCTION

Concepts from Industry 4.0 and smart manufacturing are
driving the development of novel bioprocess monitoring
methods to enable optimization, control and automation of
biological systems while satisfying industry quality guide-
lines (Reyes et al., 2022). The state-of-the-art literature in
the field deals mainly with online sensors for monitoring
metabolite concentrations such as substrates, intermedi-
ates and products, cell density/viability, dissolved gases, as
well as some operational parameters like pH, temperature,
etc. (Reardon, 2021; Reyes et al., 2022; Fung Shek and
Betenbaugh, 2021) In this work, we focus on monitoring
dynamic changes in cell composition online, a process
parameter that is often overlooked but that can open the
door to promising biotechnological applications.

Information on the cell composition, i.e., the intracellular
proportion of enzymes, non-catalytic proteins, storage

⋆ This work was supported by the International Max Planck Re-
search School for Advanced Methods in Process and Systems Engi-
neering (IMPRS ProEng).

elements, RNA, DNA, cell wall/ membrane components,
lipids and other small molecules, can provide immense
insight into the overall state of the cell. For instance, the
intracellular levels of proteins such as enzymes can be
linked to the activity of metabolic pathways (Noor et al.,
2016). Therefore, knowing the cellular concentration of
certain proteins can facilitate the modeling of biological
systems and the understanding of many cellular processes.

Monitoring the cell composition online can be very valu-
able in bioprocess control. Recently in our group, we have
proposed the use of model predictive control (MPC), an
advanced feedback control scheme, to maximize the pro-
duction efficiency of microbial cell factories via temporal
manipulations of key metabolic fluxes for several case
studies (Jabarivelisdeh et al., 2020; Espinel-Ŕıos et al.,
2022a,b). In general, MPC is based on a repeated solution
of an optimization problem which considers the dynamics
of the system and predicts it behaviour over a prediction
horizon. The MPC algorithm is solved at every sampling
time with the measurements of the current states of the
plant thereby generating an optimal input policy. In the
referred case studies, we have used dynamic enzyme-cost
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flux balance analysis (deFBA) (Waldherr et al., 2015)
(cf. Section 2) to accurately model the dynamics of the
cell metabolism. The deFBA model contains two time-
varying states, one for the extracellular metabolites and
another for the intracellular components. Although there
are several options for measuring extracellular metabolite
concentrations online (Reardon, 2021; Reyes et al., 2022;
Fung Shek and Betenbaugh, 2021), this is not the case for
the intracellular composition which imposes a big technical
limitation to deFBA-based control.

To tackle this technical challenge, Jabarivelisdeh et al.
(2020) proposed the use of resource balance analysis
(RBA) to estimate the cell composition from cell dry
weight measurements and the known values of manipu-
lated metabolic fluxes. It is based on resource allocation
theory, i.e., it assumes that the cell allocates resources
optimally to maximize the cell growth. Despite its relative
simplicity, RBA does not always provide a reliable quanti-
tative estimation of the cell composition. This is in big part
explained by the fact that RBA considers quasi-steady-
state conditions, which is a very optimistic assumption
given the dynamic nature of metabolism. Furthermore, it
is limited to the current state of the cell and does not use
past measurements for the estimation.

In this work, we outline the use of a full information esti-
mation (FIE) algorithm (Rawlings et al., 2017) as a better
alternative to RBA for inferring dynamic changes in cell
composition. Our estimation strategy offers in principle
better theoretical properties in terms of optimality since it
is based on the dynamic model of the metabolism and can
consider all process measurements starting from the initial
time, hence it has a memory effect. As an application ex-
ample, we consider the E. coli ’s glycerol metabolism under
different oxygen limitation levels. Note that we focus our
analysis to state estimation and do not consider feedback
control in the current study. The remainder of this paper
is as follows: in Section 2 we outline the deFBA modeling
framework, in Section 3 we summarize the RBA and FIE
algorithms and highlight their differences, and in Section
4 we present our application example.

2. CONSTRAINT-BASED DYNAMIC MODEL

We provide a summarized version of the deFBA frame-
work, for more detailed information about the model
derivation and assumptions refer to Waldherr et al. (2015).
The dynamics of the cell metabolism is described as the
following optimization problem with constraints

max
V (·)

∫ tdeFBA

t0

B(p) dt (1a)

s.t.

[
dz(t)

dt

dp(t)

dt

]T
= SzpV (t), (1b)

[z(t0) p(t0)]
T
= [z0 p0]

T
, (1c)

0 =
dm(t)

dt
= SmV (t), (1d)

B = bT p(t), (1e)
∑

j∈cati

∣∣∣∣
Vj(t)

kcat,j

∣∣∣∣ ≤ pi, ∀i ∈ [1, npi
, ] (1f)

φQb
T p(t) ≤ pQ(t), (1g)

Vmin (t) ≤ V (t) ≤ Vmax(t). (1h)

The objective function is the maximization of the cell dry
weight B ∈ R integral from t0 to tdeFBA. The decision
variable is the vector of reaction fluxes V ∈ RnV . The
optimization is then subject to equality and inequality
constraints that reduce the solution space. The change of
extracellular metabolites z ∈ Rnz and cell components
p ∈ Rnp (e.g., catalytic enzymes, ribosomes and non-
catalytic/quota components) with their corresponding ini-
tial conditions are described by Eqs. (1b)-(1c). The model
assumes quasi-steady-state conditions of the intracellular
metabolites m ∈ Rnm , Eq. (1d). Szp ∈ Rnz+np,nV is the
stoichiometric matrix of z and p, and Sm ∈ Rnm,nV is
the stoichiometric matrix of m. The cell dry weight is
expressed as bT p, where b ∈ Rnb contains the molecular
weights of p, Eq. (1e). The upper bound of V is limited
by the product of the catalytic enzyme concentrations and
the catalytic constants kcat ∈ Rkcat , Eq. (1f). A minimal
fraction φQ ∈ [0, 1] of the cell dry weight corresponds
to a lumped quota compound pQ, Eq. (1g). Finally, the
fluxes are further narrowed down to feasible or biologi-
cally sound bounds, Eq. (1h). For example, the upper and
lower bounds of externally-regulated or manipulated fluxes
Vreg ∈ V can be set to be known and equal.

3. ESTIMATION OF CELL COMPOSITION

Our goal is to estimate the cell composition at every
sampling time tk. Let p̂(tk) be this estimate.

3.1 Resource balance analysis

The RBA estimation strategy is summarized in Fig. 1-A.
The algorithm is formulated as (Jabarivelisdeh et al., 2020)

max
µ, V, p

µ (2a)

s.t. SpV − µp = 0, (2b)

B̃ = bT p, (2c)

0 = SmV (t), (2d)
∑

j∈cati

∣∣∣∣
Vj

kcat,j

∣∣∣∣ ≤ pi, ∀i ∈ [1, npi
] (2e)

φQb
T p ≤ pQ, (2f)

Vmin ≤ V ≤ Vmax. (2g)

This static optimization maximizes the growth rate µ for
each cell dry weight measurement B̃ by allocating p to
render an optimal V distribution. Sp ∈ Rnp,nV is the

stoichiometric matrix of p. Note that B̃ constrains the
solution space of p in Eq. (2c). In contrast to deFBA, RBA
assumes that the rate of production of p is equally diluted
by cell growth, hence there is no accumulation of p. The
steady-state assumption turns the optimization problem
overall simpler and easier to solve. Let, µ∗, p∗ and V ∗

be the optimal values of µ, p and V , respectively; thus,
p̂(tk) := p∗.

3.2 Full information estimation

The FIE strategy is summarized in Fig. 1-B. Let us denote
a general optimization variable calculated at time ti with
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concentrations online (Reardon, 2021; Reyes et al., 2022;
Fung Shek and Betenbaugh, 2021), this is not the case for
the intracellular composition which imposes a big technical
limitation to deFBA-based control.

To tackle this technical challenge, Jabarivelisdeh et al.
(2020) proposed the use of resource balance analysis
(RBA) to estimate the cell composition from cell dry
weight measurements and the known values of manipu-
lated metabolic fluxes. It is based on resource allocation
theory, i.e., it assumes that the cell allocates resources
optimally to maximize the cell growth. Despite its relative
simplicity, RBA does not always provide a reliable quanti-
tative estimation of the cell composition. This is in big part
explained by the fact that RBA considers quasi-steady-
state conditions, which is a very optimistic assumption
given the dynamic nature of metabolism. Furthermore, it
is limited to the current state of the cell and does not use
past measurements for the estimation.

In this work, we outline the use of a full information esti-
mation (FIE) algorithm (Rawlings et al., 2017) as a better
alternative to RBA for inferring dynamic changes in cell
composition. Our estimation strategy offers in principle
better theoretical properties in terms of optimality since it
is based on the dynamic model of the metabolism and can
consider all process measurements starting from the initial
time, hence it has a memory effect. As an application ex-
ample, we consider the E. coli ’s glycerol metabolism under
different oxygen limitation levels. Note that we focus our
analysis to state estimation and do not consider feedback
control in the current study. The remainder of this paper
is as follows: in Section 2 we outline the deFBA modeling
framework, in Section 3 we summarize the RBA and FIE
algorithms and highlight their differences, and in Section
4 we present our application example.

2. CONSTRAINT-BASED DYNAMIC MODEL

We provide a summarized version of the deFBA frame-
work, for more detailed information about the model
derivation and assumptions refer to Waldherr et al. (2015).
The dynamics of the cell metabolism is described as the
following optimization problem with constraints

max
V (·)

∫ tdeFBA

t0

B(p) dt (1a)

s.t.

[
dz(t)

dt

dp(t)

dt

]T
= SzpV (t), (1b)

[z(t0) p(t0)]
T
= [z0 p0]

T
, (1c)

0 =
dm(t)

dt
= SmV (t), (1d)

B = bT p(t), (1e)
∑

j∈cati

∣∣∣∣
Vj(t)

kcat,j

∣∣∣∣ ≤ pi, ∀i ∈ [1, npi
, ] (1f)

φQb
T p(t) ≤ pQ(t), (1g)

Vmin (t) ≤ V (t) ≤ Vmax(t). (1h)

The objective function is the maximization of the cell dry
weight B ∈ R integral from t0 to tdeFBA. The decision
variable is the vector of reaction fluxes V ∈ RnV . The
optimization is then subject to equality and inequality
constraints that reduce the solution space. The change of
extracellular metabolites z ∈ Rnz and cell components
p ∈ Rnp (e.g., catalytic enzymes, ribosomes and non-
catalytic/quota components) with their corresponding ini-
tial conditions are described by Eqs. (1b)-(1c). The model
assumes quasi-steady-state conditions of the intracellular
metabolites m ∈ Rnm , Eq. (1d). Szp ∈ Rnz+np,nV is the
stoichiometric matrix of z and p, and Sm ∈ Rnm,nV is
the stoichiometric matrix of m. The cell dry weight is
expressed as bT p, where b ∈ Rnb contains the molecular
weights of p, Eq. (1e). The upper bound of V is limited
by the product of the catalytic enzyme concentrations and
the catalytic constants kcat ∈ Rkcat , Eq. (1f). A minimal
fraction φQ ∈ [0, 1] of the cell dry weight corresponds
to a lumped quota compound pQ, Eq. (1g). Finally, the
fluxes are further narrowed down to feasible or biologi-
cally sound bounds, Eq. (1h). For example, the upper and
lower bounds of externally-regulated or manipulated fluxes
Vreg ∈ V can be set to be known and equal.

3. ESTIMATION OF CELL COMPOSITION

Our goal is to estimate the cell composition at every
sampling time tk. Let p̂(tk) be this estimate.

3.1 Resource balance analysis

The RBA estimation strategy is summarized in Fig. 1-A.
The algorithm is formulated as (Jabarivelisdeh et al., 2020)

max
µ, V, p

µ (2a)

s.t. SpV − µp = 0, (2b)

B̃ = bT p, (2c)

0 = SmV (t), (2d)
∑

j∈cati

∣∣∣∣
Vj

kcat,j

∣∣∣∣ ≤ pi, ∀i ∈ [1, npi
] (2e)

φQb
T p ≤ pQ, (2f)

Vmin ≤ V ≤ Vmax. (2g)

This static optimization maximizes the growth rate µ for
each cell dry weight measurement B̃ by allocating p to
render an optimal V distribution. Sp ∈ Rnp,nV is the

stoichiometric matrix of p. Note that B̃ constrains the
solution space of p in Eq. (2c). In contrast to deFBA, RBA
assumes that the rate of production of p is equally diluted
by cell growth, hence there is no accumulation of p. The
steady-state assumption turns the optimization problem
overall simpler and easier to solve. Let, µ∗, p∗ and V ∗

be the optimal values of µ, p and V , respectively; thus,
p̂(tk) := p∗.

3.2 Full information estimation

The FIE strategy is summarized in Fig. 1-B. Let us denote
a general optimization variable calculated at time ti with
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Fig. 1. Estimation strategy of the cell composition with
the A) RBA and B) FIE algorithms.

(·)i. For simplicity, we assume that the measurements
are taken at equidistant sampling times, with sampling
interval ∆t, although non-equidistant sampling times are
also conceivable. Let us define x(t) := [z(t)T, p(t)T]T.
The FIE algorithm (Rawlings et al., 2017) solves at every
sampling time the following optimization problem

min
x0, w, kcat

∥∥∥∥
[
x0

kcat

]
−
[
x̄0

k̄cat

]∥∥∥∥
2

P

+

k∑
i=0

∥y(ti)− ỹi∥2R+

(3a)

+ ∥wi∥2Q

s.t. max
V (·)

∫ ti+∆t

ti

B(p(t)) dt (3b)

s. t. x(ti +∆t) = x(ti)
T+ (3c)

+

∫ ti+∆t

ti

SzpV (t)dt+ wi,

x(t0) = x0, (3d)

y(ti) = [z(ti) B(p(ti))] , (3e)

Eqs. (1d)-(1h), (3f)

i ∈ [0, ..., k],

where P ∈ Rnz+np+nnkcat
,nz+np+nnkcat , R ∈ Rnz+1,nz+1

and Q ∈ Rnz+1,nz+1 are weighting matrices and k+1 is the
number of samples collected up to time tk

1 . The notation
(̄·) indicates the prior information of that variable. For
example, this could be the best measurement or best guess
available of that specific variable. For example, k̄cat is
the prior information of the kcat parameters, while z̄0 of

1 Our measurements start from t0, hence at tk we have k + 1
measurements.

the extracellular states at time t0. The objective function
(3a) has three terms. The first term weights the difference
between the prior information and the estimated states
at the initial time and kcat. The second term, weights
the difference between the predicted measurements and
the real measurements ỹi for every i ∈ [0, ...k]. Finally,
the last term weights the effect of the state noise. To
reflect possible model uncertainty, the state noise wi is
added to the model at every sampling time (cf. (3c)).
The role of the state noise is to help reconcile the model
with the measurements by modifying the right-hand side
of the ordinary differential equation. Using state noise
is useful in the presence of model mismatch due to,
e.g., parameter or structural model uncertainties. The
weights P ,Q, and R should be chosen accordingly to
the importance of the different terms. For example, in
the presence of low measurements noise and high model
uncertainty, the weight R should be larger than Q to
reflect that we “trust” more the measurements than our
model. Similarly, if we trust our prior values more than the
measurements, the matrix P should be relatively larger
than R.

Note that the optimization variables are the extracellular
concentration z0 and the cellular components p0, the kcat
and w which is the tuple collecting the state noise for
every sampling time, i.e., w = (w0, w1, ..., wN(ti)−1)
where N(ti) ∈ R is the number of measurements taken at
time ti. Once the optimal values z∗0 , p∗0, w∗ and k∗cat are
found, by using (3c) the estimated cell composition at the
current time tk is p̂(tk) := p∗(tk). The FIE can be seen as
a constrained least square estimation where the dynamics
enter the constraints of the optimization problem. In this
case, the resulting optimization problem is bilevel since the
deFBA model is part of the constraints of the FIE.

4. CASE STUDY: GLYCEROL METABOLISM

We consider E. coli cells growing on glycerol with an
oxygen uptake rate (OUR) input policy such that the
cells experience several metabolic states throughout the
process. Different levels of oxygen supply impose the cells
with redox and energy constraints that lead to temporal
metabolic adaptations. Therefore, the cell composition is
expected to change dynamically to cope with the fluctu-
ating environment, providing us with an ad hoc setup to
test our soft sensor method.

To model the dynamics of this system, we used an adapted
resource allocation model from Jabarivelisdeh et al. (2020).
The network covers relevant metabolic reactions related
to glycerol catabolism, glycolysis, the pentose phosphate
pathway, anaerobic fermentation and respiration (see Fig.
2). Six extracellular metabolites are included in z: glycerol,
acetate, ethanol, formate, O2 and CO2. Although not
shown in Fig. 2, the model also comprises production
reactions for all p-elements such as catalytic enzymes,
ribosomes, and a lumped quota compound.

We seek to elucidate whether using FIE, which is based
on the dynamics of the metabolism and takes into account
current and previous measurements, can result in a better
estimation of the cell composition compared to RBA,
which is based on quasi-steady-state assumptions and
only considers the current measurements. Therefore, for

Fig. 2. Metabolic pathway of E. coli growing on glycerol. Genes of catalytic enzymes are written in italics. For example,
cyoA is the gene of the enzyme pcyoA. Production reactions of cell components are not depicted.

Fig. 3. Dynamic changes of z and B with varying oxygen uptake rates at different sampling times.

the sake of simplicity, we consider that measurements of
z and B can be obtained online with negligible noise.
Furthermore, we assume that the applied OUR is equal to
the flux catalyzed by the enzyme pcyoA. We also consider
no accumulation of oxygen, meaning that the provided
oxygen is immediately depleted by the cells. In other
words, the OUR is equal to the oxygen transfer rate from
the gas to the liquid, which is a common assumption when
modeling oxygen dynamics in processes without substrate
starvation (Humbird and Fei, 2016).

The required measurements for the estimation algorithms
were obtained from deFBA simulations (see Fig. 3). To
facilitate the discussions, we also plotted the specific
oxygen uptake rate qO2

-normalized per cell mass-. At
qO2

≳ 5, acetate and formate were the main products, with
little-to-none ethanol formation. Afterwards, at lower qO2

values, the cells started to produce significant amounts
of ethanol, while the acetate production rate began to
slow-down and finally stagnated. Similarly, the cell growth
rate decreased with decreasing qO2

. Overall, this was the

expected behaviour of E. coli cells growing on glycerol
(Durnin et al., 2009).

The estimation of the cell composition at the different
sampling times is presented in Fig. 4. The optimizations
were solved using CasADi (Andersson et al., 2019). The
FIE bilevel optimization was converted into a single-level
problem by applying the Karush–Kuhn–Tucker conditions
to the inner problem, following an optimistic approach
(Dempe and Franke, 2019). We penalized the complemen-
tarity slackness constraint in the objective function to
facilitate the numerics. Note that we only considered the
second term of the FIE objective function (3a) for our case
study, and kcat was assumed constant and not part of the
optimization variables.

To compare the quality of the estimation by RBA and FIE,
we computed the standard error of the estimate (SE) for
each cell component pi as

SE =

√∑tN
j=0(pi,j − p̂i,j)2

Ei
, ∀i ∈ [1, npi

], (4)
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tarity slackness constraint in the objective function to
facilitate the numerics. Note that we only considered the
second term of the FIE objective function (3a) for our case
study, and kcat was assumed constant and not part of the
optimization variables.

To compare the quality of the estimation by RBA and FIE,
we computed the standard error of the estimate (SE) for
each cell component pi as

SE =

√∑tN
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Ei
, ∀i ∈ [1, npi
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where Ei is the total number of estimates. The SE is a
measure of the variability or dispersion of the predictions,
and it has the same units of the measurements. The smaller
the SE, the closer the predictions are to the exact values.
The real values of p were extracted from the deFBA
simulations.

Before we discuss the estimation quality, it is worth
noting that, as expected, the cell components experienced
dynamic changes throughout the cultivation as a result
of the metabolic adaptations and resource allocation. See
e.g., the trends for enzymes padhE, patpH, pcyoA, pnuo,
pdhaK, packA, pgln, and ppfl, where the dynamic changes
are more noticeable. The observed p dynamics are also
correlated to the z dynamics in Fig. 3. For instance,
packA increases during the first 5 h (high oxygen supply),
while padhE remains zero. Afterwards, with increasing
oxygen limitation, padhE starts to accumulate while packA
decreases. This matches the rise in ethanol production and
drop in acetate concentration previously described.

Based on the SE, the FIE strategy performed better than
RBA for 12 out of 24 cell components. This is already
quite an improvement considering that these were basically
the most representative elements in terms of percentage
cell weight. For other 7 cell components, there was no
difference between RBA and FIE, having the same SE
values. Only for the cases of pglpk-D, ppyk, psucCD, prpe
and prpi, RBA performed slightly better. However, each
of the latter components was never higher than 1.5 % of
the cell dry weight. Moreover, the FIE predictions were
still within acceptable ranges. Based on these results, we
conclude that FIE is a very good candidate to substitute
previously proposed methods like RBA as it can estimate
dynamic changes in cell composition more accurately.

Remark that the FIE algorithm considers all measure-
ments starting from the initial time, which in principle
enhances the estimation performance as the process pro-
ceeds due to its memory effect. Although this is at first
glance an advantage, for long processes with a high number
of past measurements to consider, this can turn out to be
a burden because of the increasing computation effort. If
that happens, we suggest to use a moving horizon esti-
mator Rawlings et al. (2017) to reduce the computational
complexity. This estimator is similar to an FIE, but in-
stead of considering all the measurements starting from
t0, only the measurements within a fixed and moving time
window are used. In this way, the computational burden
is limited and can be adjusted by changing the length of
the window. Nevertheless, in our application example this
was not concerning since the process time was short and
the number or measurements manageable.

5. CONCLUSION AND OUTLOOK

We have developed an FIE algorithm to monitor dynamic
changes in cell composition during the operation of bio-
processes. Our method can be regarded as an online soft
sensor that is based on the dynamics of the metabolism
and uses present and past information of available mea-
surements to infer the intracellular composition. We ap-
plied our FIE strategy to estimate the cell composition of

E. coli growing on glycerol with varying levels of OUR.
We compared the predictions against previously proposed
observers of cell composition such as RBA. In general, FIE
showed better estimation performance than RBA using the
standard error as a criterion. Future work focuses on using
FIE to facilitate the implementation of predictive control
strategies applied to metabolic cybergenetic systems and
other bioprocesses.
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