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We explore the impact of choosing different sets of Time-Delay Interferometry (TDI) variables
for detecting and reconstructing Stochastic Gravitational Wave Background (SGWB) signals and
estimating the instrumental noise in LISA. Most works in the literature build their data analysis
pipelines relying on a particular set of TDI channels, the so-called AET variables, which are or-
thogonal under idealized conditions. By relaxing the assumption of a perfectly equilateral LISA
configuration, we investigate to which degree these channels remain orthogonal and compare them
to other TDI channels. We show that different sets of TDI variables are more robust under per-
turbations of the perfect equilateral configuration, better preserving their orthogonality and, thus,
leading to a more accurate estimate of the instrumental noise. Moreover, we investigate the impact
of considering the noise levels associated with each instrumental noise source to be independent of
one another, generalizing the analysis from two to twelve noise parameters. We find that, in this
scenario, the assumption of orthogonality is broken for all the TDI variables, leading to a misesti-
mation of measurement error for some of the noise parameters. Remarkably, we find that for a flat
power-law signal, the reconstruction of the signal parameters is nearly unaffected in these various
configurations.
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I. INTRODUCTION

The Laser Interferometer Space Antella (LISA) [1] is a space mission led by the European Space Agency (ESA),
also involving NASA, which is planned to be launched in the mid-2030s. LISA will consist of a constellation of
three satellites separated by nearly 2.5 million kilometers, operating as a gravitational wave (GW) observatory in
the milliHertz (mHz) range. LISA is expected to detect tens of thousands of resolvable sources during the expected
4-year mission duration, including Stellar Origin Binary Black Holes (SOBBHs), Compact Galactic Binaries (CGBs)
comprised mostly of Double White Dwarfs (DWDs), Super Massive Black Holes (SMBHs) and Extreme Mass Ratio
Inspirals (EMRIs). For a review of detection prospects for all these sources see, e.g., [2] and references therein.
In addition to the resolvable sources enumerated above, a much larger number of weak and unresolvable sources
will superimpose incoherently, leading to the generation of a Stochastic GW Background (SGWB). There are (at
least) two guaranteed components contributing to the astrophysical SGWB in the LISA band1: at frequencies
lower than few mHz, the dominant contribution will come from CGBs [3, 4], while at higher frequencies another
contribution is expected to originate from SOBBH mergers [5]. Beyond astrophysical components, LISA could also
be sensitive to cosmological SGWBs generated by violent processes taking place in the very early Universe. Detecting
these signals would open a new window on energy scales beyond the reach of all the other probes used in particle
physics/cosmology. Among the possible sources of cosmological SGWBs for LISA, let us mention inflation [6],
cosmological Phase Transitions (PTs) [7], Cosmic String (CS) networks [8], and second-order scalar induced tensor
perturbations, typically associated with Primordial Black Holes production [9]. For reviews see, e.g., [10, 11].
One of the main challenges for SGWB detection is that these signals appear in the detector data stream as an
additional noise source that has to be distinguished from the instrumental one. For this reason, SGWB detection
and characterization requires dedicated methods [12, 13] that are quite different from the ones commonly employed
for resolvable sources.

For what concerns instrumental noise sources, the main contribution in LISA will come from laser frequency
noise [14]. This critical noise source needs to be suppressed by several orders of magnitude to allow any GW
detections with LISA. This noise suppression will be achieved using an on-ground data processing technique called
Time-Delay Interferometry (TDI) [15]. The results of the TDI algorithm are synthesized data streams representing
several laser-noise-free virtual interferometers. As shown in [16–23], it is possible to form several TDI channels which
can have different sensitivities to GW signals and instrumental noise. The most commonly used TDI channels for
LISA data analysis are the three Michelson like-variables, typically dubbed X, Y, and Z, often re-combined into the
(quasi-)orthogonal channels, typically dubbed A, E, and T [17]. Note that there are several motivations to advocate
the search for orthogonal channels. For example, working in a diagonal TDI basis is convenient for data analysis
algorithms. Indeed, since a diagonal matrix is trivial to invert, this avoids problems related to numerical inversion,

1 Depending on the detection rate, the SGWB due to EMRIs signal might, or might not, be detectable with LISA [2].
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thus improving the numerical stability and possibly significantly speeding up likelihood evaluations.

The AET basis is exactly orthogonal if LISA is a perfect equilateral triangle and if all secondary noise sources,
i.e., noises that dominate the LISA data stream after laser noise suppression through TDI, such as Test Mass (TM)
acceleration and Optical Metrology System (OMS) noise, are perfectly equal in all three spacecraft. In fact, for
realistic motion of the satellites, the arm-lengths will be unequal (and time-varying) at the percent level [24], and
LISA will not be a perfectly equilateral triangle. Moreover, the noises appearing in the different spacecraft will not
be equal, breaking another assumption underlying the idealized derivation of the A, E, and T variables. Therefore
the standard expressions for these channels will not be perfectly orthogonal when computed using actual LISA data2.

In this work, we first quantify the impact that a LISA configuration with unequal fixed armlengths and different
noise levels among the satellites would have on the orthogonality of different sets of TDI variables by an explicit
calculation of the noise and signal power spectral density (PSD) and cross-spectral density (CSD). For simplicity,
we focus on the so-called first-generation TDI variables [16], which only fully suppress laser noise for a static LISA
constellation, i.e., with arm-lengths that do not evolve in time. We expect the main conclusions of this work to remain
valid under our working assumptions for the second-generation variables [25], which achieve laser noise suppression
even for time-varying arm-lengths. Besides the most commonly used GW-sensitive Michelson variables XYZ and the
corresponding quasi-orthogonal AET channels, we consider the Sagnac variables αβγ and their corresponding set of
quasi-orthogonal channels, which we denote AET . In addition, we consider the fully-symmetric Sagnac variable ζ,
which shares with T and T the property that it is quasi-insensitive to GWs and can be used instead of these channels
to form a quasi-orthogonal set with A, E or A, E .

We then focus specifically on AET and AEζ and use simulated data together with Markov Chain Monte Carlo
(MCMC) Parameter Estimation (PE) as well as the Fisher Information Matrix (FIM) formalism to further study
the sensitivity of both sets of TDI variables to a power law SGWB and to instrumental noise as defined in [1], when
cross-correlations are included or neglected. While both sets of variables are expected to be orthogonal sets and
perfectly equivalent in the idealized situation of equal LISA arms and equal noise amplitudes, differences arise when
the assumptions underlying the construction of the orthogonal channels are broken.

The paper is organized as follows. In section II, we describe the data model employed and derive the signal
response of LISA to a SGWB for unequal LISA arms. We also show how the two dominant noise sources left after
TDI (TM and OMS) appear in the LISA measurements. We then introduce the TDI formalism and derive a general
formula for the noise and signal PSD and CSD for all the TDI channels considered in this work. In section III, we
discuss the noise and signal PSDs and CSDs when the noise levels are assumed to be the same for all TM and OMS
components, or when each TM and OMS component is assumed to be different. In either case, we compare the signal
and noise correlations for equal and unequal LISA arms. In section IV, as mentioned above, for a specific set of noise
parameters and for a power-law SGWB signal, we produce simulated LISA data and perform PE using MCMC to
compare the performance of two sets of TDI variables, namely AET and AEζ, when the cross-correlations in the
TDI matrix are neglected. Using FIM, we also study the impact of including or neglecting those cross-correlations on
the PE results. We do so for both equal and unequal noise levels and report on the results obtained for the SGWB
in the main text, while those for the noise parameters can be found in an appendix. We then conclude in section V.

Our paper includes four appendices. Appendix A discusses the relationships among the different sets of TDI
variables considered. In appendix B we provide useful analytic approximations for the signal and noise spectra.
In appendix C, we give an overview of the data analysis method employed in section IV. Finally, appendix D contains
a detailed analysis of the noise reconstruction which serves to complement the SGWB signal parameter reconstruction
provided in section IV.

II. MEASUREMENT CHARACTERIZATION

In this section, we describe the signal and noise components of the LISA data stream. After writing down a general
model for the data as a superposition of signal and noise in section II A, we derive the instrument response for an

2 While, in principle, it is still possible to find other sets of TDI variables that form an orthogonal basis, this computation would have to
be performed on the fly on the real data, vastly increasing the computational costs of the data analysis pipelines.
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isotropic SGWB signal and the propagation of the different noise components in a single LISA link in section II A 1
and section II A 2, respectively. In section II B we introduce the TDI variables that we will use in this paper. After
providing the definitions of the base variables in section II B 1, we introduce, in section II B 2, a general method to
compute the TDI PSDs and CSDs using the single link spectra computed in section II A 1 and section II A 2.

A. Data model

Let us start by assuming that all transient signals and glitches in the noise have been subtracted from the data
stream, which is necessary to assume the noise to be stationary and Gaussian. For the moment, let us also restrict to
the case of a single detector. Under these assumptions, the time domain data d(t), can be expressed as a combination
of the GW signal s(t) plus the instrumental noise n(t) as:

d(t) = s(t) + n(t) . (2.1)

While in reality, data will be sampled at a finite rate, in the following, we assume them to be continuous functions
in the interval [−T/2, T/2], with T the observation time3. Assuming that signal and noise are uncorrelated, these
quantities can be discussed separately. We start by discussing the signal properties, whose Fourier transform reads:

s̃(f) =

∫ T/2

−T/2
e2πift s(t) dt . (2.2)

Since s(t) is real, s̃ obeys s̃(f) = s̃∗(−f). Assuming stationarity, the expectation value of the signal’s Fourier modes
reads:

〈s̃(f)s̃∗(f ′)〉 =
1

2
δ(f − f ′)SGW(f) , (2.3)

where SGW(f) is a real and positive function with SGW(f) = SGW(−f), which for a homogeneous and isotropic
power spectrum4 Pλh , with λ denoting the two GW polarizations, see eq. (2.10) for the definition of the polarization
tensors, can be expressed as:

SGW(f) =
∑
λ

Rλ(f)Pλh (f) , (2.4)

where Rλ, is the sky-averaged LISA response function. Note that since the LISA spacecraft lie in a plane, LISA
cannot distinguish between chiralities without making use of the motion of the constellation [26–29]. Here, we assume
the signal to be non-chiral i.e., PLh = PRh , so that eq. (2.4) reduces to SGW(f) = 2R(f)Ph(f). Absorbing the factor

2 into R and assuming the signal to be parity even (i.e., Pλ(~k) = P (k)) leads to

SGW(f) = R(f)Ph(f) . (2.5)

We conclude our discussion of the signal by recalling the expression of the signal power spectrum in units of the energy
density parameter:

ΩGWh
2 ≡ 4π2

3(H0/h)2
f3Ph(f) , (2.6)

where H0 ≈ 3.24× 10−18h0 Hz is the Hubble constant today and h0 = 0.6766± 0.0042 is its dimensionless value [30].

3 This choice would only impact the high-frequency part of the data, where the frequency gets close to the Nyquist frequency. Since for
LISA, the sampling rate is expected to be & 2Hz, and since in the analysis we only consider data up to .5Hz, this assumption should
not impact the main results of this work.

4 In general, the spectrum Pλλ
′

h , with λ, λ′ running over the two GW polarizations, defines a 2×2 matrix. The four entries of this matrix
are typically expressed in terms of the Stokes parameters I, V,Q, U . In the L/R basis (see eq. (2.10)), I and V , with I the intensity
and V the circular polarization, only contribute to the diagonal while Q and U appear in the off-diagonal terms only. Homogeneity and
isotropy correspond to vanishing Q and U Stokes parameters, implying that PABh is diagonal with PRRh = I + V and PLLh = I − V .

Finally, for a non-chiral background, V = 0, which implies PRRh = PLLh = Ph.
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The expectation value of the noise’s Fourier modes reads:

〈ñ(f)ñ∗(f ′)〉 =
1

2
δ(f − f ′)SN(f) , (2.7)

where we have introduced the noise power spectrum SN(f), which satisfies the same properties as SGW(f). Note that
in the following sections, we consider the case of several data streams. In this generalized and more realistic scenario,
the response function and noise spectra will be replaced by positive-definite Hermitian matrices.

1. Single link signal response

To compute the GW response, we start by expressing a GW signal hab(~x, t) as a superposition of plane waves [13,
28, 31] (note that c = 1):

hab(~x, t) =

∫ ∞
−∞

df

∫
dΩk̂ e2πif(t−k̂·~x)

∑
A

h̃A(f, k̂)eAab(k̂) , (2.8)

with f the GW frequency, k̂ the outward vector in the direction of the incoming GW, dΩk̂ the infinitesimal solid angle

and eAab(k̂) the polarization tensors. Following the convention of [29, 32, 33], given the normalized wave-vector k̂, we
can introduce the two vectors:

û(k̂) ≡ k̂ × êz

|k̂ × êz|
, v̂(k̂) ≡ k̂ × û , (2.9)

where × denotes the external product and êz is the z-component vector of an arbitrarily oriented reference system.

The +/× and L/R polarization tensors are defined in terms of û(k̂) and v̂(k̂) as:

e+ab(k̂) ≡ ûaûb − v̂av̂b , e×ab(k̂) ≡ ûav̂b + v̂aûb , e
L/R
ab (k̂) ≡ e+ab(k̂)∓ ie×ab(k̂) , (2.10)

expressed in the L/R or +/× bases. We proceed by assuming that the LISA constellation is static and in a flat
background spacetime. The time delay induced by GWs on a photon leaving at time t− Lij (Lij being the distance
|~xi − ~xj |) from ~xj and reaching ~xi at time t, can be expressed, at lowest order in hab, as:

∆tij(t) '
∫ Lij

0

l̂aij l̂
b
ij

2
hab(t(s), ~x(s)) ds , (2.11)

where l̂ij = (~xj − ~xi)/|~xj − ~xi| is a unit vector pointing from i to j, and t(s) ≡ t − Lij + s, ~x(s) = ~xj − s l̂ij
are respectively the time and position along the photon path expressed in terms of the affine parameter s. By
inserting eq. (2.8) into eq. (2.11), and by considering the fractional frequency shift rather than the time delay induced
by the GWs, we obtain:

ηGW
ij (t) =

d

dt
∆tij(t) = i

∫ ∞
−∞

df
f

fij
e2πif(t−Lij)

∫
dΩk̂

[
e−2πifk̂·~xi

∑
A

ξAij(f, k̂)h̃A(f, k̂)]

]
, (2.12)

where we have introduced the characteristic frequencies fij ≡ (2πLij)
−1 and the functions ξAij

(
f, k̂
)

defined as:

ξAij

(
f, k̂
)

= e−2πifk̂·
~LijMij(f, k̂) GA(k̂, l̂ij) , (2.13)

with:

Mij(f, k̂) ≡ eπifLij(1+k̂·l̂ij) sinc
(
πfLij(1 + k̂ · l̂ij)

)
and GA(k̂, l̂ij) ≡

l̂aij l̂
b
ij

2
eAab(k̂) . (2.14)

Using eq. (2.3), the CSD for η̃GW
ij (f), i.e. the Fourier transform of eq. (2.12), then reads5:

Sη,GW
ij,mn (f) ≡

∑
A

RAij,mn PAAh (f) =
f2

fijfmn
e−2πif(Lij−Lmn)

∑
A

PAAh (f) ΥA
ij,mn(f) , (2.15)

5 This equation assumes Tf � 1, so that the finite-time delta functions, arising from the Fourier transform, can be replaced with real
delta functions.
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with:

ΥA
ij,mn(f) =

∫
dΩk̂
4π

e−2πifk̂·(~xi−~xm) ξAij(f, k̂) ξAmn(f, k̂)∗ , (2.16)

where we have used the statistical properties of 〈hA(f, k̂)h∗B(f ′, k̂′)〉 for a homogeneous, isotropic and non-chiral
SGWB, i.e.:

〈h̃A(f, k̂) h̃∗B(f ′, k̂′)〉 = δ(f − f ′)δ(k̂ − k̂′)δAB
PABh (f)

16π
〈h̃A(f, k̂) h̃B(f ′, k̂′)〉 = 0 , (2.17)

with PABh (f) the one-sided PSD. The integral appearing in eq. (2.15) can generally be computed numerically and in
the low-frequency approximation, it can be computed analytically (see appendix B, in particular appendix B 3).

2. Single link noise spectra

In this section we discuss the two main unsuppressed secondary noises limiting the performance of LISA. We
consider TM acceleration noise, and OMS noise [1]. These noise sources enter the single link measurement as6:

ηNij(t) = nOMS
ij (t) +Dijn

TM
ji (t) + nTM

ij (t) , (2.18)

where Dij is the delay operator, which in the static LISA arm approximation used in this work acts on any time-
dependent function x(t) as Dijx(t) = x(t− Lij). We formally define the single links noise CSDs as:

〈η̃Nij(f) η̃N∗lm (f ′)〉 =
1

2
Sη,Nij,lm(f) δ(f − f ′) , (2.19)

and assume the individual noise terms to be stationary, zero mean, and uncorrelated, such that cross-terms between
noises vanish, with the only non-zero terms given by:

〈ñOMS
ij (f) ñOMS*

ij (f ′)〉 =
1

2
SOMS
ij (f) δ(f − f ′) , (2.20a)

〈ñTM
ij (f) ñTM*

ij (f ′)〉 =
1

2
STM
ij (f) δ(f − f ′) . (2.20b)

Here, SOMS
ij (f) and STM

ij (f) are the PSDs of the individual OMS and TM acceleration noise terms. Considering the
definition of the noise CSD and the single link measurement, given eq. (2.18) and eq. (2.20), we can then directly
compute the non-zero entries of the noise CSD of the single links as:

Sη,Nij,ij(f) = SOMS
ij (f) + STM

ij (f) + STM
ji (f) , (2.21a)

Sη,Nij,ji(f) = e2πifLjiSTM
ij (f) + e−2πifLijSTM

ji (f) . (2.21b)

In the following, we will further assume all noises of the same type to have the same spectral shape given by [1]:

STM
ij (f) = A2

ij × 10−30 ×

(
1 +

(
0.4 mHz

f

)2
)(

1 +

(
f

8 mHz

)4
)
×
(

1

2πfc

)2

× (m2/s3) , (2.22a)

SOMS
ij (f) = P 2

ij × 10−24 ×

(
1 +

(
2× 10−3 Hz

f

)4
)
×
(

2πf

c

)2

× (m2/Hz) , (2.22b)

such that each noise depends only on a single constant amplitude parameter Aij for TM and Pij for OMS. These
parameters are dimensionless so that the overall noise PSDs are given in units of fractional frequency deviations.
In this work, we consider two scenarios:

6 For a more detailed computation considering the “split interferometry” scheme see [34]. Note that the TM and OMS noise contributions
have different correlation properties, which will ultimately cause the two components to have different transfer functions in the various
TDI channels.
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FIG. 1: TM and OMS PSDs as a function of frequency in units of 1/Hz.

1. The noise amplitudes of TM on the one hand and OMS on the other are equal, i.e., Aij = A and Pij = P , with
central values respectively given by A = 3 and P = 15 [35].

2. The noise parameters Aij and Pij have random values lying within a standard deviation of 20% around the central
values7. The exact values of the Aij and Pij (with {ij} ∈ I = {12, 23, 31, 21, 32, 13}) are given in section III B.

For reference, a plot of the noise levels for the case Aij = A = 3 and Pij = P = 15, is shown in fig. 1.

B. TDI variables

The TDI variables that we will consider throughout this paper are based on the standard X, Y, and Z Michelson
combinations, as well as the α, β, and γ [16] Sagnac variables. We will also discuss the orthogonal channels A, E,
and T and A, E and T build out of these sets of base variables, respectively, as well as the fully symmetric Sagnac
(null channel) ζ [15, 23, 37]. For simplicity, we consider the first-generation versions of all these variables, which fully
suppress laser noise only for a constellation with three unequal but constant arms8, and compute their signal and
noise CSDs in terms of the single-link CSDs given in the previous sections.

7 Randomly drawing the noise amplitudes with a standard deviation of 20% causes the largest and smallest noise terms to be approximately
within a factor 2. This is roughly in line with what was observed in LISA PathFinder (LPF), where the observed noise levels were within
a factor of a few of their anticipated values [36]. Note that while the LPF noise measured in flight did not agree with the predicted noise
level nor with its shape (especially at frequencies below 10−3 Hz), here, we make the rather strong assumption that the noise shapes are
perfectly known.

8 Laser noise suppression with more realistic orbits requires additional “virtual loops” in the photon paths that make up the TDI
combinations. Following [21–23, 25], there exist several second-generation versions of each of the first-generation TDI variables. The
“standard” choices that are found in the literature can be approximated as:

X2 = (1 −D2
31D

2
12)X , (2.23a)

α2 = (1 −D12D23D31)α , (2.23b)

ζ2 = (D31 −D12D23)ζ . (2.23c)

Note that ζ2 here refers to the variable recently found in [22], not the traditional variable given in [20], which is less effective at
suppressing laser noise than other second-generation TDI variables. These additional pre-factors should not significantly impact the
sensitivity of the TDI variables taken individually, as they apply equally to both noise and signal. However, we remark that the factors
applied to X2, Y2 and Z2 are different, such that the full CSD matrix of the second-generation Michelson variables cannot be trivially
derived from the first-generation versions. It is different for the Sagnac variables, where all three permutations are modified by the same
overall factor.
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1. Base variable definition

Let us start by defining the first-generation version of the XYZ Michelson variables. The X variable is defined as:

X = (1−D13D31)(η12 +D12η21) + (D12D21 − 1)(η13 +D13η31) , (2.24a)

while Y and Z are cyclic permutations of X. The Sagnac variable α is defined as:

α = η12 +D12η23 +D12D23η31 − (η13 +D13η32 +D13D32η21) , (2.24b)

with again β, γ defined as cyclic permutations of α. Finally, the fully symmetric ζ variable is defined as:

ζ = D12(η31 − η32) +D23(η12 − η13) +D31(η23 − η21) . (2.24c)

Following [17], we introduce the so-called quasi-orthogonal TDI channels, which are usually given as:

A =
γ − α√

2
, E =

α− 2β + γ√
6

, T =
α+ β + γ√

3
, (2.25)

for the Sagnac variables. An analogous procedure can be carried out for the Michelson variables, giving:

A =
Z−X√

2
, E =

X− 2Y + Z√
6

, T =
X + Y + Z√

3
. (2.26)

These channels are designed to be orthogonal for both signal and noise, at least in the idealized case of equal arm and
equal and symmetric noise levels in the three base variables. Having orthogonal channels drastically simplifies the
computation of the inverse of the covariance matrix appearing in the likelihood, which makes these channels attractive
for the practical application of LISA data analysis. We will discuss in section III the extent to which the orthogonality
of these channels survives if one relaxes some of the assumptions used to derive them. Note finally that the different
TDI variables discussed here are not independent, see appendix A for more details.

2. Signal and noise projection on the TDI variables

In order to compute the noise PSDs and the response to a SGWB, we first need to evaluate the Fourier transform
of any TDI variable V , for which we use the compact vector notation:

Ṽ (f) =
∑
ij∈I

cVij(f) η̃ij(f) , (2.27)

where, as in section II A 2, I = {12, 23, 31, 21, 32, 13} denotes the pairs of indices that define the six inter-satellite
links and where the coefficients cVij map the single-link measurements onto the TDI variable V . Since we work in the

assumption of constant delays, we can directly read off the coefficients cVij from eq. (2.24) by replacing each delay in

the time domain, Dij , with the corresponding frequency domain expression e−i2πfLij . Assuming Ũ and Ṽ to be any
two TDI variables, which, similarly to eq. (2.19), obey:

〈Ũ(f) Ṽ ∗(f ′)〉 =
1

2
SUV (f) δ(f − f ′) , (2.28)

we can substitute eq. (2.27) into this expression to get:

〈Ũ(f)Ṽ ∗(f ′)〉 =
∑

ij,mn∈I
cUij(f) cV ∗mn(f ′)〈η̃ij(f) η̃∗mn(f ′)〉 , (2.29a)

=
1

2

∑
ij,mn∈I

cUij(f) cV ∗mn(f)︸ ︷︷ ︸
CUV

ij,mn(f)

Sηij,lm(f)

︸ ︷︷ ︸
SUV (f)

δ(f − f ′) . (2.29b)
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For any particular (Ũ , Ṽ ) combination, the coefficients cUij(f) and cVij(f) can be combined to form a 6 × 6 matrix9

CUV . We remark that this procedure is similar to what has very recently (and independently from our work) been
proposed in [38]. Note that the coefficient matrices CUV depend only on the choice of TDI variables, while the actual
noise or signal correlations are encoded in the previously computed single-link correlation matrix Sη. In the following
sections, we will use:

SUV,N = CUV Sη,N, SUV,GW = CUV Sη,GW , (2.30)

to identify the noise and signal TDI covariance, respectively. Explicit expressions for the CSDs are given in appendix B.

III. RELAXING THE EQUILATERAL ASSUMPTION: SPECTRAL ANALYSIS

In this section, we present the signal response, the noise spectra, and the GW sensitivities for all the TDI variables
considered in this work. We consider both the case of an equilateral and that of a non-equilateral LISA configuration.
We perform a detailed correlation analysis to test the robustness of the orthogonalization procedure for the different
TDI bases. The section is divided into two parts: the first part concerns the case of equal noise levels while the
second part treats the case of unequal noise levels. All plots presented in this section will show the equal-arm model
with solid lines while the unequal-arm results are plotted using dashed lines. Analytic expressions for the noise CSDs
in the equal and (in the low-frequency limit) unequal arms case are provided in appendix B. The full expressions
for the noise spectra are provided as supplementary material. The signal response shown in the plots was evaluated
numerically (analytic expressions for the signal exist only in the low-frequency approximation, which are also provided
in appendix B).

A. Equal noise levels

Let us focus on the case where all the noises of the same type are characterized by a single amplitude parameter,
i.e., Aij ≡ A, Pij ≡ P so that SOMS

ij ≡ SOMS and STM
ij ≡ STM for all links. Figure 2 shows the three quantities

that best describe the self-correlations of the XYZ Michelson variables, the AET orthogonal variables, and as well
as the ζ channel. In the top row, we plot the quadratic signal response R, as defined in section II A, in units of
squared fractional frequency deviation. We observe that while the equal and unequal arms models agree with one
another for the signal-dominated channels A and E, they disagree at low frequencies for the null channels T and ζ,
especially for T. In the second row, we show the full noise spectra, SUU,N , in units of squared fractional frequency
deviation per Hz. We notice that the equal and unequal arms models agree for all channels with the exception of
T. Finally, the third row shows the strain sensitivity10 computed as the ratio between the noise PSD SUU,N and
the signal response R. We observe that the strain sensitivities of X, Y, Z, A, and E are well approximated by the
equal arm model, while there are sizeable differences for the two null channels. T, in particular, is no longer a null
channel below 1 mHz, and becomes as sensitive to the signal as A and E (as also reported in [39] and more re-
cently in [23]). Notice that ζ also becomes more sensitive to GWs, but remains significantly less sensitive than A and E.

In fig. 3 we show the same quantities as in fig. 2, but for the Sagnac variables, the orthogonal variables A, E and
T , and again the channel ζ. Once again, the base variables α, β, γ as well as the sensitive channels A, E are well
approximated by the equal arms model. The null channel T behaves very similarly to ζ, meaning that its noise
spectrum is also well described using an equal arms model. It remains a valid null channel at low frequencies and
slightly outperforms ζ for unequal arms. Let us also note that the noise spectra of the base variables α, β, γ, and ζ
have no zeros within the LISA band. While this property is not fully retained by A and E , they do have fewer zeros
than A and E (compare fig. 2).

In fig. 4 we show the square root of the noise coherence, defined by |SUV,N|/
√
SUU,N SV V,N, for the three Michelson

and Sagnac variables, for their orthogonal combinations, using the signal-insensitive variables T, T and ζ. In the first

9 A compact notation one could use in order to consider several, say n, TDI variables would require for the coefficients to be arranged
into n× 6 matrices, and the CUV to be replaced by a rank 4 tensor (n× n× 6 × 6), which maps the 6 × 6 single-link correlations onto
the n× n TDI variable correlations.

10 Note that the strain sensitivity is a function of the noise model, the instrument response, and the TDI variable, but is independent of
the GW signal.
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FIG. 2: Signal response (first row), noise spectra (second row), and strain sensitivities (last row) defined as
in eq. (2.30), for the XYZ Michelson variables (first column) and for their orthogonal AET combinations as well as

for the ζ variable (second column) considering equal (solid lines) and un-equal (dashed-line) arm-lengths.

row, we show the noise coherence for the base variables X, Y, and Z and α, β, and γ. Both sets of three channels are
strongly correlated, and the Sagnac channels are almost 100% correlated at low frequencies. In the second and third
rows, we show the results obtained for the orthogonal channels. AEζ, AET and AEζ remain strongly uncorrelated
(except close to the zeros). AET is slightly less correlated than AEζ at low frequencies while it is more strongly
correlated in the oscillatory region at high frequencies. AEζ and AEζ are very similar. T, however, becomes strongly
correlated to A and E across a broad range of frequencies. Note that there are no solid lines in the second and third
rows. Indeed, by construction, the orthogonal variables are fully uncorrelated when assuming equal arms and equal
noise levels.

In fig. 5 we show the square root of the signal response coherence |RUV |/
√
RUURV V for all TDI variables considered.

In the first row, we give the square root of the signal coherence for the base XYZ variables and for αβγ. Both sets
of TDI variables are strongly correlated. The equal and unequal arms models agree very well at low frequencies but
show some differences near the peaks around the zeros at high frequencies. Note that while the noise spectra of α, β,
and γ do not have any zeros in the LISA band, the CSDs do have zeros, but not as densely spaced as the ones for
the Michelson variables. The second row shows the square root of the signal response coherence for the orthogonal
AET and AET variables. Note that A and E, and similarly A and E , are not as correlated as the other pairs of TDI
variables in the orthogonal sets. This is also true when T and T are replaced with ζ, as shown in the third row, such
that all null channels show strong low-frequency correlations with the other variables. We note that, at the same
time, the T variable becomes significantly more sensitive to GWs than T or ζ, as shown in in fig. 2 and fig. 3. This
implies that the same loss in signal orthogonality for T, T and ζ more significantly impacts the overall orthogonality
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FIG. 3: Signal response (first row), noise spectra (second row) and strain sensitivities (last row) defined as
in eq. (2.30), for the Sagnac α, β, γ variables (first column) and for their orthogonal combinations A, E , and T as

well as for the ζ variable (second column).

of AET than that of the other sets.

B. Unequal noise levels

In this section, we consider the more general and realistic case in which all the individual TM and OMS noise
levels, Aij and Pij (with ij ∈ {12, 23, 31, 21, 32, 13}) are unequal. The values of Aij and Pij are generated as
explained in section II A 2 and, in the specific example we discuss here, they take the following values:

Aij = {3.61, 3.02, 2.87, 3.43, 2.65, 3.45} , Pij = {14.00, 16.93, 9.43, 21.55, 17.04, 20.83} (3.1)

As before, the equal arms results are shown using solid lines while the unequal arms results are shown with dashed
lines. Note that we do not show plots for the overall noise PSDs of the variables, as they remain qualitatively
unchanged with respect to the equal noise case ones. In addition, given that only the instrumental noise levels are
changed, the conclusions reached for the signal response and sensitivity discussed in section III A remain valid.

The first row of fig. 6 shows the square root of the noise coherence for X, Y, and Z and for α, β, and γ. Both sets
of variables behave similarly to the equal noise case, with the exception that some of the zeros are smoothed out
and that the Michelson variables have slightly different levels of coherence at low frequencies. The results for the
orthogonal channels are shown in the second row of the figure. Both AET and AET now show levels of coherence
that reach ∼ 10% for AE at all frequencies, and several percent for AT and ET even for equal arms. These levels are
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FIG. 4: Noise correlations considering equal noise levels for the TM acceleration and OMS noises and equal (solid)
vs. unequal arms (dashed lines). The first column shows XYZ (first row), AET (second row), and AEζ. The second

column shows αβγ (first row), AET (second row), and AEζ.

typically higher than those induced by the inequality of the arm-lengths discussed in the previous section, that is
to say, the inequality in the levels of the noise has a stronger impact than the inequality of the LISA arms for most
pairs of variables. The results obtained for unequal noise levels are approximately identical for all variables (with the
exception of the peaks near the zeros), whether the LISA arms are equal or not, the only exception being T, which
shows stronger correlations to A and E when the LISA arms are unequal.

Finally, the third row of fig. 6 shows the correlations obtained when replacing T and T with ζ. In both cases, the
overall behaviour is very similar to that of AET , and seems to be dominated by the correlations due to unequal noise
levels at almost all frequencies, such that the equal arm and unequal arm results are superimposed. Differences again
appear near the peaks close to the zeros, for which AEζ seems to slightly outperform both AEζ and AET .

IV. SGWB AND NOISE PARAMETER RECONSTRUCTION FOR AET AND AEζ

As shown in the previous section, relaxing the assumption that all arms are of equal length significantly breaks
the orthogonality of the AET channels while that of AEζ, AET , and AEζ is preserved to a large degree. Moreover,
relaxing the assumption of equal secondary noises on each spacecraft also breaks the orthogonality of all TDI variable
sets. In this section, we restrict ourselves to the unequal arms case and study how, in practice, neglecting the
off-diagonal terms impacts the uncertainty in SGWB reconstruction in the equal and unequal noise cases. For each
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FIG. 5: Signal response correlations for the Michelson variables XYZ (first row, first column), the Sagnac variable
αβγ (first row, second column), their respective orthogonal channels AET (second row, first column), AET (second

row, second column) and combinations including the null channels AEζ (last row, first column), AEζ (last row,
second column). Equal arms are shown with solid lines and unequal arms with dashed lines.

of the two cases, we perform Fisher forecasts, validated with Markov Chain Monte Carlo (MCMC) runs11 to test
the goodness of the Gaussian approximation. We restrict the following analysis to AET and AEζ. The MCMC runs
are performed considering only the diagonal terms of the AET and AEζ TDI matrices12. We proceed by comparing
the results obtained with pure Fisher analyses, including, or neglecting, the off-diagonal terms in the TDI matrices,
in order to assess their impact on the precision with which the determination of signal parameters can be made.
A similar analysis for the noise parameters is presented in appendix D. We conclude by comparing the MCMC
posteriors for the signal parameters obtained with the different levels of complexity for the LISA configuration we
have discussed throughout this work.

For all the analyses discussed in this section, we assume the LISA frequency range to be 3× 10−5 ≤ f ≤ 5× 10−1

11 The reader is referred to appendix C for the technical details of the MCMC data analysis.
12 The main reason to restrict our analysis to this simplified scenario is that the present version of the data compression techniques

described in appendix C are not suitable for application to problems including off-diagonal terms in the TDI matrix. Including those
terms would thus require considering the full (and uncompressed) data set, which would significantly increase the computational cost
of the MCMC runs.
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FIG. 6: Noise correlations considering six unequal levels for the TM and OMS noises and equal (solid) vs. unequal
arms (dashed lines). The first column shows XYZ (first row), AET (second row), and AEζ. The second column

shows αβγ (first row), AET (second row), and AEζ.

Hz and the signal to be described by a simple power-law template:

ΩGWh
2(f) = 10α

(
f

f∗

)nT

, (4.1)

where the pivot frequency f∗ is chosen to be the geometric mean of the minimal and maximal frequency, i.e.,
f∗ ' 3.873 × 10−3Hz. In all analyses presented in this section (and similarly in appendix D), we consider a
signal with zero slope, i.e., nT = 0, and α = −11.5, corresponding to a Signal-to-Noise Ratio (SNR) ' 271
(see eq. (C4)). Finally, The single link TDI transfer function is computed as outlined in section II A 1 and the noise is
modeled as indicated in section II A 2. Again, note that for brevity, we only focus on the AET and AEζ TDI variables.

In the following (and also in appendix D), we denote quantities recentered on zero and normalized by the fiducial
values with an overbar, and we denote quantities shifted with respect to the chain means and normalized using the
fiducial value parameter values with a tilde. Thus, while the latter provide information on the posterior widths but
also on the best-fit parameter values, the former are best suited to compare posterior widths and shapes.

Let us first present, in fig. 7, the reconstruction of the signal and noise spectra (in Ω units) for unequal arms but
equal noise levels using the diagonal of the AEζ matrix. Both the signal parameters and the two noise parameters,
and thus the signal and noise levels plotted in fig. 7, are compatible at two sigmas with the injected signal and
noise (as shown by the green contours in fig. 10a for the signal and as shown also in fig. 12b). Note that the noise
reconstruction for the different TDI channels is so accurate that the error bands are not visible in fig. 7. On the other
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FIG. 7: Signal (bottom right) and noise (AA in top left, EE in top right, ζζ in bottom left) reconstruction using the
AEζ TDI basis assuming unequal arm-lengths with equal noise levels.

hand, while the reconstructed signal is still compatible with the injection, the error band for the signal, shown in the
bottom right panel, is sufficiently large to be clearly visible. Although we do not include a plot of the reconstructed
signal and noise spectra obtained for AET, the posteriors for the signal parameters are shown in fig. 10a, while those
for the noise are shown in fig. 12b.

Let us conclude our discussion of the unequal arms but equal noise case by comparing the results of the MCMC
runs with those of the FIM analysis, see fig. 9a. This comparison focuses on the posterior widths and the degeneracies
between parameters, such that all posteriors are recentered on zero. This figure illustrates that there is nearly
perfect agreement between the results obtained with the FIM analysis performed using the diagonal of the TDI
covariance matrix and the MCMC results, and also between AEζ and AET. It also shows a comparison with the
FIM results that include the CSDs in the AET and AEζ analyses and demonstrates that the reconstruction of the
signal parameters would only be marginally affected by the inclusion of these terms.

Let us now discuss the case in which the TM and OMS noise levels are unequal, with amplitudes Aij and Pij given
in eq. (3.1). The signal and noise reconstructions in the AEζ basis are shown in fig. 8. As for the equal noise case con-
sidered above, a detailed discussion of the noise parameter reconstruction is presented in appendix D 3. Let us simply
mention here that all the noise parameters are compatible with the injection parameters at the one or two-sigma
level, see fig. 14a and fig. 14b. As far as the signal reconstruction is concerned, we can see from the bottom-right
panel of fig. 8 and from the blue contours in fig. 10a, that the reconstructed values are within the two sigma region
from the injected values. Once again, as can be seen in fig. 9b, we find excellent agreement between the FIM analysis
and the MCMC results for both AET and AEζ, and find that the precision with which the signal parameters can be
recovered is similar for both choices of TDI variables. Finally, fig. 9b also demonstrates that the results for the sig-
nal parameters remain the same whether one includes or excludes the off-diagonal terms of the TDI covariance matrix.
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FIG. 8: Signal (bottom right) and noise (AA in top left, EE in top right, ζζ in bottom left) reconstruction using the
AEζ TDI basis assuming unequal arm-lengths with unequal noise levels.

To sum up, using fig. 9a and fig. 9b, we can conclude that, for the simple power-law model considered in
this work, the precision with which the reconstruction of the SGWB parameters can be achieved is not sensitive
to the inclusion of the off-diagonal terms in the TDI covariance matrix, and that AET and AEζ give comparable results.

Let us end this section by further commenting on the contour plots shown in fig. 10. The figure provides
a comparison of the MCMC results obtained for three different scenarios: 1) equal arms and equal noises, 2)
unequal arms and equal noises, and lastly 3) unequal arms and unequal noises. Figure 10a demonstrates that the
reconstructed signal is compatible with the injection parameters for all cases. Figure 10b demonstrates that the
posterior widths remain largely unchanged across all scenarios. These plots demonstrate that the reconstruction of
the signal parameters is only marginally sensitive to the complexity of the underlying LISA scenario. This is one of
the main results of the present work.

V. CONCLUSIONS

In this work, see in particular section III, we first studied the impact of a non-equilateral but stationary configu-
ration for the LISA constellation and the effect induced by considering independent noise levels for each test mass
(TM) and optical metrology system (OMS) on the orthogonality of the most well-known TDI bases, namely the
Michelson XYZ, AET, and AEζ, and the Sagnac αβγ, AET and AEζ. While the two noises propagate differently in
the TDI variables, leading to different cross-correlations in the TDI bases, TM noise contributions dominate the low
frequencies for signal-sensitive variables. On the other hand, for signal-orthogonal variables, OMS noise dominates the
whole frequency range. For the case of equal noise levels, we confirmed the result, already known in the literature [39],
that the null channel T, built from the Michelson XYZ variables, loses its signal and TM noise orthogonality if
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(a) Equal noise case. (b) Unequal noise case.

FIG. 9: GW parameter posteriors in the case of unequal arms and equal or unequal noises. The results of the
MCMC runs, the FIM analyses using the diagonal or the entire TDI covariance matrix are shown to superimpose for

AET and AEζ. Note that the results are centered on zero and rescaled by the values of the fiducial parameters.

(a) SGWB parameters vs. fiducial. (b) SGWB parameters recentered on zero.

FIG. 10: Comparison of MCMC SGWB parameter reconstruction for AET and AEζ, for all the configurations
considered in this work, with UA/EA standing for un/equal arms, and UN/EN standing for un/equal noise

amplitudes. Note that for this particular figure, the posteriors aren’t normalized by the fiducial.

the constellation is not perfectly equilateral, becoming similar to the signal-sensitive variables. Interestingly, the
loss of orthogonality between the signal-sensitive A and E channels and the null channel, T, is worse at low frequencies.

We also showed, for the first time, that other null channels, e.g., the T channel, built from the αβγ Sagnac
TDI variables [17], or the variable ζ [16], prove to be more robust under perturbations of the equilateral config-
uration. Moreover, these alternative TDI bases achieve the same level of laser noise suppression when extended
to second generation, requiring fewer loops around the LISA satellites in their definitions [22]. Accordingly, this
would generate fewer zeros in the response functions, reducing the frequency window lost in the TDI definition
process [25]. For both unequal arms and unequal noises, we demonstrated that all TDI bases exhibit sizeable
cross-correlations in the noise and signal. For the T channel, the arm-length mismatch still produces the largest effect
at low frequencies, while for the other channels, the impact of unequal noises is most significant across the whole band.

We then studied the signal and noise parameter reconstruction in section IV and appendix D respectively, using a
Fisher Information Matrix (FIM) approach and Markov Chain Monte Carlo (MCMC) runs for two out of the total of
six TDI bases, namely AET and AEζ. While the FIM analysis is a convenient tool that provides information on the
posterior widths, the MCMC is computationally costly but also determines the best-fit parameters by confronting
the signal and noise models with the LISA data. In our MCMC runs, for the reasons explained in section IV, we
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ignored the cross-correlations among various TDI variables. On the other hand, we used FIM analysis to compare
results obtained when the cross-correlations were either included or excluded.

For the equal noise case, the large cross-correlations among the AET (quasi-)orthogonal TDI variables induced by
the non-equilateral configuration of the LISA spacecraft result in a mild under-estimation of the TM acceleration
amplitude parameter A and a slight over-estimation of the OMS noise parameter P in the signal and noise parameter
reconstruction performed using MCMC and the FIM analysis. This can be understood using the toy model
of appendix D 1. Note that, as mentioned already, the frequency range over which the analysis is performed can
play an important role, as shown by comparing the two contours plots of fig. 12. These findings do not apply to the
AEζ TDI basis, which, rather than being sensitive to the arm-length mismatch, is only affected by the inequality
in the noise amplitudes. Both in the equal and unequal noise cases, the OMS noise parameters are typically better
determined than the TM noise parameters. This is mainly due to the fact that, while the information on the TM
noises mostly comes from the low-frequency part of the frequency band, information on OMS noises comes from the
high-frequency spectrum (for the null channels, OMS noise dominates the entire frequency range), which as larger
weight in the likelihood since it contains more data points. While the above discussion pertains to the MCMC runs,
which were performed using only the diagonal of the TDI matrices, we remind the reader that, as shown in the
FIM results of fig. 16, including cross-correlations has a significant impact on the uncertainty with which these noise
parameters can be obtained.

Let us stress that even if some of the noise parameters are rather loosely constrained, the overall signal and noise
shapes can be recovered with sufficient accuracy for all the scenarios tested in this work. While some previous
analyses, e.g., [39–41], have already considered different levels for the TM and OMS noises, we also studied and
quantified their impact on signal parameter reconstruction for different sets of TDI variables, going beyond the
usual XYZ and AET bases. It is particularly noteworthy that the signal parameter reconstruction does not vary
significantly among the different configurations considered, see fig. 10, and that it is not sensitive to the inclusion of
the off-diagonal terms of the TDI matrix, see fig. 9a and fig. 9b. For all these reasons, the results presented in this work
represent an important contribution to the community’s understanding of cosmological SGWB data analysis for LISA.

We conclude by commenting on some of the assumptions of our work and on the possibility of relaxing them in
future analyses. First, let us stress that a major limitation of our work resides in the fact that we assume perfect
knowledge of the functional form of the instrumental noise, while it is possible that unknown sources of noise will be
present in the real data. Future studies are needed in order to test the impact of these effects on noise and signal
reconstruction. For existing works setting the path in this direction, see, e.g., [38, 42, 43].

Let us point out that the present analysis does not include any of the possible time dependencies that might be
present in the data. Beyond transients, the arm-lengths are expected to change over time, and the noise levels, or
even the signal (e.g., the SGWB due to CGBs is expected to feature an annual modulation [40]), might have some
modulations over time, making the configuration non-static. Similarly, while we have restricted our study to isotropic
SGWBs, the signal might have a non-trivial angular structure, whose reconstruction should be one of the targets
to be included in an SGWB data analysis pipeline. Existing works in this direction range from more theoretical
studies [44] to numerical techniques involving the decomposition of the LISA response function in pixel space [45] /
in spherical harmonics [46].

Finally, in this work, we have considered a simplified scenario where a single SGWB of cosmological origin, described
by a simple power-law mode with zero tilt, is present in the LISA band. In reality, as already mentioned in this work,
at least two SGWB of astrophysical origin will be present, implying SGWB measurement will require component
separation techniques to disentangle the different components contributing to the observed signal. See [47, 48] for
studies estimating some of the astrophysical SGWBs for LISA, using an iterative source subtraction technique [49],
and see, e.g., [33, 50–53] for studies attempting a simultaneous detection of astrophysical and cosmological SGWBs.
Furthermore, given that several cosmological mechanisms can generate spectra with a more elaborate frequency
structure, one should test the robustness of the results obtained in this work when the assumption of a power-law
signal is relaxed. Future studies aiming to be more realistic would have to include a combination of some of, and
possibly all, these effects.
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Appendix A: Useful relationships amongst TDI variables

In this Appendix, we provide some useful relationships between the different TDI channels introduced in section II B.
In particular, in appendix A 1, we show how the Sagnac variables are related to the Michelson variables in the
unequal arms case, such that we would expect any independent set of three TDI channels to contain almost the same
information. Then, in appendix A 2, we give explicit relationships between the different sets of (quasi-)orthogonal
channels. These expressions are given assuming equal LISA arms, where they can be formulated concisely as properties
of the TDI variables themselves, regardless of the noise or signal correlations in the actual data. We also provide
simplified low-frequency expansion of these relationships, which remain valid in the more general unequal-arm case
for all covariance matrices not involving the Michelson T channel.

1. Unequal arms

It is known that for a constellation with three constant, but unequal arms, one can exactly reproduce any TDI
variable as a linear combination of four generators, with the set {α, β, γ, ζ} as one possible basis [54]. Furthermore,
these four generators are themselves not fully independent, but can be related by [16]:

(1−D23D31D12)ζ = (D23 −D31D12)α+ (D31 −D23D12)β + (D12 −D23D31)γ . (A1)

This means that we can derive time-delay relationships between different variables using just three variables as a
basis. For example, the following relationships can be used to express α and ζ in terms of X, Y, and Z:

(D2
23 − 1)(D2

31 − 1)(D2
12 − 1)α = (1 +D23D31D12)(D2

23 − 1)X

+ (D23D31 +D12)(D2
31 − 1)Y

+ (D31 +D23D12)(D2
12 − 1)Z

(A2a)

(D2
23 − 1)(D2

31 − 1)(D2
12 − 1)ζ = (D23 +D31D12)(1−D2

23)X

+ (D31 +D23D12)(1−D2
31)Y

+ (D12 +D23D31)(1−D2
12)Z .

(A2b)

If we exclude Fourier frequencies at which some of the delay operator combinations in the previous equations lead
to an exact cancellation of the signal13, we expect all sets of three independent TDI variables to contain exactly
the same information. This is verified by the fact that we get identical results in all cases when using the full TDI
covariance matrices.

However, as we discuss in this paper, some TDI variables, such as the traditionally used Michelson T channel,
prove to be particularly sensitive to deviations from the equal-arm assumption. This means they potentially require

13 For instance, the Fourier transform of terms of the type (1 −DNij ) is (1 − e−2πfNd), which is exactly zero if fd is an integer. At such

“singular” frequencies, the response of one variable can be exactly zero (while that of another is not). In this case, the two variables are
no longer equivalent. In reality, we expect these zeros to be smoothed out to some extent due to numerical limitations and other noise
sources, such that the discrepancies between two related variables will be extended to a small frequency band around each zero [21, 25].
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more elaborate models to achieve the same scientific output as more robust channels, such as T or ζ. Furthermore,
the exact cancellation of the TDI channels at some Fourier frequencies leads to zeros in the corresponding covariance
matrix, making it non-invertible. Since parameter estimation typically requires inverting the noise covariance matrix
this favors variables with fewer zeros, for which fewer Fourier frequencies need to be excluded from the analysis. AEζ
is the optimal set considered in this work from this viewpoint, with the first singularity of the covariance matrix
appearing at f = 1/L ≈ 0.12 Hz.

2. Relationship between orthogonal channels in the equal arms limit

In the limit of equal LISA arms, we can derive simple relationships between the TDI coefficient matrices CUV , as
defined in eq. (2.29), for the different sets of quasi-orthogonal channels considered in this manuscript. We can further
perform a low-frequency expansion of these relationships, the results of which are given alongside the full expressions
after the ' signs:

CAA/EE/AE = 4 cos2(πfL)CAA/EE/AE ' 4CAA/EE/AE , (A3a)

CTT =
16

3
sin2 (πfL) sin2 (2πfL)Cζζ ' 64

3
L4π4f4Cζζ , (A3b)

CT T =
[1 + 2 cos(2πfL)]

2

3
Cζζ ' 3Cζζ , (A3c)

CAT/ET = − 4 sin2(2πfL)

1 + 2 cos(2πfL)
CAT /ET ' − 16L2π2f2

3
CAT /ET , (A3d)

CAT/ET =
e4iπfL − 2i sin(2πfL)− 1√

3
CAζ/Eζ ' − 8L2π2f2√

3
CAζ/Eζ , (A3e)

CAT /ET =
1 + 2 cos(2πfL)√

3
CAζ/Eζ '

√
3CAζ/Eζ . (A3f)

The notation CUV/WL indicates that the same expression is valid for CUV and CWL independently, but does not
imply any relationship between CUV and CWL.

Let us first note that the coefficient matrices of the different sets of quasi-orthogonal channels can be related
by overall frequency-dependent scaling factors. This implies that the CSD and PSD terms in the matrix SUV

(see eq. (2.29)) will inherit the same relationships, irrespective of the single-link correlation matrix Sη. Since this
applies equally to either noise or signal in the data, this further implies that the different sets all have almost exactly
the same signal-to-noise ratio and are therefore almost equivalent for the purpose of data analysis, at least in the
equal-arm approximation. The only caveat of this statement, as mentioned already in appendix A 1, is that the
frequency-dependent factors can be vanishing at singular frequencies. Therefore, the “simpler” variables with fewer
zeros, such as A, E or ζ, in principle contain slightly more information than the more “complex” ones, like A, E, T,
and T .

Going to the low-frequency expansion simply gives a constant scaling factor for most cases. The T channel,
however, shows a significantly stronger low-frequency suppression when compared to the otherwise equivalent T or ζ
channels. We remark that T is also the only channel for which these low-frequency expansions do not remain valid
approximations for the unequal arm scenario. This might explain why we find it to be more susceptible to deviations
from the equal-arm assumptions at low frequencies.

Appendix B: Noise and signal analytic approximations

In this appendix, we provide the analytic expressions of the noise PSDs and CSDs for the different configurations
considered in this work. In appendix B, we consider identical TM and OMS noise terms on all spacecraft for both
the Michelson and Sagnac variables, as well as for their orthogonal channels, for the case of equal LISA arms.
In appendix B 2, we provide the corresponding expressions in the case of unequal but constant arms. Given that the
full expressions are not particularly enlightening, we shall write down only their low-frequency (i.e., f � c/(2πL))
expansions. The full expressions are made available as supplementary material. It is possible to compute the signal
response over the entire LISA band by performing a numerical integration of eq. (2.16). In order to obtain an
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analytic expression, one instead has to expand this expression at low frequencies. We do so for equal and unequal
arms in appendix B 3 and appendix B 4, respectively.

All the expressions involving unequal arms which we consider below are computed by assuming that LISA can
undergo two main distortion modes, namely δc and δd [23]. These distortions leave the average arm-length unchanged
and can therefore be used to characterize arm-length mismatches across the three LISA arms. This approach helps
in identifying the effects of each mode on the PSDs and CSDs of the TDI variables.

1. Noise PSDs and CSDs for an equal arms configuration

Let us write down the expressions for the noise CSDs and PSDs of all channels assuming equal arms. We have

SXX,N = SYY,N = SZZ,N = 16 sin2(2πfL)
{

[3 + cos(4πfL)]STM + SOMS
}
, (B1a)

SXY,N = SXZ,N = SYZ,N = −4 sin(2πfL) sin(4πfL)
(
SOMS + 4STM

)
, (B1b)

for the Michelson variables, and

Sαα,N = Sββ,N = Sγγ,N = 6SOMS + 4 [3− 2 cos(2πfL)− cos(6πfL)]STM , (B2a)

Sαβ,N = Sαγ,N = Sβγ,N = 2 [2 cos(2πfL) + cos(4πfL)]SOMS − 4 [1− cos(2πfL)]STM , (B2b)

for the Sagnac variables.

For the orthogonal channels A, E, we find:

SAA,N = SEE,N = 8 sin2(2πfL)
{
SOMS [cos(2πfL) + 2] + 2 [3 + 2 cos(2πfL) + cos(4πfL)]STM

}
, (B3a)

SAE,N = SAT,N = SET,N = 0 . (B3b)

As expected, the CSDs between the orthogonal channels in the case of equal arm-lengths are zero, since A, E, and T
are defined to be orthogonal. Finally, the expression for ζ reads:

Sζζ,N = 6
{
SOMS + 2 [1− cos(2πfL)]STM

}
. (B4)

The expressions for any other set of orthogonal variables follow from eq. (A3).

2. Noise PSDs and CSDs for an unequal arm-lengths configuration

While it is possible to obtain exact expressions for the noise CSDs and PSDs in the unequal arm case, as mentioned
before, the resulting expressions are rather large and cumbersome, and thus not particularly enlightening. For this
reason, we shall only write down simpler expressions, by working in the low-frequency limit. Furthermore, as discussed
in [22], one can express the arm-lengths Lij in terms of the breathing modes of the LISA triangle, δc and δd [55] as:

L23(t) = L

[
1 +

1

2

(√
3 δc − δd

)]
, (B5a)

L31(t) = L (1 + δd) , (B5b)

L12(t) = L

[
1− 1

2

(√
3 δc + δd

)]
. (B5c)

and further expand the noise CSDs and PSDs in powers of δc and δd. Indeed, while L = L12+L23+L31

3 ≈ 8.3 s is
the average arm-length, the small parameters δc and δd are typically of the order 1 ms to 10 ms for realistic orbits.
Evidently, the case δc = δd = 0 corresponds to the equal LISA arms scenario.
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Aside from STT,N, none of the PSDs are modified by the arm-length mismatch at leading order in δc,d. In particular,
we have14:

STT,N ' 12(δ2c + δ2d)(2πf)2L2(SOMS + 4STM) . (B6)

Furthermore, none of the CSDs between quasi-orthogonal channels remain exactly zero if the arm-lengths are unequal:

SAE,N = −12δcδdL
2(2πf)2(SOMS + 4STM) = 4SAE,N , (B7a)

SAT,N = 12
√

2δcL
2(2πf)2(SOMS + 4STM), (B7b)

SAζ,N =
√

6δcL
2(2πf)2(SOMS + 12STM) , (B7c)

SET,N = 12
√

2δdL
2(2πf)2(SOMS + 4STM), (B7d)

SEζ,N =
√

6δdL
2(2πf)2(SOMS + 12STM) , (B7e)

SAT ,N = −6
√

2δcL
2(2πf)2STM, (B7f)

SAζ,N = 2
√

6δcL
2(2πf)2(SOMS + 3STM) , (B7g)

SET ,N = −6
√

2δdL
2(2πf)2STM, (B7h)

SEζ,N = 2
√

6δdL
2(2πf)2(SOMS + 3STM) . (B7i)

We note that SAT and SET are proportional to δc and δd, and are thus 2 orders of magnitude larger than STT,
assuming δc ≈ 0.01. This highlights the importance of the CSDs in the low-frequency regime when using A, E, and
T with unequal arms. This is shown explicitely in appendix D 2 in a comparison of AET and AEζ using FIM and
MCMC in the low frequency range. SAE, on the other hand, is proportional to δcδd, and is therefore 4 orders of
magnitude smaller than SAA or SEE. SAζ and SEζ are again proportional to δc and δd, such that they are also
suppressed by two orders of magnitude with respect to the diagonal terms SAA, SEE and Sζζ . We can therefore
conclude that A, E, and ζ remain almost orthogonal even in the unequal arms case. This is consistent with the
discussion of section III and with the results of appendix D 2.

3. Low-frequency signal response for an equal arm-length configuration

One can obtain an analytic expression for eq. (2.16) by first expanding its kernel for low frequencies. Doing so, one

obtains in turn an analytic expression for the Sη,GW
ij,mn (f) CSD given by eq. (2.15). This expression can then be used

in eq. (2.29) with the TDI coefficients, and the resulting expression expanded in powers of frequency. By doing so,
one obtains the following expressions in the equal arm approximation:

SXX,GW = SYY,GW = SZZ,GW =
384

5
(fLπ)4 , (B8a)

SXY,GW = SXZ,GW = SYZ,GW = −1

2
SXX,GW , (B8b)

for the Michelson variables, and:

Sαα,GW = Sββ,GW = Sγγ,GW =
96

5
(fLπ)4 , (B9a)

Sαβ,GW = Sαγ,GW = Sβγ,GW = −1

2
Sαα,GW , (B9b)

for the Sagnac variables. Finally, we can compute equivalent expressions for AET, AEζ, AET and AEζ:

SAA,GW = SEE,GW =
3

2
SXX,GW , SAA,GW = SEE,GW =

3

2
Sαα,GW , (B10a)

STT,GW =
256

63
(fLπ)10, ST T ,GW =

4

7
(fLπ)6 , Sζζ,GW =

4

21
(fLπ)6 , (B10b)

14 Expanding the TDI coefficient matrix CTT computed according to eq. (2.29) to leading order in frequency shows that it only contains
terms that are second order in δc and δd. This implies that T’s leading order dependence on the arm-length mismatch is a generic effect,
and we should expect STT,N to exhibit low-frequency deviations for any kind of noise correlations we model in Sη .
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where all cross-terms are vanishing.

4. Low-frequency signal response for an unequal arm-length configuration

In order to obtain reasonably short expressions in the case of unequal arms, we follow the same procedure as
in appendix B 3 but also expand the resulting expressions in powers of the breathing modes δc and δd introduced
in eq. (B5). Similarly to the results obtained in appendix B 2, we again find that most channels are unaffected by
the leading order in δc and δd. Contrary to appendix B 2, we now find that all three null channels T, T , and ζ are
modified with respect to the equal arm case. Concretely, we get

STT,GW = 16ST T ,GW =
16

3
Sζζ,GW =

288

5
f4π4L4

(
δ2c + δ2d

)
, (B11)

such that each of the three channels now shows the same low-frequency behaviour as the GW-sensitive channels.
However, comparison with eq. (B10b) shows that for T and ζ, this deviation corresponds to a change in slope by
f2 with respect to the equal arm scenario, while for T, the slope changes by a factor f6. This, together with the
findings in appendix B 2, explains the qualitatively very different behaviour between the T channel and the other
null channels observed in section III. Furthermore, we observe that we now have ST T ,GW = 1

3S
ζζ,GW , whereas we

had ST T ,GW = 3Sζζ,GW in the equal arm case. Since the noise curves of these two channels are, at leading order,
unaffected by the arm-length mismatch, which explains why we found T to be a slightly better null channel than ζ
in section III.

Finally, we note that while the CSDs of the base Michelson XYZ and Sagnac αβγ variables are again unaffected at
leading order, all orthogonal channels exhibit non-vanishing cross-terms, given by:

SAE,GW = −
√

2

2
SAT,GW = −576

5
f4π4L4δc , (B12a)

SET,GW =
288

5

√
2f4π4L4δd , (B12b)

SAζ,GW =
72

5

√
6f4π4L4δc , (B12c)

SEζ,GW =
72

5

√
6f4π4L4δd , (B12d)

SAζ,GW =

√
6

4
SAE,GW = −36

5

√
6f4π4L4δc , (B12e)

SAT ,GW = −36

5

√
2f4π4L4δc , (B12f)

SEζ,GW =
√

3SET ,GW = −36

5

√
6f4π4L4δd . (B12g)

Appendix C: Data analysis technical details

As discussed in section II a data stream of LISA (and in general of any GW experiment) can be modeled as a
superposition of some signal and detector noise. Let us assume that the data di(t), with the index i labeling the TDI
channel, are provided in the time domain, and for simplicity let us assume di(t) to be stationary. This corresponds
to assuming rigid arms during the full mission duration. This assumption is clearly not going to be valid for LISA,
but for the sake of our discussion, which rather focuses on the impact of unequal arm-lengths and noise levels on
the orthogonality, as well as on the constraining power, of the different TDI variables, we restrict ourselves to this
simplified scenario. Given the total observation time of the detector Td, which in this paper is always assumed
to be 4 years with 100% efficiency, we can divide it into a given number, say Nd, of segments, of duration Td/Nd
each. We can thus define the data d̃si (fk), in the frequency domain, where the index s runs over all segments, and
the index k runs over frequencies in the detector range. The frequency resolution for any given segment is directly
given by ∆f = Nd/Td. In the following, we will assume the time duration of each segment to be ∼ 11.5 days
corresponding to ∆f ∼ 10−6 Hz. We also assume different frequencies to be uncorrelated. As discussed in section II,
both signal and noise are also assumed to be Gaussian-distributed with vanishing mean and variance given by their
respective power spectral densities. Under all these assumptions, we can generate Nd statistical realizations of
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the signal and of all the noise components. Following the procedure described in [33, 56], we define a new set of

(averaged) data D̄k
IJ ≡ d̃iJ(fk)d̃iI(fk)/Nd, which we down-sample using a coarse-graining procedure. By applying

these techniques, we obtain a new data set Dk
IJ , where k runs now over a sparser set of frequencies fkIJ , with weights

wkIJ corresponding to the number of points we average over in the coarse-graining procedure. The down-sampled
data set will have statistical properties similar to the ones of the D̄k

IJ while being easier to handle numerically [33, 56].

It would seem natural to describe the data using a Gaussian likelihood of the form:

lnLG(~θ|Dk
IJ) = −Nd

2

∑
k

∑
I,J

wkIJ

[
1−Dk

IJ/D
Th
IJ (fk, ~θ)

]2
, (C1)

where ~θ = {~θs, ~θn} is the vector of parameters (with ~θs, ~θn being the signal and noise parameters, respectively), and

DTh
IJ (fk, ~θ) = ΩIJ, GW(fk, ~θ)+ΩIJ, n(fk, ~θ) is the theoretical model for the data (with ΩIJ,GW(fk, ~θ) and ΩIJ, n(fk, ~θ),

being the signal and noise model, respectively). However, it is known [57–60] that this compressed likelihood does
not account for the mild non-Gaussianity of the full likelihood, giving systematically biased results. This bias might
be corrected by introducing a log-normal likelihood:

lnLLN(~θ|Dk
IJ) = −Nd

2

∑
k

∑
I,J

wkIJ ln2
[
DTh
IJ (fk, ~θ)/D

k
IJ

]
, (C2)

and considering the final likelihood to be:

lnL(~θ) =
1

3
lnLG(~θ|Dk

IJ) +
2

3
lnLLN(~θ|Dk

IJ) . (C3)

Consistently with the discussion in section II A 2, we include a prior for all the noise parameters in our analysis.
These priors are chosen to be Gaussian, centered around the face values, i.e., Aij = 3, Pij = 15, ∀ {ij} combinations,
and with a 20% width. Finally, to sample the parameter space we use the emcee sampler [61], and results are
visualized in contour plots using Chainconsumer [62].

For completeness, we report the expression of the SNR [13]:

SNR ≡

√√√√Td
∑
i

∫
df

(
SGW
i

SN
i

)2

, (C4)

where the index i runs over all the TDI channels, which for simplicity, are assumed to be orthogonal.

Appendix D: Noise parameter reconstruction for AET and AEζ

In this section, we present the analysis of the noise parameter reconstruction, which is complementary to the
discussion of section IV. For this purpose, we start, in appendix D 1, by considering a simple toy model, which
provides useful insight for the interpretation of our results. We then proceed, in appendix D 2 and appendix D 3, with
the discussion of the noise parameter reconstruction for the equal and unequal noise level cases, respectively.

1. Toy model

Let us consider two time series, D1 = N1 +N2 and D2 = N1, where N1 and N2 are uncorrelated noises with PSDs
a and b(f/f?) respectively, i.e., while the PSD of N1 is a constant, that of N2 has a frequency dependence. The
covariance Cij , with {i, j} ∈ {1, 2}, of the two data sets is given by:

Cij ≡ Cov(Di, Dj) =

(
a+ b ff? a

a a

)
. (D1)

Assuming the data to be Gaussian, the log-likelihood reads:

− logL(Di|a, b) ∝
∑
f

{
ln [det(Cij)] +DiC

−1
ij D

∗
j

}
, (D2)
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and it’s easy to show that the Fisher matrix Fij can be computed as:

Fij ≡ −
∂2 logL
∂θi∂θj

∣∣∣∣
~θ=~θ0

=
∑
f

Tr

[
C−1

∂C

∂θi
C−1

∂C

∂θj

]
, (D3)

where ~θ0 are the best-fit parameters, which for eq. (D2) are given by Cij = DiD
∗
j . To simplify the analysis, in the

following, we replace the sum over finite frequencies with a continuous integral over the frequency range (going from
some fmin to fmax) multiplied by the total observation time T 15. From the equations above, it is easy to compute the
covariance matrix (which is given by the inverse of the Fisher matrix) of the parameters a and b. It reads:

Cov(a, b) =
1

T (fmax − fmin)

(
a2 0
0 b2

)
. (D4)

Since D2 gives an independent readout of N1, and N2 can be estimated from D1 − D2, we can get independent
estimates of the two parameters a and b, whose variances scale with a2 and b2, respectively. To have better insight
into the impact of the off-diagonal terms of eq. (D1) on eq. (D4), we repeat this calculation in the case in which these
terms are neglected. Before entering into details, let us first note that if we consider a frequency range defined by
fmin = 0 and fmax →∞, the information diverges, the variance goes to zero, and we recover the above result. Let us
proceed by considering fmax � fmin, with bfmax/f? � a. In this case, the signal D2 is subdominant over the entire
frequency range and eq. (D4) evaluates to:

Cov(a, b) ' 1

Tfmax

(
0.8 a2 −1.2 a2 f?

fmax

−1.2 a2 f?
fmax

4.8 a2
f2
?

f2
max

)
, (D5)

implying that the variance of a is underestimated compared to the true value (which is equal to a2), while that of b
depends on a and is large compared to the true value (which is b2). The second case we consider is fmax � fmin, with
bfmax/f? = 2a. Then, the two signals are of similar amplitude, and eq. (D4) reads:

Cov(a, b) ' 1

Tfmax

(
0.88 a2 −0.8 ab
−0.8 ab 5 b2

)
. (D6)

In this case, the covariance of a continues to be underestimated by a factor of order 4/5, while that of b is overestimated
by a factor ∼ 5. Finally, we consider fmax � fmin, with bfmax/f? � a, so that D2 is much larger than D1 and eq. (D4)
reads:

Cov(a, b) ' 1

Tfmax

(
a2 a2f?

fmax

a2f?
fmax

b2

)
. (D7)

In this case, the frequency band is sufficiently broad such that either signal is clearly visible in at least part of it, and
it is possible to recover the true covariance to a good approximation despite our having neglected the off-diagonal
terms. Notice that in all three cases, neglecting off-diagonal terms in eq. (D1), introduces degeneracies in the
estimates of a and b.

The findings of this toy model are consistent with the rationale that the off-diagonal elements add information that
helps break degeneracies between model parameters, and that when they are neglected, the dominant signal, if present
in multiple data streams, will have artificially more statistical weight and will thus be recovered with artificially small
error bars, while the subdominant signal will be difficult to identify with much accuracy.

2. Equal noises

In order to better understand the constraints on the noise parameters, we start by presenting in fig. 11 the
PSDs of the TM, OMS, and GW signal for the AA, TT, and ζζ variables in the left-hand plot, and the CSDs
of TM, OMS and GW divided by the square root of the product of the PSDs for AA and TT or ζζ in the

15 Assuming the integration time is sufficiently long to have a reasonably fine sampling in f , the results in the two cases will coincide.
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FIG. 11: Left: TM, OMS, and GW PSDs in the case of unequal arms but equal noise spectra. Right: TM, OMS,
and GW CSDs divided by the square root of the product of the PSDs for AA and TT or ζζ (i.e., the square root of

the component-wise coherence), in the case of unequal arms but equal noises.

right-hand plot (i.e., the component-wise square-root of the coherence). For example, “AT TM” is computed as

|SAT,TM|/
√

(SAA,N + SAA,GW)(STT,N + STT,GW). Restricting the focus to the low-frequency range (f < 10−3 Hz),
and to the variable T, we find that OMS is suppressed with respect to TM, reaching levels almost as small as
GW. The TM cross-correlations in AT are at the 10% level, while those for OMS and GW are several orders of
magnitude smaller. Turning our attention to ζ, we find that in the low-frequency range, contrary to T, the TM and
OMS PSDs remains large compared to GW. Moreover, the cross-correlations for AEζ are significantly smaller than
those of AET. It is also worth noting that the hierarchy between the TM, OMS, and GW PSDs remains the same
throughout the entire frequency range (3 × 10−5 to 0.5 Hz) for ζζ, whereas the TM and OMS spectra intersect at
10−3 Hz for TT. The TM and OMS cross-correlations intersect at f ' 5 × 10−3 Hz for both AT and Aζ. Finally,
at frequencies above 10−2 Hz, TM, OMS, and GW have comparable amplitudes in AET and AEζ. What differs
is mainly the oscillatory features introduced by the TDI transfer functions. While the GW cross-correlations are
strongly suppressed at large frequencies, the TM and OMS ones are much larger and of order 1% and 10% respectively.

Let us proceed by discussing the parameter reconstruction in the case of equal noise levels, first restricting the
analysis to the low-frequency (f ≤ 10−3Hz) range. The results of the MCMC runs for this configuration are presented
in fig. 12a. As shown in fig. 11, at low frequencies, while the AEζ basis is nearly orthogonal, correlations are relevant
for AET. Indeed, for AET, neglecting off-diagonal terms significantly impacts the posterior for the OMS amplitude
(see the marginalized posterior for parameter P in fig. 12a) which becomes largely underconstrained. This is due to
the fact that OMS is strongly suppressed relative to TM in AET, such that much information could be gained from
including the relatively large CSDs shown in the right-hand plot of fig. 11. The situation is in fact similar to that of
N2, and its associated parameter b, discussed in the toy model of appendix D 1. On the other hand, the posteriors for
all other parameters are slightly narrower than when considering the full AET matrix. This is once again consistent
with what was found in appendix D 1, for N1 and associated parameter a. It is also worth noting that α and nT
are strongly degenerate in both AET and AEζ. This happens in the low-frequency range, since the pivot frequency
(f? = 3.873× 10−3 Hz) is located outside this range such that a change in nT induces a strong change in the GW
signal’s amplitude within the frequency range. In this sense, including the pivot frequency in the frequency range
considered, or widening the frequency range would break this degeneracy. This is indeed what happens once we
consider the full frequency range, as we discuss below.

We conclude this section by including the higher frequency range (up to 5 × 10−1Hz, consistent with the analysis
in section IV), which we expect will include significant information to the GW and noise parameters for both AET
and AEζ. Indeed, the results shown in fig. 12b show a great improvement in the determination of most parameters.
In particular, the OMS noise parameter P gains a factor of order 500 in the width of the marginalized posterior for
AET, and a factor of order 50 for AEζ. This is consistent with the findings obtained in the example of appendix D 1,
where it was found that by extending the frequency range, one could capture additional information on sub-dominant
components in the signal. Finally, comparing with fig. 12b, we notice that including higher frequencies breaks the
degeneracy between α and nT parameters. Indeed, as shown in fig. 11, the GW PSD grows at frequencies above 10−2

Hz, while the CSD drops significantly. While not explicitly shown in fig. 12, all these results are consistent with the
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(a) Low frequency range. (b) Full frequency range.

FIG. 12: AET diag. MCMC vs. AEζ diag. MCMC stochastic background and noise parameter reconstruction for
unequal arms and equal noises.

corresponding Fisher matrix analyses.

3. Unequal noises

FIG. 13: Left: TM, OMS, and GW PSDs in the case of unequal arms and unequal noise spectra. Right: TM, OMS,
and GW CSDs divided by the square root of the product of the PSDs for AA and TT or ζζ (i.e., the square root of

the component-wise coherence), in the case of unequal arms and unequal noise spectra.

In this section, we discuss the situation of most interest, the case of unequal arms and unequal noise levels.
Comparing the left-hand plot of fig. 13 with the one of fig. 11, one finds that the TM, OMS, and GW PSDs in
AA, TT, and ζζ, are practically unchanged with respect to the equal noise levels case. Turning attention to the
right-hand plot of fig. 13, one can make the following observations. Firstly, the OMS noise cross-correlation in Aζ is
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much larger than its counterpart in the equal noise case, over the entire frequency band. Indeed, this quantity is of
the same order as the one for AT for frequencies & 5× 10−4Hz and is larger for lower frequencies. Secondly, the Aζ
TM cross-correlations are also enhanced, by close to an order of magnitude in the band between 10−5 and 10−1 Hz.
Thirdly, as expected, the GW cross-correlations are not affected by the introduction of independent noise levels and,
contrarily to the equal noise level case, they stay smaller than the TM and OMS ones over the entire range. Finally,
while the cross-correlations reach above the 10% for both noises and for both TDI basis, the GW signal off-diagonal
terms remain below 10% for both noises and are significantly smaller for Aζ. Drawing from these observations, one
anticipates that the largest impact of neglecting off-diagonal terms will be seen in the OMS noise.

(a) Test mass (TM) acceleration noise (b) Optical metrology system (OMS) noise

FIG. 14: AET diag. MCMC vs. AEζ diag. MCMC for the TM and OMS parameter posteriors obtained from the
MCMC runs in the case of unequal arms, unequal noises, and over the full frequency range.

Let us now focus on the AET and AEζ MCMC results. Figure 14a and fig. 14b show the results of the AET
and AEζ runs for the TM and OMS parameters, respectively. As shown in the right-hand plot of fig. 13, the TM
cross-correlations are significantly larger in AET than in AEζ while the OMS cross-correlations are non-negligible
and of similar amplitude in both AEζ and AET. Furthermore, as shown in the left-hand plot of that figure, the
TM and OMS power spectral densities are significantly larger in ζ compared to T over a significant fraction of the
frequency band. One can therefore conclude that similar to what was found in the toy model of appendix D 1,
ignoring cross-correlations will induce differences in the TM and OMS posterior widths for AET than in AEζ, and
in particular, may lead to variance underestimation for AET. This is true for 4 out of the 6 Aij ’s and 3 out of the
6 Pij ’s. Let us recall that a Gaussian prior centered around the face values A = 3, P = 15, and with a standard
deviation equal to the 20% of the central value was used for all the TM and OMS noise parameters. With this in
mind, we note that, while all the Pij have posteriors that are considerably narrower than the priors, some of the Aij
constraints are actually comparable in size, implying that the data fails to provide significant information on those
parameters. Finally, we note that there exist degeneracies between the Aij and Aji, and Pij and Pji pairs. This is
expected because whether AET or AEζ, all measurements that involve the quantity ηij also involve its time-delayed
counterpart ηji. For what concerns the comparison between the AET and AEζ results obtained via MCMC sampling
and the FIM analysis assuming a diagonal TDI correlation matrix, while we do not present the full corner plots,
we show in fig. 15a and fig. 15b the 1D posteriors for AET and AEζ, respectively. As is clear from these plots, the
constraints obtained with the approaches agree.

We conclude this appendix with a comparison of the Fisher analyses performed with the diagonal and full TDI
covariance matrices. Since AET and AEζ show slightly different, but qualitatively similar behaviours, we only show
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(a) AET diag. Fisher vs. MCMC diag. TM on the first line and OMS on the second line.

(b) AEζ diag. Fisher vs. MCMC diag. TM on the first line and OMS on the second line.

FIG. 15: TM and OMS one-dimensional parameter posteriors obtained from Fisher forecasts and MCMC runs in
the case of unequal arms and unequal noise levels.

the corner plot for the latter, see fig. 13. Given that the AEζ TM noise CSDs are relatively small, the constraints on
the Aij parameters constraints are not expected to change significantly in going from a diagonal to a full correlation
matrix analysis. This is verified in the 1D marginalized posteriors of fig. 16a. The introduction of correlations in the
analysis does introduce correlations among parameters, with the result that the surface area of 2D contours shrinks
when considering the full matrix. Let us now turn our attention to OMS. Given the CSDs of fig. 13 which for AEζ
(and also for AET), exhibit correlations that are greater than 10% for a broad set of frequencies, we expect that
including or excluding correlations of the TDI variable will significantly modify the constraints on the Pij ’s. Indeed,
as illustrated in the toy model of appendix D 1, ignoring cross-correlations means that the amplitude parameters of
all subdominant noise components are largely unconstrained. This is confirmed by the contour plots of fig. 16b.
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(a) TM acceleration noise. (b) OMS noise.

FIG. 16: TM and OMS posterior widths obtained from FIM analysis in the case of unequal arms and unequal noise
levels when including or neglecting the off-diagonal terms in the TDI correlation matrix.
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