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In the context of AdSs/CFT2, we investigate holographic correlators of the stress tensor of a
conformal field theory (CFT) on a torus in this work. To calculate the correlators of the stress
tensor, we employ the Einstein-Hilbert theory of gravity and perturbatively solve Einstein’s equation
in the bulk. We offer an explicit prescription to develop a recurrence relation that makes it simple
to compute higher point correlators. The correlators and the recurrence relation are found to be
consistent with what is known in CFTs. Following the spirit of the proposed cutoff AdS/TT CFT
holography, we then expand our computation program to investigate holographic torus correlators
at a finite cutoff in the AdSs. A parallel recurrence relation associated with higher point correlators

can be obtained.

I. INTRODUCTION

Understanding nonperturbative effects in the presence
of strong coupling is one of the most difficult problems in
modern physics. Analytical results in strong coupling are
rare and extremely difficult to obtain. A remarkable tool
for strongly coupled QFT is offered by the holographic
principle [1, 12]. The Anti-de Sitter gravity/conformal
field theory (AdS/CFT) correspondence [3-5] provides a
rare window to gain analytical insight into strongly cou-
pled physics. In the most helpful limit to exploit this
correspondence, we use the weakly coupled bulk descrip-
tion to study the physics of strong coupling by performing
gravitational perturbative calculations.

On the other hand, we are still far from harnessing the
full computational power of AdS/CFT correspondence,
which is particularly evident when considering the most
fundamental observables of the CFT, namely the correla-
tors of local operators. In particular, previous studies on
holographic correlators of the stress tensor focus on CFTs
with trivial topology with holographic computation done
in the pure AdS space [6-9], even in AdS3;/CFTy [10].
Once we apply the variational principle to investigate
the correlators in the CFTs with nontrivial topology, it
amounts to solving Einstein’s equation in a nontrivial
background bulk geometry. While near-boundary solu-
tions are well-understood [11H15], without the full sym-
metry of pure AdS the global boundary value problem is
in general very difficult (see |16-{19] for some discussion),
even for linearized equations. Further, the higher-point
stress tensor correlators in strongly coupled CFTs with
nontrivial topology are still less known in the community.
Explicit results from holographic computation are highly
desirable.

In this letter, we tackle and solve this long-standing
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problem in AdS3/CFTs. We begin by computing the
holographic torus correlators of stress tensor by solv-
ing Einstein’s equation in the thermal AdS background.
Then we propose a prescription, which in principle works
for any Riemann surface, to compute the n-point correla-
tors by deriving a recurrence relation. These results are
consistent with the corresponding data in CFTs [20].

We further extend this program of computing holo-
graphic stress tensor correlators to the context of cut-
off AdS/TT CFT holography. It was proposed that for
TT deformation [21, 122] of holographic CFTs, the holo-
graphic dual is to move the conformal boundary to a
finite cutoff in the bulk AdS space [23]. Stress tensor
correlators of TT-deformed CFT have been considered
in the complex plane [24, 25] and on the torus [20, 26],
and holographic correlators in the complex plane were
studied in [24,127)] following the spirit of cutoff AdS holog-
raphy. Here we compute the holographic correlators on
a torus at a finite cutoff in the thermal AdS3 and derive
a recurrence relation similar to the case of CFTs.

II. HOLOGRAPHIC SETUP

For holographic computation, it’s customary to work
in the Fefferman-Graham coordinates near the conformal
boundary, in which the bulk metric takes the form

dr? 1 P

ds® = Tt T_2_gij($,7")d$ da’ . (1)
In dimension three, the Fefferman-Graham series of the
metric truncates as [13]

gij(,r) = ¢ (@) + ¢ ()r? + g{P (@)t (2)

and Einstein’s equation is reduced to one equation that
determines ¢ in terms of ¢(®©) and ¢(®:

g 1 ¢ Bl (2
Qz(j)zzggk)g(o) g[(j)' (3)
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and another two equations

VO g2 — v @1 (4)

j i

i 1
g = 5 Rl 5)

where the covariant derivative and raising (lowering) in-
dices are all with respect to the metric ¢(°). If the holo-
graphic field theory lives on a cutoff surface r = r. as the
boundary, the background metric of the field theory 7 is
identified with the induced metric h on the boundary by

g = rehij (6)

and by taking the functional derivative of the gravity on-
shell action with respect to the boundary metric, the one-
point correlator of the stress tensor is identified with the

Brown-York tensor on the boundary with proper counter-
terms added [14, 128, [29]

1
(Tiy) = —%(Kij — Khij + hgj). (7)

Therefore, the pair of background metric and one-point
correlator is identified with a near-boundary bulk geom-
etry, expressed in terms of ¢(°) and ¢®. From @) and
@) (or from the Gauss-Codazzi equation in general di-
mensions), we have the conservation equation

Vi{Tij) =0, (8)
and the trace relation
(T)

For CFTs, the cutoff surface is pushed to the conformal
boundary r. = 0, and the trace relation reduces to the
Weyl anomaly

= o ARGRA(TI)(T) — (T (9)

R
() = 167G’

For Tf—deformed CF'Ts, the cutoff location is related to
the TT deformation parameter by [23]

(10)

p = 167Gr? (11)

To obtain multi-point correlators, it suffices to com-
pute the varied one-point correlator by a variation of the
boundary metric. Equations (§) and (I0)(or (@) serve as
our basis for this computation, but they don’t fully de-
termine the one-point correlator, or in the bulk language,
the near-boundary solution to Einstein’s equation is (un-
derstandably) not unique. The remaining information,
which in our case is two constants of integration, must
be drawn from the global geometry of the bulk space by
requiring that the near-boundary solution reconstructed
from the one-point correlator can be extended to be a
global solution. We will show in our case that this condi-
tion, dubbed as the global regularity condition, fixes the
two constants.

There is another way to fix the two constants, which
naturally leads to deriving a recurrence relation of the
holographic correlators. The two constants can be viewed
as one-point-averaged correlators, which in turn corre-
spond to variations of lower point correlators with re-
spect to global metric variations. On a Riemann surface,
global metric variations are related to the differentiation
with respect to the moduli. This idea has already been
used to study Ward identities of stress tensor insertions
[30, 131]. In particular, let the global metric variation be
dvzz(2) = @, 07,,(2) = & for a torus. To the first order
in «, the new metric is

ds® =dzdz + adz? + adz?,
=(14+a+a)dz+a(z—2)dzZ+a(z—2)). (12)

With a Weyl transformation of factor 1 — a — @ and a
change of coordinates

Z=z+4a(z-2), Z=z+a(z—2) (13)

we get a torus with the Euclidean metric and a varied
modular parameter

=17+ a(F —71). (14)

Therefore for the correlator of any operators collectively
denoted by O we have

(7 = 1)0-(0) = L(z-20.(0) + /T dzz(éjf(i) - 5jf(>2))7
(15)
5(0) 5(0)

(1 —=7)0-(0) = Lz-2)0- (O + /Tz dZZ(é’Yzz(Z) - 0722(2)
(16)

),

where £ denotes the Lie derivative. In the community,
it is the first explicit realization of [30, [31] which is the
key point to obtain the holographic recurrence relation
of higher point stress tensor correlators in the remaining
part of this letter.

III. TORUS CORRELATORS IN
HOLOGRAPHIC CFT

We start by computing the holographic torus corre-
lators of stress tensor on the conformal boundary (for
CFTs) from the thermal AdSs;. Other classical grav-
ity saddles (real smooth ones) with the torus conformal
boundary are classified in [32] (first considered in [33]).
They can all be obtained from the thermal AdS3 by mod-
ular transformations. The thermal AdSs is a solid torus
with the metric

ds® = dp® 4 cosh? pdt? + sinh® pd¢?, (17)
or in the form of the Fefferman-Graham series

dr?

1
ds? — —+— [dzdé—r27r2(dz2+d22)+r47r4dzd5}, (18)
T T



with

1 ¢ +it ¢ —it
F T 2 2
where z, Z are doubly periodically identified (z,2) ~ (2 +
1,Zz+1) ~ (2 +7,Z+ 7). The conformal boundary at
p =o0orr =0, is a torus with two periods 1 and 7,
with the Euclidean metric v;;dz'dz? = dzdz. We read
off one-point correlators from the bulk geometry

™ ™

<TZZ> = _@v <T2’> = _@a

To compute the holographic correlators, we take a vari-
ation of the metric

§yijdatda? = ef;jda'da’.

z =

T =

(19)

weP

(T..)=0. (20

(21)

and expand the variation of the one-point correlator in
powers of the infinitesimal parameter e
o0

Z G"Ti[f].

n=1

(22)

From () and (I0), we can order-by-order solve Ti[;z] to

compute n + 1 point correlators. For the first order, we
find

W L (Com2(fos b for) + 02— 20.0:fox + 02 ),
167G
1
Wy - L [_o.0. 2p
T () = oo [(-0.0:0.: +202.2)(2)
+1 / P (z — w)(—4x0, — O} fos(w) + O]
T T2

Tg[i—] (z) = c.c. of TH(2) (23)

where “c.c.” denotes complex conjugate, CM, CM are
constants of integration, and

Gr(2) = () — 26 (3) 7 +

is a Green’s function on a torus (see the appendix [A] for
details) with (;(z) being the Weierstrass Zeta function.
As discussed in the previous section, any choice of
the constants corresponds to a near-boundary solution
to Einstein’s equation in its Fefferman-Graham coordi-
nates. The Fefferman-Graham coordinates of the varied
bulk metric may differ from the p, ¢,t or r, 2z, Z coordi-
nates of the solid torus, but we can make them coincide
in the region p € (0,00) by a boundary preserving diffeo-
morphism. In other words, a generic bulk metric solution
in the region p € (0, 00) for a varied boundary metric is
given by a Fefferman-Graham series in p, ¢, t from (23)),
plus a change by a boundary-preserving diffeomorphism.
The global regularity condition in the present case is the
metric must be regular at p = 0. Leaving details of com-
putation to the appendix [Bl to the first order we have

/Tz d2g M — gD 1272 (g1 — g1 — o,

/ A2y 4+ 2g DM 4 g2 = 0
T

o
ﬂlmz

Im7 (24)

(25)

3

where ¢ and g are the first order variations of
g% and ¢® respectively. This condition determines the
constants as

- 472

" Imr

ol _ 4

Imr

/ &zfsz, CN / Pzf..  (26)
T2 T2

and all two-point correlators are obtained

1 " 1
<Tzz(Z)Tzz(’lU)> = m (p.,_ (Z — w) + 47T2p7—(2 — w) =+ 87T2<.,—(§))
(27)
where ,(2) = —(.(2) is the Weierstrass P function. For

simplicity, we have only shown the correlator of T ., since
other components can be determined from it by the Ward
identity of conservation.

Alternatively, the constants can be derived from (IH)
and (I6]) in the form of a recurrence relation. We begin
by turning on a variation of vzz = F' of the Euclidean
metric while keeping other components fixed, then we
get the holographic Virasoro Ward identity |34, 135] from

@) and (IT)

1 PF=0.

Ox(Toz) = 20:F(Tez) = FOL(Toc) + 70— =07
(28)

Taking the n—th functional derivative with respect to F'

,and evaluating at F' = 0, we find

0 (Tos(2)Ty2(21) - .. Toz(2n))

— 3 0:0(2 = 2)(Tee(2)Tez(21) - Tezlzio1) oz (2i1) - - Tez(20))
i=1

- % S 0(2 — 24)0:AToe () Ton (1) - Toe (2 1) T (251) - Toa(22)
=1

5n718§’5(z - 21) =0. (29)

+ 327G

Solving with Green’s function on the torus, we have
(Too(2)T22(21) - Taz(20))

LS 0.6 6 = s0Tuae) - Tslon)

1
— 5Gr(z = 20)0: (Toale) Tzz(zn»}
1
- 32m2G

: ~/1‘2 d2U<Tzz(’U)Tzz (Zl) T (Zn)>

671)163(;7—(2 — 21)

+ Im7

(30)
The last term of the one-point-averaged correlator, corre-
sponding to the constants of integration, can be obtained
from (I3 by setting O = T,,(z1) ... T:.(2n) with the last
term vanishing for CF'Ts. Then we obtain the recurrence



relation

(Too(2)Ton(21) - . Toa(zn)) =

= i0r(Tez(21) - Tax(zn)) + ﬁ(sn,lp:(z — )

B % zn; [2 )+ 2<T( ))<Tzz(21) )

+ (G (e —z) — 247(5)@ )0 (Ten(21) - Ton ()]
(31)

which is consistent with field theory derivation offered by
[20]. The recurrence relation recovers the two-point cor-
relators for thermal AdSs (27)) and provides an efficient
way to compute higher-point correlators. For example,
the three-point correlator is

1
643G
120, (21 — 22)pr (22 — 23)pr (23 — 21)

<TZZ (Zl)TZZ (22)Tzz (23)> = -

+47%(pr (21 — 22)pr (22 — 23) + pr (22 — 23) 7 (23 — 21)
+ (16#’@(%)

(pr(21 — 22) + pr (22 — 23) + pr (23 — 21)) | + Crrr-,
(32)

+ (23 — 21)pr (21 — 22)) —92.7)

which we have put in a symmetric form by analyzing
the pole structure of the expression obtained from the
recurrence relation ([BI). In the derivation, we used the
identity

o (2) = 6pr()” — T
1
S=60 Y — 33
92, (e E0.0) (m+ nt)* (33)

and Crrr - is a constant (of no simple expression known
to us) that can be obtained by evaluating the expression
at three given points. The recurrence relation can be
used to compute the correlators for any gravity saddle
when it dominates in the path integral or to compute
the exact correlators from a full partition function if it’s
available, though this question is much more subtle and
difficult, for example, see |32, [36].

IV. TT- DEFORMED TORUS CORRELATORS

In this section, we compute the holographic stress ten-
sor correlators on a torus at a finite cutoff (for T'7T-
deformed CFTs). We start by embedding a torus as a
cutoff surface into the thermal AdS3
ds? = dp* + 12 [dZdZ — e %P (dZ° + dZ?) +

(34)

e dzdZ).

4

By taking the periods in Z to be 1 and Q = %
and defining the coordinates for torus

Z—e ez
=2 2 (35)

1—e2pc

Z —e 207

z =
1 — e2pc

and the Fefferman-Graham radial coordinate

1
L 36
meP (1 —e=2pc) (36)
we get a torus at p = p. with periods 1 and 7 in the
z,z coordinates, and a field theory background metric
Yijdxtdae? = rih;;deide? = dzdz. We read off one-point
correlators from the bulk geometry

1 — e 2pe T 1— e 2pe

Ty =i O (= -
(T=2) 8G 1+ e2re (T=2) 8G 1+ e—2pe
T 6_2/70 —_ e_4Pc

As in the previous section, we can solve the varied one-
point correlator order by order from (8) and (@) for a
variation of the field theory metric ef;jdx’dz?. Leaving

the computation of Ti[;] to the appendix [C], we obtain the
two-point correlator

(T..(2)T.(w))
- 163rG (1+ elfzpc)zl [QW(PQ(Z W)+ e o0 (Z — W)
+ %(p” (Z W)+ e %0 pi(Z —W))
* 4W<<n<§> *8%(%))]
= 61_4,)0)3[2796—2%(1 e=206)2(1 4 ¢~ 40e)
+ (26727 — 3¢~ 6P 4 9~ 100e) 2

— (e 4 75)0,0; + 0P 92]5(2

—u).

To relate to the TT-deformed CFT, we have p. =
sinh ™! ﬁ and r. in turn is related to the T'T defor-

mation parameter p by ([[Il). As a cross-check, we can
compute the generating functional I from the one-point

correlators ([B7)) (as a special case of ([H]) and (I6)) by

101 =(T.,) — (T.z)

(38)

=071 = (Tzz) — (Tz) (39)
We obtain
I= 8G(l — e_2pc)(7 —7)
:i(T—T’)( 1+ T 1) (40)

It satisfies the TT flow equation for partition function
126,137, 138] with CFT limit I = Fc(r — 7), cf. equation



(2.14) in [38] with the identification of the deformation
parameter p = —2\2.

A recurrence algorithm to compute higher-point cor-
relators can be derived in a way similar to the previous
section, but it does not have a simple form like [BI]). So
we leave it to the appendix

V. CONCLUSIONS AND PERSPECTIVES

In this letter, we investigate the holographic torus cor-
relators of the stress tensor on the conformal bound-
ary (for CFTs) and at a finite cutoff (for TT-deformed
CFTs). First, a direct calculation is provided by solving
Einstein’s equation with a torus boundary, and then we
obtain a holographic recurrence algorithm to calculate
the higher point correlators of the stress tensor. The re-
sulting recurrence relation for holographic CFTs is iden-
tical to that found in CFTs. The recurrence relation
in holographic TT-deformed CFTs can be also obtained.
The recurrence algorithm has a natural generalization to
higher genus Riemann surfaces.

It’s interesting to extend our computation of holo-
graphic correlators to other operators and to higher di-
mensions. Exact results will contribute to the under-
standing of CFTs of non-trivial topology, in terms of
OPEs, conformal blocks [39-44] and possible bootstrap
programs [45]. With a proper recipe of analytic continua-
tion to the Minkowski signature, we can also obtain exact
results for holographic transport coefficients, as was done
in [46] and numerous following works.
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Appendix A: Green’s function on torus

In this appendix, we briefly introduce the Green’s func-
tions on a torus with modular parameter 7. The defin-
ing equations for the Green’s functions G,(z,w) and
GT(Z, w) are

1 1
;62(;7—(2’,’[1}) = 6(2’,’[!}) — E

(A1)

and

where §(z,w) is the delta function with respect to the
measure d2z = sdzA\dz. Green’s functions can be rewrit-

ten as G,(z — w) and G, (z — w) by translational invari-
ance.

For Green’s function G, (z), since it takes the form 1
in the complex plane, it is tempting to represent Green’s
function on the torus as a formal series

1
2 e

(m,n)€ez?

(A3)

with manifest double periodicity. To make the formal
series convergent, it’s natural to add the holomorphic
terms — +Zm)2 and we obtain the

1 —
(mméze/0) T
Weierstrass Zeta function

=1t Y (o

(mon)ez2/(0,0) © (m +n7)

1 z
. A4
+(m+m’)+(m+n7)2) (A4)
It’s straightforward to prove (;(z +1) — (- (2) and (- (2 +
T) — (- (2) are independent on z, so we can restore the
double periodicity by adding a linear function, obtaining
the Green’s function on the torus

G:(2) = ¢ (2) — 2@(%)2 + %Imz. (A5)
Similarly, we have
- 1 1 2
G (=) = log(|o7 (2)) = G+(5)2” = G:(3)2* = (Im2)’
(A6)

22

- -z i S ?
orlz) =2 H (1 m—i—nT)e
(m,n)€72/(0,0)
(A7)

is the Weierstrass sigma function, with its log derivative
being the Weierstrass zeta function.

Appendix B: Global regularity condition

As discussed in section [III we can make the
Fefferman-Graham coordinates of the varied bulk met-
ric (Fefferman-Graham coordinates always exist near the
conformal boundary, see [15] for example) coincide with
the torus coordinates p, ¢,t by a diffeomorphism in the
region p € (0,00). So the varied bulk metric in this region
is given by a Fefferman-Graham series in p, ¢,t, deter-
mined from (23)), plus a change by a boundary preserving
diffeomorphism. We characterize the diffeomorphism by
a vector expanded in powers of €

V=> v (B1)
n=1



To the first order, the varied bulk metric is given by

ds* =(1 + eLym)(dp?® + cosh? pdt* + sinh? pd¢?)

+ egUG[l]dajzdajj (B2)

where g¥"¢[1 is the first-order variation of the bulk metric
in its Feffermen-Graham coordinates, given by

gFCeM  —g@N =200 4 72020 o (O)1]
erfng(g)[ ]7
1 1
grem = — 567%9(2)[1]“ — Ze g __ 4 g0
+ 7T2(62p _ e—2p)g(9)[1]
gFG[l]EE :g(z)mgg _ e—2pg(2)[1]22 + erngg;)[l]

m2e2rgON], (B3)

We require the metric to be regular at p = 0, that is,
its components in the (¢, x,y) coordinates

t=t,
T = pcos ¢,
y=psing (B4)

which properly covers p = 0, are regular. We have the
|

lim (2 cosh p sinh pV“]p + 2 cosh? po, V11! !

(1) cosp+ ¢*

FG[1
+ G H):

transformation equation of the components

gtt = Jtt,
Gtp = Gta COS (b + Gty sin ¢a

gté = P(—gtz SIN b + giy cos @),
Gpp = Gux COS° G + 2G5, COS psin ¢ + gy sin® ¢,
Gop = P (guw SIN® ¢ — 24, cOS pSin ¢ + gy, cos® @),

Gyy) COS P sin ¢ + gcgy(cos2 ¢ — sin? ¢)].

9o = p[_(gmm -
(B5)

Take the p — 0 limit, the components in (¢, z,y) coor-
dinates on the right-hand side should go to a limit that
can only depend on t with a period Imr

gl_r)% gtt =9t (t),
lim g1, =g7,(t) cos & + g, (¢)sin o,

gt¢ . *
gg}% D _gtz( )Sln¢+gty(t) CO8 (bv

lim L 90p =gk, (t) cos® ¢ + 205, (t) cos psin g + g, (t) sin? ¢,
p—

;1_% ;; =g, (t)sin® ¢ — 23, (t) cos psin ¢ + g, () cos® ¢,
oo . .
gll)r(l) ; (gmm (t) - g;y (t)) Cos ¢ sin ¢

+ g;y(t)(cos2 ¢ — sin® ¢). (B6)

Now we impose these conditions on the varied bulk metric

in (B2), and we find

g*[l]tt(t)v

1, (t) sin @,

hm (8t ” + cosh? PO, 1248 ) g
cosh? pd,V11I* + sinh? pd V[1]¢ + gFet
lim o e o — g, () sing + g1, (1) cos o,
p—0 P
*[1 2 *[1 : *[1 2
= ¢l }m(t) cos? ¢ + 2¢*! ]m (t)cospsing + g [ ]yy(t) sin” @,

lim 20,V 11*
p—0
G

2 cosh psinh pV 1”4+ 2sinh? pd,V —|—
lim P P 5 POV ng =g (t)sin® ¢ — 2g*[1]zy(t) cos ¢sin ¢ + g*[l]yy(t) cos® ¢,
p—0 p
0V h? pa, V1’
gy DoV sinhp = (g ,(t) - g™, (1) cos gsind + g1V, (t) (cos® ¢ — sin® ¢). (B7)
p—0 p
In addition, we have the power series expansion of (B3) at p =0
1
Goo = gfaaimp gy 07+ 0(0%) =[5 (gP M. 29PN, gl ) 4 gD 4 29D 4 g2
@0 1 9g@0_ 4 A% + O
27T2 (¢, +290 2 + Az2)p” + O(p
FG[1 FG[1 i o[
g [ _ 90t¢[ L Lo(p?) = 47T2 (g0 — g@m_y 4 2(9(2)[ = g 4 0(p?),
FG[1 FG[1
g5 = g4 O(p) = ~ g (g™ — 2P 4 O +Op). (B8)



Integrating the third equation in (BT) over the torus, we integrate it over the torus. We find
find

/ &z galh = 0. (B11)
T2

/ d*z Qthb[ I=o. (B9)
T2 Plugging (BS) into (BI) and (BI1l), we obtain the global
regularity condition (25)).

From the fourth equation in (B7) we know V[’ can be

linearly approximated near p =0 Appendix C: Computation of holographic

correlators for TT-deformed CFT

VP = ag+ a1p+o(p). B10
0 P 2 ( ) As in the section [II, to compute holographic corre-
lators we solve the varied one-point correlator order by

Then we subtract the fifth equation from the fourth and  order from () and ([@). For the first order, we get
|

71— e 2pe

;T + 9.7, = @m(_azfzz — 30, fzz + 27205 f.. +2¢7%P°0, f.2), (C1)
(1 1] w1l e —2p 2p
0T e 4 0:TW.e = e (=02 fos = B0sfo + 2¢72010: fos 4+ 27401 ), (©2)
and
(1 +674PC)T[1]Z‘2 4 e 2pe (T[1]zz +T[1]zz)
(1 — e2c)? _ 1 — e—4re
= _% (fzz + fZZ + 2e 2PszZ) + W(agfzz - 2(92(92'][25 + 83f22) (03)
Adding 0. (CT)) and 9:(C2), and then plugging in (C3), we get an equation of T ;
1 — e2pc)2 1 — e—4pe
(1 — e 20)20,0,T) 5 = _wazag(fzz + foz + 272 f ) + Lazag(agfzz 20,0 fus + 02f22)
8G 167G
me 21— e 2 2 2 2 ~2p 2 2
8G 1+ e 2re [_azfzz =30 fzz — 05 fzz — 305 foz + 27 °P(0:0z for + 07 f2z + 0.05 fzz + 05 f22) |- (C4)

We solve this equation with the Green’s function Gq on torus (see the appendix [Al)

1 = 1+ e 2Pe
T[l]zi - / d2 Z_ - 2 w Y zZz zZz 2 *QPC zZ a1 o, N YwVYw % 22_2 wYw ) zZ 2 zZz
(2) 577G ) WGa( W)[ 120000 (foz + foz + 207 2P f )+2(1_6_2pc)a da (02 f OO [z + 02 f22)
- ﬁ(_([ﬁ foz — 302 foz — 02 for — 3a%fzz + 26_2p°(6w5wfzz + 02 fzz+ 0wOs f22 + B%fzi))}( )+ —D[l]
(C5)
and T, T, follow from (C2) and (C3)
1 71— e 2re EN
[1] J— 2 _ - -  (_ —2pc —2pc 1] _ I
Thl, W/TzdeT(z w)[SGHﬂpC( O fos — 300 foz + 2672000 for + 26270y foz) — DT zz]+8ﬁG,
(C6)
1 7w l—e2e EN
[1],, J— 2 _ Y G [ SR _ —2pc _ —2pcq_ 1
Tes == [ | P0Gl [ T (O fes = 300 e +267 70, o+ 2670005 ) = 06Te] + .
(C7)

where DI, E[U E0 are constants of integration. The global regularity condition reads in the present context as
/T2 B[, — g 4 2r(1 - 2R (GO, — GO )] g, (C8)

/T Pz {9(2)“]22 +og@l 4 g@M z} _o. (C9)



In addition, by integrating (C3]) over the torus we find

_ 1
(14 e %)DM 4 ¢=20c (BN 4 By = —72(1 — ¢72¢)2 —
Im7

/ BP2(foz + foz + 272 foz). (C10)
T2

We determine the constants from the three equations above

1 — e 2pe 1
phil = 7(1(+ . eQP E ) [(1 +de™ e 4 emHPe) — — / AP2(for + f2z) +2e72Pc (1 — 2e720¢ e“*”C)E / d2zfzz},
¢ T
2712 (1 — e~ 2p¢) 1 1 1
gl :—{ 1 —2pc —4pe _/ 2, f. 4+ (2 4Pe —6pe / 2,f., -9 72pc_/ 2 zg}
(1 + e—2pc)3 ( te te )ImT T2 d z + ( te )ImT T2 d Zf € Im7 T2 d Zf ’

L 2m2(1 — o) 1 1 1
E[l] - N - 7 |: 1 —2pc —4pc / d2 n —4pe —6pc / d2 57 — 2 —2pc _— / d2 z5:| .
(14 e=2pc)3 (1+e te )ImT T2 2fae + (20 te )ImT T2 =f ¢ Im7 Jp2 =
(C11)

We can compute all two-point correlators by taking the functional derivative of Ti[jl] with respect to f;;. As in section
[T the constants can also be determined from (IH) and (G]). Setting O = T, we obtain

5(Tzz(w)) <Tzz(w)>

(7 = 70 (Teaw) = (0= )0 (Tes0) + 2ATec() + [ P2 (5

(7 = 105 (Tee(w) = (0 = w0 {Toa(w) = 2Tes(w)) + [ P2 (c12)

T2
In addition, we take a functional derivative with respect to vzz in (@), and integrate over one point

2 BT o [ L o O T STe()]
/Tzd 072z (w) (Tex(w)) + 8 GC/Tzd [2< +(2)) 67yzz(w) (Tex(2)) 6792z (w) (Tz:(2)) 6yzz(w ] (CO1'3)

The three equations above determine the constants DI, B[ El as one-point-averaged correlators.
A recurrence algorithm for holographic correlators similar to [BI) can be derived, but it takes a much more com-
plicated form. Turning on a variation of the metric vz = F', the varied one-point correlator is solved as
e 2pe

T(2) :% /T2 IP*WGa(Z - W)( e (0(30FTI" 1+ 2F0T 1) 4 H(OFTI 1) 4 200(FT2M))

1 — e~ e i, _ _ plnl
L—-e -1, 98 2 [m]nln—m] _ mp[m]ppln—m]
om0 T+ o = 8eGnd 3 (T — Tl ) + 5. (O
and
my L [ o [n] - - gl
Tz =1 / PwG, (2 — w)(—0T + 39FTI= 4+ 2 paTin—1) () 4 L (C15)
T Jp2 81G
R R R v WM h R ] 1] EM
Ty =1 / PGz —w)( - Tt + GFTINY 4 20(FTEY)) (w) + 2 (C16)
™ J712 87TG

where DI"l| E["l and EI" are constants of integration. To fix DI"| E[" and E, we set O = T..(21)...T..(2,) in

([@3) and (6], and obtain

(T —=1)0r (T22(21) .. . Toz(2n)) = z:[(zz —Z)02, (Tou(21) o Toz(2n)) + 2(T22(21) - . . Taz(20))]

=1
o (0(Tea(21) - Toa(zn))  6(Tea(21) .- Tia(2n))
R T ()
(7 =7)07(To2(21) - . . Tioz(20)) = Z[(El 2)0z,(T2z(21) - Tez(2n)) — 2(T2z(2:) Tz (21) TZZ(Zl) T.-(zn)]
=1
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where Tzz(zi) means dropping the i—th operator. In addition, we take n times of functional derivatives with respect
to vzz(21), - -+, vzz(2n) in [@), and integrate over one point to get

e_zpc
/r2 2Tz (2)Toa(21) - Toz(20)) = — m(/p 2T (2)Tor(21) - o Toz(2n)) + /p d?2(Tsz(2)To.(21) - . T.2(2n)))
_6_4/30 n
ﬁ(gﬂ}z(zl) o Ta(20)) — Xp d2zM(z, 21y zn)), (C19)

where we denote

= nGr?
M2t o) =30 Y mf# (L) Tex o) - T N T (e Gy - T ()

m=1 o (n o m)'
T2 () e (o) -+ Toa oo T2 () e o1y -+ o) (C20)
with o running over all permutations of (1,...,n).

With the constants of integration determined by (CIT), (CI8) and (CI9), we obtain the following recurrence
relations for correlators

(Toz(2)Tor(21) ... Toz(2))

11 . e e s - 72 -
S =T g { s ey (0 + €7702)GalZ = 20)0. + (7002, + 07)GalZ — 21)0%)
1 B _ _ -
_ 72(1 AT ( —2(e72Pe 4 ¢7%P)92 — 4e 6pc82Z)GQ(Z — Zl)] (Too(21) .. . Tez(2n))
e 2pc B B B .

+ (1 + e—2pc)2 (6 QPCa% te 2PC822)GQ(Z - Zi)<TZE(Zi)Tzz (Zl) B Tzz(zi) B Tzz (Zn)>}

"1 —8e4Pe — ¢ 8pc e2pc 4 ¢ 6pc . 1
+ ; [ 2(1 _ 6_4pc)2 <Tzz(21) ce Tzz(Zn)> - (1 — 6_4—/70)2 <Tz5(2i)Tzz(Zl) . Tzz(zi) . Tzz(zn)ﬂ (5(2 — Zz) — E

On,1 e—2pc . Cdpe A A T —12pen 2 _4p, 8per 2
+ 327T2G{ (1 + 67296)4 (aZ +e BZ)GQ(Z — Zl) + 7(1 — 674&)3 {(1 +e )62 -+ (e +e )62
+ (e72Pc — 6e 0P 6_10’70)62(92}5(2 - 21)} 1 / PwGa(Z — W)Wl M (w, 21, ..., 2)

s T2
1 __—4pc/2 NS P
e e [ Fud ) = S L) enor) - B Do)
- %e-% [(f — )0y (T =)0+ Y (E — )05, + > (2 — 70), — n(d + ¥ — e-2pc)] (Ty(21)... Tzz(zn)>}.
i=1 i=1

(C21)
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<Tzz (Z)Tzz (Zl) Tzz( )>

flé - 1 —6pc 9 _\ _ 7. —2pc —4pe g _\ /Y R AY-R
— ; {l-3 S ey (07 + €7*702)Ca(Z = 2)0- + (705 + e 40;) a2 — 20)0x,)
1 _ _ ~
e (77002 +2e70:03) Ga(Z - Z)|(Tealz1) - Toa(z))
L (02 4 e 02)G(Z — Z0)(Tos(2)T. T..(2)...T
+ (1 + e—2pc)2 (6 Z +e Z) Q( z)< zz(zz) zz(zl) cee zz(zz) cee zz(zn»
On,1 1 4 —8pend A 1 2. A 2
_ 20 (1 T 6_2/70)4 (82 + e °F 8Z)GQ(Z — Zl) + ; frz d wGQ(Z — W)awM(w, 21y ,Zn)

+ Z [ o) Tl + gy (Tl e o) - B o) 82 = 2) = )
- 1‘;’;2 = el_4pc)3 (267200 — 3670 4 267100)92 — (¢ 4 7). 0; 4 ¢O025(2 — 21)

+ m{ — (1 — e Pe) /T2 dPwM(w, z1,. .., 2,) — e 2 §<Tz2(zi)Tzz(z1) T (20) - Toa(zn))

+ % (14 e 2Pe 474N (F —7)0, — e 2P (T — )07 + (1 + e 2Pc 4 e~ 40¢) é ; — 2;)0,, — e e i(zi — %)0s,

= 2n(1+ e+ 27 (T (21) o Toaza)) . (C22)

<T22(2’)Tzz(zl) o Ty (Zn)>

_1 1 - 1 —4pc —2pc9_\ —6pc N\

“r1_e Zl {[ m«e P07 + e 0,)Ga(Z — Zi)0:, + (707 + 02)Ga(Z — Zi)9s,)
+ m ((6_4pc + G_SPC)(?% + 26_4p082Z)GQ(Z — Zz)] <Tzz (Zl) e Tzz(zn)>

- m(e*%a; + e 202N Ga(Z — Z) Tz (2) Tz (1) . Toa(22) - Toazn)) |

On e~ 4pe 1 .

- G T 0% + 95)Ca(Z - 7)) + /T PwCo(Z — WRM(w, 21, ..., 20)
~ 2P 4 3¢ 6pe 1 —de 4P 4 e=8pe - 1

+ Z [W <Tzz(21) .- Tzz('zn» - (1 — 67496)2 <Tzi(zi)Tzz (Zl) B Tzz (Zz) .- 'Tzz (Zn)ﬂ (6(2 - Zi) - E)
5n71 1

= 3G (1— e t0e)3 [(e*ch + e*lOPC)(azQ + 822) +(1 - e 4Pe _ 3= 8Pe 4 6712”6)@85} 5(z — 21)

1 —4pe 2 —2pc —4pe S 7
+m{ —(1—e " )/T?d wM(w, 21, .oy 2n) + (L + 7P + 72 );(ng(zi)Tn(zl)...Tzz(zi)...Tzz(zn)>
+ % (14 e 2Pe 47 (1 = 7)0r — e 2P (T — 7)0y + (1 + e 2Pc 4 7 P¢) 5)0z, — €720y (% — 2:)0s,

z:l i=1
+2n(e72 = ) (Tua(21) - o) . (C23)

By taking the limit p. — oo, the second one reproduces the recurrence relation ([3II) for holographic CFTs.
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