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Abstract

Noise in expression of individual genes gives rise to variations in activity of cellular pathways

and generates heterogeneity in cellular phenotypes. Phenotypic heterogeneity has impor-

tant implications for antibiotic persistence, mutation penetrance, cancer growth and therapy

resistance. Specific molecular features such as the presence of the TATA box sequence

and the promoter nucleosome occupancy have been associated with noise. However, the

relative importance of these features in noise regulation is unclear and how well these fea-

tures can predict noise has not yet been assessed. Here through an integrated statistical

model of gene expression noise in yeast we found that the number of regulating transcription

factors (TFs) of a gene was a key predictor of noise, whereas presence of the TATA

box and the promoter nucleosome occupancy had poor predictive power. With an increase

in the number of regulatory TFs, there was a rise in the number of cooperatively binding

TFs. In addition, an increased number of regulatory TFs meant more overlaps in TF binding

sites, resulting in competition between TFs for binding to the same region of the promoter.

Through modeling of TF binding to promoter and application of stochastic simulations, we

demonstrated that competition and cooperation among TFs could increase noise. Thus, our

work uncovers a process of noise regulation that arises out of the dynamics of gene regula-

tion and is not dependent on any specific transcription factor or specific promoter sequence.

Author summary

Expression levels of genes can vary even among genetically identical cells under identical

environmental condition–a phenomenon termed expression noise. Gene expression noise

has been experimentally measured in several cell populations and earlier studies have

associated the presence of a specific sequence of bases such as the TATA box in the pro-

moter region, the nucleosome occupancy levels and the histone modification patterns

with high expression noise. However, how well these molecular features of a gene can let

us predict its expression noise has not yet been assessed. In the current work, we test a

large number of molecular features associated with gene expression for their ability to pre-

dict noise. We find that the number of transcription factors of a gene is a key predictor of

expression noise. An increase in the number of transcription factors can change their
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binding process to the promoter region and can lead to more cooperation or competition.

Through modeling and simulation of cooperative and competitive binding, we show that

the transcription factor binding process primarily drives expression noise. Our work

shows that the dynamics of gene expression regulation is the most important feature for

predicting expression noise and uncovers a general mechanism of noise regulation.

Introduction

Random fluctuations in molecular events occurring inside a cell generate variations in the

expression levels of genes that is referred to as gene expression noise. Expression noise gives

rise to variations in the activities of cellular pathways and generates phenotypic heterogeneity

among individual cells of an isogenic population under identical environmental condition.

Gene expression noise has important role in antibiotic persistence [1–5] and incomplete pene-

trance of mutations [6–10]. In addition, phenotypic heterogeneity has a key role in growth of

cancers [11–13] and in emergence of therapy resistance [14–18].

Gene expression noise has been measured in some microbial systems [19–22] and its

molecular origins have been widely investigated [23–36]. These studies have shown a correla-

tion between presence of the TATA box motif in the promoter region of a gene and expression

noise [20,26,29,37,38]. Further, promoter nucleosome occupancy, alone as well as in combina-

tion with presence of the TATA box motif, and histone modification patterns have also been

associated with expression noise [33,35,39–43]. These features can influence transcriptional

burst size and burst frequency [43–45] which in turn can impact expression noise [29,46–48].

However, even after so many studies over the years, the relative importance of these molecular

features in noise regulation remains unknown. In addition, to what extent each of these molec-

ular features can predict noise has not yet been quantified. That is, whether we can estimate

the expression noise of a gene given the presence or absence of the TATA box sequence in its

promoter and the promoter nucleosome occupancy pattern is not known. Thus, a predictive

model of noise will be immensely helpful for a better understanding of noise regulation in bio-

logical systems.

In the current work, we report development of an integrated statistical model of gene

expression noise in yeast by combining a large number of molecular features that can impact

gene expression. We quantified the relative contribution of each of these features in explaining

variations in noise values of genes and tested their predictive abilities. We observed that the

presence of the TATA box and the promoter nucleosome occupancy pattern were poor predic-

tors of expression noise. Instead, the number of regulatory TFs of a gene emerged as the key

predictor of noise. An increase in the number of regulatory TFs was associated with a concom-

itant increase in the number of cooperative TFs. In addition, an increase in the number of reg-

ulatory TFs meant crowding of TF binding sites in the promoter region of a gene. This led to

more overlaps between TF binding sites, thereby increasing competition between TFs for

binding to the same promoter site. Mathematical modeling and stochastic simulations showed

that a mere increase in the number of TFs could not explain the increase in expression noise,

whereas cooperative and competitive TF binding could generate higher expression noise.

Taken together, our work demonstrates that the binding process of transcription factors is the

best predictor of noise in yeast. We uncover a dynamic noise regulation mechanism originat-

ing from competition and cooperation among transcription factors. This mechanism is not

dependent on specific transcription factor or specific promoter sequence and thus, could be of

interest to researchers working on different biological organisms.
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Results

Quantification of expression noise at the level of mRNA and protein

We quantified gene expression noise at the level of both mRNA and protein using two differ-

ent experimental datasets. For calculating noise at the level of mRNA, we used single-cell

RNA-seq data in yeast from Nadal-Ribelles et al. [49] (Fig 1A). The dataset contained expres-

sion values of genes in 127 single-cells of Saccharomyces cerevisiae strain BY4741 grown in rich

growth medium (YPD) and expression profiles measured at early-log phase. We obtained

expression values of 5475 genes from this dataset. To quantify noise, we used a measure of

noise that was independent of mean expression level through fitting a spline to the noise (coef-

ficient of variation, CV) vs mean plot and calculating vertical distance of noise values from the

fitted curve (Figs 1A and S1). Mean adjusted noise values from two sub-samples of the single-

cell RNA-seq data showed significant correlation with each other (Pearson’s correlation rp =

0.49, p = 2.4×10−318 and Spearman’s correlation rs = 0.37, p = 8.8×10−176; Fig 1D).

We obtained noise values at the protein level for 2763 genes in S. cerevisiae S288C strain

grown in rich medium (YPD) [19](Fig 1B). We used their measure of ‘distance to median’

(DM) as the measure of noise in our study (S1 Fig). Noise at the mRNA level showed signifi-

cant correlation with noise at the protein level (rp = 0.44, p = 1.7×10−95; rs = 0.29,

p = 2.0×10−40; Fig 1C) although the range of absolute noise values were very different. Genes

Fig 1. Presence of the TATAbox sequence and promoter nucleosome occupancy levels are poor predictors of gene expression noise. (A) Noise values

calculated at the mRNA level from single cell RNA-seq data in yeast [49]. The mean adjusted noise was calculated by fitting a polynomial curve to the CV vs

mean plot shown by the red line. Each point shows CV and mean mRNA level for a gene. (B) Noise values calculated at the protein level from flow cytometry

measurements by [19]. The red line shows the best polynomial fit and the shaded blue region shows 95% confidence interval. (C) Correlation between mean-

adjusted noise at the mRNA level and noise (DM) at the protein level. ‘rp’ shows Pearson’s correlation value and ‘rs’ shows Spearman’s correlation value. (D)

Correlation of expression noise values at the mRNA level calculated from two sub-samples of the single-cell RNA-seq data [49]. (E) Flowchart showing the

steps for model fitting, calculation of fraction of variation explained and derivation of predicted R2. (F) Fraction of variation explained and predicted R2 values

by presence or absence of the TATA box sequence, average promoter nucleosome occupancy per nucleosome bound site and the combination of presence/

absence of the TATA box sequence with promoter nucleosome occupancy.

https://doi.org/10.1371/journal.pgen.1010535.g001
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showed a wide range of expression noise values with highly noisy genes showing large positive

values and low-noise genes showing large negative values.

To quantify the relative importance of each molecular feature in noise regulation and to

measure their ability to predict noise, we randomly segregated the noise data into training (80%

of the full data) and test datasets (remaining 20%) (Fig 1E). For quantifying predictive ability of

a single feature, we fitted a linear regression model to the training data at this step. For quantify-

ing predictive ability of a combination of features, we first removed multi-collinear features and

identified the key set of features through Ridge or Lasso regression on the full data and then fit-

ted a linear regression model on the training data. This gave us the fraction of variation

explained by the model (Fig 1E). We then used the fitted model to make predictions on the test

data and computed predicted R2 values (Fig 1E). We performed this analysis in both mRNA

and protein noise datasets to ensure that inferences drawn were not biased by a specific dataset.

Molecular features that had earlier been thought to impact expression noise, such as pres-

ence of the TATA box sequence in the promoter [20,29,37,38] and promoter nucleosome

occupancy [39–41] showed significant association with noise (S2 Fig) but were poor predictors

(Fig 1F). Specifically, the TATA box sequence, promoter nucleosome occupancy alone and in

conjunction with the TATA box sequence could explain only ~2–4%, ~6–7% and ~8–9% of

the noise variation, respectively and had low predictive power (predicted R2 value 0.02–0.03

for the TATA box alone, 0.05–0.07 for promoter nucleosome occupancy alone, and 0.07 for

the TATA box + promoter nucleosome occupancy; Fig 1F). This suggested that these features

were largely associated with noise and were not predictive.

Molecular features associated with TF binding were the top predictors of

noise

To identify molecular features that could explain the observed variations in noise values and

could predict noise, we built an integrated statistical model considering a large number of fea-

tures that were known or were likely to influence gene expression, as these could be potential

regulators of noise (Fig 2 and S1 Table). The goals of the integrated statistical model were to

test the predictive power of each molecular feature individually and to identify the best set of

features for noise prediction out of a large number of possible combinations.

The molecular features incorporated in the integrated model included the number of regu-

lating TFs, location of their binding sites, their mean expression and noise levels, SAGA/

TFIID dependence of genes for their expression [50], whether a gene was co-activator redun-

dant or TFIID dependent [51], binding activity of several broadly acting TFs such as TBP,

ABF1 and RAP1 [52–54], binding patterns of chromatin remodelers [55–57], histone levels,

histone modification patterns and histone binding dynamics [58,59], three-dimensional geno-

mic contacts [60], tRNA adaptation index [61], mRNA secondary structure, mRNA and pro-

tein half-lives [62–64], post-translational modifications [65], in addition to nucleosome

occupancy pattern [66] and presence/absence of the TATA box sequence in the promoter [67].

For a gene, we only considered those TFs for which experimental evidence for DNA binding

had been obtained or change in expression upon knocking out the TF had been experimentally

observed. For nucleosome occupancy, we not only considered the number of nucleosome-

bound sites but included the absolute nucleosome occupancy pattern [66]. In total, we consid-

ered 329 features in our integrated model (See Methods, S1 Table).

We tested each feature individually for its ability to explain variation in the noise data and

to predict noise in both mRNA and protein noise datasets. We then ranked these features

according to the fraction of variation explained and by predicted R2 values. The rankings of

the features, whether based on the fraction of variation explained or the predicted R2 value

PLOS GENETICS Noise regulation by TF binding process

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010535 December 12, 2022 4 / 28

https://doi.org/10.1371/journal.pgen.1010535


were substantially correlated among mRNA and protein noise datasets with Spearman’s corre-

lation values of 0.67 and 0.76, respectively (Fig 3A and 3B).

The top 10 features for explaining the variation existing in the noise data and for predicting

noise values contained the same features although their rankings were slightly different. The

distributions of values of some of these features are shown in S3 Fig. Interestingly, eight of

these features were associated with TF binding, suggesting a key role for TFs in noise regula-

tion (Fig 3C). These included number of regulatory TFs of a gene (fraction of variation

explained ~0.1–0.15 and a predicted R2 of ~0.1–0.15) and the number of TF binding sites

Fig 2. An integrated statistical model of gene expression noise (A) Schematic diagram depicting the molecular features that could impact gene expression

and thus, could have a key role in regulation of expression noise. (B) An integrated model of noise constructed considering the TATA box sequence, absolute

nucleosome occupancy levels, gene regulation by TFs, tRNA adaptation index, histone modification patterns in gene-body and promoter regions, 3D genomic

contacts, mRNA structure and half-life, protein half-life, activity of chromatin remodelers, histone binding dynamics and post-translational modifications. The

heatmap shows values of all these features (scaled and centered) in genes (represented in the columns) sorted according to their noise values at the protein level.

The number of features for which the data is shown in the heatmap are indicated inside the brackets. Features highlighted in red appear different in their values

between low and high noise genes. The panel on the right shows the color key for the heatmap along with the distribution of values of all features (histogram).

https://doi.org/10.1371/journal.pgen.1010535.g002

PLOS GENETICS Noise regulation by TF binding process

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010535 December 12, 2022 5 / 28

https://doi.org/10.1371/journal.pgen.1010535.g002
https://doi.org/10.1371/journal.pgen.1010535


(fraction of variation explained ~0.1–0.14, predicted R2 ~0.1–0.14). Two features out of top 10

features were related to SAGA-dependence and TFIID-dependence of genes for their tran-

scription. Stress response genes in yeast are known to be noisier than housekeeping genes [19].

While housekeeping genes are dependent on TFIID complex for their expression, stress

response genes are usually SAGA complex dependent. SAGA dependence and TFIID depen-

dence could explain 0.11–0.19 and 0.11–0.17 fraction of variation respectively with predicted

R2 values of 0.11–0.18 and 0.11–0.17 respectively (Fig 3C).

We further validated predictive abilities of these features by correlating the observed and

the predicted noise values. Predicted values obtained using number of regulatory TFs as the

only feature and using the combination of top 10 features showed significant correlations with

the observed noise values at the protein level (Fig 3D and 3E).

Of all the features in our model, TF binding process could explain the largest part of the

fraction of variation in the data and had the highest predictive power (Fig 4). The integrated

model comprising of all features was able to explain 0.46 fraction of the variation in noise at

the mRNA level and 0.47 fraction of the variation in noise at the protein level (Fig 4A). TF

binding alone explained 0.26 fraction of the variation in the noise at the mRNA level and 0.30

fraction of the noise at the protein level (Fig 4A). In addition, the integrated model was able to

predict noise at the mRNA level with predicted R2 value of 0.31 and at the protein level with

predicted R2 value of 0.36 (Fig 4B). As before, TF binding process alone could predict noise at

both mRNA and protein levels with predicted R2 value of 0.23 (Fig 4B).

Several genes in the yeast genome have been retained from a whole-genome duplication

[68] and thus, share many molecular features including promoter and coding region sequences

with their duplicates. This could bias our analysis and could lead to inflated predictive R2 val-

ues. Thus, to assess the impact of gene duplicates in our analysis, we removed duplicates from

our datasets and repeated all analysis. The fraction of variation explained and predicted R2 val-

ues by individual features and by combinations of features were comparable between datasets

with and without duplicate genes (S4 and S5 Figs).

Genes with high expression noise were regulated by a higher number of TFs

Our model revealed a significant correlation between the number of regulating TFs of a gene

and noise, at both mRNA and protein levels (for protein noise, Pearson’s correlation rp = 0.36,

p = 7.3×10−70 and Spearman’s correlation rs = 0.24, p = 3.8×10−31; Fig 5A; for mRNA noise rp

= 0.26, p = 5.7×10−85; rs = 0.19, p = 7.0×10−47; S6A Fig). We further classified genes into 20

equally spaced noise bins (barring the first and the last bins) sorted according to their noise

values. The first bin had an open-ended lower limit for noise values to include genes showing

very low noise levels. The last bin had an open-ended upper limit for noise values so as to

include genes showing very high noise levels. This helped us avoid having bins with a very low

number of genes. We then looked at the distribution of the number of regulatory TFs of genes

in these bins (Figs 5B and S6B). The genes in the highest noise bins on average had>75%

more regulatory TFs compared to the genes in the lowest noise bins (Figs 5B and S6B).

This raised a key question—how could an increase in the number of regulatory TFs lead to

increased expression noise. Interestingly, genes regulated by a higher number of TFs showed a

concomitant increase in the number of TFs exhibiting cooperative binding [69,70]. Expectedly,

noise was significantly correlated with the number of cooperatively binding TFs for both

mRNA and protein noise (Figs 5C and S6C. The genes in the highest noise bins on average

had more than 66% cooperative TFs than the genes in the lowest noise bins (Figs 5D and S6D).

Further, an increase in the number of regulatory TFs and a corresponding increase in their

binding sites resulted in a substantial increase in overlap of TF binding sites in the promoter
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region. This was reflected in the significant correlation between noise at mRNA and protein

level with the number of TF binding site overlaps (Figs 5E and S6E). The median number of

overlaps increased by more than 4-fold for genes in the highest noise bins compared to the

genes in the lowest noise bins (Figs 5F and S6F). Cooperation and competition among TFs can

occur only when the TFs are expressed at the same time inside a cell. Interestingly, genes in the

highest noise bins on average had >90% increase in the number of co-expressing TFs than the

genes in the lowest noise bins (Figs 5G and S6G). Further, genes in the highest noise bins had

more than four times the fraction of SAGA dependent genes and had approximately three

times lower number of TFIID dependent genes compared to the lowest noise bins, considering

noise at both mRNA and protein levels (Figs 5H and S6H).

Cooperative and Competitive TF binding could generate high expression

noise

To better understand how an increase in the number of regulatory TFs can lead to higher

expression noise, we built a mathematical model of gene regulation and performed stochastic

simulations in a population of cells. Specifically, we asked whether a simple increase in the

number of regulatory TFs could explain the higher expression noise and whether cooperative

and competitive TF binding had any role to play in generating higher expression noise.

We first studied regulation of a gene by a single TF (Fig 6A). TF binding is a dynamic pro-

cess consisting of rapid binding and unbinding steps [71,72]. Thus, we used a two-state model

of gene expression where a gene could exist in on- and off- states with specific rates of transi-

tion between these two states. The binding of a TF resulted in transition to on-state that led to

Fig 3. Features with highest predictive powers were largely related to transcription factor binding process (A) Rankings of features according to the

fraction of variation explained in mRNA noise dataset and in protein noise dataset were highly correlated (B) Rankings of features according to the predicted

R2 value in mRNA and protein noise datasets were highly correlated (C) Fraction of variation explained and predicted R2 value for top 10 features for both

mRNA and protein noise datasets. (D-E) Correlation between observed noise values and noise values predicted by linear regression model considering a single

feature (number of regulatory TFs) (D) and by the combination of top 10 features (E).

https://doi.org/10.1371/journal.pgen.1010535.g003

Fig 4. Fraction of variation explained and predictive ability of combinations of molecular features. (A) Fraction of variation explained in gene expression

noise data and (B) predictive ability (given by predicted R2 value) by features associated with TF binding; combination of TF binding with the TATA

box sequence and promoter nucleosome occupancy; combination of TF binding with the TATA box sequence, promoter nucleosome occupancy and mRNA

properties; combination of all features excluding post-translational modifications (PTMs), and by combination of all features including PTMs.

https://doi.org/10.1371/journal.pgen.1010535.g004
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production of mRNA and proteins. We quantified variations in the gene expression levels over

time by stochastic simulations using Gillespie’s algorithm (Fig 6B). We modeled the dynamics

of gene expression in 10000 cells and quantified mean expression level and noise.

In the next step, we tested whether a simple increase in the number of TFs could impact

expression noise. To do so, we modeled regulation of a gene by two TFs binding independently

Fig 5. Genes with high expression noise were regulated by a higher number of TFs, had a higher number of cooperatively binding TFs, and showed more

overlaps in TF binding sites compared to low-noise genes. (A) Correlation between noise at protein level and the number of regulatory TFs. (B) Number of

regulatory TFs of genes across 20 protein noise bins. (C) Correlation between noise at protein level and the number of cooperative TFs [70] (D) Number of

cooperative TFs of genes across protein noise bins. (E) Correlation between noise at protein level and the number of overlaps in TF binding sites. (F) Number

of overlaps between TF binding sites for genes across protein noise bins. (G) Number of co-expressing regulatory TFs across protein noise bins. (H) Fraction of

genes showing SAGA and TFIID dominance across protein noise bins.

https://doi.org/10.1371/journal.pgen.1010535.g005
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to the promoter region (without any cooperation or competition) (Fig 6C). Here we assumed

that binding of any one of the TFs to the promoter led to the on state and resulted in produc-

tion of mRNA and protein. When both the TFs were bound to the promoter, the transcription

rate increased and was equal to the sum of the transcription rates for the individual TFs.

In cooperative binding of two TFs, we modeled the transcription rate by Hill function and

assumed that the transcription as an all-or-none process regardless of the value of Hill coeffi-

cient. This meant that in cooperative binding of two TFs, substantial transcription occurred

only when both TFs were simultaneously bound to the promoter region (Fig 6D). This process

could alter the frequency of transcriptional bursts thereby affecting the overall mRNA and pro-

tein expression (S7 Fig). However, cooperative TF binding can prolong the duration of the on-

state and can prevent transition to off-state [73]. We modeled this through a reduction in the

Fig 6. Mathematical modeling and stochastic simulations of TF binding and impact on gene expression noise (A) Mathematical representation of the

model describing regulation by single TF (B) Schematic diagram showing the variation in transcription rate, mRNA levels and protein levels among individual

cells obtained from mathematical modeling and stochastic simulation (C) Schematic diagram showing gene regulation by two TFs binding independently to

the promoter. (D) Schematic diagram showing cooperative binding of two TFs to the promoter of a gene and induction of transcription. (E) Overlap between

TF binding sites lead to binding competition between TFs. This could give rise to temporal variation in TF binding in the same promoter region within a cell.

In addition, asynchrony in TF binding among individual cells could give rise to inter-individual variation in TF binding and transcription rate.

https://doi.org/10.1371/journal.pgen.1010535.g006
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rate of transition to the off-state. This allowed us to perform all comparisons of expression

noise at similar mean expression levels (S7 Fig).

Competition among two TFs for binding to the overlapping sites in the promoter region

could generate noise in two possible ways. First, competition between TFs could lead to a sce-

nario where a gene would be regulated by different subsets of TFs at different points of time,

thus generating temporal variation (Fig 6E). In presence of TFs that differ in their strengths of

regulation, this could lead to temporal variation in transcription rate within a cell. Secondly,

asynchronous temporal variation in TF binding among individual cells in a population could

generate inter-individual variation in expression (Fig 6E).

Interestingly, at similar mean protein expression levels, regulation by two independent TFs

had lower noise than single TF regulation (Fig 7A and 7B), as the target gene was more fre-

quently in the on-state by the action of one of the two TFs and therefore, had less temporal

and inter-individual variation in the protein level. This demonstrated that a simple increase in

the number of regulatory TFs could not explain the higher noise observed in genes with higher

number of regulatory TFs. In comparison, both cooperative and competitive binding of TFs

led to higher noise compared to regulation by a single TF or by two independent TFs (Fig 7A

and 7B), suggesting that the dynamics of TF binding process in case of gene regulation by mul-

tiple TFs has an important role in generation of expression noise.

We further explored whether variations in the parameters of the model such as transcrip-

tion and translation rates, degradation rates, number of cooperative and competitive TFs

could influence our inference (S1 Text). We first performed a mathematically controlled com-

parison between single, competitive and cooperative TF binding where we kept all model

parameters the same across these different scenarios and only varied the TF binding process.

We did so to understand the contribution of the TF binding process on expression noise and

to avoid confounding our results by variations in other parameters that could also influence

expression noise. We performed stochastic simulations with choice of model parameters over

a broad range of parameter values in a mathematically controlled manner across single TF,

competitive TF and cooperative TF binding scenarios. Over these broad range of parameter

values, competitive and cooperative TF binding showed higher noise compared to single TF

regulation (S8 and S9 Figs).

We extended our analysis to quantify noise in cases of cooperation or competition between

more than two TFs as many transcription initiation complexes can contain multiple TFs.

Competitive TF binding showed higher noise compared to single TF regulation regardless of

the number of TFs and regardless of change in regulation strength among TFs (Fig 7C and

7D). For cooperative TF binding, increase in the number of TFs resulted in a reduction in

burst frequency and a reduction in the mean protein level (S7 Fig). However, an increase in

the number of cooperating TFs could proportionally increase the time being spent in the on-

state which we modeled through a reduction in off-rate so as to maintain similar mean protein

level even with an increase in the number of cooperating TFs (Fig 7E). In all these scenarios,

noise was higher in case of regulation by cooperative TFs compared to a single TF regulation

(Fig 7F). This suggested that inferences drawn from our models hold regardless of the number

of TFs involved in cooperative and competitive binding.

Overlaps in binding sites of different TFs can also lead to degeneracy of TF binding

sequences to accommodate diverse consensus binding motifs of different TFs. Such degener-

acy can change binding affinity of TFs to the DNA and can lead to noisy transcription. How-

ever, we did not see any difference in binding site degeneracy among the promoter regions of

genes with high and low expression noise (S10 Fig).

To further test whether these results hold over any combination of parameter values with

the only condition of the mean protein expression being the same across single, competitive
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Fig 7. Mean expression and noise in case of gene regulation by a single TF, two independent TFs, two cooperative TFs and two competitive TFs. (A)

Mean expression and noise values obtained from modeling and simulations of gene regulation by single TF (black), two TFs binding independently (green),

two TFs binding cooperatively (orange) and two TFs binding competitively (blue). (B) Noise distribution in cases of gene regulation by a single TF and by two

TFs binding independently, cooperatively and competitively. Noise was calculated across multiple time-points in 10,000 simulated cells. (C-D) Changes in

expression noise with an increase in the number of competitive TFs with and without changes in the variation in regulation strength. (E) Increase in the

number of cooperating TFs can drive mean protein expression down without any change in the on and off-rates. However, the expression remains the same if

binding of more cooperative TFs can increase the time that a gene remains in the on state by lowering the off-rate. (F) Gene expression noise in case of 3–9

cooperative TFs at the similar mean protein expression level. The off-rate parameter was adjusted to achieve similar range of mean expression in all cases. (G)

Boxplots showing noise values in single TF, competitive TF and cooperative TF binding from stochastic simulations with Markov-Chain Monte-Carlo
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and cooperative TF binding, we performed a Markov-Chain Monte-Carlo (MCMC) sampling

of parameter space. Briefly, we did model initialization with a set of random parameter values

for all parameters of the model, followed by parameter optimization so as to reach a target

mean expression level. At each step, we performed stochastic simulations over 1000 cells in

each of single, competitive and cooperative TF binding and calculated mean expression. Once

the simulation reached the target mean expression level, we also calculated noise values. We

chose five different target mean expression levels for comparison (Fig 7G) that were in a rea-

sonable range of burst size and burst frequency. This avoided comparing noise in expression

states where a gene was always on or always off. Over all these mean expression levels, compet-

itive and cooperative TF binding showed significantly higher expression noise value compared

to single TF binding (Fig 7G).

Discussion

In summary, through an integrated statistical analysis we have shown that the transcription

factor binding process is the most important contributor to gene expression noise. Although

many earlier studies have investigated the molecular origins of expression noise, most of them

have focused on the role of the TATA box sequence, promoter nucleosome occupancy pat-

terns, and histone modifications. Although earlier work and our analysis found significant

association between presence of the TATA box sequence and expression noise in yeast, such

association was not observed by Wu et al. [34] in human embryonic stem cells. Here we show

that, despite the strong association, presence/absence of TATA box sequence and promoter

nucleosome occupancy are not good predictors of expression noise in yeast. Instead, our work

uncovers an important role for TFs in noise regulation. We show that noisy genes tend to be

controlled by a larger number of TFs. These include a substantial fraction of TFs that bind

cooperatively to the promoter region. In addition, an increase in the number of regulating TFs

can cause an increase in overlap among the TF binding sites which can lead to competition

between TFs for binding to the same promoter region. This can give rise to temporal as well as

inter-individual variation in TF binding, thereby increasing noise.

An earlier work has shown that an increase in the number of transcription factor sites can

increase gene expression noise [32]. This study found that the number of TF binding sites and

their spacing could influence noise, as could the insertion of a nucleosome disfavouring ele-

ment. They also observed that the larger and denser clusters of TF binding sites led to higher

noise, thus suggesting that the competition between TFs could possibly result in higher expres-

sion noise. However, this study focused only on TATA-containing promoters and binding

sites of two activators, GCN4 and LEU3. Thus, the conclusions drawn from their work might

not be applicable to non-TATA promoters or to the wide variety of transcription factors pres-

ent in yeast. Nevertheless, their work provided some experimental evidence of the influence of

competitive TF binding on expression noise. Further, their experimental design could be a

template for further experiments to understand how cooperative TF binding can lead to higher

expression noise which has not been explored so far.

Another study found that competition between interacting partners of the TATA binding

protein influences noise [38] but this was limited to the TATA binding protein (TBP). In con-

trast, our analysis considered all possible promoter sequences and transcription factors and

demonstrated that transcription factor binding process is the key driver of expression noise.

sampling of parameters of the mathematical model. The target mean protein expressions were set between 1×106 and 1.1×106, between 1.1×106 and 1.2×106,

between 1.2×106 and 1.3×106, between 1.3×106 and 1.4×106, between 1.4×106 and 1.5×106 molecules.

https://doi.org/10.1371/journal.pgen.1010535.g007
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Thus, we describe a general molecular mechanism of noise generation that is not dependent

on any specific TF or any specific promoter sequence.

An earlier study by Faure et al. [35] analyzed expression noise in mouse embryonic stem

cells and looked into the role of several molecular features in noise regulation. They analyzed

the role of histone modification patterns, super-enhancer regions along with promoter

sequence features such as transcription initiation sites and presence of the TATA box motif.

Through quantification of effect sizes, they observed association of some of these features to

expression noise. In addition, they assessed the relative importance of these molecular features,

individually as well as in combinations, in classifying genes into high- or low-noise categories.

However, the authors did not report the fraction of variation explained or the predicted R2 val-

ues. In contrast, our integrated statistical model specifically reported the predictive capabilities

of the molecular features, individually as well as in combination. This enabled us to quantify

how well presence or absence of a molecular feature individually or in combination with other

features in a gene or its promoter could predict expression noise of that gene.

An interesting observation from our integrated models was that the performance of the

model for prediction of mRNA noise was similar to the performance of the model for predic-

tion of protein noise. This is despite the fact that measuring mRNA expression in single cells is

technically more difficult and less precise as compared to measuring protein expression in sin-

gle cells, as the quantification of mRNA levels in single cells suffers from poor capture effi-

ciency and sampling effects. We believe that there are two possible reasons which can explain

the comparable performance of the mRNA noise prediction model and the protein noise pre-

diction model. First, we had substantially more data available in the mRNA noise dataset

(~5500 genes) compared to the protein dataset (~2800 genes). This means that the predictive

model for mRNA noise had a substantially bigger training dataset which helped in building a

model with performance similar to the protein noise prediction model. Second, our features,

to a great extent, focused on mRNA synthesis and decay rates, mRNA stability, which directly

impact expression noise at the mRNA level but only indirectly influence protein noise.

Although our integrated model could predict a substantial fraction of noise variation, there

was, however, still a large fraction of noise that could not be explained by our model. This can

be due to several reasons. Firstly, it is possible that several other molecular features which can

regulate noise have not been considered in our model. Some of these molecular features may

still be unknown. Second, there is inherent randomness in molecular processes occurring

inside a cell and expression noise can also vary with time. Thus, our calculation of noise at a

single time point data may also impact predictive power. Third, the experimental data on

molecular features considered in this study have been obtained from different research groups

and in different growth conditions. This can impact the predictive ability of our model.

Fourth, we understand that some of the features such as the nucleosome occupancy levels and

histone modification patterns are dynamic in nature and can change with time. As we modeled

these features using datasets obtained at a single time-point, we might have completely missed

the contribution by dynamic nature of these features in noise regulation. Further, growth con-

ditions, growth rate of cells and cell cycle have all been observed to influence gene expression

noise [74–76]. Thus, combining data on molecular features across many datasets without con-

sideration for these variables can potentially affect predictive power. Finally, on the modeling

side, we used a linear regression model for our analysis which is able to capture linear trends

in the data but might miss non-linear associations present in the data. This might affect model

performance. However, to counter this drawback we also used a random forest model which is

able to capture non-linear trends in the dataset.

In summary, our findings provide a step forward for prediction of expression noise. Recent

explosion in genomic data has led to genome-wide characterization of TF binding sites across
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a diverse range of organisms. In addition, with increasing availability of genome-wide nucleo-

some occupancy maps, histone modification patterns and three-dimensional genome configu-

ration data, our study provides a framework for building integrated models of gene expression

noise in other organisms in future. Stochastic variations in molecular processes are ubiquitous

in cells across biological systems and have major implications for human diseases. Thus, an

enhanced ability to predict variations in biological processes will be extremely useful in quanti-

fying the extent of heterogeneity in cellular traits and phenotypes.

Methods

Calculation of expression noise for individual genes

Noise values for individual genes in yeast at the protein level were obtained from Newman

et al. [19] and the DM values in the YPD medium were used for expression noise analysis. The

DM values in the YPD medium were highly correlated with DM values obtained in the SD

medium. The noise values of all genes at the mRNA level were calculated from the single-cell

RNA-seq data provided by Nadal-Ribelles et al.[49] as follows. Briefly, for each gene the coeffi-

cient of variation (CV) was calculated from its mean expression and standard deviation value.

Different polynomial fits were made to the CV vs log-transformed mean expression value and

the best fit was chosen. A polynomial of order 5 was found to give the best fit. The mean

adjusted noise value for a gene was obtained by calculating the vertical distance between the

CV value and the best fitted curve. To estimate the impact of outliers on fitting, 95% confi-

dence intervals for the fits were also estimated and were plotted along with the fitted line.

Building an integrated model of expression noise in yeast

The integrated model of noise was generated by considering a total of 329 molecular features.

These features could potentially impact gene expression and therefore, could also influence

expression noise. These features included sequence features, epigenetic modifications, tran-

scription factor binding, mRNA and protein properties. Data on all features were obtained

from published work.

Promoter sequence features

As genes involved in stress response have earlier been shown to be noisy, we considered pres-

ence of the STRE elements in promoters as one of the first features in our model. The STRE

elements are required for binding of stress responsive TFs MSN2 and MSN4 to the promoters

of the stress response genes in yeast. Data on presence of the STRE elements were taken from

Moskvina et al. [77]. Presence of the TATA box sequence in the promoter region of a gene has

been strongly associated with higher expression noise. Therefore, presence/absence of the

TATA box sequence was a molecular feature in our model and the data on promoters with

TATA box sequence was obtained from [67].

Gene sequence features

Transcription initiation regulates the overall expression of a gene and the location of the tran-

scription start site (TSS) is important in this regard. In addition, if a gene has multiple TSS

sites, this can be a potential source of expression variation between individual cells of a popula-

tion. TSS data for all yeast genes were obtained from [78]. Closest TSS site for each gene was

obtained, and a spread of potential TSS sites for all genes was calculated.

tRNA adaptation index (tAI) measures translational efficiency and is dependent on avail-

ability of tRNA molecules in an organism. tAI can thus be an indicator of expression levels of
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genes. tRNA adaptation index for all genes was calculated following the method of [61]. The

tAI values for first 5, 10, 15, 20, 25, 30, 40 and 50 codons were calculated along with the tAI

value for the whole gene, as the first few codons can have major influence on gene expression

level and hence on noise.

Features associated with nucleosome occupancy and histone modifications

Nucleosome occupancy patterns in promoter regions can influence TF binding and thus, can

impact the transcription process. Genome-wide absolute nucleosome occupancy level for yeast

was obtained from Oberbeckmann et al. [66]. The number of nucleosome-occupied sites and

the absolute nucleosome occupancy level per nucleosome-occupied site for promoter regions

and gene bodies were calculated. The region from 1000bp upstream to 10bp downstream of

the start codon of a gene was considered to be the promoter region of the gene. Average nucle-

osome occupancy level per occupied site calculated between -1000bp to -900bp region of the

start codon was shown as the nucleosome occupancy at -1000bp. Similarly, average nucleo-

some occupancy level per site was calculated for -900 to -800bp, -800 to -700bp, -700 to

-600bp, -600 to -500bp, -500 to -400bp, -400 to -300bp, -300 to -200bp, -200 to -150bp, -150 to

-100bp, -100 to -50bp and -50bp to +10bp regions.

Histone modification patterns have been associated with expression noise in earlier studies.

Genome-wide histone modification data for yeast were obtained from Pokholok et al. [58] and

all different types of modifications were mapped to gene bodies, promoter regions, and tran-

scription factor binding sites. Histone binding dynamics can also influence gene expression

and therefore, expression noise. Thus, the histone binding dynamics data obtained from Dion

et al. [59] were used as molecular features in our model and all different measures described in

their paper were considered.

mRNA and protein features

The synthesis rates and decay rates of mRNA and proteins are important determinants of

expression levels of genes. The mRNA synthesis rates and decay rates were obtained from Sun

et al. [79]. Data on mRNA secondary structures in yeast were obtained from Kertesz et al. [62].

The mRNA half-life data and the protein half-life data were obtained from Geisberg et al. [63]

and Belle et al. [64] respectively.

Post-translational modifications of proteins can impact expression levels of genes and can

be a source of variability in gene expression among individual cells of a population. Data on

post-translational modifications in yeast were obtained from YAAM database [65] and the

numbers of different types of modifications for each protein were calculated.

Analysis of transcription factor binding

The list of transcription factors for all yeast genes was obtained from Yeastract database

(http://www.yeastract.com/) [80]. For a gene, only those TFs for which experimental evidence

for DNA binding had been obtained or the knockout of TF had been experimentally shown to

impact expression of the gene were considered. In addition, the binding sites of all TFs to pro-

moter regions of the target genes were searched and mapped using the consensus motif

sequences for TFs obtained from YeTFaSCo database [81]. All position weighted matrices for

all motifs were obtained and all possible combinations of bases were considered. Positions of

all such motif sequences of all regulatory TFs of a gene were identified in the promoter region

(ranging from -1000bp to +10bp of the start codon) after allowing for maximum two muta-

tions in the consensus sequence.
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Mean expression and noise levels of TFs

Several features related to transcription factors were included in our model. As TFs could have

different expression noise distributions compared to non-TF genes, whether a gene was a TF

could be an important determinant of noise. The number of regulatory TFs for genes was

included as a feature. If the regulatory TFs show noisy expression, this could generate large

inter-individual variation in expression of target genes. Therefore, the median expression

level, noise level, positive and negative noise levels (DM values) of regulatory TFs were consid-

ered as features in the model. In addition, the percentage of TFs showing low and high noise

values, their minimum and maximum noise values were considered. The expression noise

could be generated by activators or repressors or by simultaneous regulation of both. There-

fore, the numbers and percentages of activators and repressors were considered. In addition,

the ratio of the number of activators to repressors for each gene and the noise levels of activa-

tors and repressors were considered as features.

TF regulation strength and TF co-expression

Strength of regulation by TFs strongly impacts expression levels of target genes. Thus, the

mean and standard deviation values of regulation strength of activators and repressors were

considered as features. Co-expressing TFs can influence the expression level of a gene through

synergistic or antagonistic effects. Thus, the number and percentage of TFs showing positive

as well as negative expression correlations were included as features. Co-expressing TFs when

competing for binding to the overlapping sites in the promoter sequence can be a source of

inter-individual variation in expression level. Therefore, the percentage of co-expressing TFs

binding to overlapping sites in the promoter sequence was considered.

Mutations in the TF binding motifs can impact strength of gene regulation and thus, can

affect gene expression level. The number of TF binding sites at different distances upstream of

the start codon can exert different levels of regulation strength. This can influence expression

noise. Therefore, the number of TF binding sites up to 100bp upstream region of the start

codon, between 100 to 200bp, between 200 to 300bp, between 300 to 400bp, between 400 to

500bp, between 500 to 600bp, between 600 to 700bp, between 700 to 800bp, between 800 to

900bp and between 900 to 1000bp upstream regions of genes were considered as individual

features in our model. In addition, the mean expression and expression noise of the TFs bind-

ing at different distances upstream of the start codon were also considered. Further, the levels

of nucleosome occupancy as well as histone modification patterns in the TF binding sites were

considered as features in our model. Moreover, the percentage of nucleosome occupancy and

histone modification levels in the TF binding sites as compared to the whole promoter region

were included as features.

Competitive and Cooperative TF binding

Overlaps in TF binding sites in the promoter sequence of a gene can lead to competition

between TFs for binding to the same promoter region. This can, in turn, generate inter-indi-

vidual variation in gene expression. Therefore, the number of overlaps between TF binding

sites, the ratio of the number of overlapping sites to the total number of TF binding sites, the

number of overlaps at different distances upstream of the start codon and the average length of

these overlaps were included as features. In addition, percentage of overlapping sites shared by

two activators, shared by two repressors, and shared by an activator and a repressor were con-

sidered. Furthermore, the average strength of regulation as well as the differences in strength

of regulation for all the above cases were included as features in our model. Cooperative bind-

ing of TFs can impact the rate of transcription and can thus determine gene expression level.

PLOS GENETICS Noise regulation by TF binding process

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010535 December 12, 2022 17 / 28

https://doi.org/10.1371/journal.pgen.1010535


Therefore, the number and the percentage of cooperatively binding TFs were included from

the list of cooperatively binding TFs in yeast from Yang et al. [69] and Chen et al. [70].

Broad-acting TFs and 3D genome configuration

The transcriptional activators SAGA and TFIID are important components of RNA polymer-

ase complex and influence transcription initiation. The classification for SAGA or TFIID

dependence of genes for their expression was obtained from Huisinga and Pugh [50]. In addi-

tion, co-activator redundant or TFIID dependent classification of genes was used from Donc-

zew et al. [51]. Along similar lines, broadly acting TFs can impact expression levels of genes.

The binding activities of several broadly acting TFs such as TBP, ABF1 and RAP1 were

obtained from van Werven et al. [52], Lickwar et al. [53] and de Jonge et al. [54], respectively.

Chromatin remodelers influence binding of TFs to DNA and can thus influence gene expres-

sion. Binding patterns of chromatin remodelers were obtained from Yen et al. [55], Zentner

and Henikoff [56], and Ramachandran et al. [57].

The three-dimensional (3D) configuration of the genome can influence DNA accessibility

and long-range interactions between regulatory elements. Therefore, the 3D genome configu-

ration was considered as a feature in our model. Data on three-dimensional model of yeast

genome were obtained from Duan et al. [60]. Number of intra- and Inter- chromosomal con-

tacts for all genes and promoter regions were quantified.

Regression analysis

The integrated dataset was first scaled using z-score standardization, and the fraction of varia-

tion explained and the predictive capability of each molecular feature were quantified by linear

regression. To perform linear regression, the function ‘lm’ in R was used. For quantifying pre-

dictive ability of features individually, expression noise was modeled as:

Noise ¼ b0 þ b1 � featureþ ε, where ‘ε’ represents error.

For estimating the predictive power of a set of features on noise, variable selection using

Ridge and Lasso regression were performed to minimize the problems of multi-collinearity

and overfitting. Ridge regression was performed with the R package ‘ridge’ [82], appropriate

number of principal components was chosen and features showing significant effect on noise

were identified. Lasso regression was performed using the R package ‘glmnet’ [83]. The best

lambda value was obtained by a 10-fold cross-validation and the lambda for which the cross-

validation error was minimum was chosen for subsequent steps. For the preferred lambda

value, features whose model coefficients showed non-zero values were considered as features

influencing noise. The most important features were further chosen through a stepwise addi-

tion and removal process using stepwise regression where Akaike Information Criterion

(AIC) of the fitted models were minimized. This was done using the R package ‘olsrr’ (https://

github.com/rsquaredacademy/olsrr). The features in the model with lowest AIC values were

selected for further analysis.

In the next step, linear regression with the selected features was performed on the training

set to obtain the fraction of variation explained. Specifically, expression noise was modeled as:

Noise ¼ b0 þ b1 � feature1þ b2 � feature2þ b3 � feature3þ . . .þ bn � feature nþ ε

The coefficients (βi values) of the model were estimated from the training data. The linear

regression model obtained was then applied on the test data to obtain predicted noise values

along with predicted R2. The process of dividing dataset, training and prediction was repeated

1000 times to obtain mean and standard deviation values for fraction of variation explained

and predicted R2 values. Further, random forest models were also built using the selected
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features using the R package ‘randomForestSRC’ both with and without missing value imputa-

tions. These also resulted in fraction of variation explained and predicted R2 values.

In addition to the original dataset, two filtered datasets were created with reduced number

of variables–one filtered on correlation and another filtered on impact. The first filtered dataset

was created by removing features that did not show significant correlation (p<0.05) with

noise. To create the second filtered set, first, the impact of all individual features on noise were

obtained by linear regression as described above. Only the features that showed significant

impact (explained at least 0.05 fraction of the noise variation or had predicted R2 of at least

0.05) were retained in the filtered set. Linear regression was performed on these datasets as

described above to obtain fraction of variation explained and R2 values for prediction. The

analysis showing best results for fraction of variation explained and predicted R2 was reported.

Gene-transcription factor (TF) and TF-TF expression correlation analysis

Gene expression data measured through RNA sequencing from Dhar et al. [84] (NCBI GEO

dataset id 104343) was used to calculate all pairwise gene-TF and all pairwise TF-TF (of a

gene) expression correlations. Significant positive correlation (p<0.05) between a gene and a

regulatory TF indicated that the TF acted as an activator for the gene since the expression of

the gene increased with increase in expression of the TF. Similarly, significant negative correla-

tion between a gene and its regulatory TF indicated that the TF acted as a repressor for the

gene. The value of correlation coefficient between a gene and a TF (if significant) was taken as

the response correlation and the slope of the line was considered as the strength of regulation

of the TF. In addition, pairwise expression correlations between all TFs of a gene were calcu-

lated. If a TF showed significant positive correlation with at least three other TFs, the TF was

considered to be a positively correlated (co-expressing) TF. Similarly, if a TF showed signifi-

cant negative correlation with at least three other TFs, the TF was considered to be a negatively

correlated TF.

Modeling and stochastic simulation of TF-DNA binding process

The dynamics of TF binding to DNA was studied using a two-state model with consideration

for rapid binding and unbinding of TF to DNA. The binding-unbinding of a TF to DNA was

considered to be a Poisson process and thus, the time intervals between two successive bind-

ings (or two successive unbindings) were exponentially distributed. The time intervals between

successive events (on or off switching) were sampled from exponential distributions with rate

parameters denoted as λon and λoff respectively. The dynamics of cooperative binding and

competitive binding of TFs was compared to the dynamics of regulation by a single TF and

two independent TFs. For modeling binding of two TFs, on- and off-time intervals were sam-

pled from Poisson distributions individually for each of the TFs with the same rate parameters.

For cooperative binding, only when both the TFs were bound to the promoter, the gene

switched to the on state and led to production to mRNA and protein molecules at the same

rates as the single TF binding. This resulted in lowering of burst frequency in case of coopera-

tive TF binding which eventually reduced the mean protein level. To address this issue, λoff

was gradually reduced to achieve similar mean expression level as in single TF regulation.

Reduction of λoff values prolong the on-state in cooperative TF binding [73]. Competitive TF

binding was modeled in the same way as modeling single TF binding but TF that bound to the

promoter at every on-state transition was randomly chosen. The rate of production of mRNA

was influenced by the regulation strength of the TF that bound to the promoter.

Binding of a TF led to switching to on state which resulted in production of mRNA at a rate

βm and translation of these mRNA molecules to proteins at a rate βp. These mRNA and protein
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molecules were considered to undergo removal resulting from dilution due to cell growth and

degradation at the rates of αm and αp respectively.

The dynamics of transcription and translation were modeled using the following equations.

Changes in mRNA conc:over time :
d½mRNA�

dt
¼ bm � am � mRNA½ �

where βm denoted the transcription rate per unit time (or burst size) and αm denoted the

removal rate of mRNA due to degradation and dilution.

Similarly; Changes in protein conc:over time :
d½P�
dt
¼ bp � mRNA½ � � ap P½ �

where βp denoted the protein production rate from mRNA and αp denoted the protein

removal rate.

All rate parameters for single TF, two independent TF, cooperative TF and competitive TF

binding were chosen in such a way that the comparisons were mathematically equivalent. As

the concentrations of TFs can impact the chances of binding, the concentration of TF in single

TF binding scenario was considered to be the same as the concentration of each of the cooper-

atively binding TFs. Further, the concentration of the TF in single TF binding scenario was

considered to be equal to the sum of the concentrations of two TFs in case of competitive bind-

ing scenario. The transcription rates in the cases of regulation by single TF and by cooperative

TFs were exactly the same. The transcription rates in case of regulation by two independent

TFs were chosen in such a way that the average transcription rate was equal to the transcrip-

tion rate in regulation by a single TF. The transcription rates of the TFs in case of competitive

TFs were chosen in such a way that the average transcription rate of the two TFs was the same

as the transcription rate in single TF regulation. Therefore, the parameters βp, αm, αp were

considered to be the same across all cases of TF binding. In case of cooperative TF binding, βm,

coop was assumed to be the same as the βm,single. In case of competitive TF binding, the produc-

tion rates varied between two TFs, with βm1 = 1.3×βm,single and βm2 = 0.7×βm,single.

Stochastic simulations were performed using Gillespie’s algorithm [85] to decipher the

dynamics of TF-DNA binding in all scenarios and to investigate the impact of cooperative and

competitive TF binding on noise. The behavior of the system was tracked at small discrete

time intervals Δt from the initial time point t. These resulted in observations at ‘n+1’ time

points t, t+ Δt, t+2×Δt, . . ., t+n×Δt. Any event of binding or unbinding occurring within a

time interval was noted and resulted in changes in transcription rate which eventually led to a

change in protein concentration. Binding of TFs led to transcription and increase in mRNA

and protein concentration according to the above equations. As the time interval Δt was con-

sidered to be small, the equations modeling the behavior of the systems was simplified as

½mRNA�tþDt ¼ ½mRNA�t þ ðbm � am � ½mRNA�tÞ � Dt

and

½P�tþDt ¼ ½P�t þ ðbp � ½mRNA�t � ap � ½P�tÞ � Dt

βm, αm, βp and αp were expressed in appropriate units for further simplification of these equa-

tions. The dynamics of transcription, variation in the mRNA concentration and variation in

protein concentration with time were modeled across 10,000 cells. Noise was expressed as

coefficient of variation (CV) from the calculation of mean and standard deviation in the pro-

tein level across these 10,000 cells and across all individual time points.
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Mean expression level and noise values were calculated for a wide range of parameter values

for all the parameters λon, λoff, βm, βp, αm, and αp to ensure that the results obtained were not

biased by the choice of specific parameter values. All noise comparisons were made at similar

mean expression levels to eliminate any bias in the noise values due to variations in mean

expression levels. This was done following two approaches. In the first approach, only one of

the parameters was varied while keeping others constant across the scenarios of single, com-

petitive, and cooperative TF binding. This allowed us to do mathematically controlled compar-

ison across single, competitive and cooperative TF binding with difference existing only in the

TF binding process. In the second approach, a Markov-Chain Monte-Carlo (MCMC) sam-

pling of the model parameters was performed to explore the high-dimensional parameter

space while keeping mean expression level similar across single, competitive and cooperative

TF binding.

MCMC sampling of parameter space

Since the model had multiple parameters and each with a range of possible values, the combi-

nation of possible parameter values was large and the parameter space was high-dimensional.

Thus, it was not possible to calculate expression noise values for all possible parameter combi-

nations. Therefore, an MCMC sampling of the parameter space was performed with the target

of achieving the same mean expression level for single, competitive and cooperative TF bind-

ing. To do so, the model was first initialized with a random set of parameter values so that the

mean expression level was within the five times the target mean expression value. This was

done to ensure that a convergence to the mean expression value could be reached within a rea-

sonable number of iterations. For each of the model parameters, the minimum and the maxi-

mum values and the step size for change were defined.

In the next step, one of the parameters was randomly changed according to the pre-defined

step size and the change in mean expression was quantified from the model. If the change in

the parameter value took the mean expression of the model closer to the target value, the

change in the parameter value was accepted and the next change was performed in the same

parameter value in the same direction. If any change in a parameter value took the mean

expression level away from the target value, the change in the parameter value was rejected, if

the change took the mean expression value beyond two times the target mean expression

range and a new parameter was randomly chosen for the next step. This process was repeated

until convergence or up to a maximum of 50 iterations. At each step, the mean expression

level and noise was calculated based on analysis in 1000 cells for each of single, competitive

and cooperative TF binding. For each of single, competitive and cooperative TF binding,

10000 independent MCMC samplings were performed and the mean protein expression level

and expression noise values were reported. The target mean protein expression levels were

chosen to be between 1 × 106 and 1.1 × 106 molecules, between 1.1 × 106 and 1.2 × 106 mole-

cules, between 1.2 × 106 and 1.3 × 106 molecules, between 1.3 × 106 and 1.4 × 106 molecules

and between 1.4 × 106 and 1.5 × 106 molecules. Only cases with the burst frequency between

the values 0.2 and 0.8 were considered for our analysis, as otherwise a gene was in always off or

always on mode.

Modeling the impact of increase in number of TFs on expression noise

As competitive and cooperative TF binding can involve more than two TFs, the impact of an

increase in the number of competitive or cooperative TFs on expression noise was quantified

through our model. The number of TFs was varied from two to nine TFs. In case of competi-

tive TF binding with multiple TFs, the rate of transitions to ‘on’ or ‘off’ states remained

PLOS GENETICS Noise regulation by TF binding process

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010535 December 12, 2022 21 / 28

https://doi.org/10.1371/journal.pgen.1010535


unaltered. However, there were more TFs available for binding to the same site in the pro-

moter region and only one of the TFs could bind to the promoter site. The TF that could bind

to the promoter site was randomly chosen. In case of cooperative TF binding with multiple

TFs, the transcription was modeled as a Hill function and the transcription was assumed as an

all-or-none process regardless of the value of Hill coefficient. Therefore, only binding of all

TFs led to substantial transcription. This, however, led to substantial reduction in burst fre-

quency and thereby reduced mean expression. To compensate for this, the rate of transition to

‘off’ state (λoff) was gradually reduced to achieve similar mean expression level as in single TF

regulation. Reduction of λoff values prolonged the on-state in cooperative TF binding [73] and

thus, increased mean expression level.

Supporting information

S1 Text. Cooperative and Competitive TF binding caused higher noise across a wide range

of model parameter values.

(PDF)

S1 Fig. Distribution of expression noise of genes at the mRNA level (A) and at the protein

level (B).

(TIF)

S2 Fig. Presence of the TATA box sequence and the promoter nucleosome occupancy were

associated with expression noise. (A) Difference in expression noise of genes with and with-

out the TATA box sequence in the promoter, calculated at the mRNA as well as the protein

level (B) Correlation between noise and average promoter nucleosome occupancy.

(TIF)

S3 Fig. Distributions of feature values. Plots showing distributions of (A) number of regula-

tory TFs, (B-C) number of cooperative TFs [69,70], (D) number of TF binding sites, (E) num-

ber of TF binding site overlaps, (F) number of overlaps per TF binding site, (G) number of

TFs showing positive expression correlation among themselves, (H) number of genes with

SAGA dominance in the promoter, and (I) number of genes with TFIID dominance in the

promoter.

(TIF)

S4 Fig. Comparison of the fraction of variation explained and the predictive ability of the

statistical models on datasets with and without duplicate genes. (A) Correlation between

average fraction variation explained and the average rank for all features with and without the

duplicate genes in the data. Average fraction variation explained and average rank for a feature

were calculated by taking average of values in mRNA and protein noise data. (B) Correlation

between average predicted R2 values and the corresponding average rank with and without the

duplicate genes in the data.

(TIF)

S5 Fig. Fraction of variation explained and predictive ability (given by predicted R2 value)

in models with and without duplicate genes. Fraction of variation explained and predictive

ability of features associated with TF binding activity, combination of TF binding activity with

other features, combination of all features excluding PTMs and combination of all features

including PTMs. The ‘+’ and ‘-’ signs denote the datasets used in analysis, with ‘+’ indicating

the full dataset and the ‘-’ sign indicating the dataset after removal of duplicate genes.

(TIF)
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S6 Fig. Genes with high expression noise at mRNA level were regulated by a higher number

of TFs, had higher number of cooperatively binding TFs, and showed more overlaps in TF

binding sites compared to low-noise genes. (A) Correlation between noise at mRNA level

and the number of regulatory TFs (B) Number of regulatory TFs of genes across different

mRNA noise bins (C) Correlation between noise at mRNA level and the number of coopera-

tive TFs [70] (D) Number of cooperative TFs of genes across mRNA noise bins (E) Correlation

between noise at mRNA level and the number of overlaps in TF binding sites (F) Number of

overlaps between TF binding sites for genes across mRNA noise bins (G) Number of co-

expressing regulatory TFs across mRNA noise bins (H) Fraction of genes showing SAGA and

TFIID dominance across mRNA noise bins.

(TIF)

S7 Fig. Changes in on- and off-rate parameters impact burst frequency and influence

mean expression level. (A) Relationship between on- and off-rate parameters (λon and λoff

respectively) and mean expression levels in cases of regulation by single TF, two independent

TFs, competitive TFs and cooperative TFs. (B) Variation in transcription rate over time (burst

frequency) in single TF regulation (C) Variation in transcription rate over time (burst fre-

quency) in case of regulation by cooperatively binding TFs. For the same values of λon and λoff,

the genes were in always on or always off states.

(TIF)

S8 Fig. Noise in case of competitive TF binding was higher compared to single TF regula-

tion across a wide range of parameter values. Changes in mRNA and protein synthesis rates,

mRNA and protein degradation rates, on- and off-rate parameters (λon and λoff respectively)

changed mean expression levels both in single TF and competitive TF binding, but the noise

levels in competitive binding were always higher than single TF binding. Increased variation

in regulatory strengths of competitive TFs led to even higher noise.

(TIF)

S9 Fig. Noise in case of cooperatively binding TFs was higher compared to single TF regu-

lation across a wide range of parameter values. (A) Changes in mRNA and protein synthesis

rates, mRNA and protein degradation rates changed mean expression levels both in single TF

and cooperative TF binding, but the noise levels in cooperative binding were always higher

than single TF binding. (B) Noise values across a wide range of on- and off-rate parameter val-

ues (λon and λoff respectively) for single TF and cooperative TF binding.

(TIF)

S10 Fig. No difference in the average number of mutations in the overlapping TF binding

sites between low- and high-noise genes, based on calculations both at the mRNA and pro-

tein levels.

(TIF)

S1 Table. List of features included in our integrated model of noise.

(PDF)

S1 Source Data. Source data for plotting all figures in the main text and contains the fol-

lowing excel files. Figure1.xlsx–Source data for Fig 1; Figure2.xlsx–Source data for Fig 2; Fig-

ure3.xlsx–Source data for Fig 3; Figure4.xlsx–Source data for Fig 4; Figure5.xlsx–Source data

for Fig 5; Figure7.xlsx–Source data for Fig 7.

(ZIP)
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