
APPENDIX A: Benchmark of the network on artificial data 

 Here we provide some additional information on the image phase space in which our master model is 

performing thoroughly. For that, we first analyze the absolute brightness and noise levels of our data for 

skyrmions and background by a gaussian fit 𝑔(𝑥) =  CONST ∙ exp(−1/2 ∙ (
𝑥 − 𝜇

𝜎⁄ )
2

) and obtain 𝜇𝑆𝐾 , 𝜇𝐵𝐺  

and the noise strength 𝝈𝒏𝒐𝒊𝒔𝒆 =  
𝝈𝑺𝑲 + 𝝈𝑩𝑮

𝟐⁄  per image. Fig.8 a)-d) is showing the process examplatory. 

Fig. 8 e) plots the standard deviation of the noise, to check that the noise level does not vary between 

classes. Fig. 8 f) shows the histogram of the average noise standard deviation in the sets.  

FIG. 8: Analysis of the datasets.a) -d) shows the evaluation exemplatory on one image: The 

true data a) is splitted based on their labels b) and plot the histograms classwise (SK 

skyrmions, BG background, DF defects) in c). We omit the defect class for the further analysis. 

SK & BG classes are normalized and gauss-fitted d). We compare noise levels of all images 

(classwise) in e) and find that the noise-level can be assumed class-independent. We define the 

noise level 𝝈𝒏𝒐𝒊𝒔𝒆 =  
𝝈𝑺𝑲 + 𝝈𝑩𝑮

𝟐⁄   and show the noise histogram of our datasets in e). 

As a next step, we generate artificial skyrmion data with the finite-size approach. The mask is generated 

with the following rule: 𝒊𝒇 𝒎𝒛 < 𝟎. 𝟎: 𝒗𝒎𝒂𝒔𝒌  : = 𝟎, 𝒆𝒍𝒔𝒆 𝒗𝒎𝒂𝒔𝒌 : = 𝟏 . We then sample a contrast level for 

skyrmions and background, such that the skyrmion level 𝜇𝑆𝐾 < 𝜇𝐵𝐺 , as we decided to have the 

skyrmions always darker than the background. We then add gaussian noise, sampled in the range that 

appears in the dataset – see Fig.8 f) -, clip values to 𝒗𝒎𝒂𝒔𝒌 ∈ [0,1] and obtained our artificial MOKE 

data. The defect class is omitted for this analysis, as no easy description for this class can be derived. 

Fig. 9 visualizes the process of producing the artificial data exemplary.  

We have now benchmarked the master model that performed best on the validation set (master model 

#1) with1000 artificially generated samples and for different noise levels. The results can be seen in Fig. 

10. The blue region corresponds to a high MCC and therefore a good classification of the (artificial) data.  
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FIG. 9: The computer-generated skyrmion mask a) is varied, by changing skyrmion pixels to a 

sampled 𝝁𝑺𝑲, background pixel to a sampled 𝝁𝑩𝑮, such that 𝝁𝑺𝑲 < 𝝁𝑩𝑮. We then add gaussian 

noise in a realistic range according to Fig. 8 f), 𝝈𝒏𝒐𝒊𝒔𝒆 < 𝟎. 𝟐, and obtain our artificial MOKE 

image. The noise level is digitized to values visible in Figure 10. The prediction c) is used to 

calculate the MCC for Figure 10. 

We find that the network performs best when the skyrmions are only slightly darker than the background. 

This is reasonable, as our data is considered to be not easy separable. If the peaks of the two classes 

would be more distinct, one could perform the segmentation with an much more straight-forward 

approach. The additional black, green and brown points corresponds to the test, validation and training 

data, while the noise level from Fig.8 f) was digitized to the nearest value available in the sampling. We 

find that the network has good performance in the area of the phase space where our datasets are 

located, which is an indicator for a successful training. Fig. 11 shows the performance of the network on 

artificial data for fixed contrast values, but varying skyrmion sizes. We find that a minimum skyrmion 

size of ~10 pixels are needed for a reliable prediction. This can however vary with the contrast and noise 

level.  

This analysis of the predictive power is useful for users to check if their data is in an area of good 

performance. If this is not the case, they can either a) shift the brightness level of the data, b) retrain the 

network with artificial or new data in the desired image phase space.  
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FIG. 10: Performance of the master model #1 on artificial skyrmion data, parametrized by 

𝝁𝑺𝑲, 𝝁𝑩𝑮 and the noise strength 𝝈𝒏𝒐𝒊𝒔𝒆. We find good performance in areas close to our training 

and validation set, and also in regions where 𝝁𝑺𝑲 is only slightly smaller than 𝝁𝑩𝑮. We also plot 

the training (brown), validation (green) and test (black) set into the graphs, parametrized as 

shown in Fig. 8. 

 

 

 

 

 



 

FIG 11: Artificial dataset with 1000 generated images with one skyrmion in each image 

generated. We plot a) the MCC and b) the Intersect over union (IoU) for the skyrmion 

predictions that totally or partially overlap with the label. We find that with increasing the noise 

the prediction becomes worse, and that one needs approximately a minimum skyrmion size of 

30 pixels to obtain reliable prediction. 

 

APPENDIX B: Material stacks and data acquisition 

The data used for this study was collected from two sources: A huge part was collected from data 

archives, containing measurements which were performed to analyse or characterize material stacks or 

during the performance of experiments in the last decade in the AG Kläui lab. The used stacks were 

mainly Ta/CoFeBe/Ta/MgO/ stacks. Table 3 provides the material stack and its variety in the layer 

thicknesses within the data set. Typical skyrmion size in these type of stacks ranges from ~500 𝑛𝑚 up 

to ~5 𝜇𝑚. 

 

Material Thickness range used Effect of the layer 

Ta 5 nm DMI generation 

Co60Fe20B20 0.8-1 nm FM 

Ta 0.07-0.09 nm Dusting layer to tune anisotropy 

MgO 0.8-1 nm PMA generating layer 

Ta 5 nm Capping (prevent oxidation) 

TABLE 3: receipe of a typical single layer stack used in the dataset. 

The second part of the data, the defect set, was recorded especially for the purpose of the training. The 

stacks were also very similar to the ones aboves but focussing on parts of the sample with impurities 

and defects.  

We would like to emphasize that no information of the material stack were included in the training, but 

the segmentation is only based on the image input. So, if a particular layer might decrease the absolute 

contrast of the sample, we do not use this information. Also, the absolute (true) skyrmion size is not 

relevant, as for each measurement different lenses and different optical zoom was used, leading to 



magnification factors between 1 and 400. The skyrmion size in pixels of our test and validation set is 

histogrammed in Figure 6. With that knowledge one can check if the network is suitable for other 

experimental skyrmion data  

The advantage of this approach is that the network can be easily adapted to other material stacks and 

absolute skyrmion sizes and measurements using other magnetic microscopy techniques, as long as 

the contrast level is in the blue areas of Figure 10. If the prediction is not as desired, our model weights 

can be used as a pre-trained model to train on new data.  

 


