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An important feature of Schwarzschild spacetime is the presence of orbiting null geodesics and
caustics. Their presence implies strong gravitational lensing effects for matter and radiation, i.e., for
excitations of quantum fields. Here, we raise the question whether the lensing manifests itself also
in the vacuum of quantum fields, namely by lensing the distribution of vacuum entanglement. To
explore this possibility, we use the method of entanglement harvesting, where initially unentangled
localized quantum systems are temporarily coupled to the field at different locations. We find that
for the Boulware, Hartle-Hawking and Unruh vacua in 3+1 dimensional Schwarzschild spacetime,
the harvesting of vacuum entanglement is indeed greatly amplified near caustics. In particular, we
establish that pre-existing vacuum entanglement can be harvested also for lightlike separations.

I. INTRODUCTION

The presence of entanglement between spatially sepa-
rated degrees of freedom of a quantum field is a basic phe-
nomenon that occurs even for free fields in the vacuum
state on a flat background spacetime [1, 2]. The origin
of this vacuum entanglement can be traced back to the
fact that, in wave equations, neighboring field oscillators
must be coupled to each other in order to describe the
propagation of waves. The coupling between the neigh-
boring field oscillators is through spatial derivatives in
the wave operators, such as the d’Alembertian and Dirac
operator. It is this coupling between neighboring field
oscillators that also causes the ground state of the local
field oscillators to be an entangled state.

In curved spacetimes, curvature impacts the deriva-
tives in the wave operators which then impact the entan-
glement in the field. Therefore, curvature also impacts
the field correlations. Conversely, it has been shown that
the imprint that curvature leaves in the field correlators
is actually complete in the sense that the metric can be
reconstructed from the field correlators [3, 4]. As was
shown in [5], the metric can also be reconstructed from
the correlations between local measurements of the field.
The entanglement structure of quantum fields plays a
fundamental role in investigations of phenomena from
holography to Hawking radiation and the black hole in-
formation loss problem [6–16].

To probe the spacetime distribution of entanglement in
a quantum field, a versatile method is to couple initially
unentangled localized quantum systems to the field at
different spacetime regions. The amount of entanglement

that the localized systems acquired can be determined by
standard methods [17, 18].

When the entanglement acquired from the field by lo-
calized quantum systems is extracted from the entan-
glement that was preexisting in the field, this protocol
has become known as entanglement harvesting. Entan-
glement harvesting has been investigated in a number
of scenarios since first hinted at in [19, 20], both in flat
and curved spacetime. It has been proven that entan-
glement harvesting can capture the geometry [21] and
topology [22] of the underlying spacetime. So far, the
scenario where entanglement is harvested from the field
in the presence of black holes has only been studied in
very idealized scenarios such as 2+1 dimensional (BTZ)
black holes [23] and 1+1 dimensional spacetimes with
horizons [24]. The question of entanglement harvesting
near a black hole in 3+1 spacetime dimensions has re-
mained open. However, this case is of particular interest
since one can expect new phenomenology, for example,
due to lensing, see [25], and due to the fact that orbiting
null geodesics and caustics can connect the two localized
harvesting systems.

The phenomenology arising from orbiting null
geodesics and caustics on communication through quan-
tum fields close to a Schwarzschild black hole was ad-
dressed in [26]. Here, we investigate in detail entan-
glement harvesting in a four-dimensional Schwarzschild
spacetime, for the cases of the Boulware, Hartle-Hawking
and Unruh vacua, using tools similar to those applied
in [26]. We take the localized quantum systems to
be static localized two-level quantum systems with a
monopole coupling to a Klein-Gordon field, i.e., so-called
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Unruh DeWitt (UDW) detectors, or detectors for short.
Within this setup, we analyze the impact of the presence
of caustics and of the fact that the detectors can be con-
nected by secondary null geodesics, including the case
where detectors are placed close to the event horizon.

We find, that the presence of caustics alters the char-
acteristics of entanglement harvesting in two particu-
lar ways in comparison to flat spacetime. First, due
to a lensing-like effect caused from the focusing of null
geodesics, the final entanglement between detectors can
become greatly amplified near the caustics in compar-
ison to comparably placed detectors away from caus-
tics. Second, due to changes in the singularity struc-
ture of the Wightman function which happen when the
field waves cross through caustics, we observe that time-
like separated detectors can harvest preexisting entangle-
ment from the field if they are aligned along secondary
null geodesics, i.e., null geodesics which orbit half of the
black hole and so they have passed through one caustic.
To the best of our knowledge, such harvesting of preexist-
ing entanglement for lightlike separations has never been
observed before in any spacetime.

Sec. II B begins by discussing the treatment and prop-
erties of the Wightman function of a massless scalar
field on Schwarzschild spacetime and, in particular, its
global singularity structure. Sec. III introduces the de-
tector model, its perturbative treatment and negativity
as entanglement measure for the detectors’ final state.
Sec. III B discusses when the entanglement between de-
tectors can be attributed to the harvesting of preex-
isting entanglement from the field. Sec. IV presents
our actual results for specific detectors and the article
closes in Sec. V with a discussion and outlook. The
Appendix collects supplemental figures. Furthermore,
App. A gives the calculations of the perturbative contri-
butions to the detectors’ state and App. B discusses the
numerical techiques for the evaluation of the Wightman

functions and integrals evolving the Wightman function.
We use the natural units in which c = G = ~ = 1.

II. WIGHTMAN FUNCTION IN
SCHWARZSCHILD SPACETIME

In this section we introduce a quantum scalar field on
Schwarzschild spacetime as well as the Wightman func-
tion when the scalar field is in three quantum states of
interest (namely, Boulware, Unruh and Hartle-Hawking).
The reader familiar with these may wish to skip to
Sec. II B, reviewing literature results on the global sin-
gularity structure of the Wightman function as the field
wavefront passes through caustics of Schwarzschild space-
time which motivate our search for gravitational lensing
of entanglement harvesting.

A. Klein-Gordon quantum field in Schwarzschild
spacetime

In this section, we briefly review the treatment of a
massless Klein-Gordon field in Schwarzschild spacetime,
and the expressions for the Wightman function of the
three field states we consider, needed for the perturbative
treatment of the field-detector interaction.

The line-element of the outer region of Schwarzschild
spacetime in Schwarzschild coordinates {t ∈ R, r ∈
(2M,∞), θ ∈ [0, π], ϕ ∈ [0, 2π)}, is given by

ds2 = −f(r)dt2 +f(r)−1dr2 +r2
(
dθ2 + sin2 θdϕ2

)
, (1)

where f(r) := 1 − 2M/r M is the mass of the black
hole and r = 2M is the radius of the event horizon.
In this outer region, we consider a scalar quantum field

φ̂ obeying the Klein-Gordon (K-G) equation �φ̂ = 0.
Considering the Schwarzschild spacetime and availing of
its spherical symmetry, a general real-valued solution for
that equation can be written as

φ̂ (x) =

∞∑
`=0

∑̀
m=−`

∫ ∞
0

dω
(
α̂in
`mωφ

in
`mω (x) + α̂up

`mωφ
up
`mω (x) + α̂in†

`mωφ
in∗
`mω (x) + α̂up†

`mωφ
up∗
`mω (x)

)
, (2)

where x denotes a spacetime point, α̂
in/up†
`mω are creation

and annihilation operators and

φ
in/up
`mω (t, r, θ, ϕ) =

1√
4πω

e−iωtY`m (θ, ϕ)
R

in/up
`ω (r)

r
, (3)

with Y`m being the spherical harmonic of degree ` and

order m and R
in/up
`ω are radial factors.

Substituting the field modes (3) into the K-G equation

leads to the conclusion that R
in/up
`ω obeys

d2R
in/up
`ω

dr∗
2 +

(
ω2 − V` (r)

)
R

in/up
`ω = 0, (4)

where r∗ = r + 4M ln
∣∣ r

2M − 1
∣∣∈ (−∞,+∞) is the tor-

toise coordinate and V` (r) = f(r)
(

2M
r3 + `(`+1)

r2

)
is an

effective potential.
The two linearly independent solutions Rin

`ω and Rup
`ω

are defined by the asymptotic boundary conditions

Rin
`ω ∼

{
e−iωr∗ , r∗ → −∞
I`ωe−iωr∗ + ρin

`ωeiωr∗ , r∗ →∞
, (5)

Rup
`ω ∼

{
I`ωeiωr∗ + ρup

`ωe−iωr∗ , r∗ → −∞
eiωr∗ , r∗ →∞

. (6)
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Here, ρ
in/up
`ω ∈ C are the reflection amplitudes and I`ω ∈

C is the incidence amplitude. For compatibility with [27]
and ease of notation, let us also define

R̄
in/up
`ω ≡ 1

rI`ω
R

in/up
`ω . (7)

Note that it suffices to calculate the modes for just ω ≥ 0;
and use the following symmetries for ω < 0:

R̄in∗

`ω = R̄in
`,−ω, R̄up∗

`ω = R̄up
`,−ω. (8)

Calculating the response of the detectors to the inter-

action with the quantized field φ̂ requires, as we shall see
in the next section, the Wightman function. The Wight-
man function, when the quantum field is in a state |Ψ〉,
is defined as

WΨ (x; x′) ≡ 〈Ψ| φ̂(x)φ̂(x′) |Ψ〉 . (9)

It is thus a two-point function satisfying the homoge-
neous K-G equation. Henceforth we shall only consider
quantum states |Ψ〉 in regions of spacetime where they
are Hadamard. The Wightman function in Schwarzschild
is given by [27]

WΨ (x; x′) =

1

(4π)
2

∞∑
`=0

(2`+ 1)P`(cos γ)

∫ ∞
−∞

dω

ω
e−iω∆tGΨ

`ω(r, r′; ∆t),

(10)

where γ is the angular separation between the two space-
time points x and x′ and ∆t ≡ t− t′. The integral kernel
GΨ
`ω depends on the quantum state of the field. For the

Boulware [28] (Ψ = B), the Unruh [29] (Ψ = U) and the
Hartle-Hawking [30] state (Ψ = H) it takes the forms

GB`ω = θ(ω)
(
R̄up
`ω(r)R̄up∗

`ω (r′) + R̄in
`ω(r)R̄in∗

`ω (r′)
)
, (11)

GU`ω =
R̄up
`ω(r)R̄up∗

`ω (r′)

1− e−2πω/κ
+ θ(ω)R̄in

`ω(r)R̄in∗

`ω (r′), (12)

GH`ω =
R̄up
`ω(r)R̄up∗

`ω (r′) + R̄in∗

`ω (r)R̄in
`ω(r′)

1− e−2πω/κ
, (13)

where κ ≡ 1/(4M) is the surface gravity, and R̄
in/up
`ω

denotes the (rescaled) radial factor of the ingoing and
upgoing solutions to the wave equation, as defined in (7).
App. B discusses the numerical techniques used for the
evaluation of the Wightman function.

The expressions above convey that in the Boulware
state both ingoing and upcoming modes are in their
ground state, whereas in the Unruh state the upgoing
modes are thermalized, and in the Hawking state both
ingoing and upgoing modes are thermalized.

B. Singularity structure of the Wightman function

The Hadamard form for the Wightman function
WΨ (x; x′) is an analytic expression which is defined in

a local neighbourhood1 of the source point x and explic-
itly shows its singularity structure. Explictly, it is (e.g.,
[31–33])

WΨ (x; x′) =

lim
ε→0+

1

4π2

[
u

σ + i ε∆t
− v ln (σ + i ε∆t) + w

]
,

(14)

where u = u(x, x′), v = v(x, x′) and w = w(x, x′) are regu-
lar and real-valued biscalars. The so-called Synge’s world
function σ = σ(x, x′) is equal to one-half of the square
of the geodesic distance joining x and x′, which implies
that σ is negative/zero/positive whenever that geodesic
is, respectively, timelike/null/spacelike. The biscalars u
and v are uniquely determined by the geometry of the
space-time whereas w in principle depends on the quan-
tum state |Ψ〉. The term in Eq. (14) with u is called the
direct part and the term with v the tail part.

In order to see separately the divergences of the real
and imaginary parts of the Wightman function, the fol-
lowing distributional limits are useful:

lim
ε→0+

1

σ ± iε
= PV

(
1

σ

)
∓ iπδ(σ), (15)

lim
ε→0+

ln (σ ± iε) = ln |σ| ± iπθ(−σ), (16)

where PV denotes the principal value distribution. This
readily yields the anti-commutator〈

Ψ
∣∣∣ {φ̂(x), φ̂(x′)

} ∣∣∣Ψ〉 = 2Re
(
WΨ (x; x′)

)
=

1

2π2

[
uPV

(
1

σ

)
− v ln |σ|+ w

] (17)

and the commutator〈
Ψ
∣∣∣ [φ̂(x), φ̂(x′)

] ∣∣∣Ψ〉 = 2iIm
(
WΨ (x; x′)

)
=
−sign (∆t) i

2π
[u δ(σ) + v θ (−σ))] .

(18)

The anti-commutator and commutator (which, when
multiplied by ‘i θ(∆t)’ yields the classical retarded Green
function) are, respectively dependent and independent of
the quantum state |Ψ〉 of the field.

Eq. (14) shows explicitly the singularity of the Wight-
man function along σ = 0, i.e., when x and a x′ in a local
neighbourhood of x are connected by a null geodesic.
It is well-known [34, 35] that the Wightman function
WΨ (x; x′) continues to diverge when x and x′ are con-
nected by a null geodesic globally, i.e., even when x′ is
not in a local neighbourhood of x. The global singu-
larity structure of the Wightman function in the case

1 More precisely, the Hadamard form is only defined in a normal
neighbourhood of x: a region containing x such that every x′

in that region is connected to x by a unique geodesic which lies
within the region.
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of Schwarzschild spacetime was unveiled in [36]: the di-
vergence of WΨ (x; x′) follows a four-fold pattern, with
the singularity type changing every time the null wave-
front passes through a caustic point (i.e., a spacetime
point where neighboring null geodesics are focused; in
Schwarzschild spacetime, because of the spherical sym-
metry, caustics lie along the line γ = 0 of the point of
emission of the null geodesics as well as along the antipo-
dal line γ = π). Specifically, the pattern for the leading
divergence in the real part of the Wightman function is2

PV

(
1

σ

)
→ −δ(σ)→ −PV

(
1

σ

)
→ δ(σ)→ PV

(
1

σ

)
→ · · ·

(19)
and that in the imaginary part of the Wightman function
is

−δ(σ)→ −PV

(
1

σ

)
→ δ(σ)→ PV

(
1

σ

)
→ −δ(σ)→ · · ·

(20)
where we have omitted the coefficients of the singularity
factors3. As an example, the leading singularity of the
real and imaginary parts of the Wightman function along
the wavefront before crossing any caustics is, respectively,
PV(1/σ) and −δ(σ) (corresponding to the direct part in
Eq. (14)), whereas after the wavefront has crossed one
caustic point these turn into, respectively, −δ(σ) and
−PV(1/σ). This change in the singularity structure will
have relevant consequences in entanglement harvesting
as we show below.

The above is the leading singularity structure but
there is a corresponding sub-leading singularity struc-
ture. Ref. [37] showed that, for the imaginary part of
the Wightman function, its sub-leading four-fold struc-
ture is:

−θ(−σ)→ ln |σ| → θ(−σ)→ − ln |σ| → −θ(−σ)→ · · ·
(21)

Ref. [37] further conjectured that the sub-leading struc-
ture for the real part of the Wightman function is:

− ln |σ| → −θ(−σ)→ ln |σ| → θ(−σ)→ − ln |σ| → · · ·
(22)

The first terms in Eqs. (21) and (22) of course correspond
to, respectively, the imaginary and real parts of the tail
term in Eq. (14).

2 An exception to the validity of Eqs. (19) and (20) is at caustic
points; also, by “σ” in these equations we mean a well-defined
extension of the world function outside normal neighbourhoods
– see [37] about both of these points.

3 Ref. [36] showed that the global singularity struc-
ture of the Feynman Green function is GF (x′, x) =
i
(
θ(∆t)WΨ (x; x′) + θ(−∆t)WΨ (x′; x)

)
, from which that of

the Wightman function readily follows.

III. ENTANGLEMENT HARVESTING

A. Detector model and perturbative treatment

Alice and Bob will carry detectors that can locally
measure the field around them. To model their detec-
tors we will use the conventional Unruh-DeWitt par-
ticle detector model [29, 38], which consists of a non-
relativistic quantum system coupled locally to a scalar
quantum field. The Unruh-DeWitt model is covariant
and causal4 [39–42] and captures the main features of the
light-matter interaction (e.g., atoms coupled to the elec-
tromagnetic field) when exchange of angular momentum
between the field and the internal degrees of freedom of
the detector is not relevant [43]. The covariant treatment
and use of time-dependent perturbation theory to calcu-
late the joint time evolution of the detectors and the field
in arbitrary curved spacetimes can be found in [39, 42]. In
particular, in the context of entanglement harvesting this
model has been extensively used throughout the litera-
ture and the particular perturbative approach employed
here will use the same notation and conventions used in,
among many others, [44]. Hence, here we only give a
brief summary stating the most relevant expressions for
the present work.

We model the particle detectors d = a,b as two-level
systems with energy eigenstates |g〉d (ground state) and
|e〉d (excited state) which are separated by an energy gap

Ωd. The detectors couple to the field amplitude φ̂(xd)
along their worldline xd(t) through the interaction Hamil-
tonian5

Ht
int, d = λdηd(t)

dτd
dt

µd(t)⊗ φ̂(xd(t)), (23)

where λd is a coupling constant which is dimensionless
in (3+1)-dimensional spacetime, 0 ≤ η(t) ≤ 1 is a real-
valued switching function, τd is the detector’s proper
time and µd(t) = eiΩdτd(t) |e〉〈g|d + e−iΩdτd(t) |g〉〈e|d is the
monopole operator. Note that the Hamiltonian of (23)
generates time translation with respect to coordinate
time t, but not the detector’s proper time τd. (For a
detailed discussion of this point, see [42, 45].)

In the scope of this work, we consider static detectors
in Schwarzschild spacetime, i.e., detectors with constant
spatial coordinates xd = (rd, θd, φd). For such detectors

dτd
dt

=
√
f(rd) =

√
1− 2M/rd, (24)

and we choose the relation between coordinate time and
detector proper time as τd(t) =

√
f(rd)t. As switching

4 For pointlike detectors this is strictly true. For smeared detectors
this is true in an approximated sense. For details see [39, 40]

5 In the fully covariant formulation of the interaction a Hamilto-
nian density is prescribed [42]. For pointlike detectors, integrat-
ing this density over hypersurfaces of constant t yields (23).
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functions for the detector we use Gaussians which as a
function of coordinate time read

ηd(t) = e−((t−t0d)/Td)2

, (25)

where Td denotes the switching width and t0d is the cen-
ter of the switching function.

We assume the initial state of the system (at t→ −∞)
to be a product state between the ground states of the
two detectors and a field state ρΨ:

ρ0 = |g〉〈g|a ⊗ |g〉〈g|b ⊗ ρΨ. (26)

Assuming that the field state has vanishing 1-point func-
tion, the expansion of the detectors’ state after time evo-

lution t = 0...T in coordinate time is

ρab,T = |g〉〈g|a ⊗ |g〉〈g|b
+ λ2

aρa,T + λ2
bρb,T + λaλbρc,T +O(λ4).

(27)

Using the basis order |g〉a |g〉b , |e〉a |g〉b , |g〉a |e〉b , |e〉a |e〉b
the final state is represented by the density matrix

ρab,T =


1− LΨ

aa − LΨ
bb 0 0 (MΨ)∗

0 LΨ
aa LΨ

ab 0

0 LΨ
ba LΨ

bb 0

MΨ 0 0 0

+O(λ4),

(28)
whose entries are

MΨ = −λaλb
∫ ∞
−∞

dt

∫ t

−∞
dt′
(
ηa(t)

dτa
dt

eiΩaτa(t) dτb
dt′

ηb(t′)eiΩbτb(t
′)WΨ (xa(t); xb(t′))

+ηa(t′)
dτa
dt′

eiΩaτa(t′) dτb
dt
ηb(t)eiΩbτb(t)WΨ (xb(t); xa(t′))

)
, (29)

LΨ
dd′ = λdλd′

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ ηd(t)
dτd
dt

ηd′(t
′)

dτd′

dt′
e−iΩdτd(t)+iΩd′τd′ (t

′)WΨ (xd(t); xd′(t
′)) , (30)

where MΨ takes complex values while LΨ
dd′ ≥ 0 takes

non-negative values. For our case of static detectors and
Gaussian switching functions, as shown in (A8) and (A9),
using the mode expansion of the Wightman function,
these expressions can be solved analytically up to one
integration over the frequency of the field modes which
needs to be performed numerically.

To assess and quantify the entanglement of the two
detectors in the final state ρab,T we use its negativity. Its

perturbative expansion is NΨ = max
[
NΨ,(2), 0

]
+O(λ4)

with

NΨ,(2) =
1

2

(√
(LΨ

aa − LΨ
bb)

2
+ 4 |MΨ|2 − LΨ

aa − LΨ
bb

)
.

(31)
We see that whether the two detectors end up in an en-
tangled state, is determined by a competition between
the size of the correlating term MΨ and the local noise
terms LΨ

aa and LΨ
bb. In particular, if the noise terms are

equal, LΨ
dd := LΨ

aa = LΨ
bb, as will be the case in Sec. IV,

then the negativity and, thus, the entanglement between
the detectors vanishes if LΨ

dd ≥
∣∣MΨ

∣∣, i.e., when the noise

overcomes the correlations. Notice that, because LΨ
aa and

LΨ
bb are local noise terms for which the Wightman func-

tion is evaluated along a single detector’s worldline, they
contain no information about field correlations between
the two regions where the two detectors are interacting
with the field.

B. When is the entanglement extracted versus
generated?

Entanglement harvesting is an interesting process be-
cause it can demonstrate the presence of entanglement
in a quantum field between different spacetime regions.
For example, it is clear that when two initially uncor-
related detectors become entangled through their inter-
action with the field while remaining spacelike sepa-
rated, then the entanglement they acquire comes from
‘extracting’ pre-exisiting entanglement in the field (See,
e.g., [20, 44] in flat spacetime). However, when the de-
tectors are not spacelike separated then contributions to
the correlating term MΨ in the leading order perturba-
tive correction to ρab,T arise which are independent of the
quantum state of the field, as recently studied in [46]. In
fact, these contributions can be calculated solely from
classical data, consisting of switching functions, detector
worldlines and the field classical Green function. Hence,
they tell nothing about the quantum properties of the
field.

To see this, we follow [46]: First, note that the imagi-
nary part of the Wightman function, given by the com-
mutator of the field operators, is independent of the state
of the field. Only the real part, which is given by the
anti-commutator of the field operators, depends on the
quantum state. We can use this to split MΨ into two con-
tributions as MΨ = MΨ

+ + iMΨ
− , where MΨ

+ is obtained

by replacing WΨ by its real part (which is symmetric)
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on the right hand side of (29), and MΨ
− by replacing WΨ

with its imaginary part (which is anti-symmetric). Note
that, in general, MΨ

+ and MΨ
− are complex-valued.

Below we will encounter generic scenarios where the de-
tectors become entangled whileMΨ is dominated byMΨ

− ,

and MΨ
+ is (almost or exactly) vanishing. In such a sit-

uation most6 of the entanglement between the detectors
is not to be attributed to any preexisting entanglement
in the field, as we shall next argue. In such a scenario
the entanglement between the detectors, as measured by
NΨ,(2), would remain unchanged if we replaced the initial
field state by a state which resulted in the same values
for LΨ

aa and LΨ
bb (the value of MΨ

− ≈ MΨ, would also
remain unchanged since it is state-independent). In par-
ticular, we could replace the original state of the field by
a state that has the same Wightman function within the
regions where the detectors are coupled to the field, while
containing no entanglement between those two regions.

Hence, in this new state, the entanglement between the
detectors appears to be generated due to their sequential
interaction with the field instead of being extracted from
preexisting correlations in the field. This line of reasoning
is used in [46] in order to argue that in these cases where
MΨ

+ is (almost or exactly) vanishing, the entanglement
acquired by the detectors should not be referred to as
‘entanglement harvesting’ from the field.

In its turn, in a scenario with spacelike separated de-
tectors where all entanglement between the detectors is
harvested from preexisting entanglement in the field, we
have that MΨ = MΨ

+ because the commutator vanishes
between the detectors. That is, in this clear cut sce-
nario, the contributions from the field’s state-dependent
anti-commutator are the ones which transfer the entan-
glement from the field to the detectors.

In addition, another observation made in [46] indicates
that also for timelike separated detectors the processes
captured in MΨ

+ are due to the harvesting of preexist-
ing entanglement in the field as opposed to generation
of entanglement through the interaction. This is based
on the fact that a process that creates entanglement be-
tween the detectors by having them sequentially interact
with the field also allows for communication from the first
to the second detector: the field carries information be-
tween the two detectors and that can get them entangled
independently of any pre-existing entanglement in the
field. However, it is well known that at leading order in
perturbation theory, with which we are concerned here,
such causal influence of one detector on the other is de-
termined by the commutator of the field and independent
of the anti-commutator of the field (see, e.g., Equation
(24) of [41]). Thus, as argued in [46], it appears plausible
that, generally, the detectors are harvesting preexisting

6 A quantitative study of the relative contributions of MΨ
+ and

MΨ
− to the entanglement acquired by the detectors for the case

of flat spacetime can be found in [46].

entanglement from the field if MΨ ≈ MΨ
+ is dominated

by contributions arising from the anti-commutator.

IV. HARVESTING OF GRAVITATIONALLY
LENSED VACUUM ENTANGLEMENT

This section contains the main results which demon-
strate the impact of gravitational lensing, which at caus-
tics refocuses null geodesics emanating from a common
source, on entanglement harvesting. To this end, we con-
sider static detectors placed close to the black hole hori-
zon and compare their behavior with the well studied
case of static detectors in flat spacetime.

As one would expect, an important parameter which
decides if and to what extent two detectors become en-
tangled is their distance. The distance between (the
static worldlines of) the two detectors can be defined in
terms of various meaningful measures (see also [26]). In
the present context (of static observers in Schwarzschild
or Minkowski spacetime), the light propagation coordi-
nate time is an intuitive choice of measure which we use
henceforth when referring to the distance between detec-
tors. This is the minimal amount of (Schwarzschild or
Minkowski) coordinate time that it takes light to propa-
gate from the spatial position of one detector to that of
the other detector along a null geodesic.

Once the spatial positions of the two detectors are cho-
sen and, thus, their distance is fixed, the interaction of
the detectors with the field can still be made to happen at
spacelike, lightlike or timelike separation by introducing
a switching delay: This means that the switching func-
tion of the second detector is shifted with respect to the
first one by a certain amount of coordinate time. For
example, in the following we will assume that both de-
tectors couple through the same switching function (25)
and introduce the switching delay ∆ba = t0b− t0a as the
(coordinate time) difference between the centers of the
switching functions. The switching delay can then be
used to maximize the entanglement in the final state of
the two detectors.

In Minkowski spacetime, as far as the impact of the
switching delay is concerned, the entanglement in the
final state between two detectors at a fixed distance is
maximized when the switching functions are exactly null
aligned [46], i.e., when the switching delay equals the
light propagation time.7 As far as the impact of the
distance between the detectors is concerned, its impact
on the final entanglement is straightforward: If the dis-
tance between the detectors is increased (while allowing
the switching delay to be optimal and leaving other cou-
pling parameters unchanged), the entanglement between
the detectors in their final state decreases and goes to

7 This statement is not entirely precise, as in Minkowski spacetime
the maximum is located very close to – but not exactly at – null
alignment of the switching functions, see [46].
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FIG. 1. Gravitational lensing of entanglement harvesting from the Boulware state: The plots show the entries |MB |, |MB
± |

and |LB
dd| of the final detectors’ state (28) for two static detectors placed at radial coordinate r = 6.009M with varying

angular separation γ. Blue shading indicates where |MB | > LB
dd, i.e., the negativity (31) is positive and the detectors become

entangled. All detector parameters are equal (λd = 1, Ωd = 5M−1, Td = 1M), only the delay ∆ba = t0b − t0a between the
switching functions (25) varies between plots. The insets indicate how far a null wave front propagates from the red point
within a coordinate time interval ∆ba. In particular, at ∆ba ≈ 20.7386M at the antipodal point of the red point, i.e., at γ = π,
the wavefront intersects itself and the first caustic point forms. (See supplementary material for animated version of this plot.)
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FIG. 2. Same data as Fig. 1 from a different perspective: The switching delay ∆ba = t0b− t0a is plotted on the horizontal axis,
while the subplots show detectors with four different angular separations. (See Fig. 6 for a logarithmic plot.)

zero beyond a certain distance. This holds even if the
switching delay is readjusted to uphold null alignment.
Furthermore, in 3+1-dimensional Minkowski spacetime,
the entanglement between exactly null aligned detectors
is dominated by correlations generated by communica-
tion rather than by harvesting, because the MΨ term is
dominated by MΨ

− rather than MΨ
+ , as shown in [46].

This raises two questions regarding entanglement har-
vesting in Schwarzschild spacetime: Firstly, does the
presence of caustics enhance the ability of detectors to
become entangled? What is more, can caustics make
the harvested entanglement no longer decrease monoton-
ically with distance?

Secondly, does the singularity structure of the Wight-
man function allow for the entanglement to be domi-
nated by harvesting rather than signaling if the detec-
tors’ switching instead of being aligned along a direct
null geodesic is aligned along a secondary null geodesic,
i.e., a null geodesic which has passed through a caustic?
As discussed in Sec. II B, here the singularity structures
of the real and imaginary parts of the Wightman func-
tion are shifted, so that MΨ

+ could dominate over MΨ
−

because the real part now carries the δ(σ)-singularity.
This would then constitute entanglement harvesting be-
tween timelike separated detectors, since the secondary

null geodesics lie inside the causal cone which is bounded
by the direct null geodesics between detectors.

The following results answer both questions in the af-
firmative.

Fig. 1 shows the gravitational lensing effect on the
harvesting of entanglement by two static detectors in
Schwarzschild spacetime when the field is in the Boul-
ware state. The scenario is as follows: Two identical
detectors, with detector gap Ωaa = Ωbb = 5M−1 and
λ = λa = λb

8, are placed on static worldlines at the
same radial coordinate r = 6.009M . The angular sepa-
ration γ between the two detectors varies along the hor-
izontal axes of each subplot. Both detectors are coupled
to the field through the Gaussian switching function (25),
but the difference between the two centers of the switch-
ing functions is shifted by an amount of coordinate time
∆ba = t0b − t0a which varies between the subplots as
indicated.

An inset in each subplot visualizes how far null
geodesics, emanating from detector a at time t0a, propa-

8 Note that because λ is dimensionless and all terms are of order
O(λ2) the numeric value of λ only affects the result by an overall
factor. We choose λ = 1 for improved readability.
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FIG. 3. Relative differences between correlation terms in the Boulware state, and the Hartle-Hawking and Unruh states,

respectively, i.e., plotting |M
H−MB |
|MB | , |M

U−MB |
|MB | ,

|MH
+ −MB

+ |
|MB | and

|MU
+−MB

+ |
|MB | , in analogy to Fig. 1.
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gate within the coordinate time interval ∆ba: The black
filled circle represents the interior of the black hole hori-
zon at r = 2M , a black ring around it represents all
points with radial coordinate r = 6.009M and the red
dot represents the spatial location of detector a. The vi-
olet curve then indicates the spatial position of the null
wavefront after propagation time ∆ba. In particular, the
different insets show the formation of caustics located
at angular separation γ = π from the point of origin
(which is plotted in red) where the null wavefront in-
tersects with itself. The caustic reaches r = 6.009M at
∆ba ≈ 20.7386M .

The four different curves in each subplot show the re-
sulting contributions to the final density matrix of the
two detectors (28), when the field is in the Boulware
state. (Accordingly they are denoted with a superscript
Ψ = B.) The horizontal, red and dashed line shows the
single detector noise term LBdd := LBaa = LBbb. Because
it only depends on the radial coordinate and the switch-
ing function’s width Td, it is equal for both detectors and
constant for all positions of detectors considered here.The
blue solid curve shows the absolute value |MB | resulting
from the chosen value of the switching delay ∆ba in each
subplot, as a function of the angular separation between
the detectors. The two remaining dashed curves show the
absolute values |MB

− | in green and |MB
+ | in orange which,

as discussed in Sec. III B, are obtained by replacing the
Wightman function by its imaginary and real part respec-
tively. In particular, as discussed in Sec. III B, if |MB | is
dominated by |MB

− | (obtained from the imaginary part),
then the detectors’ entanglement is predominantly gen-
erated in the sequential interaction of the detectors with
the field. On the other hand, if |MB | is dominated by
|MB

+ | then final entanglement between the detectors is
predominantly harvested from preexisting entanglement
in the vacuum of the field.

Altogether the subplots in Fig. 1 illustrate the lensing
effect which appears in proximity to the caustics. The
first two subfigures show the settings with the shortest
switching delay ∆ba between the switching functions. In
these two plots, we see that the correlations between the
detectors, as captured by |MB |, are largest when the cen-
ters of the intervals during which the detectors couple to
the field are connected by (direct) null geodesics. In the
first subplot there is a certain interval of angular separa-
tions in which the blue line for |MB | exceeds the noise
term LBd and the detectors end up entangled. However,
in the second subfigure the detectors’ final state remains
separable, even for null separated detectors, because ∆ba

is increased. Note that here the contribution from MB
−

dominates the peaks of MB , hence entanglement between
the detectors cannot be attributed to harvesting of pre-
existing entanglement from the field but to entanglement
generation due to sequential interaction.

In flat spacetime no entanglement would be observed
in the final detectors’ state for larger switching delay
between the detectors. Intuitively this is related to
the growth of the lightcone’s surface area which dilutes

the entanglement. In Schwarzschild spacetime, however,
where the lightcone refocuses at caustics the opposite can
happen: As seen in the third to the sixth subplot (in
order of increasing ∆ba) the detectors can become en-
tangled at larger switching delays ∆ba again, at angular
separations close to γ = π in the proximity of caustics.
This answers in the affirmative the first of the two guid-
ing questions raised above.

The second of the two questions raised above per-
tains to the Wightman function’s singularity structure
described in Sec. II B. Its effect is easy to recognize when
comparing the last (bottom right) subfigure to the first
(top left) subfigure of Fig. 1. In both subfigures the corre-
lations between the two detectors, as captured by |MB |,
are maximal for null aligned detectors. However, in the
first subfigure the detectors are connected by primary
null geodesics, whereas in the last subfigure they are con-
nected by secondary null geodesics. At secondary null
geodesics, as discussed in Sec. II B, the singularity struc-
ture of the Wightman function is shifted from primary
null geodesics so that now the real (anti-commutator)
part carries the δ(σ)-singularity, which used to be carried
instead by the imaginary (commutator) part in the case
of primary null geodesics. Accordingly, the two contri-
butions |MB

± | have a qualitative similar overall shape in

the first and the last subfigure, except that the MB
+ and

MB
− have swapped places. For detectors aligned along a

secondary null geodesic, the real part contribution MB
+

dominates over the imaginary part contribution MB
− . So

if these correlations overcame the noise, |MB | > |Ldd|,
the detectors would become entangled by harvested en-
tanglement. However, the correlations in the last subfig-
ure are too weak for the detectors to end up entangled.
To find detectors that get entangled by genuinely har-
vested correlations around secondary null geodesics, we
need to position the detectors closer to caustics so as
to make use of the overall enhancement of the Wight-
man function there. Such a setting is seen in the fifth
subfigure (for ∆ba = 21.5M) of Fig. 1. In this and the
following subfigures of Fig. 1, the switching delay ∆ba is
larger than the shortest light propagation (Schwarzschild
coordinate) time between detectors with angular separa-
tion γ = π, and the detectors (at r = 6.009M) which
are null aligned here are aligned along a secondary null
geodesic and timelike separated. With this we have an-
swered in the affirmative the second of the above ques-
tions, as we observe the genuine harvesting of preexisting
entanglement from the field by timelike separated detec-
tors, aligned along secondary null geodesics. In the fol-
lowing, we will see further examples allowing for entan-
glement harvesting between timelike separated detectors
with angular separation γ = π.

Complementary to Fig. 1, the same scenario and ef-
fects are seen in Fig. 2 from a slightly different perspec-
tive. Here, the contributions to the detectors’ final den-
sity matrix are plotted over the coordinate time switching
delay ∆ba, while the four different subplots correspond
to four different angular separations. (Fig. 6 provides a
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State Local noise term

Boulware state LB
DD/(λaλb) = 9.82× 10−7

Unruh state LU
DD/(λaλb) = 9.96× 10−7

Hartle-Hawking state LH
DD/(λaλb) = 1.08× 10−6

TABLE I. Numerical values of the local noise terms in the
three different states considered, for the scenarios in Fig. 1,
Fig. 7 and Fig. 8, respectively.

logarithmic plot of the same data.) Note that these plots
over ∆ba are directly comparable to the plots also found
in [46] in 3+1-dimensional Minkowski spacetime.

In the first subplot of Fig. 2, for angular separation
γ = π/5, there are three peaks appearing in |MB | which
correspond to an alignment of the switching functions
along primary, secondary and tertiary null geodesics, re-
spectively. The qualitative structure of the first peak
and its contributions from |MB

+ | and |MB
− | correspond

to the structure found in flat spacetime in [46]. How-
ever, in the secondary peak the qualitative roles of |MB

+ |
and |MB

− | are interchanged due to the shifted singularity
structure of the Wightman function, as is easy to see in
the logarithmic plot in Fig. 6 (in the appendix). For the
tertiary peak, together with the singularity structure of
the Wightman function, also the qualitative structure of
the peak shifts back to its primary form.

Even if there are three peaks appearing at angular
separation γ = π/5, only the first one corresponding to
alignment along the direct, primary null geodesic exhibits
entanglement in the detectors’ final state. In an interme-
diate regime of angular separations, for 0.64π . γ .
0.81π, not even the primary peak overcomes the noise
and the detectors’ final state remains separable for all
switching delays ∆ba. An example of this is seen in the
third (bottom left) subplot of Fig. 2 for angular separa-
tion γ = 3π/4. However, as the angular separation ap-
proaches γ = π both the primary and secondary peak in-
crease their size again and they overcome the noise, thus,
leaving the detectors in an entangled state. Gradually,
as γ → π, the primary and secondary peak superpose
and finally create one joint peak aligned at the caustic
for γ = π. Here we see that for switching delays that
are somewhat larger than the direct null alignment, the
extracted entanglement can be dominated by |MB

+ | and
thus can be attributed to entanglement harvesting from
the field.

The results shown in Fig. 1 are for the field in the Boul-
ware state. As seen in the analogous Fig. 7 for the Unruh
state and Fig. 8 for the Hartle-Hawking state (both in the
appendix), the same phenomena appear in these states
as well. In fact, the quantitative differences between the
states (which may be difficult to see with the bare eye)
are mostly due to the difference in the noise term, which
is given in Tab. I. The correlation terms, in particular
in the scenarios of detectors that harvest entanglement
in the proximity of caustics, agree to many digits for all
three states, as can be seen in Fig. 3, which shows their

relative differences.

We conclude this section with a study of entanglement
harvesting from the Boulware state between detectors at
antipodal locations with the black hole exactly in the
middle between them, i.e., at identical radial coordinates
r = ra = ra and with an angular separation γ = π, for
a range of detector locations reaching down very close to
the horizon at radial positions r = 2.095M .

At the different radial coordinates the detectors expe-
rience different gravitational redshifts. To account for
this, we adjust the width of the switching functions (25)

to Td(r) = T∞/
√
f(r) = T∞/

√
1− 2M/r, such that,

at all radial coordinates Td(r), corresponds to the same
amount of proper time given by some value T∞. Analo-
gous to the plots above, Fig. 4 shows the resulting con-
tributions to the detectors’ final state for T∞ = 1M . It
shows that at all radial coordinates considered, even close
to the horizon, the two detectors can become entangled
and the entanglement can be dominated by entanglement
harvesting, when the switching delay ∆ba = t0b − t0a is
chosen appropriately.

To understand the structure of the plots and its depen-
dence on ∆ba it is useful to consider the light propaga-
tion coordinate time ∆t between the two detectors. This
is the coordinate time that it takes for a null geodesic
starting at spatial coordinates (r, θ = π/2, φ) to reach
the anti-podal point (r, θ = π/2, φ + π). Fig. 5 plots
this time for the range of radial coordinates we consider.
It shows that ∆t is minimal at r = 3M . For this crit-
ical case, it takes the value ∆tmin = 3

√
3πM . Setting

the switching delay equal to the light propagation time,
i.e., setting ∆ba = ∆t, yields exact null alignment of the
detectors’ switching functions.

Around exact null alignment between the detectors we
expect a peak in the final detector entanglement, and
this is, indeed, what we observe in Fig. 4. At first, in
the subplots showing the lower values of ∆ba, one peak
forms around r = 3M since the detectors located at this
radial coordinate are the first to be exactly null aligned.
As ∆ba is increased in the following subplots, a double
peak structure forms since for ∆ba > 3

√
3πM there are

always two radial coordinate positions at which the de-
tectors are exactly null aligned. Regarding the relative
size of the contributions MB

+ and MB
− , we observe again

that both contributions are of comparable size when the
detectors are exactly null aligned, as we already observed
in the subplot of Fig. 2, for γ = π. This is in contrast
to scenarios where the detectors are null aligned along
primary null geodesics and sufficently far away from any
caustics. There, just as in flat Minkowski spacetime, the
correlations are dominated by the M− contribution when
the detectors are exactly null aligned. However, at the
caustics, where a whole envelope of null geodesics con-
nects the detectors at once, the singularity structure of
the two-point function is altered (see [37]). This results in
the M+ contribution dominating before exact null align-
ment and the M− contribution dominating after exact
null alignment of the switching functions.



12

2 4 6 8 10
0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

5.×10-8

6.×10-8

7.×10-8

2 4 6 8 10
0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

5.×10-8

6.×10-8

7.×10-8

2 4 6 8 10
0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

5.×10-8

6.×10-8

7.×10-8

2 4 6 8 10
0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

5.×10-8

6.×10-8

7.×10-8

2 4 6 8 10
0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

5.×10-8

6.×10-8

7.×10-8

2 4 6 8 10
0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

5.×10-8

6.×10-8

7.×10-8

FIG. 4. Entanglement harvesting from the Boulware state by static detectors at antipodal positions close to a Schwarzschild
black hole: The plots show the entries of the final detectors’ state (28) for two identical detectors (λd = 1,Ωd = 5/M) which
are placed at equal radial coordinates rd at angular separation γ = π, i.e., with the black hole exactly in the middle between
them. To account for the different red-shifts the width of the detector switching functions (25) is set to Td = M/

√
1− 2M/r,

i.e., kept equal with respect to the detectors’ proper time. The different subplots show the results for different switching
delays ∆ba = t0b − t0a. Detectors placed at r = 3M are the first for which the switching functions are exactly null aligned at
∆ba = 3

√
3πM ≈ 16.32M . Both for larger and lower radial coordinates the light propagation time is longer, hence two peaks

form in the later subplots around the radial coordinates for which exact null alignment is achieved. (See Fig. 5.). The vertical
purple lines indicate the radial coordinates at which null alignment of the switching function is achieved, i.e., where ∆ba = ∆t
(see Fig. 5). (See supplementary material for animated version of this plot.)

V. DISCUSSION AND OUTLOOK

Using UDW detectors, we investigated entanglement
harvesting from a Klein-Gordon field in the Boulware,

Hartle-Hawking and Unruh vacuum states on the back-
ground of Schwarzschild spacetime in 3+1 dimensions.
We showed that the realistic 3+1 dimensional case pos-
sesses a particularly rich phenomenology due to the pres-
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FIG. 5. Light propagation coordinate time between detectors
in the scenario of Fig. 4.

ence of secondary (and higher) null geodesics and caus-
tics.

In particular, we investigated the ability of two de-
tectors that are static at the same radial coordinate,
but with different angular coodinates, to harvest entan-
glement from the Boulware, Hartle-Hawking and Unruh
vacua as they get closer to the horizon.

We paid special attention to entanglement harvest-
ing in the regions of spacetime where secondary null
geodesics and caustics can connect the two harvesting
detectors. We found that genuine entanglement har-
vesting can indeed be amplified through ‘entanglement
gravitational lensing’ effects when the detectors are close
to regions where caustics appear. By the term “gen-
uine entanglement harvesting” we mean the extraction
of preexisting entanglement from the field, as opposed to
the extraction of entanglement that is created through

communication between the detectors. Interestingly, this
genuine harvesting can also appear for timelike separated
detectors, for example, when the detectors are connected
by secondary null geodesics. Mathematically, this results
from a change in the singularity structure of the Wight-
man function as the field waves cross through caustics.

The formalism that we developed here can also be used
to analyze further interesting black hole entanglement
harvesting configurations, such as the case where the de-
tectors are in motion and possibly also when crossing the
event horizon.

Furthermore, since the effects of entanglement harvest-
ing amplification that we found here are due to lens-
ing which arises from the existence of secondary null
geodesics connecting the two detectors, an intriguing
follow-up question arises: To what extent could entan-
glement harvesting be engineered to be amplified even in
flat spacetime, namely in the presence of suitable mir-
ror and lensing arrangements? These scenarios will be
explored in future work.
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Appendix A: Density matrix contributions

In this appendix, we give a detailed derivation of the expressions used for the calculation of the perturbative
contributions to the final density state of the two detectors in (28). To evaluate the leading order contributions to
the detectors’ final density matrix, we need certain Fourier-type integrals of the switching function (25), ηd(t) =

e−((t−t0d)/Td)2

. Firstly, we have

∫ s

−∞
dt eiνtηd(t) =

√
πTd
2

e−
ν2T2

d
4 eiνt0d

(
1 + erf

(
− iνTd

2
+
s− t0d
Td

))
, (A1)∫ ∞

−∞
dt eiνtηd(t) =

√
πTde−

1
4ν

2T 2
d eiνt0d , (A2)

where erf(z) = z√
π

∫ z
0
dt e−t

2

. Furthermore, we need the integral

∫ ∞
−∞

dt′ eiµt′ηd′(t
′)

∫ t′

−∞
dt eiνtηd(t). (A3)
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FIG. 6. Logarithmic plot version of Fig. 2. (See supplementary material for animated version of this plot.)

To this end, consider

√
πTd
2

e−
ν2T2

d
4 eiνt0d

∫ ∞
−∞

dt′ eiµt′e
−

(t′−t
0d′ )

2

T ′2d

(
1 + erf

(
− iνTd

2
+
t′ − t0d
Td

))

=

√
πTd
2

e−
ν2T2

d
4 eiνt0de

−
t2
0d′
T2
d′

∫ ∞
−∞

dt′ e
− t′2
T2
d′

+t′
(

2
t
0d′
T2
d′

+iµ

)
erf

(
− iνTd

2
+
t′ − t0d
Td

)
+
πTdTd′

2
e−

µ2T2
d′+ν

2T2
d

4 ei(µt0d′+νt0d).

(A4)

For the t′-integral, use (A3) and (A7) from [44], which is

I(a, b) =

∫ ∞
−∞

dy e−a
2−iby−y2

erf(y − ia) = −i
√
πe−a

2−b2/4erfi

(
a+ b/2√

2

)
, (A5)

where erfi(z) = −i erf(iz), with y = t′/Td′ , a = νTd

2 − i t0dTd
and b = 2i t0d′Td′

− µTd′ , then∫ ∞
−∞

dt′ e
− t′2
T2
d′

+t′
(

2
t
0d′
T2
d′

+iµ

)
erf

(
− iνTd

2
+
t′ − t0d
Td

)

= −i
√
πTd′e

−µ2T2
d′

4 +
t2
0d′
T2
d′

+iµt0d′
erfi

(
1√
2

(
νTd − µTd′

2
− i

t0d
Td

+ i
t0d′

Td′

))
.

(A6)

Inserting this above yields∫ ∞
−∞

dt′ eiµt′ηd′(t
′)

∫ t′

−∞
dt eiνtηd(t) =

TdTd′π

2
e−

µ2T2
d′+ν

2T2
d

4 ei(νt0d+µt0d′ )

(
1− i erfi

[
νTd − µTd′

2
√

2
+

i√
2

(
t0d′

Td′
− t0d
Td

)])
.

(A7)
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FIG. 7. Gravitational lensing of entanglement harvesting from the field in the Unruh state: The entire setup is identical to
the setup of Fig. 1, except that here the initial state for the field is the Unruh state. The plots show the absolute values of
MU , MU

± and LU
dd in (28) for two static detectors placed at radial coordinate r = 6.009M with varying angular separation γ.

All detector parameters are equal (λd = 1, Ωd = 5M−1, Td = 1M), only the offset ∆ba = t0b − t0a between the two switching
functions (25) varies between the plots. The inset indicates how far a null wave front propagates from the red point within a
coordinate time interval ∆ba.
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FIG. 8. Gravitational lensing of entanglement harvesting from the field in the Hartle-Hawking state: The entire setup is
identical to the setup of Fig. 1, except that here the initial state for the field is the Hartle-Hawking state. The plots show
the absolute values of MH , MH

± and LH
dd in (28) for two static detectors placed at radial coordinate r = 6.009M with varying

angular separation γ. All detector parameters are equal (λd = 1, Ωd = 5M−1, Td = 1M), only the offset ∆ba = t0b − t0a
between the two switching functions (25) varies between the plots. The inset indicates how far a null wave front propagates
from the red point within a coordinate time interval ∆ba.
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For stationary detectors we use τd(t) =
√
f(rd)t as the relation between proper time and coordinate time (see

Eq. (24)). With this, and (10) and (A2), the single detector noise term LΨ
dd′ in (30) takes the following form (denoting

r = rd, r
′ = rd′ , fd = f(rd) and Nd =

√
fd).

LΨ
dd′ = λdλd′fafb

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ ηd(t)ηd′(t
′)e−iΩdNdt+iΩd′Nd′ t

′
WΨ (xd(t); xd′(t

′))

=
λdλd′fafb

(4π)
2

∞∑
`=0

(2`+ 1)P`(cos γ)

∫ ∞
−∞

dω
GΨ
`ω(rd, rd′)

ω

(∫ ∞
−∞

dt ηd(t)e−i(ΩdNd+ω)t

)(∫ ∞
−∞

dt′ ηd′(t
′)ei(Ωd′Nd′+ω)t′

)

=
λdλd′NdNd′TdTd′

16π

∞∑
`=0

(2`+ 1)P`(cos γ)

∫ ∞
−∞

dω
GΨ
`ω(rd, rd′)

ω
ei(Ωd′Nd′+ω)t0d′−i(ΩdNd+ω)t0d− 1

4 (ΩdNd+ω)2T 2
d− 1

4 (Ωd′Nd′+ω)2T 2
d′

(A8)

Analogously, for MΨ in (29) we obtain using (A7),

MΨ =
−λaλbfafb

(4π)2

∞∑
`=0

(2`+ 1)P`(cos γ)

∫ ∞
−∞

dω
1

ω

(∫ ∞
−∞

dt ei(Ωafa−ω)tηa(t)

∫ t

−∞
dt′ ei(ω+Ωbfb)t

′
ηb(t′)GΨ

`ω(ra, rb)

+

∫ ∞
−∞

dt ηb(t)ei(Ωbfb−ω)t

∫ t

−∞
dt′ ei(ω+Ωafa)t′ηa(t′)GΨ

`ω(rb, ra)

)
=
−λaλbfafbTaTb

32π

∞∑
`=0

(2`+ 1)P`(cos γ)

∫ ∞
−∞

dω
1

ω

×
(

e−
µ2
aT

2
a +ν2

b T
2
b

4 ei(νbt0b+µat0a)

(
1− i erfi

[
νbTb − µaTa

2
√

2
+

i√
2

(
t0a
Ta
− t0b
Tb

)])
GΨ
`ω(ra, rb)

+e−
µ2
bT

2
b +ν2

aT
2
a

4 ei(νat0a+µbt0b)

(
1− i erfi

[
νaTa − µbTb

2
√

2
+

i√
2

(
t0b
Tb
− t0a
Ta

)])
GΨ
`ω(rb, ra)

)
,

(A9)

with νd = ω + ΩdNd, µd = ΩdNd − ω. For practical evaluation purposes, one can manipulate the integrals in (A9)
and (A8) further so that the integration over ω only runs over 0 < ω <∞.

Appendix B: Numerical techniques for the
Wightman function

In order to evaluate the Wightman function in the sit-

uations presented in this work, integrals over R
in/up
`ω (r)

with respect to r are needed. However, there is no known

closed-form expressions for R
in/up
`ω (r). Hence, one has to

use numerical techniques. Specifically, we use numerical
methods to evaluate Rin

`ω, Rup
`ω and the set of coefficients

I`ω, ρ
in/up
`ω in the region Mω ∈ [0, 10] in steps of 10−3,

r∗/M ∈ [−4, 13] in steps of 1/5 and ` for all (integer)
values 0 ≤ ` ≤ 100. Different techniques were involved
in the evaluation.

For Rup
`ω we used the NDSolve-based numerical method

implemented in the Regge-Wheeler Mathematica [47]
package of the Black Hole Perturbation Toolkit [48].

For Rin
`ω we define two auxiliary quantities r̄ = r/2M

and ω̄ = 2Mω, then use the so-called Jaffé-series [49] to
write the Rin

`ω solution to (4) for r̄ ∈ [1,∞) as:

Rin
`ω (r̄) = r̄2iω̄ (r̄ − 1)

−iω̄
eiω̄r̄

∞∑
n=0

an

(
r̄ − 1

r̄

)n
, (B1)

where

anαn−1 + an−1βn−1 + an−2γn−1 = 0, (B2)

αn = (n+ 1)(n+ 1− 2iω̄),

βn = −1− 2n(n+ 1)− `(`+ 1) + 4ω̄ (i + 2ni + 2ω̄) ,

γn = (n− 2iω̄)2,

with a0 = e−2iω̄ and an = 0∀n < 0. This solution was
implemented in Mathematica. However some care has to
be taken: In practice we have to impose a cut-off on the
number of terms nmax to include in the series. To set an
adequate value for nmax we used the following quantity:

ε (`, ω̄, r̄, nmax) =
anmax+1

(
r̄−1
r̄

)nmax+1∑nmax
n=0 an

(
r̄−1
r̄

)n . (B3)

Since we wanted to have at least 16 digits of precision in
the Rin

`ω modes, we want to find an nmax such that

Re [ε (`, ω̄, r̄, nmax)] < 10−16 and

Im [ε (`, ω̄, r̄, nmax)] < 10−16
(B4)

for all values of r̄,` and ω̄ in the region where the solu-
tions are evaluated. For that, we used the fact that the
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(a) Integrand in (B5) (b) Relative difference integral in (B5)

(c) Summand in (B5) (d) Relative difference `-sum in (B5)

FIG. 9. (a) Integrand in (B5) as a function of Mω and ` for the Boulware state. The value of Mω where the asymptotic regime

begins grows with `. More precisely, the transition to the asymptotic regime begins around ωr ∼
√
` (`+ 1) (for ` > 0 and

radii not too close to the horizon). Notice that thanks to the θ(ω) in (11), the slowest decaying term in (B5) for the Boulware

state is proportional to ∼ 2 e
− 1

2
(ΩdNd+ω)2T2

D

ω
.

(b) Relative difference between the integral in (B5) for the Boulware state when integrated up to ωcut and up to ωcut + δ, with
δ = 1/10. The reason to limit this plot to 10−10 is that those integrals where evaluated to 10 significant digits, hence, a relative
difference of 10−10 means that the integral converged completely to all significant digits. Comparing with Fig. 9a, we see that
exponentially fast convergence happens after Mωcut becomes slightly larger than the Mω where the asymptotic regime begins.
(c) Summand in (B5) as a function of ` for the Boulware state. One can notice from this figure that the summand decays
super-exponentially with increasing `. In fact, for ` > 30, it has already converged to all 10 significant digits that we got when
evaluating the integrals.
(d) Relative difference between the `-sum in (B5) for the Boulware state when summed up to lcut and lcut − 1. The reason
to limit this plot to 10−10 is that the integrals in the sums were to 10 digits of precision. Hence, a relative difference that is
smaller than 10−10 should represent numerical noise and not actual significant digits.

convergence of the series becomes slower with increasing
r̄ to conclude that the largest ε happens at the highest
r̄ we intended to evaluate, which was around r̄max ≈ 5.
Then, fixing r̄ = r̄max we tested a couple of ω̄ and ` values
in the region of interest and concluded that nmax = 5000
was enough to satisfy (B4) in all regions of interest.

For the I`ω, ρ
in/up
`ω coefficients we used data from [36],

which was evaluated using a Mathematica implementa-
tion of the Mano-Suzuki-Takasugi (MST) method. An
extensive review of that method can be found in [50].

1. The LΨ
dd-terms

By setting d = d′ in (A8) and manipulating the inte-
gration range from −∞ < ω < ∞ to 0 < ω < ∞, we
obtain the following expression for the LΨ

dd-terms:
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LΨ
dd (rd) =

(NdλdTd)
2

16π

∞∑
`=0

(2`+ 1)

∫ ∞
0

dω
1

ω

(
GΨ
`ω(rd, rd)e−

1
2 (ΩdNd+ω)2T 2

D −GΨ
`,−ω(rd, rd)e−

1
2 (ΩdNd−ω)2T 2

D

)
. (B5)

To verify the convergence of such integral, one should check the large-|ω| behavior of the GΨ
`ω(rd, rd), which varies

among the quantum states (11)-(13):

GB`ω(rd, rd) ∼ θ(ω)
(
|R̄up
`ω(rd)|2 + |R̄in

`ω(rd)|2
)
, (B6)

GU`ω(rd, rd) ∼ |R̄up
`ω(rd)|2

(
θ(ω)− θ(−ω)e2πωκ

)
+ θ(ω)|R̄in

`ω(rd)|2,
GH`ω(rd, rd) ∼ |R̄up

`ω(rd)|2
(
θ(ω)− θ(−ω)e2πωκ

)
+ |R̄in

`ω(rd)|2
(
θ(ω)e−2πωκ − θ(−ω)

)
.

The leading asymptotic behavior of |R̄in/up
`ω |2 as |ω| →

∞ is |R̄in/up
`ω |2 ∼ 1 [51]9. Hence, to leading order

for large |ω|, GΨ
`ω(rd, rd) ∼ 1. By substituting such

result into the integrand in (B5), one concludes that
the slowest-decaying term of the integrand falls off as

∼ 2 e−
1
2

(ΩdNd−ω)2T2
D

ω . Therefore, the integral in (B5) is
fast-converging. Given that, we are able to numerically
evaluate it accurately enough with a frequency cut-off
Mωcut = 10. The asymptotic regime of the integrand
and the convergence of the integral are illustrated in
Figs. 9a and 9b.

In order to verify the convergence of the `-sum, we
begin by evaluating the integrals in (B5), multiplying
by 2` + 1 and plotting the result against `. The out-

come is shown in Fig. 9c, where we can see that such
quantity decays super-exponentially. Given this numer-
ical evidence, the `-sum in that equation is expected to
converge with a good accuracy even with a cutoff lower
than the `cut = 100 we used. In fact, as presented in
Fig. 9d, `cut = 30 is enough to converge to all 10 signifi-
cant digits used when evaluating the Boulware integrals.

2. The MΨ-terms

Since we already know the large-|ω| asymptotics of
GΨ
`ω(rd, rd), to analyze the behavior of the integrand

in (A9) in that regime we have to study the factors that
multiply each of its terms. These factors are very similar
and it suffices to analyze only one of them:

e−
µ2
aT

2
a +ν2

b T
2
b

4 ei(νbt0b+µat0a)erfc

[
i(νbTb − µaTa)

2
√

2
− 1√

2

(
t0a
Ta
− t0b
Tb

)]
, (B7)

where erfc(z) = 1− erf(z). Expanding the exponential functions, we obtain

αabe−
1
4 (T 2

a +T 2
b )ω2

e−
1
2 (NbT

2
b Ωb−NaT

2
a Ωa)ωeiω(t0b−t0a)erfc

[
i(νbTb − µaTa)

2
√

2
− 1√

2

(
t0a
Ta
− t0b
Tb

)]
, (B8)

where

αab = e−
1
4 (N2

b T
2
b Ω2

b+N2
a T

2
a Ω2

a)ei(ΩbNbt0b+ΩaNat0a). (B9)

Now we use the following asymptotic expression for the erfc(z):

erfc(z) ∼ e−z
2

z
√
π
, z →∞, |ph(z)| < 3π/4, (B10)

to conclude that as ω →∞,

erfc

[
i(νbTb − µaTa)

2
√

2
− 1√

2

(
t0a
Ta
− t0b
Tb

)]
∼ βab

e
1
8 (Ta+Tb)

2ω2

e
1
4 (Ta+Tb)(NbTbΩb−NaTaΩa)ωe−iω 1

2 (Ta+Tb)( t0bTb −
t0a
Ta

)

i((NbΩb+ω)Tb−(NaΩa−ω)Ta)

2
√

2
− 1√

2

(
t0a
Ta
− t0b

Tb

) , (B11)

9 Such asymptotics are non-uniform and valid only when
ω � V`(r), as illustrated in Fig. 9a
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FIG. 10. (a) Boulware state integrand in (A9) after rewriting the integral so that it ranges from ω = 0 to Mω = 10, as a
function of Mω, for several different ` = 0, 10, 20, 30.
(b) Relative difference in the Boulware state integral in (A9) after rewriting the integral so that it ranges from ω = 0 to
ω = ωcut for several different ` = 0, 10, 20, 30. To evaluate the relative difference, we integrate up to ωcut and then to ωcut + δ,
with δ = 1/10.
(c) Boulware state integral in (A9), after rewriting the integral so that it ranges from ω = 0 to ω = ωcut for several different
` = 0, 10, 20, 30. Here integrated up to Mωcut = 10.
(d) Relative difference in the Boulware state integral from (A9), after rewriting the integral so that it ranges from ω = 0 to
ω = ωcut for several different ` = 0, 10, 20, 30. To evaluate the relative difference, we sum up to `cut and then to `cut + 1,
ranging form `cut = 1 up to `cut = 100. For `cut > 45 all significant digits were exactly canceling out when evaluating the
relative difference.

where

βab = (παab)−1/2e−
1
2 (
t0b
Tb
− t0aTa )2

e
i
2 (NaTaΩa

t0b
Tb

+NbTbΩb
t0a
Ta

)e−
1
4 (NaTaΩaNbTbΩb). (B12)

Putting everything together we conclude that

e−
µ2
aT

2
a +ν2

b T
2
b

4 ei(νbt0b+µat0a)erfc

[
i(νbTb − µaTa)

2
√

2
− 1√

2

(
t0a
Ta
− t0b
Tb

)]
∼

αabβab
e−

1
8 (Ta−Tb)ω

2

e
1
4 (Ta−Tb)(NbTbΩb+NaTaΩa)ωe

i
2ω(Tb−Ta)( t0aTa +

t0b
Tb

)

i((NbΩb+ω)Tb−(NaΩa−ω)Ta)

2
√

2
− 1√

2

(
t0a
Ta
− t0b

Tb

) , ω →∞,
(B13)
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which leads to the conclusion that, whenever Ta 6= Tb, the whole term decays super-exponentially as e−
1
8 (Tb−Ta)2ω2

.
On the other hand, if Ta = Tb ≡ T , which is the case we study in this work, (B13) simplifies to

e−
(µ2

a+ν2
b )T2

4 ei(νbt0b+µat0a)erfc

[
i(νb − µa)T

2
√

2
+

1

T
√

2
(t0b − t0a)

]
∼ αabβab

i(NbΩb−NaΩa+2ω)T

2
√

2
− (t0a−t0b)

T
√

2

, ω →∞. (B14)

Then both, the real and imaginary parts of this quan-
tity decay linearly with ω, since the absolute value of the
denominator grows linearly with the frequency. Given
that, by considering the extra ω−1 in the integrand
in (A9), we conclude that it decays as ω−2. Hence, the
integrals defining the MΨ-terms are convergent.

We remark that such leading asymptotic behavior in
(B14) is, in general, not achieved by Mω = 10, but one
can still perform the numerical integration to a good ac-
curacy because, before this leading asymptotic regime,

there is an intermediary regime where the integrand is
exponentially decaying, as can be seen in Fig. 10a. We
can further confirm that convergence by looking at the
integral in (A9) as a function of ωcut: As can be seen
in Fig. 10b, up to ` = 20 we have convergence up to 4
significant digits, while for larger values of `, the con-
vergence becomes worse, resulting in no significant digits
at all. Yet, since the resulting integral decays super-
exponentially with `, as presented in Fig. 10c, one can
still obtain up to 4 significant digits, as can be seen in
Fig. 10d.
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