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An important feature of Schwarzschild spacetime is the presence of orbiting null geodesics and caustics.
Their presence implies strong gravitational lensing effects for matter and radiation, i.e., for excitations of
quantum fields. Here, we raise the question whether the lensing manifests itself also in the vacuum of
quantum fields, namely by lensing the distribution of vacuum entanglement. To explore this possibility, we
use the method of entanglement harvesting, where initially unentangled localized quantum systems are
temporarily coupled to the field at different locations. We find that for the Boulware, Hartle-Hawking and
Unruh vacua in 3þ 1-dimensional Schwarzschild spacetime, the harvesting of vacuum entanglement is
indeed greatly amplified near caustics. In particular, we establish that preexisting vacuum entanglement can
also be harvested for lightlike separations.

DOI: 10.1103/PhysRevD.108.025016

I. INTRODUCTION

The presence of entanglement between spatially sepa-
rated degrees of freedom of a quantum field is a basic
phenomenon that occurs even for free fields in the vacuum
state on a flat background spacetime [1,2]. The origin of
this vacuum entanglement can be traced back to the fact
that, in wave equations, neighboring field oscillators must
be coupled to each other in order to describe the propa-
gation of waves. The coupling between the neighboring
field oscillators is through spatial derivatives in the wave
operators, such as the d’Alembertian and Dirac operator. It
is this coupling between neighboring field oscillators that
also causes the ground state of the local field oscillators to
be an entangled state.
In curved spacetimes, curvature impacts the derivatives

in the wave operators which then impact the entanglement

in the field. Therefore, curvature also impacts the field
correlations. Conversely, it has been shown that the imprint
that curvature leaves in the field correlators is actually
complete in the sense that the metric can be reconstructed
from the field correlators [3,4]. As was shown in Ref. [5],
the metric can also be reconstructed from the correlations
between local measurements of the field. The entanglement
structure of quantum fields plays a fundamental role in
investigations of phenomena from holography to Hawking
radiation and the black hole information loss problem
[6–16].
To probe the spacetime distribution of entanglement in a

quantum field, a versatile method is to couple initially
unentangled localized quantum systems to the field at
different spacetime regions. The amount of entanglement
that the localized systems acquired can be determined by
standard methods [17,18].
When the entanglement acquired from the field by

localized quantum systems is extracted from the entangle-
ment that was preexisting in the field, this protocol has
become known as entanglement harvesting. Entanglement
harvesting has been investigated in a number of scenarios
since first hinted at in Refs. [19,20], in both flat and curved
spacetime. It has been proven that entanglement harvesting
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can capture the geometry [21] and topology [22] of the
underlying spacetime. So far, the scenario where entangle-
ment is harvested from the field in the presence of black
holes has only been studied in very idealized scenarios such
as 2þ 1-dimensional (Bañados-Teitelboim-Zanelli) black
holes [23] and 1þ 1-dimensional spacetimes with horizons
[24]. The question of entanglement harvesting near a black
hole in 3þ 1 spacetime dimensions has remained open.
However, this case is of particular interest since one can
expect new phenomenology, for example, due to lensing
(see Ref. [25]) and due to the fact that orbiting null
geodesics and caustics can connect the two localized
harvesting systems.
The phenomenology arising from orbiting null geodesics

and caustics on communication through quantum fields
close to a Schwarzschild black hole was addressed in
Ref. [26]. Here, we investigate in detail entanglement
harvesting in a four-dimensional Schwarzschild spacetime,
for the cases of the Boulware, Hartle-Hawking and Unruh
vacua, using tools similar to those applied in Ref. [26]. We
take the localized quantum systems to be static localized
two-level quantum systems with a monopole coupling to a
Klein-Gordon field, i.e., so-called Unruh-DeWitt (UDW)
detectors, or detectors for short. Within this setup, we
analyze the impact of the presence of caustics and of the
fact that the detectors can be connected by secondary null
geodesics, including the case where detectors are placed
close to the event horizon.
We find, that the presence of caustics alters the character-

istics of entanglement harvesting in two particular ways in
comparison to flat spacetime. First, due to a lensing-like
effect caused by the focusing of null geodesics, the final
entanglement between detectors can become greatly ampli-
fied near the caustics in comparison to comparably placed
detectors away from caustics. Second, due to changes in
the singularity structure of the Wightman function which
happen when the field waves cross through caustics, we
observe that timelike-separated detectors can harvest pre-
existing entanglement from the field if they are aligned
along secondary null geodesics, i.e. null geodesics which
orbit half of the black hole and so they have passed through
one caustic. To the best of our knowledge, such harvesting
of preexisting entanglement for lightlike separations has
never been observed before in any spacetime.
Section II B begins by discussing the treatment and

properties of the Wightman function of a massless scalar
field on Schwarzschild spacetime and, in particular, its
global singularity structure. Section III introduces the
detector model, its perturbative treatment and negativity

as entanglement measure for the detectors’ final state.
Section III B discusses when the entanglement between
detectors can be attributed to the harvesting of preexisting
entanglement from the field. Section IV presents our actual
results for specific detectors and the article closes in Sec. V
with a discussion and outlook. The appendices collect
supplemental figures. Furthermore, Appendix A gives the
calculations of the perturbative contributions to the detec-
tors’ state and Appendix B discusses the numerical tech-
niques for the evaluation of the Wightman functions and
integrals evolving the Wightman function.
We use the natural units in which c ¼ G ¼ ℏ ¼ 1.

II. WIGHTMAN FUNCTION IN
SCHWARZSCHILD SPACETIME

In this section we introduce a quantum scalar field in
Schwarzschild spacetime as well as the Wightman function
when the scalar field is in three quantum states of interest
(namely, Boulware, Unruh and Hartle-Hawking). The
reader familiar with these may wish to skip to Sec. II B,
reviewing literature results on the global singularity struc-
ture of theWightman function as the field wave front passes
through caustics of Schwarzschild spacetime which moti-
vate our search for gravitational lensing of entanglement
harvesting.

A. Klein-Gordon quantum field
in Schwarzschild spacetime

In this section, we briefly review the treatment of a
massless Klein-Gordon field in Schwarzschild spacetime,
and the expressions for the Wightman function of the three
field states we consider, which are needed for the pertur-
bative treatment of the field-detector interaction.
The line element of the outer region of Schwarzschild

spacetime in Schwarzschild coordinates ft ∈ R; r ∈
ð2M; ∞Þ; θ ∈ ½0; π�; φ ∈ ½0; 2πÞg, is given by

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

where fðrÞ ≔ 1 − 2M=r M is the mass of the black hole
and r ¼ 2M is the radius of the event horizon. In this outer
region, we consider a scalar quantum field ϕ̂ obeying the
Klein-Gordon (K-G) equation □ϕ̂ ¼ 0. Considering the
Schwarzschild spacetime and availing of its spherical
symmetry, a general real-valued solution for that equation
can be written as

ϕ̂ðxÞ ¼
X∞
l¼0

Xl
m¼−l

Z
∞

0

dω

�
α̂inlmωϕ

in
lmωðxÞ þ α̂uplmωϕ

up
lmωðxÞ þ α̂in†lmωϕ

in�
lmωðxÞ þ α̂up†lmωϕ

up�
lmωðxÞ

�
; ð2Þ
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where x denotes a spacetime point, α̂in=up†lmω are creation and
annihilation operators and

ϕin=up
lmω ðt; r; θ;φÞ ¼

1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωtYlmðθ;φÞ
Rin=up
lω ðrÞ
r

; ð3Þ

with Ylm being the spherical harmonic of degree l and
order m and Rin=up

lω are radial factors.
Substituting the field modes (3) into the K-G equation

leads to the conclusion that Rin=up
lω obeys

d2Rin=up
lω

dr�2
þ ðω2 − VlðrÞÞRin=up

lω ¼ 0; ð4Þ

where r� ¼ rþ 4M ln j r
2M − 1j ∈ ð−∞;þ∞Þ is the tor-

toise coordinate and VlðrÞ ¼ fðrÞ
�
2M
r3 þ lðlþ1Þ

r2

�
is an

effective potential.
The two linearly independent solutions Rin

lω and Rup
lω are

defined by the asymptotic boundary conditions

Rin
lω ∼

�
e−iωr� ; r� → −∞;

Ilωe−iωr� þ ρinlωe
iωr� ; r� → ∞;

ð5Þ

Rup
lω ∼

�
Ilωeiωr� þ ρuplωe

−iωr� ; r� → −∞;

eiωr� ; r� → ∞:
ð6Þ

Here, ρin=uplω ∈ C are the reflection amplitudes and Ilω ∈ C
is the incidence amplitude. For compatibility with Ref. [27]
and ease of notation, let us also define

R̄in=up
lω ≡ 1

rIlω
Rin=up
lω : ð7Þ

Note that it suffices to calculate the modes for just ω ≥ 0
and use the following symmetries for ω < 0:

R̄in�
lω ¼ R̄in

l;−ω; R̄up�
lω ¼ R̄up

l;−ω: ð8Þ

Calculating the response of the detectors to the interaction
with the quantized field ϕ̂ requires, as we shall see in the next
section, the Wightman function. The Wightman function,
when the quantum field is in a state jΨi, is defined as

WΨðx; x0Þ≡ hΨjϕ̂ðxÞϕ̂ðx0ÞjΨi: ð9Þ

It is thus a two-point function satisfying the homogeneous
K-G equation. Henceforth we shall only consider quantum
states jΨi in regions of spacetime where they satisfy the
Hadamard property [namely, Eq. (14) is satisfied for the
Wightman function in such states]. The Wightman function
in Schwarzschild spacetime is given by [27]

WΨðx; x0Þ ¼ 1

ð4πÞ2
X∞
l¼0

ð2lþ 1ÞPlðcos γÞ

×
Z

∞

−∞

dω
ω

e−iωΔtGΨ
lωðr; r0;ΔtÞ; ð10Þ

where γ is the angular separation between the two spacetime
points x and x0 and Δt≡ t − t0. The integral kernel GΨ

lω
depends on the quantum state of the field. For the Boulware
[28] (Ψ ¼ B), Unruh [29] (Ψ ¼ U) andHartle-Hawking [30]
states (Ψ ¼ H) it takes the forms

GB
lω ¼ θðωÞðR̄up

lωðrÞR̄up�
lω ðr0Þ þ R̄in

lωðrÞR̄in�
lωðr0ÞÞ; ð11Þ

GU
lω ¼ R̄up

lωðrÞR̄up�
lω ðr0Þ

1 − e−2πω=κ
þ θðωÞR̄in

lωðrÞR̄in�
lωðr0Þ; ð12Þ

GH
lω ¼ R̄up

lωðrÞR̄up�
lω ðr0Þ þ R̄in�

lωðrÞR̄in
lωðr0Þ

1 − e−2πω=κ
; ð13Þ

where κ ≡ 1=ð4MÞ is the surface gravity, and R̄in=up
lω denotes

the (rescaled) radial factor of the ingoing and upgoing
solutions to the wave equation, as defined in Eq. (7).
Appendix B discusses the numerical techniques used for
the evaluation of the Wightman function.
The expressions above convey that in the Boulware state

both ingoing and upgoing modes are in their ground state,
whereas in the Unruh state the upgoing modes are
thermalized, and in the Hawking state both ingoing and
upgoing modes are thermalized.

B. Singularity structure of the Wightman function

The Hadamard form for the Wightman function
WΨðx; x0Þ is an analytic expression which is defined in a
local neighborhood1 of the source point x and explicitly
shows its singularity structure. Explicitly, it is (e.g.,
Refs. [31–33])

WΨðx; x0Þ ¼ lim
ϵ→0þ

1

4π2

�
u

σ þ iϵΔt
− v ln ðσ þ iϵΔtÞ þ w

	
;

ð14Þ

where u ¼ uðx; x0Þ, v ¼ vðx; x0Þ and w ¼ wðx; x0Þ are
regular and real-valued biscalars. The so-called Synge’s
world function σ ¼ σðx; x0Þ is equal to one-half of the
square of the geodesic distance joining x and x0, which
implies that σ is negative/zero/positive whenever that
geodesic is, respectively, timelike/null/spacelike. The bis-
calars u and v are uniquely determined by the geometry of

1More precisely, the Hadamard form is only defined in a
normal neighborhood of x: a neighbourhood N ðxÞ of x such that
every x0 ∈ N ðxÞ is connected to x by a unique geodesic which
lies in N ðxÞ.
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the spacetime whereas w in principle depends on the
quantum state jΨi. The term in Eq. (14) with u is called
the direct part and the term with v the tail part.
In order to see separately the divergences of the real and

imaginary parts of the Wightman function, the following
distributional limits are useful:

lim
ϵ→0þ

1

σ � iϵ
¼ PV

�
1

σ

�
∓ iπδðσÞ; ð15Þ

lim
ϵ→0þ

ln ðσ � iϵÞ ¼ ln jσj � iπθð−σÞ; ð16Þ

where PV denotes the principal value distribution. This
readily yields the anticommutator

hΨjfϕ̂ðxÞ; ϕ̂ðx0ÞgjΨi ¼ 2ReðWΨðx; x0ÞÞ

¼ 1

2π2

�
uPV

�
1

σ

�
− v ln jσj þ w

	

ð17Þ
and the commutator

D
Ψ



hϕ̂ðxÞ; ϕ̂ðx0Þi


ΨE ¼ 2iImðWΨðx; x0ÞÞ

¼ −signðΔtÞi
2π

½uδðσÞ þ vθð−σÞÞ�:
ð18Þ

The anticommutator and commutator [which, when multi-
plied by iθðΔtÞ yields the classical retarded Green function]
are, respectively dependent and independent of the quan-
tum state jΨi of the field.
Equation (14) shows explicitly the singularity of the

Wightman function along σ ¼ 0, i.e., when x and a x0 in a
local neighborhoodofx are connected by a null geodesic. It is
well known [34,35] that the Wightman function WΨðx; x0Þ
continues to diverge when x and x0 are connected by a null
geodesic globally, i.e., even when x0 is not in a local
neighborhood of x. The global singularity structure of the
Wightman function in the case of Schwarzschild spacetime
was unveiled in Ref. [36]: the divergence of WΨðx; x0Þ
follows a fourfold pattern, with the singularity type changing
every time the null wave front passes through a caustic point
(i.e., a spacetime point where neighboring null geodesics are
focused; in Schwarzschild spacetime, because of the spheri-
cal symmetry, caustics lie along the line γ ¼ 0 of the point of
emission of the null geodesics as well as along the antipodal
line γ ¼ π). Specifically, the pattern for the leading diver-
gence in the real part of the Wightman function is2

PV

�
1

σ

�
→ −δðσÞ → −PV

�
1

σ

�
→ δðσÞ → PV

�
1

σ

�
→ � � �

ð19Þ

and that in the imaginary part of the Wightman function is

−δðσÞ → −PV
�
1

σ

�
→ δðσÞ → PV

�
1

σ

�
→ −δðσÞ → � � �

ð20Þ

where we have omitted the coefficients of the singularity
factors.3 As an example, the leading singularities of the real
and imaginary parts of the Wightman function along the
wave front before crossing any caustics are, respectively,
PVð1=σÞ and −δðσÞ [corresponding to the direct part in
Eq. (14)], whereas after the wave front has crossed one
caustic point these turn into, respectively, −δðσÞ and
−PVð1=σÞ. This change in the singularity structure will
have relevant consequences in entanglement harvesting as
we show below.
The above is the leading singularity structure but there

is a corresponding subleading singularity structure.
Reference [37] showed that, for the imaginary part of the
Wightman function, its subleading fourfold structure is

−θð−σÞ → ln jσj → θð−σÞ → − ln jσj → −θð−σÞ → � � � :
ð21Þ

Reference [37] further conjectured that the subleading
structure for the real part of the Wightman function is

− ln jσj → −θð−σÞ → ln jσj → θð−σÞ → − ln jσj → � � � :
ð22Þ

The first terms in Eqs. (21) and (22) of course correspond to,
respectively, the imaginary and real parts of the tail term
in Eq. (14).

III. ENTANGLEMENT HARVESTING

A. Detector model and perturbative treatment

Alice and Bob will carry detectors that can locally
measure the field around them. To model their detectors
we will use the conventional Unruh-DeWitt particle detec-
tor model [29,38], which consists of a nonrelativistic
quantum system coupled locally to a scalar quantum field.

2An exception to the validity of Eqs. (19) and (20) is at caustic
points; also, by “σ” in these equations we mean a well-defined
extension of the world function outside normal neighborhoods
(see Ref. [37] for more about both of these points).

3Reference [36] showed what the global singularity structure of
the Feynman Green function GFðx0; xÞ ¼ iðθðΔtÞWΨðx; x0Þþ
θð−ΔtÞWΨðx0; xÞÞ is, from which that of the Wightman function
readily follows.
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The Unruh-DeWitt model is covariant and causal4 [39–42]
and captures the main features of the light-matter inter-
action (e.g., atoms coupled to the electromagnetic field)
when exchange of angular momentum between the field
and the internal degrees of freedom of the detector is not
relevant [43]. The covariant treatment and use of time-
dependent perturbation theory to calculate the joint time
evolution of the detectors and the field in arbitrary curved
spacetimes can be found in Refs. [39,42]. In particular, in
the context of entanglement harvesting this model has been
extensively used throughout the literature and the particular
perturbative approach employed here will use the same
notation and conventions used in, among many others,
Ref. [44]. Hence, here we only give a brief summary stating
the most relevant expressions for the present work.
We model the particle detectors D ¼ A; B as two-level

systems with energy eigenstates jgiD (ground state) and
jeiD (excited state) which are separated by an energy gap
ΩD. The detectors couple to the field amplitude ϕ̂ðxDÞ
along their worldline xDðtÞ through the interaction
Hamiltonian5

Ht
int;D ¼ λDηDðtÞ

dτD
dt

μDðtÞ ⊗ ϕ̂ðxDðtÞÞ; ð23Þ

where λD is a coupling constant which is dimensionless in
(3þ 1)-dimensional spacetime, 0 ≤ ηðtÞ ≤ 1 is a real-
valued switching function, τD is the detector’s proper time
and μDðtÞ¼ eiΩDτDðtÞjeihgjDþ e−iΩDτDðtÞjgihejD is the monop-
ole operator. Note that the Hamiltonian of Eq. (23) gen-
erates time translation with respect to coordinate time t, but
not the detector’s proper time τD. (For a detailed discussion
of this point, see Refs. [42,45].)
In the scope of this work, we consider static detectors in

Schwarzschild spacetime, i.e., detectors with constant
spatial coordinates xD ¼ ðrD; θD;ϕDÞ. For such detectors

dτD
dt

¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrDÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=rD

p
; ð24Þ

and we choose the relation between coordinate time and
detector proper time as τDðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
fðrDÞ

p
t. As switching

functions for the detector we use Gaussians which as a
function of coordinate time read

ηDðtÞ ¼ e−ððt−t0DÞ=TDÞ2 ; ð25Þ

where TD denotes the switching width and t0D is the center
of the switching function.
We assume the initial state of the system (at t → −∞) to

be a product state between the ground states of the two
detectors and a field state ρΨ:

ρ0 ¼ jgihgjA ⊗ jgihgjB ⊗ ρΨ: ð26Þ

Assuming that the field state has a vanishing one-point
function, the expansion of the detectors’ state after time
evolution t ¼ 0…T in coordinate time is

ρAB;T ¼ jgihgjA ⊗ jgihgjB
þ λ2AρA;T þ λ2BρB;T þ λAλBρAB;T þOðλ4Þ: ð27Þ

Using the basis order jgiAjgiB; jeiAjgiB; jgiAjeiB; jeiAjeiB
the final state is represented by the density matrix

ρAB;T ¼

0
BBB@

1− LΨ
AA − LΨ

BB 0 0 ðMΨÞ�
0 LΨ

AA LΨ
AB 0

0 LΨ
BA LΨ

BB 0

MΨ 0 0 0

1
CCCAþOðλ4Þ;

ð28Þ

whose entries are

MΨ ¼ −λAλB
Z

∞

−∞
dt
Z

t

−∞
dt0

�
ηAðtÞ

dτA
dt

eiΩAτAðtÞ dτB
dt

ηBðt0ÞeiΩBτBðt0ÞWΨðxAðtÞ; xBðt0ÞÞ

þηAðt0Þ
dτA
dt

eiΩAτAðt0Þ dτB
dt

ηBðtÞeiΩBτBðtÞWΨðxBðtÞ; xAðt0ÞÞ
�
; ð29Þ

LΨ
DD0 ¼ λDλD0

Z
∞

−∞
dt
Z

∞

−∞
dt0ηDðtÞ

dτD
dt

ηD0 ðt0Þ dτD0

dt
e−iΩDτDðtÞþiΩD0 τD0 ðt0ÞWΨðxDðtÞ; xD0 ðt0ÞÞ; ð30Þ

where MΨ takes complex values while LΨ
DD0 ≥ 0 takes non-negative values. For our case of static detectors and Gaussian

switching functions, as shown in Eqs. (A8) and (A9), using the mode expansion of the Wightman function, these

4For pointlike detectors this is strictly true. For smeared detectors this is true in an approximated sense. For details see Refs. [39,40].
5In the fully covariant formulation of the interaction a Hamiltonian density is prescribed [42]. For pointlike detectors, integrating this

density over hypersurfaces of constant t yields Eq. (23).
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expressions can be solved analytically up to one integration
over the frequency of the field modes which needs to be
performed numerically.
To assess and quantify the entanglement of the two

detectors in the final state ρAB;T we use its negativity. Its
perturbative expansion is N Ψ ¼ max ½N Ψ;ð2Þ; 0� þOðλ4Þ
with

N Ψ;ð2Þ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLΨ

AA − LΨ
BBÞ2 þ 4jMΨj2

q
− LΨ

AA − LΨ
BB

�
:

ð31Þ

We see that whether the two detectors end up in an
entangled state, is determined by a competition between
the size of the correlating termMΨ and the local noise terms
LΨ

AA and LΨ
BB. In particular, if the noise terms are equal,

LΨ
DD ≔ LΨ

AA ¼ LΨ
BB, as will be the case in Sec. IV; then the

negativity and, thus, the entanglement between the detec-
tors vanishes if LΨ

DD ≥ jMΨj, i.e., when the noise overcomes
the correlations. Notice that, because LΨ

AA and LΨ
BB are local

noise terms for which the Wightman function is evaluated
along a single detector’s worldline, they contain no
information about field correlations between the two
regions where the two detectors are interacting with
the field.

B. When is the entanglement extracted
versus generated?

Entanglement harvesting is an interesting process
because it can demonstrate the presence of entanglement
in a quantum field between different spacetime regions. For
example, it is clear that when two initially uncorrelated
detectors become entangled through their interaction with
the field while remaining spacelike separated, the entan-
glement they acquire comes from “extracting” preexisting
entanglement in the field (see, e.g., Refs. [20,44] in flat
spacetime). However, when the detectors are not spacelike
separated, contributions to the correlating term MΨ in the
leading-order perturbative correction to ρAB;T arise which
are independent of the quantum state of the field, as
recently studied in Ref. [46]. In fact, these contributions
can be calculated solely from classical data, consisting of
switching functions, detector worldlines and the field
classical Green function. Hence, they tell nothing about
the quantum properties of the field.
To see this, we follow Ref. [46]. First, note that the

imaginary part of the Wightman function, given by the
commutator of the field operators, is independent of the state
of the field. Only the real part, which is given by the
anticommutator of the field operators, depends on the
quantum state. We can use this to split MΨ into two
contributions as MΨ ¼ MΨþ þ iMΨ

− , where MΨþ is obtained
by replacingWΨ by its real part (which is symmetric) on the
right-hand side of Eq. (29), andMΨ

− by replacingWΨ with its

imaginary part (which is antisymmetric). Note that, in
general, MΨþ and MΨ

− are complex-valued.
Below we will encounter generic scenarios where the

detectors become entangled whileMΨ is dominated byMΨ
−,

andMΨþ is (almost or exactly) vanishing. In such a situation
most6 of the entanglement between the detectors is not to be
attributed to any preexisting entanglement in the field, as
we shall next argue. In such a scenario the entanglement
between the detectors, as measured by N Ψ;ð2Þ, would
remain unchanged if we replaced the initial field state
by a state that resulted in the same values for LΨ

AA and LΨ
BB

(the value of MΨ
− ≈MΨ, would also remain unchanged

since it is state independent). In particular, we could replace
the original state of the field by a state that has the same
Wightman function within the regions where the detectors
are coupled to the field, while containing no entanglement
between those two regions.
Hence, in this new state, the entanglement between the

detectors appears to be generated due to their sequential
interaction with the field instead of being extracted from
preexisting correlations in the field. This line of reasoning
was used in Ref. [46] in order to argue that in these cases
where MΨþ is (almost or exactly) vanishing, the entangle-
ment acquired by the detectors should not be referred to as
“entanglement harvesting” from the field.
In its turn, in a scenario with spacelike-separated

detectors where all entanglement between the detectors
is harvested from preexisting entanglement in the field,
we have that MΨ ¼ MΨþ because the commutator vanishes
between the detectors. That is, in this clear-cut scenario, the
contributions from the field’s state-dependent anticommu-
tator are the ones that transfer the entanglement from the
field to the detectors.
In addition, another observation made in Ref. [46]

indicates that for timelike-separated detectors the processes
captured inMΨþ are also due to the harvesting of preexisting
entanglement in the field as opposed to generation of
entanglement through the interaction. This is based on the
fact that a process that creates entanglement between the
detectors by having them sequentially interact with the field
also allows for communication from the first to the second
detector: the field carries information between the two
detectors and that can get them entangled independently of
any preexisting entanglement in the field. However, it is
well known that at leading order in perturbation theory,
with which we are concerned here, such causal influence of
one detector on the other is determined by the commutator
of the field and independent of the anticommutator of the
field [see, e.g., Eq. (24) of Ref. [41]]. Thus, as argued in
Ref. [46], it appears plausible that, generally, the detectors
are harvesting preexisting entanglement from the field if

6A quantitative study of the relative contributions of MΨþ and
MΨ

− to the entanglement acquired by the detectors for the case of
flat spacetime can be found in Ref. [46].
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MΨ ≈MΨþ is dominated by contributions arising from the
anticommutator.

IV. HARVESTING OF GRAVITATIONALLY
LENSED VACUUM ENTANGLEMENT

This section contains the main results which demonstrate
the impact of gravitational lensing, which at caustics
refocuses null geodesics emanating from a common source,
on entanglement harvesting. To this end, we consider static
detectors placed close to the black hole horizon and
compare their behavior with the well-studied case of static
detectors in flat spacetime.
As one would expect, an important parameter that

decides if and to what extent two detectors become
entangled is their distance. The distance between (the static
worldlines of) the two detectors can be defined in terms of
various meaningful measures (see also Ref. [26]). In the
present context (of static observers in Schwarzschild or
Minkowski spacetime), the light propagation coordinate
time is an intuitive choice of measure which we use
henceforth when referring to the distance between detec-
tors. This is the minimal amount of (Schwarzschild or
Minkowski) coordinate time that it takes light to propagate
from the spatial position of one detector to that of the other
detector along a null geodesic.
Once the spatial positions of the two detectors are chosen

and, thus, their distance is fixed, the interaction of the
detectors with the field can still be made to happen at
spacelike, lightlike or timelike separation by introducing a
switching delay; this means that the switching function of
the second detector is shifted with respect to the first one by
a certain amount of coordinate time. For example, in the
following we will assume that both detectors couple
through the same switching function (25) and introduce
the switching delay ΔBA ¼ t0B − t0A as the (coordinate
time) difference between the centers of the switching
functions. The switching delay can then be used to
maximize the entanglement in the final state of the two
detectors.
In Minkowski spacetime, as far as the impact of the

switching delay is concerned, the entanglement in the final
state between two detectors at a fixed distance is maxi-
mized when the switching functions are exactly null
aligned [46], i.e., when the switching delay equals the
light propagation time.7 As far as the impact of the distance
between the detectors is concerned, its impact on the final
entanglement is straightforward: if the distance between the
detectors is increased (while allowing the switching delay
to be optimal and leaving other coupling parameters
unchanged), the entanglement between the detectors in
their final state decreases and goes to zero beyond a certain

distance. This holds even if the switching delay is read-
justed to uphold null alignment. Furthermore, in 3þ 1-
dimensional Minkowski spacetime, the entanglement
between exactly null aligned detectors is dominated by
correlations generated by communication rather than by
harvesting, because the MΨ term is dominated by MΨ

−
rather than MΨþ, as shown in Ref. [46].
This raises two questions regarding entanglement har-

vesting in Schwarzschild spacetime. First, does the pres-
ence of caustics enhance the ability of detectors to become
entangled? What is more, can caustics make the harvested
entanglement no longer decrease monotonically with
distance?
Second, does the singularity structure of the Wightman

function allow for the entanglement to be dominated by
harvesting rather than signaling if the detectors’ switching
instead of being aligned along a direct null geodesic is
aligned along a secondary null geodesic, i.e., a null
geodesic that has passed through a caustic? As discussed
in Sec. II B, here the singularity structures of the real and
imaginary parts of the Wightman function are shifted, so
thatMΨþ could dominate overMΨ

− because the real part now
carries the δðσÞ singularity. This would then constitute
entanglement harvesting between timelike-separated detec-
tors, since the secondary null geodesics lie inside the causal
cone which is bounded by the direct null geodesics between
detectors.
The following results answer both questions in the

affirmative.
Figure 1 shows the gravitational lensing effect on the

harvesting of entanglement by two static detectors in
Schwarzschild spacetime when the field is in the
Boulware state. The scenario is as follows. Two identical
detectors, with detector gap ΩAA ¼ ΩBB ¼ 5 M−1 and
λ ¼ λA ¼ λB,

8 are placed on static worldlines at the same
radial coordinate r ¼ 6.009M. The angular separation γ
between the two detectors varies along the horizontal axes
of each panel. Both detectors are coupled to the field
through the Gaussian switching function (25), but the
difference between the two centers of the switching
functions is shifted by an amount of coordinate time ΔBA ¼
t0B − t0A which varies between the panels as indicated.
An inset in each panel visualizes how far null geodesics,

emanating from detector A at time t0A, propagate within the
coordinate time interval ΔBA: the black filled circle repre-
sents the interior of the black hole horizon at r ¼ 2M, a
black ring around it represents all points with radial
coordinate r ¼ 6.009M and the red dot represents the
spatial location of detector A. The violet curve then
indicates the spatial position of the null wave front after
propagation time ΔBA. In particular, the different insets

7This statement is not entirely precise, as in Minkowski
spacetime the maximum is located very close to—but not exactly
at—null alignment of the switching functions; see Ref. [46].

8Note that because λ is dimensionless and all terms are of order
Oðλ2Þ the numeric value of λ only affects the result by an overall
factor. We choose λ ¼ 1 for improved readability.
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FIG. 1. Gravitational lensing of entanglement harvesting from the Boulware state: the plots show the entries jMBj, jMB
�j and jLB

DDj of
the final detectors’ state (28) for two static detectors placed at radial coordinate r ¼ 6.009M with varying angular separation γ. Blue
shading indicates where jMBj > LB

DD, i.e., the negativity (31) is positive and the detectors become entangled. All detector parameters are
equal (λD ¼ 1;ΩD ¼ 5M−1; TD ¼ 1M); only the delay ΔBA ¼ t0B − t0A between the switching functions (25) varies between plots. The
insets indicate how far a null wave front propagates from the red point within a coordinate time interval ΔBA. In particular, at
ΔBA ≈ 20.7386M at the antipodal point of the red point, i.e., at γ ¼ π, the wave front intersects itself and the first caustic point forms.
(See Supplementary material for an animated version of this plot [47].)
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show the formation of caustics located at angular separation
γ ¼ π from the point of origin (which is plotted in red)
where the null wave front intersects itself. The caustic
reaches r ¼ 6.009M at ΔBA ≈ 20.7386M.
The four different curves in each panel show the

resulting contributions to the final density matrix of the
two detectors (28), when the field is in the Boulware state.
(Accordingly they are denoted with a superscript Ψ ¼ B.)
The horizontal, red and dashed line shows the single
detector noise term LB

DD ≔ LB
AA ¼ LB

BB. Because it only
depends on the radial coordinate and the switching func-
tion’s width TD, it is equal for both detectors and constant
for all positions of detectors considered here. The blue solid
curve shows the absolute value jMBj resulting from the
chosen value of the switching delay ΔBA in each panel, as a
function of the angular separation between the detectors.
The two remaining dashed curves show the absolute values
jMB

−j in green and jMBþj in orange which, as discussed in
Sec. III B, are obtained by replacing theWightman function
by its imaginary and real parts, respectively. In particular,
as discussed in Sec. III B, if jMBj is dominated by jMB

−j
(obtained from the imaginary part), then the detectors’
entanglement is predominantly generated in the sequential
interaction of the detectors with the field. On the other

hand, if jMBj is dominated by jMBþj then final entanglement
between the detectors is predominantly harvested from
preexisting entanglement in the vacuum of the field.
Altogether the panels in Fig. 1 illustrate the lensing effect

which appears in proximity to the caustics. The first two
panels show the settings with the shortest switching delay
ΔBA between the switching functions. In these two plots, we
see that the correlations between the detectors, as captured
by jMBj, are largest when the centers of the intervals during
which the detectors couple to the field are connected by
(direct) null geodesics. In the first panel there is a certain
interval of angular separations in which the blue line for
jMBj exceeds the noise term LB

D and the detectors end up
entangled. However, in the second panel the detectors’ final
state remains separable, even for null separated detectors,
because ΔBA is increased. Note that here the contribution
from MB

− dominates the peaks of MB; hence entanglement
between the detectors cannot be attributed to harvesting of
preexisting entanglement from the field but to entangle-
ment generation due to sequential interaction.
In flat spacetime no entanglement would be observed in

the final detectors’ state for larger switching delay between
the detectors. Intuitively this is related to the growth of the
light cone’s surface area which dilutes the entanglement.

FIG. 2. Same data as Fig. 1 from a different perspective: the switching delayΔBA ¼ t0B − t0A is plotted on the horizontal axis, while the
panels show detectors with four different angular separations. (See Fig. 6 for a logarithmic plot.)
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FIG. 3. Relative differences between correlation terms in the Boulware state, and the Hartle-Hawking and Unruh states, respectively,

i.e., plotting jMH−MBj
jMBj , jMU−MBj

jMBj , jMH
þ−M

B
þj

jMBj and jMU
þ−M

B
þj

jMBj , in analogy to Fig. 1.
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In Schwarzschild spacetime, however, where the light cone
refocuses at caustics the opposite can happen. As seen in
the third through sixth panels (in order of increasing ΔBA),
the detectors can become entangled at larger switching
delays ΔBA again, at angular separations close to γ ¼ π in
the proximity of caustics. This answers in the affirmative
the first of the two guiding questions raised above.
The second of the two questions raised above pertains to

the Wightman function’s singularity structure described in
Sec. II B. Its effect is easy to recognize when comparing the
last (bottom right) panel to the first (top left) panel of Fig. 1.
In both panels the correlations between the two detectors,
as captured by jMBj, are maximal for null aligned detectors.
However, in the first panel the detectors are connected by
primary null geodesics, whereas in the last panel they are
connected by secondary null geodesics. At secondary null
geodesics, as discussed in Sec. II B, the singularity struc-
ture of the Wightman function is shifted from primary null
geodesics so that now the real (anticommutator) part carries
the δðσÞ singularity, which used to be carried instead by the
imaginary (commutator) part in the case of primary null
geodesics. Accordingly, the two contributions jMB

�j have a
qualitatively similar overall shape in the first and last
panels, except that the MBþ and MB

− have swapped places.
For detectors aligned along a secondary null geodesic, the
real part contribution MBþ dominates over the imaginary
part contributionMB

−. So if these correlations overcame the
noise, jMBj > jLDDj, the detectors would become entangled
by harvested entanglement. However, the correlations in
the last panel are too weak for the detectors to end up
entangled. To find detectors that get entangled by genuinely
harvested correlations around secondary null geodesics, we
need to position the detectors closer to caustics so as to
make use of the overall enhancement of the Wightman
function there. Such a setting is seen in the fifth panel (for
ΔBA ¼ 21.5M) of Fig. 1. In this and the following panels of
Fig. 1, the switching delay ΔBA is larger than the shortest
light propagation (Schwarzschild coordinate) time between
detectors with angular separation γ ¼ π, and the detectors
(at r ¼ 6.009M) which are null aligned here are aligned
along a secondary null geodesic and timelike separated.
With this we have answered in the affirmative the second of
the above questions, as we observe the genuine harvesting
of preexisting entanglement from the field by timelike-
separated detectors, aligned along secondary null geo-
desics. In the following, we will see further examples
allowing for entanglement harvesting between timelike-
separated detectors with angular separation γ ¼ π.
Complementary to Fig. 1, the same scenario and effects

are seen in Fig. 2 from a slightly different perspective. Here,
the contributions to the detectors’ final density matrix are
plotted over the coordinate time switching delay ΔBA, while
the four different panels correspond to four different
angular separations. (Figure 6 provides a logarithmic plot
of the same data.) Note that these plots overΔBA are directly

comparable to the plots also found in Ref. [46] in 3þ 1-
dimensional Minkowski spacetime.
In the first panel of Fig. 2, for angular separation γ ¼ π=5,

there are three peaks appearing in jMBjwhich correspond to
an alignment of the switching functions along primary,
secondary and tertiary null geodesics, respectively. The
qualitative structure of the first peak and its contributions
from jMBþj and jMB

−j correspond to the structure found in flat
spacetime in Ref. [46]. However, in the secondary peak the
qualitative roles of jMBþj and jMB

−j are interchanged due to
the shifted singularity structure of the Wightman function,
as is easy to see in the logarithmic plot in Fig. 6. For the
tertiary peak, together with the singularity structure of the
Wightman function, the qualitative structure of the peak also
shifts back to its primary form.
Even if there are three peaks appearing at angular

separation γ ¼ π=5, only the first one corresponding to
alignment along the direct, primary null geodesic exhibits
entanglement in the detectors’ final state. In an intermediate
regime of angular separations, for 0.64π ≲ γ ≲ 0.81π, not
even the primary peak overcomes the noise and the
detectors’ final state remains separable for all switching
delays ΔBA. An example of this is seen in the third (bottom
left) panel of Fig. 2 for angular separation γ ¼ 3π=4.
However, as the angular separation approaches γ ¼ π both
the primary and secondary peaks increase their size again
and they overcome the noise, thus, leaving the detectors in
an entangled state. Gradually, as γ → π, the primary and
secondary peaks superpose and finally create one joint peak
aligned at the caustic for γ ¼ π. Here we see that for
switching delays that are somewhat larger than the direct
null alignment, the extracted entanglement can be domi-
nated by jMBþj and thus can be attributed to entanglement
harvesting from the field.
The results shown in Fig. 1 are for the field in the

Boulware state. As seen in the analogous Fig. 7 for the
Unruh state and Fig. 8 for the Hartle-Hawking state,
the same phenomena appear in these states as well. In
fact, the quantitative differences between the states (which
may be difficult to see with the naked eye) are mostly due to
the difference in the noise term, which is given in Table I.
The correlation terms, in particular in the scenarios of
detectors that harvest entanglement in the proximity of
caustics, agree to many digits for all three states, as can be
seen in Fig. 3, which shows their relative differences.

TABLE I. Numerical values of the local noise terms in the three
different states considered, for the scenarios in Fig. 1, Fig. 7 and
Fig. 8, respectively.

State Local noise term

Boulware state LB
DD=ðλAλBÞ ¼ 9.82 × 10−7

Unruh state LU
DD=ðλAλBÞ ¼ 9.96 × 10−7

Hartle-Hawking state LH
DD=ðλAλBÞ ¼ 1.08 × 10−6
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We conclude this section with a study of entanglement
harvesting from the Boulware state between detectors at
antipodal locations with the black hole exactly in the middle
between them, i.e., at identical radial coordinates r ¼ rA ¼
rA and with an angular separation γ ¼ π, for a range of

detector locations reaching down very close to the horizon at
radial positions r ¼ 2.095M.
At the different radial coordinates the detectors experi-

ence different gravitational redshifts. To account for this,
we adjust the width of the switching functions (25) to

FIG. 4. Entanglement harvesting from the Boulware state by static detectors at antipodal positions close to a Schwarzschild black hole:
the plots show the entries of the final detectors’ state (28) for two identical detectors (λD ¼ 1;ΩD ¼ 5=M) which are placed at equal
radial coordinates rD at angular separation γ ¼ π, i.e., with the black hole exactly in the middle between them. To account for the
different redshifts the width of the detector switching functions (25) is set to TD ¼ M=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
, i.e., kept equal with respect to the

detectors’ proper time. The different panels show the results for different switching delays ΔBA ¼ t0B − t0A. Detectors placed at r ¼ 3M
are the first for which the switching functions are exactly null aligned at ΔBA ¼ 3

ffiffiffi
3

p
πM ≈ 16.32M. Both for larger and lower radial

coordinates the light propagation time is longer, and hence two peaks form in the later panels around the radial coordinates for which
exact null alignment is achieved (see Fig. 5). The vertical purple lines indicate the radial coordinates at which null alignment of the
switching function is achieved, i.e., whereΔBA ¼ Δt (see Fig. 5). (See Supplementary Material for an animated version of this plot [47].)
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TDðrÞ ¼ T∞=
ffiffiffiffiffiffiffiffiffi
fðrÞp ¼ T∞=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
, such that, at all

radial coordinates TDðrÞ, corresponds to the same amount
of proper time given by some value T∞. Analogous to the
plots above, Fig. 4 shows the resulting contributions to the
detectors’ final state for T∞ ¼ 1M. It shows that at all radial
coordinates considered, even close to the horizon, the two
detectors can become entangled and the entanglement can
be dominated by entanglement harvesting, when the
switching delay ΔBA ¼ t0B − t0A is chosen appropriately.
To understand the structure of the plots and its depend-

ence on ΔBA it is useful to consider the light propagation
coordinate time Δt between the two detectors. This is the
coordinate time that it takes for a null geodesic starting at
spatial coordinates ðr; θ ¼ π=2;ϕÞ to reach the antipodal
point ðr; θ ¼ π=2;ϕþ πÞ. Figure 5 shows this time for the
range of radial coordinates we consider. It shows that Δt is
minimal at r ¼ 3M. For this critical case, it takes the value
Δtmin ¼ 3

ffiffiffi
3

p
πM. Setting the switching delay equal to the

light propagation time, i.e., setting ΔBA ¼ Δt, yields exact
null alignment of the detectors’ switching functions.
Around exact null alignment between the detectors we

expect a peak in the final detector entanglement, and this is,
indeed, what we observe in Fig. 4. At first, in the panels
showing the lower values of ΔBA, one peak forms around
r ¼ 3M since the detectors located at this radial coordinate
are the first to be exactly null aligned. As ΔBA is increased
in the following panels, a double-peak structure forms since
for ΔBA > 3

ffiffiffi
3

p
πM there are always two radial coordinate

positions at which the detectors are exactly null aligned.
Regarding the relative size of the contributions MBþ and
MB

−, we observe again that both contributions are of
comparable size when the detectors are exactly null
aligned, as we already observed in the panel of Fig. 2,
for γ ¼ π. This is in contrast to scenarios where the
detectors are null aligned along primary null geodesics
and sufficiently far away from any caustics. There, just as in
flat Minkowski spacetime, the correlations are dominated
by the M− contribution when the detectors are exactly null
aligned. However, at the caustics, where a whole envelope
of null geodesics connects the detectors at once, the

singularity structure of the two-point function is altered
(see Ref. [37]). This results in the Mþ contribution
dominating before exact null alignment and the M−
contribution dominating after exact null alignment of the
switching functions.

V. DISCUSSION AND OUTLOOK

Using UDW detectors, we investigated entanglement
harvesting from a Klein-Gordon field in the Boulware,
Hartle-Hawking andUnruh vacuum states in the background
of Schwarzschild spacetime in 3þ 1 dimensions. We
showed that the realistic 3þ 1-dimensional case possesses
a particularly rich phenomenology due to the presence of
secondary (and higher) null geodesics and caustics.
In particular, we investigated the ability of two detectors

that are static at the same radial coordinate, but with
different angular coordinates, to harvest entanglement from
the Boulware, Hartle-Hawking and Unruh vacua as they get
closer to the horizon.
Wepaid special attention to entanglement harvesting in the

regions of spacetime where secondary null geodesics and
caustics can connect the two harvesting detectors. We found
that genuine entanglement harvesting can indeed be ampli-
fied through “entanglement gravitational lensing” effects
when the detectors are close to regionswhere caustics appear.
By the term “genuine entanglement harvesting”wemean the
extraction of preexisting entanglement from the field, as
opposed to the extraction of entanglement that is created
through communication between the detectors. Interestingly,
this genuine harvesting can also appear for timelike-
separated detectors, for example, when the detectors are
connected by secondary null geodesics.Mathematically, this
results from a change in the singularity structure of the
Wightman function as the fieldwaves cross through caustics.
The formalism that we developed here can also be used

to analyze further interesting black hole entanglement
harvesting configurations, such as the case where the
detectors are in motion and possibly also when crossing
the event horizon.
Furthermore, since the effects of entanglement harvesting

amplification that we found here are due to lensing which
arises from the existence of secondary null geodesics
connecting the two detectors, an intriguing follow-up ques-
tion arises: to what extent could entanglement harvesting be
engineered to be amplified even in flat spacetime, namely in
the presence of suitable mirror and lensing arrangements?
These scenarios will be explored in future work.
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APPENDIX A: DENSITY MATRIX
CONTRIBUTIONS

In this appendix, we give a detailed derivation of the
expressions used for the calculation of the perturbative
contributions to the final density state of the two detectors
in Eq. (28). To evaluate the leading-order contributions
to the detectors’ final density matrix, we need certain
Fourier-type integrals of the switching function (25),
ηDðtÞ ¼ e−ððt−t0DÞ=TDÞ2 . First, we have

Z
s

−∞
dt eiνtηDðtÞ ¼

ffiffiffi
π

p
TD

2
e−

ν2T2
D

4 eiνt0D
�
1þ erf

�
−
iνTD

2
þ s − t0D

TD

��
; ðA1Þ

Z
∞

−∞
dt eiνtηDðtÞ ¼

ffiffiffi
π

p
TDe−

1
4
ν2T2

Deiνt0D ; ðA2Þ

where erfðzÞ ¼ zffiffi
π

p
R
z
0 dt e

−t2 . Furthermore, we need the integral

Z
∞

−∞
dt0 eiμt0ηD0 ðt0Þ

Z
t0

−∞
dt eiνtηDðtÞ: ðA3Þ

FIG. 6. Logarithmic plot version of Fig. 2. (See Supplementary Material for an animated version of this plot [47].)
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To this end, consider
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For the t0 integral, use Eqs. (A3) and (A7) from Ref. [44], which is

Iða; bÞ ¼
Z

∞

−∞
dy e−a

2−iby−y2erfðy − iaÞ ¼ −i
ffiffiffi
π

p
e−a

2−b2=4erfi

�
aþ b=2ffiffiffi

2
p

�
; ðA5Þ

where erfiðzÞ ¼ −ierfðizÞ, with y ¼ t0=TD0 , a ¼ νTD

2
− i t0DTD

and b ¼ 2i t0D0TD0
− μTD0 ; then

Z
∞

−∞
dt0 e

− t02
T2
D0
þt0ð2t0D0

T2
D0
þiμÞ

erf

�
−
iνTD

2
þ t0 − t0D

TD

�
¼ −i

ffiffiffi
π

p
TD0e

−μ2T2
D0

4
þ

t2
0D0
T2
D0
þiμt0D0

erfi

�
1ffiffiffi
2

p
�
νTD − μTD0

2
− i

t0D
TD

þ i
t0D0

TD0

��
: ðA6Þ

Inserting this above yields

Z
∞

−∞
dt0 eiμt0ηD0 ðt0Þ

Z
t0

−∞
dt eiνtηDðtÞ ¼

TDTD0π

2
e−

μ2T2
D0

þν2T2
D

4 eiðνt0Dþμt0D0 Þ
�
1 − ierfi

�
νTD − μTD0

2
ffiffiffi
2

p þ iffiffiffi
2

p
�
t0D0

TD0
−
t0D
TD

�	�
: ðA7Þ

For stationary detectors we use τDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrDÞ

p
t as the relation between proper time and coordinate time [see Eq. (24)].

With this, and Eqs. (10) and (A2), the single detector noise term LΨ
DD0 in Eq. (30) takes the following form [denoting

r ¼ rD; r0 ¼ rD0 , fD ¼ fðrDÞ and ND ¼ ffiffiffiffiffi
fD

p
]:

LΨ
DD0 ¼ λDλD0fAfB

Z
∞

−∞
dt
Z

∞

−∞
dt0 ηDðtÞηD0 ðt0Þe−iΩDNDtþiΩD0ND0 t

0
WΨðxDðtÞ; xD0 ðt0ÞÞ

¼ λDλD0fAfB

ð4πÞ2
X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
Z

∞

−∞
dω

GΨ
lωðrD; rD0 Þ

ω

�Z
∞

−∞
dt ηDðtÞe−iðΩDNDþωÞt

��Z
∞

−∞
dt0 ηD0 ðt0ÞeiðΩD0ND0þωÞt0

�

¼ λDλD0NDND0TDTD0

16π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
Z

∞

−∞
dω

GΨ
lωðrD; rD0 Þ

ω
eiðΩD0ND0þωÞt0D0−iðΩDNDþωÞt0D−1

4
ðΩDNDþωÞ2T2

D−1
4
ðΩD0ND0þωÞ2T2

D0

ðA8Þ

Analogously, for MΨ in Eq. (29) we obtain using Eq. (A7),

MΨ ¼ −λAλBfAfB

ð4πÞ2
X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
Z

∞

−∞
dω

1

ω

�Z
∞

−∞
dt eiðΩAfA−ωÞtηAðtÞ

Z
t

−∞
dt0 eiðωþΩBfBÞt0ηBðt0ÞGΨ

lωðrA; rBÞ

þ
Z

∞

−∞
dt ηBðtÞeiðΩBfB−ωÞt

Z
t

−∞
dt0 eiðωþΩAfAÞt0ηAðt0ÞGΨ

lωðrB; rAÞÞ

¼ −λAλBfAfBTATB

32π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
Z

∞

−∞
dω

1

ω

×

�
e−

μ2
A
T2
A
þν2

B
T2
B

4 eiðνBt0BþμAt0AÞ
�
1 − ierfi

�
νBTB − μATA

2
ffiffiffi
2

p þ iffiffiffi
2

p
�
t0A
TA

−
t0B
TB

�	�
GΨ

lωðrA; rB
�

þ e−
μ2
B
T2
B
þν2

A
T2
A

4 eiðνAt0AþμBt0BÞ
�
1 − ierfi

�
νATA − μBTB

2
ffiffiffi
2

p þ iffiffiffi
2

p
�
t0B
TB

−
t0A
TA

�	�
GΨ

lωðrB; rAÞ
�
; ðA9Þ
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FIG. 7. Gravitational lensing of entanglement harvesting from the field in the Unruh state: the entire setup is identical to the setup of
Fig. 1, except that here the initial state for the field is the Unruh state. The plots show the absolute values ofMU,MU

� and LU
DD in Eq. (28)

for two static detectors placed at radial coordinate r ¼ 6.009M with varying angular separation γ. All detector parameters are equal
(λD ¼ 1;ΩD ¼ 5M−1; TD ¼ 1M); only the offsetΔBA ¼ t0B − t0A between the two switching functions (25) varies between the plots. The
inset indicates how far a null wave front propagates from the red point within a coordinate time interval ΔBA.
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FIG. 8. Gravitational lensing of entanglement harvesting from the field in the Hartle-Hawking state: the entire setup is identical to the
setup of Fig. 1, except that here the initial state for the field is the Hartle-Hawking state. The plots show the absolute values ofMH ,MH

�
and LH

DD in Eq. (28) for two static detectors placed at radial coordinate r ¼ 6.009M with varying angular separation γ. All detector
parameters are equal (λD ¼ 1;ΩD ¼ 5M−1; TD ¼ 1M); only the offset ΔBA ¼ t0B − t0A between the two switching functions (25) varies
between the plots. The inset indicates how far a null wave front propagates from the red point within a coordinate time interval ΔBA.
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with νD ¼ ωþ ΩDND; μD ¼ ΩDND − ω. For practical
evaluation purposes, one can manipulate the integrals in
Eqs. (A9) and (A8) further so that the integration over ω
only runs over 0 < ω < ∞.

APPENDIX B: NUMERICAL TECHNIQUES
FOR THE WIGHTMAN FUNCTION

In order to evaluate the Wightman function in the
situations presented in this work, integrals over Rin=up

lω ðrÞ
with respect to r are needed. However, there is no known
closed-form expression for Rin=up

lω ðrÞ. Hence, one has to use
numerical techniques. Specifically, we use numerical
methods to evaluate Rin

lω, R
up
lω and the set of coefficients

Ilω; ρ
in=up
lω in the region Mω ∈ ½0; 10� in steps of 10−3,

r�=M ∈ ½−4; 13� in steps of 1=5 and l for all (integer)
values 0 ≤ l ≤ 100. Different techniques are involved in
the evaluation.
For Rup

lω we used the NDSolve-based numerical method
implemented in the Regge-Wheeler Mathematica [48]
package of the Black Hole Perturbation Toolkit [49].
For Rin

lω we define two auxiliary quantities r̄ ¼ r=2M
and ω̄ ¼ 2Mω, then use the so-called Jaffé series [50] to
write the Rin

lω solution to (4) for r̄ ∈ ½1;∞Þ as

Rin
lωðr̄Þ ¼ r̄2iω̄ðr̄ − 1Þ−iω̄eiω̄ r̄

X∞
n¼0

an

�
r̄ − 1

r̄

�
n
; ðB1Þ

where

anαn−1 þ an−1βn−1 þ an−2γn−1 ¼ 0;

αn ¼ ðnþ 1Þðnþ 1 − 2iω̄Þ;
βn ¼ −1 − 2nðnþ 1Þ − lðlþ 1Þ þ 4ω̄ðiþ 2niþ 2ω̄Þ;
γn ¼ ðn − 2iω̄Þ2; ðB2Þ

with a0 ¼ e−2iω̄ and an ¼ 0 ∀ n < 0. This solution is
implemented inMathematica. However some care has to be
taken: in practice we have to impose a cutoff on the number
of terms nmax to include in the series. To set an adequate
value for nmax we used the following quantity:

εðl; ω̄; r̄; nmaxÞ ¼
anmaxþ1ðr̄−1r̄ Þnmaxþ1Pnmax

n¼0 anðr̄−1r̄ Þn : ðB3Þ

Since we want to have at least 16 digits of precision in the
Rin
lω modes, we want to find an nmax such that

Re½εðl; ω̄; r̄; nmaxÞ� < 10−16 and

Im½εðl; ω̄; r̄; nmaxÞ� < 10−16 ðB4Þ

for all values of r̄,l and ω̄ in the region where the solutions
are evaluated. For that, we use the fact that the convergence
of the series becomes slower with increasing r̄ to conclude
that the largest ε happens at the highest r̄ we intended to
evaluate, which is around r̄max ≈ 5. Then, fixing r̄ ¼ r̄max
we test a couple of ω̄ and l values in the region of interest
and conclude that nmax ¼ 5000 is enough to satisfy
Eq. (B4) in all regions of interest.
For the Ilω; ρ

in=up
lω coefficients we use data from

Ref. [36], which is evaluated using a Mathematica imple-
mentation of the Mano-Suzuki-Takasugi method. An
extensive review of that method can be found in Ref. [51].

1. LΨ
DD terms

By setting D ¼ D0 in Eq. (A8) and manipulating the
integration range from −∞ < ω < ∞ to 0 < ω < ∞, we
obtain the following expression for the LΨ

DD terms:

LΨ
DDðrDÞ ¼

ðNDλDTDÞ2
16π

X∞
l¼0

ð2lþ 1Þ
Z

∞

0

dω
1

ω

�
GΨ

lωðrD; rDÞe−
1
2
ðΩDNDþωÞ2T2

D −GΨ
l;−ωðrD; rDÞe−

1
2
ðΩDND−ωÞ2T2

D

�
: ðB5Þ

To verify the convergence of such an integral, one should check the large-jωj behavior of the GΨ
lωðrD; rDÞ, which varies

among the quantum states (11)–(13):

GB
lωðrD; rDÞ ∼ θðωÞðjR̄up

lωðrDÞj2 þ jR̄in
lωðrDÞj2Þ;

GU
lωðrD; rDÞ ∼ jR̄up

lωðrDÞj2ðθðωÞ − θð−ωÞe2πωκÞ þ θðωÞjR̄in
lωðrDÞj2;

GH
lωðrD; rDÞ ∼ jR̄up

lωðrDÞj2ðθðωÞ − θð−ωÞe2πωκÞ þ jR̄in
lωðrDÞj2ðθðωÞe−2πωκ − θð−ωÞÞ: ðB6Þ
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The leading asymptotic behavior of jR̄in=up
lω j2 as jωj → ∞

is jR̄in=up
lω j2 ∼ 1 [52].9 Hence, to leading order for large jωj,

GΨ
lωðrD; rDÞ ∼ 1. By substituting such a result into the

integrand in Eq. (B5), one concludes that the slowest-

decaying term of the integrand falls off as ∼2 e−
1
2
ðΩDND−ωÞ2T2D

ω .
Therefore, the integral in Eq. (B5) is fast-converging. Given
that, we are able to numerically evaluate it accurately
enough with a frequency cutoff Mωcut ¼ 10. The

asymptotic regime of the integrand and the convergence
of the integral are illustrated in Figs. 9(a) and 9(b).
In order to verify the convergence of the l sum, we

begin by evaluating the integrals in Eq. (B5), multiplying
by 2lþ 1 and plotting the result against l. The outcome is
shown in Fig. 9(c), where we can see that such a quantity
decays superexponentially. Given this numerical evidence,
thel sum in that equation is expected to convergewith a good
accuracy evenwith a cutoff lower than thelcut ¼ 100weuse.
In fact, as presented in Fig. 9(d), lcut ¼ 30 is enough to
converge to all ten significant digits usedwhen evaluating the
Boulware integrals.

FIG. 9. (a) Integrand in Eq. (B5) as a function of Mω and l for the Boulware state. The value of Mω where the asymptotic regime
begins grows with l. More precisely, the transition to the asymptotic regime begins around ωr ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

(for l > 0 and radii not too
close to the horizon). Notice that thanks to the θðωÞ in Eq. (11), the slowest decaying term in Eq. (B5) for the Boulware state is

proportional to ∼2 e−
1
2
ðΩDNDþωÞ2T2

D

ω . (b) Relative difference between the integral in Eq. (B5) for the Boulware state when integrated up to ωcut

and up to ωcut þ δ, with δ ¼ 1=10. The reason to limit this plot to 10−10 is that those integrals where evaluated to ten significant digits;
hence, a relative difference of 10−10 means that the integral converged completely to all significant digits. Comparing with Fig. 9(a), we
see that exponentially fast convergence happens after Mωcut becomes slightly larger than the Mω where the asymptotic regime begins.
(c) Summand in Eq. (B5) as a function of l for the Boulware state. One can notice from this figure that the summand decays
superexponentially with increasing l. In fact, for l > 30, it has already converged to all ten significant digits that we got when
evaluating the integrals. (d) Relative difference between the l sum in Eq. (B5) for the Boulware state when summed up to lcut and
lcut − 1. The reason to limit this plot to 10−10 is that the integrals in the sums were to 10 digits of precision. Hence, a relative difference
that is smaller than 10−10 should represent numerical noise and not actual significant digits.

9Such asymptotics are nonuniform and valid only when
ω ≫ VlðrÞ, as illustrated in Fig. 9(a).
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2. MΨ terms

Since we already know the large-jωj asymptotics of GΨ
lωðrD; rDÞ, to analyze the behavior of the integrand in Eq. (A9) in

that regime we have to study the factors that multiply each of its terms. These factors are very similar and it suffices to
analyze only one of them:

e−
μ2
A
T2
A

þ ν2
B
T2
B

4 eiðνBt0B þ μAt0AÞerfc
�
iðνBTB − μATAÞ

2
ffiffiffi
2

p −
1ffiffiffi
2

p
�
t0A
TA

−
t0B
TB

�	
; ðB7Þ

where erfcðzÞ ¼ 1 − erfðzÞ. Expanding the exponential functions, we obtain

αABe−
1
4
ðT2

AþT2
BÞω2

e−
1
2
ðNBT2

BΩB−NAT2
AΩAÞωeiωðt0B−t0AÞerfc

�
iðνBTB − μATAÞ

2
ffiffiffi
2

p −
1ffiffiffi
2

p
�
t0A
TA

−
t0B
TB

�	
; ðB8Þ

where

αAB ¼ e−
1
4
ðN2

BT
2
BΩ2

B þ N2
AT

2
AΩ2

AÞeiðΩBNBt0B þ ΩANAt0AÞ: ðB9Þ

Now we use an asymptotic expression for the erfcðzÞ,

erfcðzÞ ∼ e−z
2

z
ffiffiffi
π

p ; z → ∞; jphðzÞj < 3π=4; ðB10Þ

to conclude that as ω → ∞,

erfc

�
iðνBTB − μATAÞ

2
ffiffiffi
2

p −
1ffiffiffi
2

p
�
t0A
TA

−
t0B
TB

�	
∼ βAB

e
1
8
ðTA þ TBÞ2ω2

e
1
4
ðTA þ TBÞðNBTBΩB − NATAΩAÞωe

−iω1
2
ðTA þ TBÞ

�
t0B
TB

− t0A
TA

�

iððNBΩB þ ωÞTB − ðNAΩA − ωÞTAÞ
2
ffiffi
2

p − 1ffiffi
2

p
�
t0A
TA

− t0B
TB

� ; ðB11Þ

where

βAB ¼ ðπαABÞ − 1=2e−
1
2
ðt0BTB

− t0A
TA
Þ2e

i
2
ðNATAΩA

t0B
TB

þ NBTBΩB
t0A
TA
Þe−1

4
ðNATAΩANBTBΩBÞ: ðB12Þ

Putting everything together we conclude that

e−
μ2
A
T2
A

þ ν2
B
T2
B

4 eiðνBt0B þ μAt0AÞerfc
�
iðνBTB − μATAÞ

2
ffiffiffi
2

p −
1ffiffiffi
2

p
�
t0A
TA

−
t0B
TB

�	

∼ αABβAB

e−
1
8
ðTA − TBÞω2

e
1
4
ðTA − TBÞðNBTBΩB þ NATAΩAÞωe

i
2
ωðTB−TAÞðt0ATA

þ t0B
TB
Þ

iððNBΩB þ ωÞTB − ðNAΩA − ωÞTAÞ
2
ffiffi
2

p − 1ffiffi
2

p ðt0ATA
− t0B

TB
Þ

; ω → ∞; ðB13Þ

which leads to the conclusion that, whenever TA ≠ TB, the whole term decays superexponentially as e−
1
8
ðTB−TAÞ2ω2

. On the
other hand, if TA ¼ TB ≡ T, which is the case we study in this work, Eq. (B13) simplifies to

e−
ðμ2

A
þν2

B
ÞT2

4 eiðνBt0BþμAt0AÞerfc
�
iðνB − μAÞT

2
ffiffiffi
2

p þ 1

T
ffiffiffi
2

p ðt0B − t0AÞ
	
∼

αABβAB

iðNBΩB−NAΩAþ2ωÞT
2
ffiffi
2

p − ðt0A−t0BÞ
T

ffiffi
2

p
; ω → ∞: ðB14Þ

Then both, the real and imaginary parts of this quantity decay linearly with ω, since the absolute value of the denominator
grows linearly with the frequency. Given that, by considering the extra ω−1 in the integrand in Eq. (A9), we conclude that it
decays as ω−2. Hence, the integrals defining the MΨ terms are convergent.
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We remark that such leading asymptotic behavior in
Eq. (B14) is, in general, not achieved by Mω ¼ 10, but
one can still perform the numerical integration to a good
accuracy because, before this leading asymptotic regime,
there is an intermediary regime where the integrand is
exponentially decaying, as can be seen in Fig. 10(a). We
can further confirm that convergence by looking at the

integral in Eq. (A9) as a function of ωcut: as can be seen
in Fig. 10(b), up to l ¼ 20 we have convergence up to four
significant digits, while for larger values of l, the conver-
gence becomes worse, resulting in no significant digits at all.
Yet, since the resulting integral decays superexponentially
with l, as presented in Fig. 10(c), one can still obtain up to
four significant digits, as can be seen in Fig. 10(d).

FIG. 10. (a) Boulware state integrand in Eq. (A9) after rewriting the integral so that it ranges from ω ¼ 0 toMω ¼ 10, as a function of
Mω, for several different l ¼ 0, 10, 20, 30. (b) Relative difference in the Boulware state integral in Eq. (A9) after rewriting the integral
so that it ranges from ω ¼ 0 to ω ¼ ωcut for several different l ¼ 0, 10, 20, 30. To evaluate the relative difference, we integrate up to ωcut
and then to ωcut þ δ, with δ ¼ 1=10. (c) Boulware state integral in Eq. (A9), after rewriting the integral so that it ranges from ω ¼ 0 to
ω ¼ ωcut for several different l ¼ 0, 10, 20, 30, here integrated up toMωcut ¼ 10. (d) Relative difference in the Boulware state integral
from Eq. (A9), after rewriting the integral so that it ranges from ω ¼ 0 to ω ¼ ωcut for several different l ¼ 0, 10, 20, 30. To evaluate the
relative difference, we sum up to lcut and then to lcut þ 1, ranging form lcut ¼ 1 up to lcut ¼ 100. For lcut > 45 all significant digits
exactly cancel out when evaluating the relative difference.
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