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A data‑driven investigation 
of human action representations
Diana C. Dima 1,2*, Martin N. Hebart 3 & Leyla Isik 1

Understanding actions performed by others requires us to integrate different types of information 
about people, scenes, objects, and their interactions. What organizing dimensions does the mind 
use to make sense of this complex action space? To address this question, we collected intuitive 
similarity judgments across two large‑scale sets of naturalistic videos depicting everyday actions. 
We used cross‑validated sparse non‑negative matrix factorization to identify the structure 
underlying action similarity judgments. A low‑dimensional representation, consisting of nine to ten 
dimensions, was sufficient to accurately reconstruct human similarity judgments. The dimensions 
were robust to stimulus set perturbations and reproducible in a separate odd‑one‑out experiment. 
Human labels mapped these dimensions onto semantic axes relating to food, work, and home life; 
social axes relating to people and emotions; and one visual axis related to scene setting. While 
highly interpretable, these dimensions did not share a clear one‑to‑one correspondence with prior 
hypotheses of action‑relevant dimensions. Together, our results reveal a low‑dimensional set of robust 
and interpretable dimensions that organize intuitive action similarity judgments and highlight the 
importance of data‑driven investigations of behavioral representations.

Our ability to rapidly recognize and respond to others’ actions is remarkable, given the wide variety of human 
behaviors that span different contexts, goals, and motor sequences. When we see a person acting in the world, 
we integrate visual information, social cues and prior knowledge to interpret their action. These daily actions in 
context are often described as activities, which differ from other more basic-level or kinematic-based definitions 
of action, and despite their ubiquity, still pose a challenge to even state-of-the-art machine learning algorithms. 
How does the mind make sense of this complex action space?

Previous work on action understanding in the mind and brain has focused on hypothesis-driven efforts to 
identify critical action features and their neural underpinnings. This work has highlighted semantic  content1,2, 
social and affective  features3–5, and visual  features3,6 as essential components in visual action understanding. 
However, such an approach requires the experimenter to pre-define actions and their potential organizing dimen-
sions, necessarily limiting the hypothesis space. Action categories have commonly been defined based on the 
verbs they  represent7 or everyday action categories as listed, for example, in the American Time Use Survey 
(ATUS)3,5,8,9. Given the diversity of actions, a low-dimensional, flexible representation may be a more efficient 
way to organize them in the mind and brain; but generating the hypotheses that could uncover this representa-
tion remains difficult, especially for naturalistic stimuli that vary along multiple axes.

Data-driven methods provide an alternative to pre-defined representational spaces and have achieved great 
success in mapping perceptual and psychological representations in other visual domains. In object recogni-
tion, a data-driven computational model revealed 49 interpretable dimensions capable of accurately predicting 
human similarity  judgments10. Recent work has extended this method to near scenes, known as reachspaces, 
and identified 30 dimensions capturing their most important  characteristics11. Low-dimensional representations 
have been also proposed that explain how people perceive others and their mental  states12,13 or psychologically 
meaningful  situations14,15.

To date there has been only limited data-driven work in the action domain. Using principal component analy-
sis (PCA) of large-scale text data, a low-dimensional taxonomy of actions has been shown to explain neural data 
and human action  judgments16, as well as guide predictions about  actions17. However, since this taxonomy was 
generated from text data, most of these dimensions were relatively abstract (e.g. creation, tradition, spiritualism), 
and it is unclear whether a similar set of dimensions would emerge from visual action representations. In the 
visual domain, six broad semantic clusters were shown to explain semantic similarity judgments of controlled 
action  images1, suggesting that actions may be semantically categorized at the superordinate level. However, it 
remains unclear how this finding would generalize to more natural and diverse stimulus sets.
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We analyzed a dataset containing unconstrained behavioral similarity judgments of two sets of natural action 
videos from the Moments in Time  dataset18 collected in our prior  study5. Behavioral similarity has often been 
used as a proxy for mental  representations19–21 and has been shown to correlate with neural  representations22–26. 
Specifically, the perceived similarity of actions has been found to map onto critical action features, such as their 
goals or their social-affective content, as well as onto the structure of neural patterns elicited by  actions1,5,9.

Here, we employ a data-driven approach, sparse non-negative matrix  factorization27 (NMF) to recover the 
dimensions underlying behavioral similarity. This approach has two main advantages. First, it allows dimensions 
to be sparse, so that they need not be present in every action. For example, a single-agent action would have a 
value of 0 along a social interaction dimension. Second, the method requires the dimensions to be non-negative. 
Thus, dimensions can add up without canceling each other out, and no dimension can negate another’s impor-
tance. Together, these criteria help recover interpretable dimensions, with values that are interpretable as the 
degree to which they are present in the data.

We show that a cross-validated approach to dimensionality reduction produces a low-dimensional represen-
tation that is interpretable by humans and generalizes across stimulus categories. Importantly, the dimensions 
recovered by NMF are more robust than those generated by the more commonly used PCA. The non-negativity 
constraint is known to yield a parts-based description, supporting dimension  interpretability28.

Using human labeling and semantic embeddings, we find that dimensions map to interpretable visual, seman-
tic, and social axes and generalize across two experiments with different experimental structure, stimuli, and 
participants. Together, our results highlight the semantic structure underlying intuitive action similarity and show 
that cross-validated NMF is a useful tool for recovering interpretable, low-dimensional cognitive representations.

Results
NMF recovers robust dimensions. We analyzed two datasets consisting of three-second naturalistic vid-
eos of everyday actions from the Moments in Time  dataset18. In two previously conducted  experiments5, par-
ticipants arranged two sets of 152 and 65 videos from 18 everyday action  categories8 according to their uncon-
strained  similarity29. The first dataset also included videos of natural scenes as a control category (see Stimuli; 
Supplementary Fig. 1; Supplementary Table 1).

During the experiments, participants arranged a maximum of 7–8 videos at a time inside a circular arena, and 
the task continued until sufficient evidence was obtained for each pair of  videos30 or until the experiment timed 
out (Experiment 1: 90 min; Experiment 2: 120 min). In Experiment 1, participants arranged different subsets of 
30 videos from the 152-video set. In Experiment 2, participants arranged all 65 videos.

In both experiments, participants were instructed to arrange the videos according to how similar they were, 
thus allowing participants to use their own criteria to arrange the videos, as well as to use different criteria for 
different groupings of videos. This method allowed us to recover a multidimensional, intuitive representation 
of naturalistic actions.

We used sparse non-negative matrix  factorization27,31 with a nested cross-validation approach (see Methods) 
to recover the optimal number of underlying dimensions in the behavioral data (Fig. 1). This approach combines 
sparsity and non-negativity constraints to generate feature embeddings that can capture both categorical and 
continuous  information10,32,33 (see Methods). Using only behavioral similarity matrices as its starting point, this 
method can thus recover interpretable features that may shed light on how actions are organized in the mind.

Despite differences in stimulus set size and sampling, both experiments were characterized by similar num-
bers of dimensions (9 and 10 respectively; Supplementary Fig. 2) with a sparsity of 0.1. This suggests that the 
dimensions tended to be continuous and not categorical. Importantly, our sparse NMF procedure allowed the 
optimal structure to emerge from the data.

In Experiment 1, the final NMF reconstruction of the entire training set correlated well with the training data 
(Kendall’s τA = 0.46) and the held-out data ( τA = 0.19, true τA between the original training set and the hold-out 

Figure 1.  Analysis overview. (A) Using non-negative matrix factorization, we identified the optimal lower-
dimensional approximation of a behavioral similarity matrix. This uncovered the interpretable dimensions 
underlying the perceived similarity of naturalistic action videos. (B) NMF cross-validation procedure. 
Individual similarity ratings were assigned to a cross-validation fold before averaging the input matrices for 
each fold. The sparsity parameters (s) were optimized using two-fold cross-validation on ~ 60% of the data, with 
a separate ~ 30% used to determine the number of dimensions (k), and a hold-out set of ~ 10% used for final 
evaluation.
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set = 0.14). Performance was better in Experiment 2, with a training τA = 0.75 and a hold-out τA = 0.46 (true τA = 
0.45). In both experiments, the hold-out performance of NMF was close to the limit placed on it by the reliability 
of each dataset, as reflected in the true correlation between the training and hold-out sets.

Importantly, the dimensions were robust to systematic perturbations in the underlying stimulus sets (Fig. 2). 
Even after removing critical stimulus categories (such as all outdoor or indoor videos or certain action categories), 
the NMF procedure resulted in similar numbers of dimensions in both experiments (mean ± SD 8.4 ± 0.89 and 
8.2 ± 1.64). All dimensions were significantly correlated to those resulting from the full stimulus set, suggesting 
that the NMF results generalize even after modifying the compositon of the underlying datasets.

NMF dimensionality varied less as a function of stimulus set size (average k range 6–8.3) than as a function 
of number of action categories (average k range 3.6–10.2; Supplementary Fig. 4). Further, NMF dimensions did 
not map directly onto any single visual, social, or action feature identified in our previous  work5 (Supplementary 
Fig. 3), suggesting that this method is able to capture additional information not revealed by a hypothesis-driven 
approach.

Finally, NMF performance was better than that achieved by an equivalent cross-validated analysis using PCA, 
which recovered 8 dimensions in both experiments (Experiment 1: training τA = 0.41, hold-out τA = 0.16; Experi-
ment 2: training τA = 0.63, hold-out τA = 0.41). In the robustness analysis, the number of dimensions generated by 
PCA after removing critical stimulus categories was less reliable than those obtained with NMF in Experiment 1 
(Experiment 1: 7.8 ± 2.49 vs. 8.4 ± 0.98; Experiment 2: 6 ± 1.58 vs 8.2 ± 1.64). While on average correlations with 
the original dimensions were high, their variance was also more than twice as high as that obtained with NMF 
(Supplementary Figs. 5–6). This suggests that dimensions recovered with PCA are more sensitive to variations 
in the underlying stimulus set than those found with NMF.

NMF recovers interpretable dimensions. The hypothesis-neutral dimensions generated by NMF sug-
gest a potential structure to the behavioral space of action understanding. However, further validation is needed 
to show whether (1) these dimensions are reproducible and (2) to what degree they are interpretable.

To test reproducibility, participants in an online experiment selected the odd video out of a group consisting 
of seven highly weighted videos and one low-weighted video along each dimension. In a separate online experi-
ment to test interpretability, participants were asked to provide up to three labels for each dimension after viewing 
the eight highest and eight lowest weighted videos. Their labels were quantitatively evaluated using  FastText34, 
a 300-dimensional word embedding pretrained on 1 million English words.

All dimensions were reproducible in the odd-one-out experiments (Fig. 3A; all P < 0.004), though participants 
performed significantly better on average in Experiment 1 (mean accuracy 0.8 ± 0.13) than in Experiment 2 
(mean accuracy 0.61 ± 0.13, t(15.82) = 3.69, P = 0.002).

Participants’ labels were consistent for most dimensions (Fig. 3B). Agreement, as measured via word embed-
dings, was higher in Experiment 1 (mean proportion 0.5 ± 0.2) than in Experiment 2 (mean proportion 0.34 ± 
0.17), though this difference was not significant (t(15.78) = 1.84, P = 0.08).

The most common labels (Fig. 4) captured different types of information, ranging from visual (nature/out-
doors), to action-related (eating, cleaning, working), as well as social and affective (children/people, talking, celebra-
tion/happiness, chaos). Dimensions in Experiment 2 included more social information overall, with four dimen-
sions labeled with social or affective terms (talking, people, celebration, chaos), compared to one in Experiment 
1 (children). Although many dimensions reflected action categories included in the dataset (eating, cleaning, 

Figure 2.  NMF dimension robustness. (A) The NMF procedure was repeated after removing key stimulus 
categories from the behavioral RDM from Experiment 1. Each dot shows the maximal correlation between each 
dimension obtained in the control analysis and any of the original dimensions with the same stimuli removed 
(repeats allowed). The grey rectangle depicts the chance level (min–max range). (B) As for (A), for Experiment 
2.
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working, driving, reading) or labeled features that explained the most variance in our previous experiment (relat-
ing to people and affect), the information they provided was richer than the a priori category labels and crossed 
predefined category boundaries. For example, some videos were highly rated along several different dimensions 
(e.g. work and learning), thus capturing the complexity of naturalistic stimuli which often depict several actions 
or lend themselves to different interpretations.

Further, not all action categories were reflected in NMF dimensions, suggesting that certain action categories 
are more important than others in organizing behavior. Certain action categories were absorbed by others (e.g. 
eating included both eating and preparing food), while other related actions remained separated (e.g. work was 
split into office work vs chores/cleaning).

A shared semantic space. To better understand the relationship between dimensions revealed by the two 
datasets, we calculated Euclidean distances between averaged word embeddings for dimensions in each experi-
ment (see Methods). This analysis revealed several dimensions that were present in both datasets: eating, nature/
outdoors, learning/reading, chores/cleaning, and work (Fig. 5). Furthermore, some dimensions were moderately 
related to several others: games: people, celebration; work: talking, working; reading: working, learning. In Experi-
ment 1, the only dimension that did not have a counterpart in Experiment 2 was driving, possibly because of the 
low number of driving videos in Experiment 2.

Discussion
Here, we used sparse non-negative matrix factorization to recover a low-dimensional representation of intui-
tive action similarity judgments across two naturalistic video datasets. This resulted in robust and interpretable 
dimensions that generalized across experiments. Our results highlight the visual, semantic and social axes that 
organize intuitive visual action understanding.

Non‑negative matrix factorization as a viable approach to understanding similarity judg‑
ments. In the visual domain, it is reasonable to assume that features can be either absent or present to vari-
able degrees, and that they can be additively combined to characterize a stimulus. Previous work has dem-
onstrated that sparsity and positivity constraints enable the detection of interpretable dimensions underlying 
object similarity  judgments10. Here, we showed that a different approach with the same constraints can recover 
robust, generalizable and interpretable dimensions of human actions. As opposed to those recovered for objects, 
the action dimensions were only moderately sparse, potentially due to the naturalistic nature of our stimuli. 
However, optimizing sparsity enabled us to strike the right balance between categorical and continuous descrip-
tions of our data, thus capturing a rich underlying feature  space10,32,33.

Our approach recovered a similar number of dimensions across the two experiments (ten and nine), despite 
their different stimulus set sizes (152 vs. 65 videos). While the dimensions all had an interpretable, semantic 
description, none mapped directly onto previously used visual, semantic, or social features, suggesting that a 
data-driven approach can uncover additional information beyond hypothesis-driven analyses. Furthermore, 
the dimensions generalized across important stimulus categories like action category and scene setting (Fig. 2).

While a cross-validated PCA analysis uncovered a similar number of dimensions (eight), there was higher 
variance in the number and content of dimensions obtained after manipulating stimulus set composition (Sup-
plementary Figs. 5–6). Visual inspection of the dimensions also suggested that they may be less interpretable 
than those uncovered by sparse NMF. For example, two dimensions in Experiment 1 appeared to depict driving 

Figure 3.  Behavioral results. (A) Accuracy on the odd-one-out task for each dimension plotted against the 
chance level of 12.5% (horizontal line). (B) Proportion of participants who agreed on the top label for each 
dimension, where agreement is defined as a word embedding dissimilarity in the 10th percentile within all 
dimensions in both experiments. The horizontal line marks a chance level based on embedding dissimilarity 
across different dimensions.
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Figure 4.  Label correspondence across experiments. Wordclouds showing the labels assigned by participants 
to each NMF dimension in Experiment 1 (left) and Experiment 2 (right), with larger font sizes representing 
more frequent labels. Bars connect dimensions from Experiment 1 to their most related dimensions from 
Experiment 2. The values shown are normalized relative similarities. Dimensions from Experiment 1 are sorted 
in descending order of their summed weights, while those from Experiment 2 are organized for clarity of 
visualization.
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videos as the highest-weighted, yet these were interspersed with videos from different categories (e.g. cooking or 
socializing) that would make these dimensions difficult to label. The NMF driving dimension, on the other hand, 
showed the highest weights for the eight driving videos present in the dataset. Together, these results suggest 
that the positivity and sparsity constraints applied by NMF enable it to recover more robust and interpretable 
components from human behavioral data than PCA. These benefits are likely to extend to neural data, as sug-
gested by the recent application of NMF to reveal novel category selectivity in human fMRI  data35.

Low‑dimensional action representations. How should action categories be defined? This is a challeng-
ing question, particularly given neuroimaging evidence that actions are processed in the brain at different levels 
of  abstraction5,36,37. Our results suggest that coarse semantic, visual, and social distinctions organize internal 
representations. Although we started with 18 activity categories, already defined at an arguably broad level, we 
find that our behavioral data is well-characterized by a lower number of broad dimensions.

The low dimensionality of the NMF reconstruction may seem surprising. Actions bridge visual domains, 
including scenes, objects, bodies and faces, and thus vary along a wide range of features. Furthermore, our use 
of naturalistic videos adds a layer of complexity compared to previous work using still images. However, a low-
dimensional internal representation is more likely to enable the efficient and flexible action recognition that 
guides human behavior.

Mapping internal representations. We validated the resulting NMF dimensions in separate behavioral 
experiments. All dimensions were reproducible in an odd-one-out task (Fig. 3A) and consistently labeled by 
participants, as quantified through semantic embeddings (Fig. 3B). We visualized the most commonly assigned 
labels and assessed how they related to each other across the two experiments.

These analyses revealed several interpretable and reproducible dimensions, including those related to com-
mon everyday actions (work, cleaning/chores, eating, reading/learning), environment (nature/outdoors), and 
social information (children/family, talking, people). A previous data-driven analysis of semantic action similar-
ity judgments found six clusters of actions related to locomotion, cleaning, food, leisure, and  socializing1. Here, 
we found that some semantic categories emerged even in the absence of an explicit semantic task, while other 
dimensions reflected visual or social-affective features, highlighting the rich and varied information extracted 
from naturalistic actions.

Importantly, the NMF procedure did not simply return the action categories used to curate the dataset, and 
in fact none of the dimensions provided a one-to-one correspondence with semantic action category (Figs. 4 
and 5). Instead, the dimension labels suggest that certain action categories were more salient than others (e.g. 
work or eating), while others tended to be grouped together based on other critical features, like scene setting 
or social structure.

For example, activities that take place outdoors, like hiking and certain sports, were grouped together under 
a nature/outdoors dimension. In Experiment 1, this dimension included control videos depicting natural scenes, 
while in Experiment 2, this dimension emerged in the absence of such control videos, suggesting that the 
natural environment is a salient organizing feature in itself (Fig. 4). While such scene-related information may 
not seem strictly action-related, recent proposals have suggested that these features may be critical for action 
 understanding38. Indeed, scenes are often interpreted in terms of their affordance for  action39, and our work 
lends further support to these proposals.

Several dimensions were given labels pertaining to people (children/family, talking, people), highlighting 
the social structure of the similarity data revealed by our previous hypothesis-driven  work5. In Experiment 2, 
videos depicting different actions were grouped together based on social or affective features like communica-
tion (talking face-to-face or on the phone) or negative affect (the chaos dimension, present, among others, in 
videos of people crying or fighting). These results are in line with previous work suggesting that social features, 

Figure 5.  T-SNE plot displaying the distances between the averaged embeddings corresponding to each 
dimension from both experiments in a 2D space. Eating, nature, cleaning, reading, and work are the dimensions 
that most clearly replicate across experiments.
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including others’ intentions and emotions, are important in action  perception5,9, and provide further insight into 
the specific social information that is prioritized.

The dimension labels revealed differences as well as similarities between the two experiments. Notably, dimen-
sions in Experiments 2 included more social-affective information (Fig. 4), despite the fact that the two stimulus 
sets included the same action categories and were well-matched along social and affective  dimensions5. However, 
the stimulus set in Experiment 2 was smaller, and stimulus sampling was conducted differently across the two 
experiments, resulting in more reliable similarity judgements in Experiment 2 (see Methods: Multiple arrange-
ment). Despite these differences, the majority of dimensions correlated across experiments, suggesting that the 
NMF reconstructions form a shared semantic space, emerging in spite of stimulus set and sampling differences 
across experiments.

Neural underpinnings. Though the behavioral representations measured here likely reflect a late stage in 
action processing, they can reveal insights into the underlying neural representations. Key distinctions between 
our dimensions, such as the separation of person-directed (e.g., talking and playing games) versus object-
directed (e.g., chores and driving) actions, are consistent with prior neural  findings4,6,38. Sociality has also been 
identified as a key feature in neural action  representations3,5, as has information about the spatial layout of the 
 environment3.

However, the behavioral dimensions extracted here are finer grained than these broad distinctions, sug-
gesting that specific object-directed actions or social content may be processed separately in the brain. These 
results, and large-scale data-driven experiments more generally, are a fruitful means of hypotehsis generation 
for future neural studies.

From actions to event representations. Naturalistic actions involve interactions between people, 
objects, and places, and it is thus no surprise that the dimensions we uncover reflect the richness of this infor-
mation. This renders actions, as defined here, the ideal stepping stone towards higher-level event understand-
ing. Another action taxonomy derived from data-driven text analysis proposed six broad action  distinctions16; 
however, our dimensions are more concrete and specific, likely reflecting our input of visually depicted everyday 
human actions. Two dimensions (food and work) emerged in both the text data and our two video datasets. This 
opens exciting avenues for research into visual and language-based action understanding and whether they 
share a conceptual taxonomy.

Relatedly, stimulus selection is the biggest factor in determining the structure of similarity judgments. Here, 
both stimulus sets represented 18 everyday action categories based on the American Time Use Survey, curated so 
as to minimize visual confounds. These action categories may be described as activities or visual events, compris-
ing sets of related actions that occur in daily life. While the number of stimuli does not impact the dimensionality 
of the final NMF reconstruction, the number of action categories does (Supplementary Fig. 3), and thus an accu-
rate map of internal action representations will depend on comprehensive sampling of the relevant action space. 
Our results highlight a number of critical dimensions that organize how we judge the most common everyday 
actions; however, future research should expand this with datasets that sample actions in different ways, taking 
into account cultural and group differences in how we spend our time.

Together, our results highlight the low-dimensional structure that supports human action representations, 
and open exciting avenues for future research. Our stimuli and the resulting dimensions bridge the boundary 
between actions and situations, suggesting that our data-driven approach can be extended beyond specific visual 
domains to investigate how conceptual representations emerge in the mind and brain.

Methods
Stimuli. We analyzed two video  datasets5, each consisting of three-second naturalistic videos of everyday 
actions from the Moments in Time  dataset18.

The videos were selected to represent the following 18 common action categories based on the American Time 
Use  Survey8: childcare; driving; eating; fighting; gardening; grooming; hiking; housework; instructing; playing 
games; preparing food; reading; religious activities; sleeping; socializing; sports; telephoning; and working. The 
dataset used in Experiment 1 included 152 videos, with 8 videos per action category and 8 control videos depict-
ing natural scenes or objects. The dataset used in Experiment 2 included 65 videos, with 3–4 videos per action 
category. For more details, see Dima et al.5.

Participants. We analyzed data from two previously conducted multiple arrangement  experiments5. Exper-
iment 1 involved 374 participants recruited via Amazon Mechanical Turk (300 after exclusions, located in the 
United States, gender and age not collected). 58 participants recruited through the Department of Psychological 
and Brain Sciences Research Portal at Johns Hopkins University took part in Experiment 2 (53 after exclusions, 
31 female, 20 male, 1 non-binary, 1 not reported, mean age 19.38 ± 1.09).

Two experiments were conducted to validate the dimensions resulting from Experiments 1 and 2. 54 partici-
pants validated the dimensions from Experiment 1 (51 after exclusions, 33 female, 13 male, 1 non-binary, 4 not 
reported, mean age 19.25 ± 1.18) and a different set of 54 participants validated the dimensions from Experiment 
2 (51 after exclusions, 37 female, 11 male, 3 not reported, mean age 20.12 ± 1.78). All subjects were recruited 
through the Department of Psychological and Brain Sciences Research Portal at Johns Hopkins University.

All procedures for online data collection were approved by the Johns Hopkins University Institutional Review 
Board, and informed consent was obtained from all participants. All research was performed in accordance with 
the Declaration of Helsinki.
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Multiple arrangement. To measure the intuitive similarity between videos depicting everyday action 
events, we implemented a multiple arrangement task using the Meadows platform (www. meado ws- resea rch. 
com). Participants arranged the videos inside a circular arena according to their similarity. In order to capture 
intuitive, natural behavior, we did not define or constrain similarity. An adaptive algorithm ensured that dif-
ferent pairs of videos were presented in different trials, until a sufficient signal-to-noise ratio was achieved for 
each distance estimate. Behavioral representational dissimilarity matrices (RDM) were then constructed using 
inverse multi-dimensional  scaling30. See Dima et al.  20225 for more details on the experimental procedure.

In Experiment 1, different subsets of 30 videos from the 152-video set were shown to different participants. 
The resulting behavioral RDM contained 11,476 video pairs with an average of 11.37 ± 3.08 ratings per pair.

In Experiment 2, participants arranged all 65 videos. The resulting behavioral RDM contained 2080 video 
pairs with 53 ratings per pair.

Non‑negative matrix factorization (NMF). We used a data-driven approach, sparse  NMF27,31, to inves-
tigate the dimensions underlying action representations. This method has two important advantages over other 
forms of matrix decomposition, such as principal component analysis (PCA).

In aiming to represent each action video through a combination of underlying features, some of these may 
be assumed to be categorical. Such features would be present in some of the videos, but not in others, such that 
participants would arrange videos from the same category close together, and those outside the category farther 
apart. Sparse NMF applies sparsity constraints, allowing us to detect such categorical features that may group 
specific actions together.

However, the degree to which a feature is present may also distinguish certain actions from others, especially 
for features that capture non-categorical information. By enforcing positivity, NMF recovers continuous features 
with interpretable numerical values, reflecting the degree to which each feature is present in each stimulus. 
These two constraints thus allow both categorical and continuous structure to emerge, an approach well-suited 
to capture how real-world stimuli are represented in the  mind32,33.

Given a data matrix V  , NMF outputs a basis vector matrix W and a coefficient matrix H with specified levels 
of sparsity and with k dimensions, such that V ≈ WH . Since NMF can output different results when initialized 
with random matrices, we used non-negative singular value decomposition for  initialization40.

We first converted the behavioral RDM to a similarity matrix as used in symmetric applications of  NMF41. 
As this matrix was symmetric, the output matrices were highly correlated (Pearson’s r > 0.93), leading in practice 
to a similar solution to that given by symmetric NMF, where W = H

T.
We used a nested cross-validation scheme for NMF (Fig. 1B). In Experiment 1, in which different videos were 

arranged by different participants, cross-validation was implemented by leaving out randomly selected similarity 
ratings for each pair of videos; in Experiment 2, in which all participants arranged all videos, cross-validation 
was implemented by leaving out randomly selected participants.

Each training and test matrix used in cross-validation was created by averaging across similarity ratings 
(Experiment 1) or participants (Experiment 2). Due to the random sampling in Experiment 1, there were dif-
ferent numbers of ratings per video pair. Any missing datapoints after averaging (Experiment 1) were imputed 
(no more than 0.2% of any given similarity matrix). This was done by replacing each missing similarity value S 
using the following formula:  Sa,b = max(min(Sa,b,  Sa,c, …  Sa,n), min(Sb,c,  Sb,d, …  Sb,n))42.

To evaluate the final performance of the NMF procedure, ~ 10% of the data was held out. In Experiment 1, this 
consisted of one randomly selected similarity rating for each pair of videos. The final test set was thus a complete 
similarity matrix with a single rating per pair (amounting to 9.52% of the data). In Experiment 2, the final test 
set consisted of five randomly selected participants’ data (amounting to 9.43% of the data).

For parameter selection, the training data (~ 90% of all data) was divided into three sets (Fig. 1B).
We searched for the best sparsity parameters for each k (number of dimensions), up to 150 in Experiment 

1 and 65 in Experiment 2 (just below the maximum number of videos in each experiment). The two sparsity 
parameters for W and H were selected using two-fold cross-validation on two thirds of the training data. In a 
hold-out procedure, the best combination of sparsity parameters for each k was tested on the remaining third 
of the training data. To speed up computation, we only tested combinations of sparsity parameters (s) rang-
ing between 0 (no sparsity) and 0.8 (80% sparsity) in steps of 0.1. We selected the combination with maximal 
accuracy across the average of both folds, defined as the Kendall’s τA correlation between the reconstructed WH 
matrix and the test matrix.

To increase robustness, this cross-validation procedure for sparsity parameter selection was repeated five 
times with different training set splits. The average performance curve on the held-out training set was used to 
select the best number of dimensions (k). To avoid overfitting, we identified the elbow point in this performance 
curve, defined as the point maximally distant from a line linking the two ends of the curve.

The NMF procedure was then reinitialized with the output of the first cross-validation fold and rerun on 
the whole training set (90% of the data) with the selected combination of parameters. The held-out 10% of the 
data was used to evaluate performance by calculating the Kendall’s τA between the reconstructed NMF-based 
similarity matrix and the held-out test matrix.

Control analyses relating NMF dimensions to stimulus categories. We performed a post-hoc con-
trol analysis to assess the robustness of NMF dimensions to perturbations in the stimulus set. The NMF pro-
cedure was repeated after leaving out key stimulus categories that correlated with identified NMF dimensions 
(outdoors, indoors, childcare, driving, and fighting). To ensure these stimulus categories did not drive results, 
the dimensions obtained from each control analysis were correlated to the original dimensions. The correla-
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tions were then tested against chance using one-tailed randomization testing with 1000 iterations of component 
matrix shuffling.

To evaluate whether NMF dimensions captured any obvious stimulus features (e.g. scene setting, action 
category or sociality), we assessed the correlation between each NMF dimension and 12 visual, action-related, 
and social  features5 (Supplementary Fig. 2).

Control PCA analysis. To asssess whether NMF provides an advantage over the more commonly used 
PCA, we conducted a similar cross-validated analysis using PCA, and assessed the resulting reconstruction 
accuracy and robustness to stimulus set perturbations in both experiments. The cross-validation procedure was 
exactly the same, except that no search for sparsity parameters was conducted. Instead, only the number of 
dimensions (k) was selected using two-fold cross-validation on the training data (~ 90% of the data).

Dimension validation. We used two tasks in two separate online experiments (corresponding to Experi-
ments 1 and 2) to assess the interpretability of NMF dimensions in separate participant cohorts. We presented 
the eight highest weighted and eight lowest weighted videos along each dimension obtained from NMF as stim-
uli to the subjects. The experiment was implemented in JavaScript.

First, participants were asked to select the odd video out of a group consisting of seven highly weighted videos 
and one low-weighted video (odd-one-out) for a given dimension. This was done 20 times for each dimension 
with random resampling (from the top and bottom eight) of the videos shown. Participants were excluded if 
they did not achieve above-chance performance (over 12.5%) on catch trials involving a natural scene video 
as the odd-one-out among videos containing people. Dimensions were considered reproducible if participants 
achieved above-chance accuracy in selecting the odd-one-out (sign permutation testing, 5000 iterations, omni-
bus-corrected for multiple comparisons).

After completing this task, participants were asked to provide up to three labels (words or short phrases) for 
each dimension based on a visual inspection of the eight highest and eight lowest weighted videos.

Semantic analyses. We visually inspected the labels provided by participants to correct spelling errors and 
identify cases where pairs of antonyms were used to label a dimension (e.g. nature vs home); in these cases, we 
only kept the first label. Next, we visualized the labels by creating word clouds of the most common labels using 
the MATLAB wordcloud function.

To quantify participant agreement on labels, we used  FastText34, a 300-dimensional word embedding pre-
trained on 1 million English words. Embeddings were generated for each of the words and phrases provided 
by participants. Euclidean distances were then calculated across all labels within each dimension. Labels were 
considered related if the distance between them was in the 10th percentile across dimensions and experiments 
(below a threshold of d = 1.2). To generate a chance level for participant agreement, we calculated the proportion 
of related labels across different dimensions.

Finally, we assessed whether the NMF dimension labels replicated across the two experiments. To generate a 
dissimilarity matrix, embeddings were averaged across labels within each dimension before calculating Euclidean 
distances between dimensions. This allowed us to visualize which dimensions were most semantically related 
across experiments.

Data availability
Data related to this project is available as an Open Science Framework repository at https:// osf. io/ dxba7/. Analysis 
code is available on GitHub at https:// github. com/ diana dima/ mot_ nmf.
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