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Datum der mündlichen Prüfung: 25. November 2022



Acknowledgements

“Are Heracles and Jesus brothers?”

me, 3 y.o., seeking for the Theory of

Everything. 24 years before this thesis.

Looking back at the path which led me to this point, I sometimes ask myself,

whether I was a subject or an object of this development. There is no doubt that I

was lucky with the people around me. Starting from my parents, who sacrificed so

much of their everyday comfort in order to not just “grow” me and my brothers, but

to give us as much as they could in all regards. If I asked a question, they would

never send me away without an answer. Then, the school. Who knows Russian school,

knows that choosing a job of a teacher means a lot of sacrifice as well. And yet, so

many bright people took this path to give kids, including me, their chance in life.

It would take the whole page to mention all the teachers that I’m grateful to, so I

restrict the list to accurate sciences. In mathematics, to which I never expressed much

talent, first Elena A. Korolyova† taught me to respect math even if I can’t do it well,

and the difference between “knowing how to solve” a problem and actually solving it.

Then, during the STEM-oriented high school and bachelor, where my below-average

math skills were obvious, every teacher I came across was patient enough to guide me

through, and delicate enough to not embarrass me with my quite often failures. I am

especially thankful to Vladimir D. Krylov†, Natalia V. Kruglova, Sergey A. Belyaev

and Nazar Kh. Agakhanov. In physics, I acknowledge very pictorial and lively seminars

of Yuriy P. Tsargorodtsev and Eduard M. Hohlov, and bright lectures of Andrey V.

Gavrikov and Aleksey A. Abrikosov, Jr. I thank my computer science teacher Elena

A. Karpunina for making me believe that programming is easy and fun. I thank Prof.

Genri E. Norman who introduced me to the field of atomistic simulations and to the

spirit of academia in general, and Dr. Vladimir V. Stegailov who supervised my work

in Moscow and told me many things which took me quite some time to digest.

I’d like to thank the young fellows of the FHI and MPSD theory departments for

all the good time we had and for lots of discussions which exposed me to cultures all

around the globe. Thanks to Nathaniel, Yair, Haiyuan, Xiaojuan, Alaa, Alan, Eszter

i



and Paolo for being such a joyful and supportive team. Thanks Dmitrii Maksimov,

Nikita Rybin, Nikita Kuldyushev and Galina Kuldyusheva for making sure that I don’t

spend holidays home alone.

Finally, I’d like to express my deep gratitude to Mariana: for guiding this work,

motivating me, caring about us as persons and not just “labor”, and for shielding me

from the winds that arose recently.

Hamburg, September 2022 K. F.

ii



Zusammenfassung

Schwach gebundene Grenzflächen, bei denen die Bindung zwischen einem Substrat

und einem Adsorbat durch van-der-Waals-Kräfte und andere nicht-kovalente Wech-

selwirkungen bestimmt wird, kommen in einer Vielzahl von Anwendungen vor, von

der Katalyse bis zu metallorganischen elektronischen Vorrichtungen, und sind ein Ge-

genstand umfangreicher experimenteller und theoretischer Forschung. In solchen Sys-

temen beeinflussen die Wechselwirkungen zwischen den kollektiven Eigenschaften der

Oberfläche, z. B. die Abschirmung von langreichweitigen Dispersionswechselwirkun-

gen und der Ladungstransfer zwischen einem Metall und adsorbierten Molekülen, das

Verhalten des Systems erheblich, und man muss diese Effekte in theoretischen Model-

len berücksichtigen, um interessante Eigenschaften, die sowohl mit der nuklearen als

auch der elektronischen Struktur zusammenhängen, korrekt zu modellieren. Aufgrund

der ausgeprägten anharmonischen Bereiche in der potentiellen Energieoberfläche und

der hohen Mobilität der Moleküle an solchen Grenzflächen tragen sowohl thermische

als auch Quantenfluktuationen der Kerne zu deren Gleichgewichtseigenschaften bei.

Trotz jahrzehntelanger theoretischer Untersuchungen ist es nach wie vor eine Heraus-

forderung, über einfache Modelle wie die harmonische Näherung für die Bewegung der

nuklearen Freiheitsgrade oder das Slab-Modell für eine Oberfläche hinauszugehen. Sie

erfordert die neuesten und oft rechenintensiven Simulationstechniken, was hohe Anfor-

derungen an die Software-Infrastruktur und die Rechenressourcen stellt.

In dieser Dissertation diskutiere ich theoretische Methoden zur Simulation von

Grenzflächen zwischen Metallen und Molekülen auf atomarer Maßstabsebene, die für

die Speicherung und Erzeugung ßaubererËnergie von Bedeutung sind, und wende sie

an. Wir verwenden die Dichtefunktionaltheorie für das elektronische Subsystem und

verschiedene Methoden wie die (quasi-)harmonische Näherung und die Pfadintegral-

Molekulardynamik, um die Quanteneigenschaften des nuklearen Subsystems zu berück-

sichtigen und zu bestimmen, welche Methoden ausreichen, um die wesentlichen Phäno-

mene zu erfassen und gleichzeitig rechnerisch erschwinglich zu bleiben.

Wir berechnen den Isotopeneffekt auf die Arbeitsfunktion von Cyclohexan, das an

der Rh(111)-Oberfläche adsorbiert wird, ein Effekt, der sich aus der Elektron-Phonon-

Kopplung nur dann ergibt, wenn die nuklearen Freiheitsgrade quantenmechanisch be-
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handelt werden. Deuteriertes Cyclohexan C6D12 hat einen größeren Adsorptionsab-

stand als gewöhnliches Cyclohexan. Pfadintegral-Molekulardynamiksimulationen zei-

gen auch eine temperaturabhängige Renormierung der elektronischen Zustandsdichte

in diesem System, die sowohl durch thermische als auch durch Quantenfluktuationen

der Kerne verursacht wird.

Schließlich befassen wir uns mit Oberflächenreaktionen auf einer geladenen me-

tallischen Oberfläche. Wir stellen unsere Implementierung der Nudged-Elastic-Band-

Methode (NEB) im i-PI-Paket vor und diskutieren ihre Leistungsfähigkeit. Anschlie-

ßend setzen wir die Methode ein, um die Energiebarriere der Wasserspaltungsreaktion

auf einer Pd(111)-Oberfläche zu berechnen, die einem elektrischen Feld unterschied-

licher Intensität ausgesetzt ist. Wir zeigen, dass die niedrigste Dissoziationsbarriere

auftritt, wenn das Feld eine Stärke erreicht, die eine geometrische Frustration des auf

der Oberfläche adsorbierten Wassermoleküls hervorruft, und dass die Nullpunktener-

giebeiträge zur Barriere dieser Reaktion über den weiten Bereich der auf das System

angelegten elektrischen Feldstärken nahezu konstant bleiben. Wir erklären dies durch

eine gegenseitige Aufhebung der Rot- und Blauverschiebungen einzelner Schwingungs-

moden zwischen Reaktant und Übergangszustand.
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Abstract

Weakly bound interfaces, in which the bonding between a substrate and an adsorbate

is determined by van der Waals forces and other non-covalent interactions, appear in a

vast range of applications, from catalysis to metal-organic electronic devices, and are a

subject of extensive research, both experimental and theoretical. In such systems, the

interplay between the collective properties of the surface, e.g. the screening of long-

range dispersion interactions and the charge transfer between a metal and adsorbed

molecules, affect the behavior of the system substantially, and one has to account for

these effects in theoretical models to correctly model interesting properties, related

both to nuclear and electronic structure. Due to the pronounced anharmonic regions

in the potential energy surface and the high mobility of molecules in such interfaces,

both thermal and quantum fluctuations of nuclei contribute to their equilibrium prop-

erties. Despite decades of theoretical investigation, it is still challenging to go beyond

simple models such as the harmonic approximation for the motion of nuclear degrees of

freedom or the slab model for a surface. It requires the most recent and often compu-

tationally expensive simulation techniques, thus posing high demands to both software

infrastructure and computational resources.

In this thesis, I discuss and apply theoretical methods for simulating interfaces be-

tween metals and molecules of relevance to ”clean” energy storage and production on

an atomistic scale. We use density-functional theory for the electronic subsystem and

various methods such as (quasi-)harmonic approximation and path integral molecular

dynamics to account for quantum properties of the nuclear subsystem, determining

which methods are sufficient to grasp the essential phenomena while remaining com-

putationally affordable.

We calculate isotope effect on the work function of cyclohexane adsorbed on Rh(111)

surface, an effect that emerges from electron-phonon coupling only when the nuclear de-

grees of freedom are treated quantum-mechanically. Deuterated cyclohexane C6D12 has

larger adsorption distance than ordinary cyclohexane. Path integral molecular dynam-

ics simulations also show a temperature-dependent renormalization of the electronic

density of states in this system, induced by both thermal and quantum fluctuations of

nuclei.
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Finally, we address surface reactions on a charged metallic surface. We present

our implementation of the nudged elastic band (NEB) method in i-PI package and

discuss its performance. We then employ the method to calculate the energy barrier

of water splitting reaction on a Pd(111) surface subjected to electric fields of different

strengths. We show that the lowest dissociation barrier takes place when the field

reaches a strength that induces a geometric frustration of the water molecule adsorbed

on the surface, and that the zero-point energy contributions to the barrier of this

reaction remain nearly constant across the wide range of electric field strengths applied

to the system. We explain this by a mutual cancellation of the red and blue shifts of

individual vibrational modes between reactant and transition states.

vi



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction 1

1.1 Molecular physics of surfaces . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Electronic structure theory . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Nuclear motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Electronic structure theory 9

2.1 Electronic-nuclear Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . 10

2.3 The Hohenberg-Kohn theorem and Kohn-Sham equations . . . . . . . . 11

2.4 Exchange-correlation functionals . . . . . . . . . . . . . . . . . . . . . 14

2.5 Van der Waals interactions . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Tkatchenko-Scheffler van der Waals model for molecules . . . . 18

2.5.2 Tkatchenko-Scheffler model for a surface-molecule interaction . . 20

2.5.3 Many-body dispersion . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Potential bias in metallic surface simulations . . . . . . . . . . . . . . . 24

2.6.1 A cluster model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.2 A slab in an external electric field . . . . . . . . . . . . . . . . . 26

2.6.3 Charge fluctuations in a simulation cell . . . . . . . . . . . . . . 28

vii



2.7 Numerical solution of the electronic problem . . . . . . . . . . . . . . . 31

3 Theory and methods for nuclear motion 35

3.1 Statistics of quantum nuclei . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Harmonic and quasi-harmonic approximations . . . . . . . . . . 36

3.1.2 Path Integral Molecular Dynamics . . . . . . . . . . . . . . . . 38

3.2 Analysis of reaction pathways . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Saddle point approximation . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Nudged elastic band method . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Implementation of nudged elastic band (NEB) in i-PI . . . . . . 54

4 Quantum nuclei at weakly bonded interface: cyclohexane on Rh(111) 61

4.1 Isotope effects in cyclohexane-Rh(111) interface . . . . . . . . . . . . . 61

4.2 Details of simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Static results and the quasi-harmonic approximation . . . . . . . . . . 69

4.3.1 Adsorption energy . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 The role of the exchange-correlation functional . . . . . . . . . . 73

4.3.3 Quasi-harmonic approximation . . . . . . . . . . . . . . . . . . 77

4.3.4 QH model at finite temperatures: rigid translations and rotations 79

4.3.5 The nature of the work function change . . . . . . . . . . . . . . 81

4.4 Validity of the quasi-harmonic analysis . . . . . . . . . . . . . . . . . . 82

4.5 Fully anharmonic model: path integral molecular dynamics . . . . . . . 84

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Water electrolysis on a catalytic surface: Pd(111) 91

5.1 Details of simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Reactivity of Pd(111) surface under an electric field . . . . . . . . . . . 94

5.3 Reaction paths in an electric field . . . . . . . . . . . . . . . . . . . . . 102

5.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusions 111

A Estimate of the error of SL-RPC 115

A.1 The error in potential energy . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



A.2 The error in free energy . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B Supplementing details for Chapter 4 119

B.1 Availability of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.2 Adsorption properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.3 Electron density rearrangement . . . . . . . . . . . . . . . . . . . . . . 120

C Supplementing details for Chapter 5 125

C.1 Availability of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.2 Water dissociation paths with non-zero electric fields . . . . . . . . . . 125

C.3 Including lateral interaction: a water dimer . . . . . . . . . . . . . . . . 125

C.4 Calculations of electronic Green’s functions . . . . . . . . . . . . . . . . 128

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

ix



Acronyms

AI-PIMD ab initio path integral molecular dynamics. x, 61, 63, 68, 69, 83, 84, 86,

87, 88, 91, 92, 111, 112

AIMD ab initio molecular dynamics. x, 68, 83, 84, 86, 87, 88, 91, 92

BFGS Broyden–Fletcher–Goldfarb–Shanno. x, 52, 57

BO Born-Oppenheimer. x, 10, 11, 36

CI-NEB climbing-image nudged elastic band. x, xix, 51, 102, 103, 104, 127

DFT density-functional theory. x, 4, 5, 11, 15, 23, 29, 31, 35, 53, 58, 59, 63, 65, 83,

87, 89, 128

DOF degree of freedom. x, 28, 37, 38, 53

DOS density of states. x, xix, 97, 99, 100

ESM effective screening medium. x, xiii, 28, 29, 92

FBZ first Brillouin zone. x, 23

GCSCF grand-canonical self-consistent field. x, 5, 29

GF Green’s function. x, 4, 5, 30, 31, 108, 113, 129

GGA generalized gradient approximation. x, 14, 15

GLE Generalized Langevin eqiation. x, 41, 42, 68

HA harmonic approximation. x, 5, 6, 63, 71, 77, 108

HEG homogeneous electron gas. x, 14

HOMO highest occupied molecular orbital. x, 100

x



HSE06 Heyd–Scuseria–Ernzerhof-2006. x, xvi, 4, 65, 66, 73, 74, 75, 76, 78, 121

KS-DFT Kohn-Sham density-functional theory. x, 20, 25, 31, 35, 129, 130

LDA local density approximation. x, 14, 15

LEED low energy electron diffraction. x, 2, 63

LZK Lifshitz-Zaremba-Kohn model. x, 21

MBD many-body dispersion. x, 21, 22, 23, 24

MBD@rsSCS many-body dispersion with range-separated self-consistent screening.

x, 23

MC Monte-Carlo. x, 40

MD molecular dynamics. x, xvii, xviii, 4, 6, 40, 41, 42, 43, 56, 68, 82, 83, 84, 85, 92,

108

MEP minimal-energy path. x, xiv, 49, 50, 51, 52, 53

NEB nudged elastic band. viii, x, xiv, xv, xix, xx, xxi, 49, 50, 51, 52, 53, 54, 55, 56,

57, 58, 59, 102, 103, 113, 126, 127, 128

nl-MBD non-local many-body dispersion. x, xvi, 65, 73, 74, 75, 121

NQE nuclear quantum effects. x, 63, 108

PBC periodic boundary conditions. x, 33

PBE Perdew–Burke-Ernzerhof. x, xvi, xviii, xx, xxiii, 14, 15, 16, 65, 66, 69, 70, 73,

74, 75, 76, 78, 79, 83, 93, 97, 98, 104, 105, 120, 121

PES potential energy surface. x, 38, 48, 54, 62, 83, 113

PIGLET path integrals with generalized Langevin equation. x, 42, 68

PIMD path integral molecular dynamics. x, xvii, xviii, 6, 40, 41, 42, 43, 65, 68, 69,

82, 83, 84, 85, 86, 88, 112

xi



PL principal layer. x, 30, 128, 129

QH quasi-harmonic. x, 77, 79, 82

QHA quasi-harmonic approximation. x, 5, 61, 86, 87, 88, 111

QHO quantum harmonic oscillator. x, 24, 41, 42

SCF self-consistent field. x, xiii, 4, 20, 28, 29, 31, 58, 78, 92, 129

SFG sum-frequency generation spectroscopy. x, 2

SIE self-interaction error. x, 15

SL-RPC spatially localized ring polymer contraction. x, xiv, 43, 44, 63, 69, 84, 86,

89, 112, 117, 118

STM scanning tunneling microscopy. x, 63

TPD temperature-programmed desorption. x, xxiii, 70, 71

TST transition state theory. x, 47, 49

UPS ultraviolet photoemission spectroscopy. x, 62, 87

vDOS vibrational density of states. x, 71, 105

vdW van der Waals. x, xvi, 20, 73, 74, 75, 78, 89, 97, 104

XC exchange-correlation. x, 4, 14, 15, 16, 20, 23, 65, 73, 78, 93, 104, 112

ZPE zero point energy. x, xv, xvi, xx, xxiii, 37, 62, 67, 70, 71, 74, 75, 77, 78, 79, 87,

104, 105, 107, 108, 112

xii



List of Figures

2.1 Schematic representation of atom-surface system discussed in sec. 2.5.

Z0 corresponds to the Lifshitz-Zaremba-Kohn reference plane position. 18

2.2 A cluster approximating a flat surface under an adsorbate, assuming

the skin layer to contain 3 atomic layers (left) or 2 (right). The blue

atom experiences bulk-like conditions, and the green ellipse denotes an

adsorbate molecule. The number of atoms in each layer and the total

number are given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Top: a schematic representation of a slab in an external electric field with

dipole correction [1] applied. The solid red line shows an external field,

and the green line and charges show the potential of dipole correction and

the counter-dipole which it mimics. Bottom: the equivalent 2D-periodic

capacitor setup with two separately defined electrode potentials [2]. . . 27

2.4 Schematic representation of a slab under a grand-canonical potentiostat

of Bonnet et al. [3] (top) and grand-canonical SCF [4, 5] (bottom) with

ESM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Schematic representation of a Green’s function simulation setups. Top:

division of a surface system into primitive blocks. The grey rectangles

denote the principal layers of a bulk metal, and the green area – the

non-periodic part consisting of a few metallic layers and an adsorbate.

µ0 is a Fermi level of the unbiased bulk. Middle: the simulation cell in

a single-electrode setup with a potential bias applied. The red-dashed

unit corresponds to the same in the top picture. Bottom: the simulation

cell in a 2-electrode setup. . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiii



3.1 Ring polymer representation of a single water molecule. Instead of de-

localized coordinates in 3N dimensions, the system has classical coor-

dinates in 3N ∗ P dimensional space. The “springs” come from the

expression (3.12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 A scheme of the spatially localized ring polymer contraction (SL-RPC).

The forces for a full ring polymer of P beads are approximated by a

superposition of forces calculated for P beads at the molecular part,

P ′ < P beads of the full system, and a correction of P ′ beads at the

molecular part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Schematic representation of a configurational space of N atoms with

two stable compounds A and B and a single transition state on a ridge

separating their basins of attraction. Any path ζ has to cross the ridge,

and the minimum energy path ζ?? crosses it at the transition state. . . 48

3.4 The forces acting on an atomic system during the NEB path optimiza-

tion. The energy landscape is the Müller-Brown surface [6]. F s is the

spring force defined in 3.36, and ∇E⊥ is the perpendicular component

of the physical force, as defined in 3.35. The red line shows the true

MEP, and the blue line with circles represents a hypothetical state of

the NEB with 6 moving nodes during the optimization process. . . . . 51

3.5 The force acting on an atomic system during the String path optimiza-

tion. The energy landscape is the Müller-Brown surface [6]. Fstring is the

force component perpendicular to the tangent of the spline. The red line

shows the true MEP, and the blue line with circles represents a hypo-

thetical state of the String with 6 moving nodes during the optimization

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Behavior of the NEB path in presence of a degenerate degree of freedom.

The black circles show reasonable equidistant MEP, and the red circles

show the path that is lower in energy and therefore is preferred by the

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xiv



3.7 A diagram of the NEB implementation in the i-PI code. The colors in the

flowchart show which part of the code is responsible for that particular

part of the flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 The cyclohexane adsorption patterns considered in this work for mod-

elling different coverages θ. a) θ = 1, (2
√

3×2
√

3)R13.9° unit cell (0.173

molecules per Rh atom). b) θ = 0.64, (3 × 3) unit cell. c) θ = 0.46,

(5 × 5) unit cell. d) Coverage θ = 0.12, (7 × 7) unit cell. The figure is

reproduced from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 The effect of the red shift in the C-H stretching modes on the adsorption

energy, shown schematically. The difference in zero point energy (ZPE)

is between H and D is higher in a vacuum than on the surface, due to the

different masses and the red-shift of the corresponding stretching mode

upon binding. The figure is reproduced from [7]. . . . . . . . . . . . . 70

4.3 a) Different CH groups for a cyclohexane molecule adsorbed on a sur-

face. b) The vibrational spectra of CH stretching modes of cyclohexane

in vacuum (black) and on a Rh(111) surface with coverage θ = 0.12

(red), θ = 0.46 (blue), θ = 0.64 (green) and θ = 1 (ochre). The grey

arrows assign peaks to the CH groups given in (b). As the red shift in

CH stretching modes decreases, the H/D difference in the adsorption

energy decreases also. At the full coverage (θ = 1), the intermolecu-

lar interaction is so strong that single adsorption sites become highly

non-equivalent, which is reflected in multiple peak splitting in the range

between 2540 and 3040 cm−1. The figure is reproduced from the SI of [7]

with minor changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xv



4.4 Adsorption curves calculated with different exchange-correlation func-

tionals and vdW corrections: PBE (dotted blue line), PBE +vdWsurf

(solid blue line), PBE+nl-MBD (solid red line), HSE06+nl-MBD (black

points).Calculations were performed with the unit cell of θ = 0.46.

Shaded areas show the interval of reported experimental values of the

adsorption energy of C6H12 (red) and C6D12 (grey) around the cover-

ages we study [8]. The figure is reproduced from the publication [7] with

changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 ZPE-corrected energy of adsorption for C6H12 (red) and C6D12 (black),

calculated according to eq. 4.5 with PBE + vdWsurf . The blue line shows

the adsorption energy values calculated without ZPE correction. The

figure is reproduced from the publication [7]. . . . . . . . . . . . . . . 74

4.6 The effect of temperature on the harmonic free energy of cyclohexane

(red) and D-cyclohexane (black) with and without the inclusion of hin-

dered rigid rotation modes (a and b, respectively). Solid lines show

ZPE-corrected potential energy, and dashed lines add finite tempera-

ture corrections at the temperature of 150 K. The curves are aligned to
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Chapter 1

Introduction

writeln(’Hello World!’);

me, 14 years before writing this thesis

1.1 Molecular physics of surfaces

Surface systems and, more particularly, weakly bound interfaces constitute a vast range

of technologically important molecular systems, from catalysts [11, 12] to metal-organic

junctions in electronic devices [13]. A class of surface-adsorbate systems is so interesting

for technological applications because it offers high tunability: by tuning the molecules

adsorbed on a surface, one gets access to a continuous spectrum of different electronic

properties, such as work function, band gap etc [14, 15]. Stacking multiple layers

increases the potential of such an approach even more. The term “weakly bound”

in this context means that the main contribution to the surface-molecule bonding

comes from the van der Waals and dipole-dipole interactions, in contrast to strong

covalent or ionic interactions. Researchers studying heterogeneous catalysis base their

development on the assumption that the ability both to activate a reactant molecule

(i.e. to adsorb it and to modify its electronic structure) and to release later desired

products of a chemical reaction defines a good catalyst. In such a context, “weak”

bonding may be stronger than just van der Waals attraction. Metal-organic bonds

typically involve a certain amount of electron transfer. However, bonds must be still

much weaker than actual covalent bonding in order to release reaction products and
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prevent poisoning of a catalyst. It has been known for a long time that platinum group

metals (ruthenium, rhodium, palladium, osmium, iridium, and platinum itself) are

good catalysts for various reactions [16, 17]. Although they find applications in large-

scale industrial processes [18], such as the catalytic conversion of car exhaust gases,

their high cost limits their use and motivates researchers to look for more affordable

compounds with similar properties.

Both aforementioned technological fields are similar in their need to control pre-

cisely the structure and properties of an interface system, because both electronic

properties and reaction chains are sensitive to fairly small changes in the geometry of

an adsorbate. Theoretical simulation plays an important role in this field, because it

gives unique resolution and helps to link molecular structure to existing experimental

techniques. Development in surface-specific methods such as sum-frequency generation

spectroscopy (SFG) [19, 20, 21], diffraction and energy loss spectroscopy of low-energy

electrons (LEED/HREELS) [22] and scanning techniques (tunneling and atomic-force

microscopy) pave ever broader ways for such research, and all of those methods benefit

from theoretical support to match the experimental results with the actual structure

of an investigated system. Most of the aforementioned methods deal with very clean

setups under ultra-high vacuum conditions, which in the case of catalysts imposes a

problem known as a “pressure gap”: industrial catalytic processes occur at pressures

of at least one atmosphere and higher, and reactive surfaces behave differently in such

conditions [23]. In some cases, the methods based on X-ray adsorption, namely ex-

tended X-ray absorption fine structure (EXAFS) and near edge structure (XANES) can

be applied at ambient pressure to overcome this [24], but they lack atomistic resolution

and surface specificity and give only an averaged picture across the sample. SFG allows

measurements in ambient conditions, but it is unclear whether its surface specificity

remains in all interesting cases – for example, applying an electric field would break

the central symmetry of the bulk liquid, especially if it consists of polar molecules like

water [25]. At the same time, computer simulation allows modeling surfaces at ambient

gas pressure [26] or in contact with a liquid [27, 28, 29], therefore providing a unique

(to date) access to atomistic resolution in “difficult” environments.

From a computational point of view, the investigation of surface-adsorbate systems
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by electronic structure methods is a relatively difficult task for a number of reasons

specific to this kind of systems. One of the reasons is the strict necessity to have

commensurate periodic structures for a substrate and an adsorbate to fit the system into

a simulation box – even if they are incommensurate or very large-scale commensurate

in nature1, which often leads to large unit cells containing many hundreds of atoms.

Simulation of an isolated adsorbate or a clean substrate typically requires much smaller

unit cells. Another difficulty is related to a correct description of a surface: being

neither an isolated cluster system nor periodic in all 3 dimensions, a surface does not

fit seamlessly into the well-established methods of quantum chemistry. In most of the

existing electronic-structure codes, the only way to simulate a surface is to approximate

it with a slab which is periodic in two lateral dimensions and is isolated by vacuum

from both sides in the third dimension, which, however, has to have periodic boundary

conditions because of the software’s architecture. Since a vacuum appears on both

sides of a slab, it effectively has two surfaces, which increases the number of atomic

layers needed to approximate a real surface.

To make the task even more difficult, weakly bound interfaces often demonstrate

high mobility of molecules and highly anharmonic vibrational behavior. In the domain

of applicability of the harmonic approximation for nuclear fluctuations, one can rely

on well-established and fairly inexpensive computational techniques. Beyond this do-

main, one has to choose between performing very expensive dynamical simulations and

building approximations.

1.2 State of the art

1.2.1 Electronic structure theory

Electronic structure simulations of surfaces started decades ago, and the basic concepts

how to treat surfaces were established by the late 80s and early 90s. The main three

directions (arranged by increasing complexity) are a) to set up an isolated in vacuum

cluster large enough to capture some features of a surface; b) to extend the existing

machinery of periodic bulk simulations in order to mimic a surface; and c) to describe

1For example, cyclohexane may form a (2
√

79× 2
√

79)R17.0° pattern on a Rh(111) surface[30].
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a surface as a periodic semi-infinite bulk, which can be calculated in surface Green’s

function formalism, and an interface region where periodicity breaks. The cluster model

is more of historical interest and is used mostly in cases where periodic boundaries are

inaccessible for technical reasons (e.g. some techniques are not implemented for a

periodic case in a particular code), or in order to benchmark new codes against older

calculations. The other two models are actively developed.

The slab model is a working horse of surface simulations and with the currently

available computational resources, it allows running long molecular dynamics (MD)

simulations or using highly accurate hybrid exchange-correlation (XC) functionals

such as Heyd–Scuseria–Ernzerhof-2006 (HSE06) [31] for fairly complex adsorbates [32].

Inclusion of potential bias in the slab model has no commonly used “default” ap-

proach so far, although a number of approximations were proposed and successfully

applied [33, 3, 4, 34, 5, 35]. Different implementations of density-functional theory

(DFT) make different approaches preferential. For example, packages with localized

basis sets, such as FHI-aims [36] and SIESTA [37, 38], have a much lower computational

penalty for the increase of the vacuum layer compared to plane-wave codes, therefore it

is much easier to decouple periodic repetitions of the slab. The implementation effort

on top of existing DFT codes varies for different models from nearly zero to rewrit-

ing the self-consistent field (SCF) procedure, the Poisson equation solver, etc. A very

promising direction is a grand-canonical SCF with explicitly non-periodic boundary

condition along the surface-perpendicular direction[5].

Electronic Green’s function (GF) methods have the advantage of giving access to

non-equilibrium properties such as electron transport [39] and have a naturally grand-

canonical formulation. Although employed more than 30 years ago [40, 41, 42, 43], they

did not earn as wide recognition as slab techniques, probably because of higher compu-

tational cost and somewhat excessive capabilities for many applications. Only recently

GF implementations were incorporated smoothly in versatile ab initio packages [44, 45],

although some implementations were available since early 2000s [46, 47, 48]. Finally,

to my view, GF implementations (at least the openly available ones which I have tried)

still suffer from technical problems which severely limit their applicability for diverse

systems.
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Although it is hard to predict the direction of scientific development, from my

experience I would expect that more explicit and direct techniques, i.e. grand-canonical

self-consistent field (GCSCF) or GF, will prevail over peculiarly constructed systems

such as a doped electrode made of fictitious atoms (e.g. [34]), despite their higher

implementation difficulty. They will prevail not because of their higher quality or

efficiency, but rather because once implemented properly, they reduce the effort needed

to set up the system and the number of external parameters to construct a desired

molecular system. A more detailed discussion of the inclusion of potential bias in DFT

simulations is given in the section 2.6.

1.2.2 Nuclear motion

For the nuclear subsystem, the current state of theory is also very advanced. A vast

range of relevant systems is covered by the (quasi-) harmonic approximation (HA and

QHA) for both thermodynamic and kinetic properties. Well-established models such

as Eyring transition state theory [49, 50] or its adaptation for solids [51] give compu-

tationally inexpensive ways to calculate reaction rates. As an extension for harmonic

approximation (HA), one can include phonon-phonon coupling by adding the 3rd or-

der term to the Taylor expansion of energy [52]. Since HA and 3rd order expansion

give access to many properties analytically, one can try to stretch this approach to the

limit and to map anharmonic forces obtained from molecular dynamics onto an effec-

tive temperature-dependent harmonic potential, as proposed by Hellman, Abrikosov et

al. [53, 54]. This approach may help to deal with systems that are dynamically stabi-

lized at elevated temperatures, such as the BCC phase of zirconium or uranium [55, 56].

In the last decades, the frontier in this field has moved towards “badly behaving” sys-

tems, where models based on the harmonic approximation perform poorly. In fact,

weak bonds almost certainly imply anharmonicity, therefore van-der-Waals-bound sys-

tems such as molecular crystals or physisorbed interfaces attract more and more at-

tention as methodology improves [57, 58, 59, 32, 60, 61]. An accurate description of

dispersion interactions is crucial to get accuracy in the binding energy of such sys-

tems [62]. VdW binding defines not only thermodynamical properties such as adsorp-

tion energy, but electronic properties of an interface as well: low-frequency vibrations
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couple to the electronic levels and affect charge transfer, work function and other elec-

tronic properties which are relevant for applications [14, 13]. For a long time, pairwise

semi-empirical van der Waals models stemming from the famous London’s work [63]

were the only viable option [64, 10], but recent advances in deriving non-local models

paved the way to higher accuracy [65, 66, 67]. I discuss models for dispersion inter-

actions in more detail in section 2.5. For such anharmonic systems, static methods

such as (Q)HA are not sufficient anymore, and molecular dynamical simulations be-

come necessary to sample their corrugated potential energy surface. One can calculate

thermodynamical observables as well as some dynamical properties, such as power spec-

trum, straightforwardly, the only hurdle is the necessity to simulate long trajectories to

get statistically converged results. Somewhat more difficult are reaction rates: for the

majority of relevant chemical reactions, the barriers are high enough to make simple

MD prohibitively expensive. In such case, one has to use methods of enhanced dy-

namics, such as Metadynamics, replica exchange and others [68, 69, 70, 71]. However,

the aforementioned MD methods treat nuclei as classical particles and miss quantum

contribution to thermodynamical, which in many cases is decisive. A well-known ex-

ample of a quantum effect in an adsorption process is the different desorption energies

between isotopologues, which are the result of the different zero-point energy of vibra-

tions. Inclusion of quantum statistics into MD simulations is possible via path integral

techniques which were introduced into the field by Rahman and Parrinello in 1984 [72]

and gained some popularity since then [73, 74, 75, 76]. Compared to classical MD,

path integral molecular dynamics (PIMD) is around another order of magnitude (or

more) more expensive. I discuss these methods in detail in section 3.1.2.

1.3 Overview of the thesis

I give a more detailed description of the methods that we used for electronic and nuclear

subsystems in Chapters 2 and 3, respectively. As one can see from the short review

above, for both electrons and nuclei there are ladders2 of approximations, the next

steps of which promise higher accuracy, but at a higher price, and often much higher.

2Related to the electronic problem, people often call it the “Jacob’s ladder” [77].
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In this sense, the effort of a modern researcher can be oriented in different directions:

developing new methods, reducing the cost of new or existing methods, or applying the

existing methods efficiently, while keeping calculations accurate enough to grasp the

decisive phenomena in a studied system. During the work underlying this thesis, I did

not deal with the “paper-and-pen” development of new methods – instead, I was an

“advanced user” and programmer of already existing ones, at points implementing them

in new and more flexible code architectures and dealing with unavoidable numerical

issues. This thesis summarizes these implementations and the applied studies of the

two molecular systems which we investigated.

In Chapter 4, I describe our study of isotope effects in cyclohexane adsorbed at

rhodium (111) surface. Isotope substitution is often used in experimental studies to

clarify mechanisms of reactions, and activation of C–H bonds on metal surfaces is one

of the important topics in chemical research, since it may be exploited in numerous ap-

plications from petrochemistry to reversible hydrogen storage [78, 79, 80]. Yoshinobu,

Koitaya and others revealed changes in the electronic structure of C6H12–Rh(111) in-

terface upon deuteration [8], which point toward anharmonic behavior of the C–H...Rh

and needed to be explained theoretically.

In Chapter 5, I discuss our study of water splitting on a palladium (111) surface

subjected to an electric field in order to mimic an electrochemical setup. Interaction

of water and its decay products H and OH with metals is of crucial importance in

a number of processes such as water splitting, oxidation of hydrogen in fuel cells,

corrosion processes, etc. In many such cases, the surface is subject to a potential bias,

being it an electrolytic electrode or cathodic protection against corrosion. The ab initio

simulation of systems subject to potential biases is challenging. We show a study of

the first basic step: the splitting of one hydrogen from a water molecule. In particular,

we study how the reaction paths are modified by the presence of an electric field and

how that changes zero-point energy contributions to the reaction barrier.
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Chapter 2

Electronic structure theory

2.1 Electronic-nuclear Hamiltonian

The cornerstone of theoretical molecular and modern solid state physics is atomistic

simulation. In order to shed light on microscopic processes, one needs to describe the

motion of atomic nuclei and the interactions between them. If we neglect relativistic

effects, the full interaction in a system of M nuclei and N electrons is described by the

following Hamiltonian

Ĥ =− ~2

2MI

M∑
I

∇2
I −

~2

2me

N∑
i

∇2
i +

e2

2

∑
I 6=J

ZIZJ
|RI −RJ |

+
e2

2

∑
i 6=j

1

|ri − rj|
− e2

∑
i,I

ZI
|ri −RI |

,

(2.1)

where RI , ri are the Cartesian coordinates of nuclei and electrons, respectively. ZI ,MI

and me are nuclear charges, masses and the mass of an electron.

A state of a quantum system is described by a wave function Ψ. Dynamics of such

a system follows the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉. (2.2)

In case we are interested in the stationary properties of a system, it boils down to the

time-independent Schrödinger equation

Ĥ|Ψk〉 = Ek|Ψk〉, (2.3)
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which is an eigenproblem with {Ek} being the eigenvalues of the Hamiltonian, repre-

senting the energies of the corresponding stationary states |Ψk〉.

The Schrödinger equation, although very general, suffers from two problems. The

first one is that it doesn’t have a general analytical solution for a multidimensional

electrostatic potential. The second problem is known as the “curse of dimensionality”:

if we try to solve the Schrödinger equation numerically, we have to represent it on a

grid, the size of which increases exponentially with the number of degrees of freedom,

which is (3M + 3N) or (3M + 4N) if we consider electronic spin. For a simplest H2

molecule without spin and with just 10 grid points along each direction the total size

of the grid becomes 109 points, and for O2 molecule it reaches 1051 points. Therefore,

practical approaches to solving them rely on a number of approximations.

2.2 Born-Oppenheimer approximation

Practical simulation of an atomistic system faces a controversy: on the one hand, in

many cases, we are interested in processes occurring on the “nuclear” time scale, i.e.

picoseconds and longer. On the other hand, electrons are much lighter than nuclei, and

an accurate description of their dynamics requires simulation on a scale of attoseconds.

This makes the treatment of a fully coupled system prohibitively expensive. The com-

monly used way to circumvent this problem is to sacrifice the exact coupling between

electrons and nuclei and treat their dynamics separately. The fact that electrons move

much faster than nuclei makes it reasonable to assume that electrons adapt rapidly to

the changes caused by the slow motion of nuclei. Electrons thus always remain in their

ground state, which changes as nuclei move. This model was proposed by M. Born

and R. Oppenheimer in 1927 and is often referred to as the Born-Oppenheimer (BO)

or the adiabatic approximation [81, 82]. The electronic Hamiltonian is

Ĥel = T̂el + V̂el−el + V̂el−nucl (2.4)

with T̂el being the electronic kinetic energy operator, V̂el−el – the Coulomb interaction

between electrons, and V̂el−nucl – the Coulomb interaction between electrons and nu-

clei. We can formally write down the solution of the Schrödinger equation 2.3 for the
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electronic Hamiltonian taking R = {R1, ...,RM} as a parameter:

Ĥel|ψk(R, r)〉 = Eel
k (R)|ψk(R, r)〉, (2.5)

For any R, the eigenfunctions {|ψk〉} form a complete basis in r subspace, therefore

we can express the solutions of the full eq. 2.3 as a parametric expansion

|Ψi〉 =
∑
k

C i
k(R)|ψk(R, r)〉 (2.6)

If we substitute it into eq. 2.3 and multiply both sides by 〈ψj|, the equation becomes

(
T̂nucl + V̂nucl−nucl + Eel

j (R)
)
C i
j(R)

−
M∑
I

∑
k

~2

2MI

[∫
drC i

kψ
∗
j∇2

Rψk + 2

∫
drψ∗j∇Rψk∇RC

i
k(R)

]
= EiC

i
j(R). (2.7)

The terms in square braces are responsible for electron-nuclear coupling, and the BO

approximation takes them as zero, meaning that variations of the nuclear coordinates

do not act on the electronic states. One can see that without those terms the full

Schrödinger equation boils down to the equation for nuclei with a Hamiltonian Ĥnucl
j =

T̂nucl + V̂nucl−nucl + Eel
j (R), i.e. nuclei are moving on the j-th potential energy surface

created by the j-th electronic state (plus nuclear Coulomb repulsion).

Once electronic and nuclear degrees of freedom are separated, one can choose dif-

ferent strategies to treat them. For many applications, it is enough to consider nuclei

as classical particles – e.g. for heavy nuclei, or include their quantum behavior only up

to a certain limit. We will discuss nuclear quantum effects in section 3.1.

The electronic subsystem can be treated on different levels of approximation. One

remarkable approximation which I use throughout this work is density-functional the-

ory (DFT), which will be described in the section 2.3.

2.3 The Hohenberg-Kohn theorem and Kohn-Sham

equations

A breakthrough in attempts to escape the curse of dimensionality in electronic subsys-

tem was achieved by P. Hohenberg, W. Kohn and L. Sham in 1960-s [83, 84]. First,

11



Hohenberg and Kohn proved that the ground state of an ensemble of electrons in a

given external potential can be described by a unique electron density ρ(r) [83]. The

energy then becomes a functional of the density with the minimum at the ground-

state density, and this functional is claimed to be universal for any external potential.

This is a huge step forward from a 3N -dimensional problem to a 3-dimensional one.

However, finding the exact form of this functional appeared to be a very nontrivial

problem, which has not been solved in almost 60 years separating us from the paper

of Hohenberg and Kohn. I should mention that the density depends on a spin variable

also, and it would be correct to write ρ(r, σ), but I omit spin to keep the derivation

simple. Including spin does not change the essence of the derivation of the Kohn-Sham

theory, except for the fact that the exchange energy depends on the spin state of the

system.

In order to ease this task, it makes sense to deconstruct this potential into pieces.

First, one can separate the two terms that are straightforward to calculate for a given

density:

E[ρ] =

∫
vext(r)ρ(r)dr +

1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
drdr′ + T [ρ] + Exc[ρ], (2.8)

where the first term comes from the external potential vext coming from interaction

with nuclei and an external electric field, the second one gives the classical Coulomb

repulsion between electrons, and the rest two are the kinetic energy of electrons T [ρ]

and so-called exchange-correlation energy Exc[ρ], responsible for everything that is not

covered by the other terms. I will discuss Exc later. While the first two terms are

self-explanatory, the kinetic energy of an electron density of correlated electrons is

unknown. In order to overcome this, Kohn and Sham proposed to consider a fictitious

system of N non-interacting electrons which would have the same electron density

ρ(r) [84]. The density of these so-called Kohn-Sham orbitals is

ρ(r) =
N∑
i

φ∗i (r)φi(r). (2.9)

Since the electrons in this fictitious system do not interact, its ground state is a Slater

determinant constructed from the single-particle wavefunctions φi. Then, the kinetic

energy is simply given by

T =
N∑
i

〈φi| −
1

2
∇2|φi〉 (2.10)
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We now can rewrite equation 2.8 in terms of Kohn-Sham orbitals φi:

E[ρ] =
N∑
i

〈φi| −
1

2
∇2 + vext(r)|φi〉+

∑
i,j

〈φi, φj|
1

|ri − rj |
|φiφj〉+ Exc[ρ]. (2.11)

Now, we can find a set of wavefunctions {φ} satisfying several conditions: they

should be orthonormalized and E[ρ({φ})] must be minimal across all possible sets {φ},

which can be expressed in a form of a variational condition∫
δρ(r)dr

{
δT [ρ]

δρ
+ vH + vext + vxc

}
= 0, (2.12)

where vH is a so-called Hartree potential

vH =

∫
dr′

ρ(r′)

|r − r′|
, (2.13)

and vxc is an exchange-correlation potential

vxc =
δExc[ρ]

δρ(r)
. (2.14)

The orthonormality constraint and eq. 2.12 lead to a Schrödinger-like eigenvalue

problem [
T̂ + vH + vext + vxc

]
φi = εiφi. (2.15)

The solutions are obtained simply by diagonalizing the Hamiltonian matrix represent-

ing the brackets in equation 2.15. I will refer this matrix as hKS
ij . After the eigen-

functions and eigenvalues are obtained, these single-particle states are populated with

electrons in ascending energy order up to a total number of electrons N . After that, the

density is built according to eq. 2.9 and the energy functional can be constructed again.

Since the Hamiltonian depends on the total electron density non-trivially, there is no

guarantee that the resulting electron density induces the same energy functional that

was used to obtain that density. Therefore this procedure should be iterated under the

constraint that N is kept fixed 1, until the density becomes self-consistent. Now, the

only missing piece of this puzzle is the exchange-correlation potential, which I discuss

right below.

1Although this constraint follows from eq. 2.9, it may be lifted and replaced by a constraint on a

chemical potential in order to model an open system such as an electrode connected to a battery [4].
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2.4 Exchange-correlation functionals

Since the exact form of the exchange-correlation potential is not known so far, one needs

some approximation in order to do practical calculations. The main approximation that

is done in most cases is the locality of the potential: instead of being the potential of

the whole density vxc[ρ](r), it is chosen to be a function of a density at single point only

vxc[ρ(r)], or at a point and its near surrounding vxc[ρ(r+ dr)]. The first case is known

in the community as the local density approximation (LDA), and the latter one as the

generalized gradient approximation (GGA). The local density approximation (LDA)

model utilizes the exchange energy ELDA
X and correlation energy ELDA

C of homogeneous

electron gas (HEG), of which the first one is known analytically and the latter one was

fitted from quantum Monte-Carlo simulations [85].

ELDA
XC [ρ] = −3

4

(
3

π

)1/3 ∫
ρ(r)4/3dr + ELDA

C . (2.16)

The model that I used the most throughout my electronic structure calculations is

the generalized gradient approximation (GGA) Perdew–Burke-Ernzerhof model, widely

known as PBE [86]. For the following discussion, the inclusion of spin is necessary. The

Perdew–Burke-Ernzerhof (PBE) functional is constructed as an expansion on top of

the XC of HEG. The correlation part is then

EGGA
C [ρ↑, ρ↓] =

∫
drρ[εunif

C (rs, ζ) +H(rs, ζ, t)], (2.17)

where ζ = (ρ↑−ρ↓)/ρ is the relative spin polarization, and t ∝ |∇ρ|/ρ is a dimensionless

density gradient defined in a particular way [86], and rs is the local Seitz radius which

characterizes the distance between electrons in the HEG having the density ρHEG, which

in a 3-dimensional case read as

4

3
πr3

sρ
HEG = 1 ⇔ rs = 3

√
3

4πρHEG
. (2.18)

Without going into all the details, the main physical requirements to satisfy are the

second-order proportionality to the density gradient in the limit of a small gradient

H
t→0−−→ O(t2), (2.19)

and vanishing of the correlations in the limit of very fast varying density

H
t→∞−−−→ −εunif

C . (2.20)
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There is a third requirement that the correlation energy remains the same under the

simultaneous scaling of a space and a density r → λr, ρ(r)→ λ3ρ(λr). For the details,

I address a reader to the original papers [86, 87].

The exchange contribution has to satisfy the same scaling relation, and another one

for spin scaling:

EX[ρ↑, ρ↓] = (EX[2ρ↑] + EX[2ρ↓]) /2. (2.21)

In simple words, I see the underlying idea of the PBE functional as keeping all the

properties of the well-established XC energy of LDA, and, at the same time, ensuring

that the term H, which comes from the density gradient, restores scaling relations

where is it known that the LDA model fails to satisfy them. Interestingly, these fully

ab initio conditions are enough to have a robust model which covers a vast variety of

atomistic systems. However, there are still significant weaknesses of the PBE func-

tional. The main two are its poor behavior on strongly correlated systems and the

self-interaction error (SIE). Self-interaction is a general problem of the DFT approach:

in the real world, an electron does not have Coulomb interaction with itself, only with

other particles. But in the density representation, we do not have the resolution for

single electrons anymore and therefore cannot distinguish between an electron’s “own”

density and the surrounding one. A textbook example of complete failure of PBE is

the dissociation of symmetric ions, e.g. H+
2 into H and H+ [88]. Although there is

progress in understanding the nature of SIE [89], it seems that there is no simple way

to apply a correction to the PBE functional, and the methods that correct SIE are

more computationally expensive than PBE, because typically they include a fraction

of exact exchange. Some of them are discussed in [90, 91, 31]. Despite these problems,

PBE has shown many times its fair accuracy for energetics and structure properties

of small molecules[92, 93] and solids [94, 95]. Particularly for water, which is of in-

terest for Chapter 5, a review [96] shows that PBE performs “not great, not terribly”

compared to other models: it overamplifies hydrogen bonding and therefore predicts

overstructured liquid water, but predicts energies not much worse than hybrid PBE0

model and many others. Another built-in weakness of any (semi-)local functional, is

its inability to capture long-range correlations. These terms are typically added as

corrections on top of GGA functionals, I discuss them in the following section.
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2.5 Van der Waals interactions

Most of the existing XC functionals, including PBE, are local and therefore miss any

long-range interactions beyond electrostatic ones. A very important class of non-local

correlations are so-called dispersive interactions, which connect local perturbations of

the electronic density with their distant counterparts. Even though the ground-state

electron density is static in absence of time-dependent external forces, the electrons

which constitute that density are not static – in contrast, they are in constant move-

ment and create instantaneous dipoles which interact with each other. The long-range

attractive interactions between molecules were first proposed empirically by J. D. van

der Waals to improve the description of gases beyond the ideal gas model, and to ex-

plain the condensation phenomenon [97]. By the beginning of the 1930s, it was clear

to the community that the attraction must be caused by the dynamical polarization of

molecules due to the fast movement of electrons [98]. J. Lennard-Jones considered a

harmonic oscillator model and showed that the interaction energy of two distant har-

monic oscillators has 1/R6 dependence – the same as in his famous potential [99]. The

theoretical description of such interactions for realistic molecular systems was proposed

by F. London in 1936 [63]. London derived the expression for the interaction of two

molecules, each of them being represented by a set of periodically oscillating dipoles.

One can interpret these dipoles as possible excited states available for an electron if

there is an external perturbation. London shows the connection of these oscillating

dipoles to molecular polarizability in general frequency dependent form α(ω), and, as

a particular case, static polarizability α(0)2:

α(ω) =
2

3

∑
l

µ2
l νl

ν2
l − ω2

, (2.22)

α0
k ≡ αk(0) =

2

3

µ2
k

νk
, (2.23)

where µl, νl are the dipole moment and the frequency of the l-th oscillating dipole

of the molecule, and µk, νk denote a single oscillator with the maximal contribution,

which dominates over the contributions of the rest. The energy of interaction between

2Compared to the original paper of London, I use atomic units, therefore there is no h here.
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two molecules characterized by their dominant states ρ and k is then

Eρk =
3

2R6
· α0

kα
0
ρ

νkνρ
νk + νρ

, (2.24)

where R is the distance between the molecules. Interestingly, London shows on the

experimental data, that νk for real atoms corresponds to the ionization energy, not to

the 0→ 1 transition. I find this fact counterintuitive.

Later, H. B. G. Casimir and D. Polder (1948) considered dispersive interactions

using the formalism of quantum electrodynamics, in which the interaction is mediated

by the fluctuating electromagnetic field [100]. For the interaction of two atoms or

molecules, they arrived at the expression for the R−6 coefficient C6AB, the so-called

Casimir-Polder integral:

C6AB =
3

π

∫ ∞
0

dω αA(iω)αB(iω). (2.25)

We note that α is now a function of imaginary frequency iω. This is due to the

fact that
∫∞

0
α(iω)dω =

∫∞
0

Im[α(ω)]dω. A rigorous explanation of the underlying

math is quite bulky, an interested reader may find it in § 123 of Vol. 5 of Landau-

Lifshitz [101]. Casimir and Polder showed also, that at very long distances, longer than

the wavelengths associated with excitations of atoms, the retardation of the field leads

to dipole oscillations of the atoms being out of phase, which leads to R−7 dependence

instead of R−6. For the interaction between a perfectly conducting surface and an atom

they obtained

EvdW
surf−atom = − 1

16R3

∑
n

(
|µxnx |2 + |µyny |2 + 2|µznz |2

)
, (2.26)

where µini are the dipole components associated with the ni-th excited state, i = x, y, z.

E. M. Lifshitz (1956) derived the dispersion interaction of two arbitrary solid sur-

faces based on their dielectric functions ε(ω) solely, restoring both Casimir’s result

for ideally conducting surfaces and London’s result for atoms as a low-density limit

ε → 1 [102]. The results of Lifshitz were further used by E. Zaremba and W. Kohn

to describe surface-molecule interaction [103]. Zaremba and Kohn were interested in

interactions that are short-range Z << λν (but still long enough to have no overlap

of electron densities), meaning that the definition of the exact position of the surface

plane Z0 (see fig. 2.1) becomes important, and also considered real crystalline surfaces,
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Figure 2.1: Schematic representation of atom-surface system discussed in sec. 2.5. Z0

corresponds to the Lifshitz-Zaremba-Kohn reference plane position.

which means that the definition of a “surface plane” becomes vague. They managed to

express the leading term in the van der Waals energy and the reference plane position

as functions of imaginary-frequency-dependent polarizability αmol(iω) of a molecule,

the dielectric function εsurf(iω) of a surface, and an additional property z̄(iω), which

is, simply speaking, the weighted average z-coordinate showing at which z the density

response to an external field of the frequency iω is the most pronounced:

EvdW
surf−mol = −C3 (Z − Z0)−3 +O

(
(Z − Z0)−5

)
, (2.27)

C3 =
1

4π

∫ ∞
0

d(ω)αmol(iω)

(
εsurf(iω)− 1

εsurf(iω) + 1

)
, (2.28)

Z0 =

∫∞
0
d(ω)αmol(iω)z̄(iω)

(
εsurf (iω)−1
εsurf (iω)+1

)
∫∞

0
d(ω)αmol(iω)

(
εsurf (iω)−1
εsurf (iω)+1

) (2.29)

In a more general form, the expression 2.27 for EvdW
surf−mol would also have a 4th order

term, but Z0 has a special property that if one measures the distance from Z0, the 4th

order term vanishes. These parameters are relatively easy to calculate, which paves

the way to the practical use of this formalism, which I describe in the next section.

2.5.1 Tkatchenko-Scheffler van der Waals model for molecules

The theory described above gives van der Waals energy which a) is pairwise if we con-

sider a surface as a single entity, and b) has simple power dependence on distance: either

C6/R
6 for molecules or C3/Z

3 for surface-molecule interaction. These facts tempted
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researchers to fit C6 and C3 parameters empirically and to perform practical calcula-

tions. Here I discuss the model that I was using throughout most of my simulations

– the Tkatchenko-Scheffler (TS) model [64] and its adaptation for molecule-surface

interaction [10].

Tkatchenko and Scheffler proposed a mixing scheme how to obtain C6 coefficients

for heteronuclear interactions given that the homonuclear ones are known

C6AB =
2C6AAC6BB[

α0
B

α0
A
C6AA +

α0
A

α0
B
C6BB

] . (2.30)

A good estimate for α(iω) can be obtained from the London’s expressions 2.22, 2.23

by keeping only the most important frequency ν in the summation in 2.22 (so-called

Unsöld approximation [104]). We then get

α(ω) =
α0

1− ω2/ν2
(2.31)

and, correspondingly,

α(iω) =
α0

1 + ω2/ν2
(2.32)

One can show that the same expression remains valid beyond the Unsöld approxima-

tion [105].

Since the interaction is pairwise, the van der Waals energy is simply divided equally

between two considered atoms. In the case of molecules, the electron density is a

collective entity and is not attributed unambiguously to particular atoms. However, in

practical calculations within the Born-Oppenheimer approximation, we are interested

to know not only the energy of an interaction, but also atomic forces, just as in the

atomic case in the theoretical works above. One could, of course, take the derivative

of the energy numerically given that molecular vdW energy can be calculated for

any geometry, but that would require the calculation of electron density 3Nat times.

Instead, Tkatchenko and Scheffler distribute the total electron density of a system

between its atoms using the Hirshfeld partitioning [106]. This partitioning is then used

to define an atomic volume, which is proportional to atomic polarizability [107].

αeff ≈ V eff

V free
αfree, (2.33)

One can expect this approximation to fail in highly polarizable molecules, where the

electron density is significantly delocalized, e.g. in large π-conjugated systems. For
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example, one can look at the polarizability of anthracene: it is highly anisotropic and

cannot be described by the sum of atomic polarizabilities [108].

Finally, a practical implementation of such a van der Waals correction should remain

within its limit of applicability, i.e. in the range of distances where the overlap of

electronic densities is negligibly small. For that purpose, one can introduce a damping

function into the expression:

EvdW = −1

2
fdamp

(
RAB, R

0
A, R

0
B

) C6AB

R6
AB

, (2.34)

where R0
A, R0

B are the vdW radii of the corresponding atoms. The proposed model

of damping is empirical and based on the van der Waals radii, which are taken equal

for the elements of the same row in the periodic table. The damping function in this

method is Fermi-like:

fdamp

(
RAB, R

0
AB

)
=

1

1 + exp
[
−d
(
RAB

sR0
AB
− 1
)] , (2.35)

with R0
AB = R0

A + R0
B and d, s fitted to existing highly accurate quantum-chemical

calculations. The Tkatchenko-Scheffler model has the advantage that it is very cheap:

the bottleneck is the cost of the Hirshfeld partitioning, which is very small compared

to the cost of underlying Kohn-Sham density-functional theory (KS-DFT) calculation.

There are two ways of applying the van der Waals (vdW) correction in FHI-aims

code: one can calculate the electron density with a local/semilocal XC functional and

calculate the vdW correction only once after SCF has converged, or one can explicitly

make vdW a part of the energy functional which enters in each SCF iteration. For the

systems discussed in this thesis, these two algorithms yield very close results. We use

the first scheme because the calculation of forces is not implemented for the latter one.

However, we note that the difference between these methods should be assessed for a

particular system because it’s not necessarily negligible.

2.5.2 Tkatchenko-Scheffler model for a surface-molecule inter-

action

The next challenge is to include collective effects present in a surface, such as screening,

into the pairwise vdW interaction described above. The physical nature of the effect
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is that the presence of other atoms around effectively creates a dielectric environment,

which weakens the interaction of an atom with external perturbations. It was shown

that if one applies the TS-vdW correction to a molecule adsorbed on a metallic surface,

the lack of description of the collective nature of the surface will lead to an overesti-

mation of the adsorption energy [109]. In the works [102, 103] it was noted that one

can construct the R−3 response of a surface by integrating over the semi-infinite space

filled with atoms, each of them interacting as R−6:

EvdW ≈ −
∫
dV ns

CAs
6

R6
, (2.36)

where index A denotes a distant molecule, s now denotes an individual atom of the

surface, and ns is the number of atoms per unit volume of the surface. Comparing it

with the expression 2.27, we can conclude that

C3 =
π

6
nsC

As
6 . (2.37)

Thus, if we calculated C3 from the properties of the surface according to the equa-

tion 2.28 which has collective effects included, we can assign effective CAs
6 coefficients

to the surface atoms and use it in the simulations [10]. Such an approach is referred to

in the literature as Lifshitz-Zaremba-Kohn model (LZK). The same mixing rule 2.30 for

heteronuclear interactions is applicable. V. Ruiz, A. Tkatchenko and others calculated

and published effective CLZK
6 , α0 and R0 properties for many metallic surfaces [110].

Throughout this thesis, I will refer to the LZK model with the parameters from Ruiz

et al. as vdWsurf .

2.5.3 Many-body dispersion

The pairwise model for dispersion interactions has the obvious disadvantage that it

misses collective effects. As we already saw in the case of surface, the pairwise model

itself cannot describe interaction correctly and should include an additional physical

insight from the electrodynamics of continuous media. This is true not only for surfaces

– in fact, any system will show more and more collective interactions with increase of its

density. Therefore, another approach is desired, which would be able to capture such

effects. The many-body dispersion (MBD) [111] model considers a system of harmonic
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oscillators having charges qi, masses mi, frequencies νi and centers Ri. The opposite

charges are located at Ri positions. The interaction is truncated at the dipole terms,

resulting in a Hamiltonian

ĤdipHO =
∑
i

p̂2
i

2
+
∑
i

1

2
miν

2
i |r̂i−Ri|2+

∑
i<j

qiqj(r̂i−Ri)·T̂ (Rj−Ri)·(r̂j−Rj), (2.38)

where r̂, p̂ are positions and momenta of the oscillators, and T̂ (Rj −Ri) is a dipole-

dipole interaction tensor. This Hamiltonian can be diagonalized and its eigenvalues

and eigenvectors ν̃i, ξi can be obtained analytically.

ĤdipHO =
3N∑
i=1

(
p̂i

2

2
+
ν̃iξ̂i

2

2

)
(2.39)

In order to use this model, T̂ has to be defined. To include screening effects in the po-

larizability, it is first converted from atomic property to a continuous function α(r, iω)

via approximating atoms by Gaussian densities (because the ground-state wavefunc-

tion of a harmonic oscillator is indeed a Gaussian) [112]. Then, the self-consistently

screened polarizability αSCS is calculated as

αSCS(r, iω) = αTS(r, iω)

(
1−

∫
dr′T (r − r′)αSCS(r′, iω)

)
, (2.40)

where αTS is calculated by the formula 2.33. Gaussian electron density allows to take

the integral in 2.40 analytically, which gives polarizability in a discrete form again:

αSCS
p (iω) = αTS

p (iω)

(
1 +

N∑
q 6=p

Tpqα
SCS
q (iω)

)
, (2.41)

Tpq =
∂

∂rp

∂

∂rq
wGG(rpq), (2.42)

where wGG(rpq) is the energy of Coulomb interaction of two Gaussians with the widths

σ, σ′, if one of them is centered at 0 and another at rpq

wGG(rpq) =
1

(πσσ′)3

∫ ∫
drdr′

1

|r − r′|
exp

(
−|r|2

σ2

)
exp

(
−|r′ − rpq|2

σ′2

)
=

1

rpq
erf

(
rpq√

σ2 + σ′2

)
(2.43)

The widths of the Gaussians can be expressed via α(iω) [112, 113]:

σ(u) =

(
1

3

√
2

π
α(iω)

)1/3

, (2.44)

To summarize, the sequence of operations of the MBD method is the following:

22



1. Calculate αTS
i for atoms according to 2.33;

2. Calculate widths of the Gaussians σi(αi) by 2.44;

3. Calculate wGG
ij , Tij for each pair of atoms (2.43 and 2.42, respectively);

4. Estimate αSCS
i using αTS, T in the eq. 2.41;

5. Repeat 2-4 until self-consistency for αSCS
i is reached;

6. Use the final T and diagonalize the Hamiltonian 2.38 and calculate the energy.

Similarly to the Tkatchenko-Sheffler method, range separation can be applied to T

in order to switch it off smoothly at short distances, where the DFT XC functional is

expected to capture local correlations well. Then, only the short-range interaction is

used to calculate screened polarizability, while the long-range part is responsible for

the calculation of the MBD energy, and the method is then called MBD@rsSCS [114].

Reciprocal-space formulation of MBD

In the case of a solid, real-space formulation becomes inconvenient, because one would

need to account for formally infinite, and in practice for a large number of interactions

to get the screening converged. A cutoff radius up to 120 Å may be needed to converge

the self-consistent screening [115], which makes these calculations quite heavy. The

corresponding T and α have a dimensionality of (3NatNcells)× (3NatNcells), where Nat

is the number of atoms in a unit cell, and Ncells is the number of unit cells within the

cutoff radius.

T. Bučko et al. (2016) proposed a reciprocal-space formulation [115]. Infinite

summation over Gaussians in real space is replaced by summation within a single unit

cell and integration over the first Brillouin zone (FBZ):

EvdW =

∫
FBZ

dk

(2π)3Ωu.c.

∫ ∞
0

dω

2π
Tru.c.

[
ln
(
1−α(k, iω)T LR(k)

)]
, (2.45)

where the trace denotes summation over all atoms in the unit cell, Ωu.c. is the

volume of the unit cell, α(k, iω) is a Fourier-transformed diagonal matrix of atomic

polarizabilities αp:

αp(k, iω) =
∑
b

αrp,rp+b(iω) · eikb (2.46)
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with b being all possible Bravais vectors, and T LR(k) is a Fourier-transformed long-

range part of T : T LR = T ∗ fdamp from the eq. 2.35. The element responsible for the

interaction between atoms p and p′ from the unit cell is

T LR
pp′ (k) =

∑
b

T LR
rp,rp′+b

· e−ik(rp−b−r
p′ ). (2.47)

Therefore, the real-space problem 2.38 of dimension (3NatNcells)× (3NatNcells) decom-

poses into Nq problems of size (3Nat) × (3Nat) with Nq being the number of k-points

to integrate eq. 2.45.

Extending MBD to ionic systems

The last (to date) step of the evolution of the MBD family is the extension to ionic

systems, whose polarizability is poorly described by atomic polarizabilities used above.

In order to capture that, a substantial generalization of polarizability was done: in-

stead of atomic or rsSCS polarizability, a semi-local functional of Vydrov-Van Voorhis

(VV) [116] was applied to calculate the polarizability of a density [67]:

αVV[ρ](r, iω) =
ρ(r)

4π
3
ρ(r) + C

(
∇ρ(r)
ρ(r)

)4

+ ω2

, (2.48)

where C is an empirical parameter. This density polarizability is then “collected” into

atomic ones via Hirshfeld partitioning of the density and used to construct the coupled-

quantum harmonic oscillator (QHO)s Hamiltonian 2.38. For the sake of compactness,

I do not discuss another model that was proposed to achieve the same goal, although it

deserves acknowledgment. A reader can find another version of MBD for ionic systems

in the paper of T. Gould, T. Bučko and coauthors (2016) [117].

2.6 Potential bias in metallic surface simulations

Metals have a macroscopically large number of electrons in the conduction band, which

form a free electron gas and can travel very long distances within metal bulk to compen-

sate for external perturbations of an electric field. The electronic state of a microscopic

part of a system is described by its chemical potential rather than the number of elec-

trons. If a metallic system is subjected to a potential bias, e.g. if it is connected to
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a battery, this “infinite supply” of electrons easily charges the surface up to a very

significant charge. Therefore, the charge in a surface region of metal is not conserved.

In contrast to the real world, if one applies KS-DFT simulations to such situations,

one typically has a very small number of atoms, in the range from dozens to a few hun-

dreds, and by the construction of the method, the number of electrons in the system

is defined a priori. These two facts limit the ability to model a potential bias applied

to a surface. In addition, most of the existing electronic-structure packages do not

allow a user to set mixed boundary conditions – either all 3 dimensions have periodic

boundaries, or they all have no boundary, mimicking a cluster isolated in a vacuum.

Since a surface has to be periodic in its lateral dimensions to describe its phonon and

electronic band structures, those packages require the direction orthogonal to the sur-

face to have a periodic boundary also. Therefore, a model of a surface has, in fact,

two surfaces on two sides of a slab of a few atomic layers of metal. Another problem

that appears in periodic boundary conditions is a divergence of the Coulomb potential

if a unit cell has a non-zero net charge. In periodic bulk systems, it is typically solved

by neglecting the zeroth Fourier component in the Ewald summation, which describes

the “baseline” of charge distribution. It is equivalent to introducing a compensating

background charge to make the cell as a whole neutral. If one does the same for a slab

model, homogeneous background interacts with the charge localized in the slab and

produces a spurious dipole, which scales up with the size of the vacuum layer (see for

example [118]). In the following sections, I will discuss the methods how to simulate

potential bias under the above-mentioned technical restrictions.

2.6.1 A cluster model

The simplest possible approximation for the semi-infinite bulk is a cluster isolated

in a vacuum. Such a model has a bad surface-volume ratio, which means that in

order to avoid interaction of surface regions, the size of the cluster should be quite

large. In fig. 2.2 I show a rough estimate of the cluster necessary to mimic the bulk

behavior under the adsorbate. If the adsorbed molecule itself is large, the requirements

become even more challenging, and the model still misses the solid-state electronic

band structure. If the molecule induces charge transfer, a cluster tends to accumulate
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Figure 2.2: A cluster approximating a flat surface under an adsorbate, assuming the

skin layer to contain 3 atomic layers (left) or 2 (right). The blue atom experiences

bulk-like conditions, and the green ellipse denotes an adsorbate molecule. The number

of atoms in each layer and the total number are given.

charge at the corners, which is unphysical. Therefore, we consider the cluster model

impractical in most cases.

2.6.2 A slab in an external electric field

A more physical approximation for a surface is a slab in periodic boundary conditions,

which is thick enough in the direction perpendicular to the surface. If we set an

electric field, a thick slab will polarize so that it screens the field. Therefore, the

condition for the slab thickness is to be larger than two skin-layers in order to get zero

field in the middle of the slab. Since common electronic-structure codes do not allow

to have a single non-periodic axis, an external electrostatic potential that generates

the electric field must have a discontinuity. In order not to break any properties of

the system, the discontinuity should be placed in a deep vacuum region, where there

is no electron density (zvac in fig. 2.3). One can show that such setup is equivalent

to a capacitor cell with two electrodes fixed at a voltage ∆v = E ∗ zcell [2]. Such a

setup is conceptually different from a real-world electric device. In a real device, say,

a battery, the potential discontinuity is introduced by an electromotive force located

within the conducting circuit, so that the electrostatic potential is positive on the

positively charged electrode and negative on the negative one. In order to be consistent

with the common convention, I will refer to the potential of the positively charged
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Figure 2.3: Top: a schematic representation of a slab in an external electric field with

dipole correction [1] applied. The solid red line shows an external field, and the green

line and charges show the potential of dipole correction and the counter-dipole which

it mimics. Bottom: the equivalent 2D-periodic capacitor setup with two separately

defined electrode potentials [2].
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surface as positive.

Simulation of a slab in a periodic cell leads to spurious interaction between the

slab dipole and its images along the z axis. In order to eliminate such interactions,

one can use different techniques. One approach is to modify a solution of the Poisson

equation and place semi-infinite dielectric media on both sides of a simulation cell [33,

119, 120]. This approach allows the use of a plane-wave basis set in essentially non-

periodic conditions. Another approach is technically equivalent to the model for the

electric field: one can calculate the total dipole of the simulation cell and add a counter-

balancing electric field which corresponds to an oppositely-directed dipole placed in the

vacuum region [1]. This technique is implemented in the FHI-aims code and was used

in my calculations described in chapters 4 and 5.

2.6.3 Charge fluctuations in a simulation cell

A potentiostat approach

The slab model can be expanded to capture charge fluctuations on the surface more

precisely if one removes the constraint of constant charge of the simulation cell. The

potentiostat method proposed by Bonnet et al. in 2012 [3] does this separately from

the SCF cycle: the charge is described as an additional degree of freedom and it can

be exchanged between the system and the external reservoir (a potentiostat) which is

held under a constant potential vPS. The total energy of the system and a potentiostat

is then the energy E of the system itself plus the cost of removing ne electrons from

the potentiostat:

Ẽ = E(Ri, ne) + nevPS. (2.49)

Introducing fictitious mass Mne and momentum Pne for the charge degree of freedom

(DOF), we get

ṅe =
Pne

Mne

, Ṗne = Fe = − ∂Ẽ
∂ne

= µ− vPS, (2.50)

where µ ≡ −∂E/∂ne is the electrode potential, i.e. the Fermi level of the simulation

cell. Fe is then a thermodynamic force that acts on the charge in the direction to bring µ

to vPS. Such a system allows for oscillations of charge during the simulation, following

the dynamics of a grand-canonical ensemble, while the effective screening medium
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Figure 2.4: Schematic representation of a slab under a grand-canonical potentiostat

of Bonnet et al. [3] (top) and grand-canonical SCF [4, 5] (bottom) with ESM.

(ESM) implicitly plays the role of a counter-electrode (see fig. 2.4), and its properties

are defined analytically using a Green’s function for the Poisson equation [33].

Grand-canonical self-consistent Kohn-Sham DFT

Otani and Sugino noted along with the introduction of ESM approach that the chemical

potential can be imposed within the self-consistent Kohn-Sham procedure if the KS

states are populated not up to a predefined number of electrons, but rather up to the

desired potential:

ρ(r) =

εi≤µ∑
i

|φi|2 (2.51)

with the symbols defined in 2.3. They noted, however, that this procedure is less

stable than the interpolation of µ from multiple SCF calculations with a fixed number

of electrons. Later, Sundararaman et al. developed a scheme to find the electron

density [4], therefore one can expect that GCSCF method will become more common

in the near future.
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Electronic Green’s functions formalism

Another method to simulate surfaces is with the use of Green’s functions technique.

The basic idea is to simulate a surface as a semi-infinite bulk consisting of periodically

repeated “principal layers” (PL) and a non-periodic termination which includes a few

layers of metal and an adsorbate, which we call “molecular part”. We assume that all

interactions are screened within a principal-cell distance, so that each principal layer

(PL) interacts only with the adjacent PLs (see figure 2.5). Then, the Hamiltonian

matrix of such a system has a block-3-diagonal form:

H =



... ... ... ... ...

... H0 H1 0 0

... H−1 H0 H1 0

... 0 H−1 H0 HBM

... 0 0 HMB HM


, (2.52)

where indices 0 and M correspond to interactions within the bulk PL and within

the molecular part, respectively, while ±1 and BM/MB correspond to the coupling

between two adjacent PLs and between the last PL and the molecular part, respectively.

A derivation of the Green’s functions formalism is quite bulky and goes beyond the

scope of this Thesis. I refer interested readers to the original papers [40, 43, 39].

In short, it is possible to construct the Green’s function of such a semi-infinite system

using the Bloch waves with real and imaginary k-vectors, which propagate or decay back

and forth along the semi-infinite direction, and scatter on the “molecular” part. The

Green’s function gives access to the electron density at each energy value ρ(r, E) (or

a reciprocal-space ρ(k, E)), which can be integrated from −∞ to the desired chemical

potential µ, thus allowing the simulation of potential bias. The true power of GF

method is that it can be straightforwardly extended to non-equilibrium systems, in

which there are the source and the drain of electrons and a current flows through the

system [121, 47, 48].

The main disadvantage of the GF method is its relatively high cost: integration

in the energy domain has to be performed numerically and requires the calculation of

the Green’s function at each energy discretization point to perform a single iteration

of the density. And each of those GF calculations implies inversion of a NBS × NBS
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matrix, where NBS is a size of a basis set. It means in practice a factor of about

100 or more compared to the KS-DFT. Another problem which is so far not solved

is the numerical stability of the SCF procedure: existing open-source general-purpose

implementations [48, 44] are very sensitive to the initial guess for the electron density

and even small perturbations, e.g. during geometry relaxation, may lead to divergence.

These stability issues prevented me from using GF calculations in practical simulations.

2.7 Numerical solution of the electronic problem

The methods described above need to be implemented in a discrete form suitable for

numerical solution. For efficient handling, the electron density should be expanded

into a set of basis functions. For Kohn-Sham states φi and basis functions ϕj, it reads

φi =
∑
j

Cijϕj. (2.53)

Different DFT codes choose different approaches for discretization. Popular basis sets

are plane waves, atom-centered Gaussian functions and atomic-like orbitals. Plane-

wave basis sets are orthogonal and easily convertible to the real space and back by fast

Fourier transforms. They are also convenient for solid-state problems since the basis is

naturally periodic. On the other hand, they have two important disadvantages. The

first one is the non-locality of plane waves, which makes it difficult to describe het-

erogeneous systems like a slab in a vacuum. The second problem is that describing

strong gradients of the density, which are to be expected near the nuclei, requires a

very large number of harmonics. Therefore most plane-wave codes rely on pseudopo-

tentials to describe the core electrons. Opposite to plane waves, localized basis sets are

generally more efficient in describing core states and heterogeneous systems, but they

need additional treatment to work in periodic boundary conditions, and, since they are

non-orthogonal, the Kohn-Sham eigenproblem 2.15 takes the form∑
j

HijCjl = εl
∑
j

SijCjl, (2.54)

where Hij and Sij are the Hamiltonian (see eq. 2.15) and overlap matrix elements,

respectively, which are calculated by real-space integration on the grid:

Hij =

∫
dr[ϕ∗i (r)HKS

ij ϕj(r)] (2.55)
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Figure 2.5: Schematic representation of a Green’s function simulation setups. Top:

division of a surface system into primitive blocks. The grey rectangles denote the

principal layers of a bulk metal, and the green area – the non-periodic part consisting

of a few metallic layers and an adsorbate. µ0 is a Fermi level of the unbiased bulk.

Middle: the simulation cell in a single-electrode setup with a potential bias applied. The

red-dashed unit corresponds to the same in the top picture. Bottom: the simulation

cell in a 2-electrode setup.
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Sij =

∫
dr[ϕ∗i (r)ϕj(r)] (2.56)

During this work, I used mostly FHI-aims [36] code, and partially SIESTA [122]. Both

use atom-centered atomic-like orbitals with a cutoff radius which makes the Kohn-

Sham Hamiltonian and the overlap matrix sparse: the density overlap between the

atoms beyond a cutoff distance is exactly zero. Real-space grids which host those

tabulated orbitals are handled differently in these two codes: SIESTA uses a uniform

grid spanning over the entire simulation cell, while FHI-aims uses atom-centered grids

of increasing density towards the nuclei. The reason for that is that SIESTA simulates

only the valence band explicitly and relies on pseudopotential to describe the lower

shells, while FHI-aims includes all electrons explicitly. The species-specific basis sets

in FHI-aims are organized in so-called “tiers” by increasing accuracy and computational

cost, and several default settings are provided, called “light”, “intermediate”, “tight”

and “really tight”.

Treatment of periodic boundary conditions (PBC) in FHI-aims is done by con-

structing the Bloch-like states χ from the basis functions ϕ located in the unit cells

translated by a translation vector T (N ), N = (N1, N2, N3):

χi,k(r) =
∑
N

exp[ik · T (N )] · ϕi[r −Rat + T (N )] (2.57)

The corresponding k-dependent matrix elements hij(k) are

Hij(k) = 〈χi,k|ĤKS|χi,k〉 =
∑
M,N

′ exp[ik · (T (N )−T (M )] ·
∫

u.c.

dr ϕi,M (r)ĤKSϕj,N (r),

(2.58)

where ϕj,M , ϕj,N are the basis functions located in the M th (N th) unit cell. Be-

cause of the locality of the basis functions, the
∑′

M,N sum runs not over the infinite

amount of cells, but only over a quite small set of those which have nonzero elements

of the Hamiltonian and overlap matrices. This scheme turns out to be computationally

efficient.
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Chapter 3

Theory and methods for nuclear

motion

Within the Born-Oppenheimer approximation, nuclei move subject to forces arising

from nuclear-nuclear Coulomb repulsion and from the electron-nuclear interaction given

by a single state of the electronic subsystem, which corresponds to the instant posi-

tion of nuclei. “Position” here should be understood in a broad sense, meaning that

nuclei can be described as quantum particles or approximated classically. Similarly

to electrons, an analytical solution of the Schödinger equation for nuclei hits the di-

mensionality wall. One could reasonably propose to treat nuclear density in a way

ideologically similar to KS-DFT. Two reasons make this approach impractical. The

first one is that the nucleus-nucleus interaction is mediated by electrons via the Born-

Oppenheimer potential energy surface, which has neither an analytical form nor a

reasonably simple analytical approximation. The second problem is that the nuclear

subsystem has multiple excitations with energies small compared to temperature. For

example, the lowest rotational level of a water molecule lies at 28 cm−1, which corre-

sponds to 33 K [123]. It implies the need for at least time-dependent DFT treatment,

which is computationally demanding. Alternatively, only some nuclear degrees of free-

dom are treated quantum-mechanically, and others classically. Although there are

developments in the direction of electron-nuclear DFT [124, 125], it is far from being

common approach. Instead, other methods are applied to solve the nuclear problem,

and the level of theory depends on the properties that we are interested in. In my
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work, I focused on equilibrium properties and chemical reaction rates. In the following

sections, I will briefly review the theory which is applicable in these two cases.

3.1 Statistics of quantum nuclei

Within the BO approximation, the nuclear Hamiltonian is a function of the coordinates

and momenta of nuclei Ĥ(R̂, p̂). Equilibrium statistical mechanics of a canonical en-

semble of systems with N distinguishable nuclei each is described by the Gibbs partition

function

Q(β) = Tr
[
e−βĤ

]
=
∑
n

e−βEn . (3.1)

where β = 1/kBT and En are the eigenvalues of Ĥ, and the trace is taken in the

eigenstate basis of Ĥ. Finding a partition function is thus identical to finding the

spectrum of the Hamiltonian. Very few multidimensional Hamiltonians are easy to

solve. In the following two sections, I will first discuss the most common analytical

approximation, i.e. the harmonic approximation, and then I will review the treatment

of arbitrary Hamiltonians by path integral molecular dynamics.

3.1.1 Harmonic and quasi-harmonic approximations

The harmonic approximation starts with the assumption that a molecular system, say,

a molecule in a gas phase or a solid, performs small oscillations around its minimal

energy position. It means that the temperature is much lower than the energy of

possible chemical transformations, such as bond rotations or breaking. In many cases,

it is a reasonable assumption, because characteristic reaction energies are in the range

of hundreds of meVs and above, which is equivalent to the temperature of thousands

of kelvins. Then, we can approximate the potential energy part of the Hamiltonian by

a series expansion around the minimal energy position. The first non-zero term is of

second order in R1, and we arrive at the harmonic vibrational Hamiltonian

Hharm =
NDOF∑
i

p̂i
2

2mi

+
1

2

NDOF∑
i,j

ΦijR̂iR̂j. (3.2)

1We can always choose potential energy V : V eq = 0, and coordinates R : Req = 0.
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Here NDOF is the number of degrees of freedom, which is (3N−α) with α depending on

the constraints which our system is subject to. A macroscopically constrained crystal

has α = 0, a molecule in a vacuum has α = 5 (linear molecule) or α = 6 (nonlinear),

and some exotic systems may have different numbers2. Φij is an element of the so-

called Hessian matrix ∂2H/∂Ri∂Rj. We can make a transformation R → ξ which

diagonalizes the Hessian. I will keep using pi and mi for simplicity, but note that they

were transformed also to satisfy the new commutation relations [ξ̂i, p̂i] = i~. In the

eigenbasis of Φ, the Hamiltonian looks simpler:

Hharm =
NDOF∑
i

p̂i
2

2mi

+
1

2

NDOF∑
i

miω
2
i ξ̂i

2
(3.3)

The NDOF-dimensional problem is transformed into many 1D problems. Since we know

the eigenvalues of a single harmonic oscillator En = (n+ 1/2)~ω, we can immediately

substitute them into 3.1 and get the partition function and useful observables:

Q(β) =
NDOF∏
i

∞∑
n

e−β(n+1/2)~ωi =
NDOF∏
i

e−β~ωi/2

1− e−β~ωi
; (3.4)

Harmonic free energy:

Fharm = − 1

β
lnQ =

NDOF∑
i

~ωi
2

+
1

β
ln(1− e−β~ωi); (3.5)

Total energy:

E = − ∂

∂β
lnQ =

NDOF∑
i

~ωi
(

1

2
+

e−β~ωi

1− e−β~ωi

)
(3.6)

The ~ω/2 contribution is very important and has a purely quantum nature: as one can

see, it exists even at zero temperature, thus the lowest energy state that a system can

occupy is not zero. Instead, it exhibits fluctuations in the position space that satisfy

the Heisenberg uncertainty relation. This energy contribution is called ZPE.

Quasi-harmonic approximation

In certain anharmonic systems, it is possible to separate a single anharmonic degree of

freedom or a small number of them so that the other DOFs can be treated as harmonic

2For example, gas-phase molecules can have constrained translations (in an ion trap) or some of

the rotations, if a strong orienting field is present.
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ones. One well-known example is the thermal expansion of the crystal lattice. The

vibrational energy of a crystal can be approximated harmonically quite well, however,

in doing so we are not able to capture thermal expansion, as the mean position of atoms

in a harmonic crystal (so-called Debye crystal) remains the same at any temperature.

What we can do to overcome this problem, is to calculate multiple harmonic crystals

corresponding to different lattice constants, then to obtain their free energy depending

on temperature and thus to find the preferred lattice constants for each temperature

as the ones that minimize the free energy. Another example is described in Chapter 4,

where we treat the distance between the adsorbate and the surface as a parameter, and

all the other DOFs harmonically to capture isotope effects in the adsorption distance.

Eyring’s transition state theory, which is discussed in section 3.2.1, and Vineyard’s

formulation of it for solids [51] are other examples of a quasi-harmonic approximation,

because all but one normal modes at the saddle point are treated harmonically.

3.1.2 Path Integral Molecular Dynamics

If the nuclear DOFs of a system move in a considerably anharmonic potential, e.g.

when a system has multiple energy minima within an energy range of few kBT and

migrates between them easily, the harmonic approximation to the potential energy

surface (PES) may perform poorly, and other methods are needed to access quantum

statistical properties. Let us consider a one-dimensional system with a Hamiltonian

H = T̂ + V̂ . The extension to higher dimensions doesn’t change the basic ideas of the

following derivation. In the position basis, partition function (3.1) reads

Q(β) =

∫ +∞

−∞
〈x|e−βĤ|x〉dx (3.7)

In a position representation, V̂ can be evaluated straightforwardly, but T̂ cannot. We

would like to split V̂ and T̂ , but since they do not commute, we cannot simply factorize

the exponent. We circumvent this by applying the Trotter theorem (1959) [126]. This

theorem states that for two operators Â and B̂, for which [Â, B̂] 6= 0,

eÂ+B̂ = lim
P→∞

[
eB̂/2P eÂ/P eB̂/2P

]P
. (3.8)

Then,

Q(β) = lim
P→∞

∫ +∞

−∞
〈x|
[
e−βV̂ /2P e−βT̂ /P e−βV̂ /2P

]P
|x〉dx. (3.9)
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Figure 3.1: Ring polymer representation of a single water molecule. Instead of delo-

calized coordinates in 3N dimensions, the system has classical coordinates in 3N ∗ P

dimensional space. The “springs” come from the expression (3.12).

Inserting the identity operator Î =
∫
|x(k)〉〈x(k)|dx between each of P multipliers and

integrating out the kinetic energy terms, we get an expression that is, in its limit,

identical to the partition function of another P -dimensional physical system [127]:

Q(β) = lim
P→∞

QP , (3.10)

QP =

(
mP

2πβ~2

)P/2 ∫
dx(1) . . . dx(P )e

−βPUP (x(1),...,x(P )), (3.11)

UP (x(1), . . . , x(P )) =
P∑
k=1

1

2
mω2

P

(
x(k+1) − x(k)

)2
+ V (x(k)) (3.12)

with m being the mass of the particle, βP = β/P , ωP = (~βP )−1 and x(P+1) = x(1). One

can see that UP has a form of a ring chain of P particles connected by harmonic springs

with stiffness mω2
P (see fig. 3.1). This object is typically called a “ring polymer”, and

its individual particles x(k) are “beads”3.

Having the partition function, we can calculate any observable A which doesn’t

depend on momentum:

〈A〉 =
1

Q(β)
Tr
[
Âe−βH

]
=

1

Q(β)

∫
A(x)〈x|e−βĤ|x〉dx

= lim
P→∞

1

QP

(
mP

2πβ~2

)P/2 ∫
dx(1) . . . dx(P )

[
1

P

P∑
k=1

A(x(k))

]
e−βPUP (x(1),...,x(P )). (3.13)

3For clarity, I will use bracketed indices (k) to indicate indexing over the dimensions of a ring

polymer or over its normal modes. It has the same mathematical meaning as usual indexing.
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Although only the limit P →∞ makes the ring polymer formalism exact, in practice,

P is a convergence parameter, and including more and more beads we asymptotically

approach the exact answer.

Thus, we have reformulated the problem of equilibrium properties of a quantum sys-

tem into the problem of eq. properties of a classical system. This relation is referred as

“classical isomorphism” [128]. One can notice some similarity between this approach,

where the state of a quantum system is probed by multiple classical “instances” of

the system, and the Feynman path integral formalism, in which a particle moves from

one point to another along all possible trajectories simultaneously. Indeed, Feynman

showed that statistical mechanics can be formulated in terms of path integrals if we ro-

tate the time axis into the imaginary plane and consider only closed trajectories [129].

The Boltzmann operator e−βĤ is formally equivalent to the time propagation operator

e−iĤτ/~, if we set τ = −i~β. From such a perspective, a ring polymer is a discretiza-

tion of the Feynman path in imaginary time which starts and ends at the same point.

Therefore, the ring polymer method for equilibrium properties received the name “path

integral molecular dynamics” (PIMD)4 or “path integral Monte-Carlo” (PIMC), de-

pending on the way how we perform integration in (3.13). The Monte-Carlo (MC)

approach is a straightforward numerical integration. The problem that one faces here

is typical for MC methods: although the integral will eventually converge, sampling a

high-dimensional space with Boltzmann weights requires calculating the potential en-

ergy, which is computationally expensive. The Metropolis algorithm [130] introduces

importance sampling into the MC integration, and the maximal allowed Metropolis

step becomes a control parameter which gradually transforms the original randomized

MC into a very conservative localized sampling technique, which is somewhat rem-

iniscent of molecular dynamics. Another approach was proposed by Parrinello and

Rahman in 1984 [72]: since the ring polymer that we have constructed is a classical

system, we can construct its Hamiltonian by reintroducing momenta and sample the

equilibrium distribution just as we do in standard MD method. Parrinello-Rahman

method appeared to be robust enough and became a de facto standard in the commu-

4One could say that “ring polymer molecular dynamics” is just as valid, but this label tends to be

used for some approximations to real -time path integral methods
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nity and a base for various improvements. It is important to remember, though, that

it is derived for distinguishable particles and does not include nuclear exchange effects,

and therefore cannot explain such phenomena as the superfluidity of liquid helium.

Developments in the direction of modeling of indistinguishable particles go beyond the

scope of this brief description.

Performance and acceleration of PIMD

For distinguishable particles, PIMD scales linearly with both the number of beads

P and the number of particles N . Each atom of each bead interacts physically only

with the atoms of the same bead and interacts by the springs only with the two nearest

neighboring repetitions of itself. It means that for each bead PIMD imposes a negligible

additional cost on top of the computation of the energy and forces within that bead,

and the bottleneck of scaling remains in the calculation of single beads. Nevertheless,

PIMD has new directions for acceleration in addition to standard MD techniques, which

all aim at the same goal: reduce the number of calculations of the bead energies and

forces.

A fruitful tree of methods stems from the generalized Langevin equation (GLE)

thermostat with frequency-dependent noise [131, 132] (so-called colored noise, in con-

trast to the white noise in the original Langevin thermostat [133, 134]). Originally,

Generalized Langevin eqiation (GLE) thermostats were designed to enhance sampling

from the NVT ensemble in classical MD simulations, but later the same concept was

expanded to quantum systems. One way is to introduce a thermostat which modifies

the movement of classical particles so that it yields quantum statistics to a certain ex-

tent. The idea of the quantum thermostat (QT) [135] is to approximate the quantum

statistics by exciting modes of a system at each frequency so that their fluctuations

have a distribution corresponding to quantum fluctuations. For a single 1D QHO with

frequency ω, the mass-scaled coordinate x̃ = x/
√
m and corresponding momentum

p̃ = p
√
m, quantum fluctuations have expectation values

〈p̃2〉 = 〈ω2x̃2〉 =
~ω
2

coth

(
~ω

2kBT

)
. (3.14)

Having access to frequency-dependent dynamics, one can construct a thermostat that

excites a multidimensional system according to all its frequencies.

41



In the case of PIMD, there are a few ways of applying (G)LE thermostats. The

minimal necessary way is just to apply a white-noise Langevin thermostat to enforce

the NVT ensemble on a ring polymer in order to satisfy the definition of PIMD. Such

a way does not use special features of a ring polymer. Another, still quite simple way

is to use the properties of a free ring polymer – a polymer without any physical forces

acting on atoms. For a free ring polymer, one can perform analytical transformation

to its normal modes: x̃ = {x̃(1), ..., x̃(P )} → q = {q(1), ..., q(P )}. Then, it is possible

to apply Langevin thermostats on the normal modes separately, using the optimal

parameters for each particular eigenfrequency ω(k), with the only arbitrary parameter

for a zero-frequency centroid mode – just as it would be required in classical MD with

LE thermostat [136].

Alternatively, one can recast the QT for PIMD. Then, the fluctuations 〈x̃2〉 are

obtained from a sum over the ring polymer normal modes:

〈x̃2〉P =
1

P

P−1∑
k=0

〈q2
(k)〉 = kBT

P−1∑
k=0

1

ω2
(k)

P→∞−−−→ ~
2ω

coth

(
~ω

2kBT

)
. (3.15)

A single GLE thermostat is fitted to be applied on each bead separately so that the sum

over the beads yields correct fluctuations. This approach was named PI+GLE [137].

Finally, one can improve PI+GLE further by imposing correct fluctuations for ki-

netic energy in addition to the fluctuations of positions and potential energy. Quan-

tum kinetic energy K of a 1D QHO can be estimated by the centroid virial estima-

tor [138, 139]

〈K〉 =
kBT

2
+

1

2P

P−1∑
k=0

〈(q(k) − q̄) · ∇V (q(k))〉 =
kBT

2
+

1

2P

P−1∑
k=0

〈(q(k) − q̄) · ω2q(k)〉

=
kBT

2
+
ω2

2P

P−1∑
k=0

〈q2
(k)〉 −

ω2

2P

〈
q̄

P−1∑
k=0

q(k)

〉
=
kBT

2
+
ω2

2P

P−1∑
k=0

〈q2
(k)〉 −

ω2〈q̄2〉
2

=
kBT

2
+ 〈V 〉 − ω2〈q̄2〉

2
, (3.16)

where q̄ = 1
P

∑
k q(k) is a centroid coordinate of a ring polymer. It is easy to see

that in order to have 〈K〉 = 〈V 〉, the centroid coordinate should have the classical

distribution. Therefore, a path integrals with generalized Langevin equation (PIGLET)

method [140] applies a classical thermostat to the centroid and the GLE constructed to

satisfy eq. 3.15 to the other normal modes. Fitting all aforementioned GLE thermostats
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can be quite tedious, a reader may find it in the original papers and their supplemental

materials.

One common vulnerability of all aforementioned thermostats is that they are de-

rived targeting harmonic systems and also use the normal modes of a free ring polymer,

ignoring their possible coupling to the physical system. However, they are applied quite

successfully and speed up convergence both in the length of MD trajectories and in the

number of beads.

Another method to reduce the number of energy/force calculations, which is specific

to PIMD, is a ring polymer contraction of various kinds [141, 142]. The underlying

idea is that it is sometimes possible to decompose interatomic interactions into a long-

range “less quantum” (slowly varying in imaginary time) part and a short-range more

quantum (rapidly varying in imaginary time) part. Then, the long-range part can be

evaluated on a contracted ring polymer which has fewer beads, while the short-range

part is approximated with some cheaper potential. For a multidimensional system with

nuclear coordinates R, it reads:

P∑
k=1

V
(
R(k)

)
≈ P

P ′

P ′∑
k=1

[
V
(
R′(k)

)
− V short

(
R′(k)

)]
+

P∑
k=1

V short
(
R(k)

)
, (3.17)

where {R(k)}, k ∈ {1, .., P} are the original coordinates of a ring polymer, and {R′(k)},

k ∈ {1, .., P ′} are the coordinates of a contracted ring polymer with P ′ beads, which is

obtained from the Fourier transform of the original system by neglecting its (P − P ′)

higher modes and transforming back. One variant of a contraction that we used in

this work is a spatially localized ring polymer contraction (SL-RPC), schematically

depicted in figure 3.2. In weakly bound interfaces, one can approximate the overall

interactions quite accurately by separating intramolecular interactions from molecule-

surface interaction. Since the atoms of the surface are heavy, quantum effects are

negligibly small within the surface, and therefore one can use much fewer beads to

describe the surface. Since the bonds between molecule and surface are weak, the

high-frequency vibrations of the molecule, where the quantum effects are the most

pronounced, are defined by intramolecular interactions. The potential energy (and the

corresponding forces) of the full system of P beads is approximated as a superposition

of P replicas of the molecular part, P ′ � P replicas of the full system, and additional
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Figure 3.2: A scheme of the spatially localized ring polymer contraction (SL-RPC).

The forces for a full ring polymer of P beads are approximated by a superposition of

forces calculated for P beads at the molecular part, P ′ < P beads of the full system,

and a correction of P ′ beads at the molecular part.

P ′ of the molecular part with a negative sign, i.e.

VP (R) ≈ P

P ′

P ′∑
k=1

[
Vfull(R

′full
(k) )− Vmol(R

′mol
(k) )

]
+

P∑
k=1

Vmol(R
mol
(k) ), (3.18)

where “full” denotes the full system containing the surface and adsorbed molecules,

and “mol” denotes the adsorbate simulated in the same unit cell, but without the

surface.

This approximation, of course, does not come without errors. We can estimate the

error which arises from SL-RPC by looking at how much the normal modes of the

molecule change in proximity to the surface. [143]

δERPC = ERPC − EP beads =
3N∑
i=1

kBT

2

P−1∑
k=P ′

[
ω2

mol

ω2
(k) + ω2

i,mol

− ω2
full

ω2
(k) + ω2

i,full

]
, (3.19)

where {ωi,mol} are the normal modes of the isolated adsorbate, and {ωi,full} are the

corresponding modes calculated by diagonalization of the part of Hessian matrix that

describes molecular displacements. Equation 3.19 is slightly different from eq. 9 in

the original paper [143], because I did not make the assumption of ω2
i,mol − ω2

i,full �

ω2
(k) + ω2

i,full, as discussed in Appendix A.1.

Similarly, one can estimate the error in a harmonic quantum free energy at finite

temperatures as

δFRPC =
1

2β

3N∑
i=1

P−1∑
k=P ′

ln

(
1 +

ω2
i,full − ω2

i,mol

ω2
(k) + ω2

i,mol

)
, (3.20)
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the derivation is given in Appendix A.2.

A similar idea of separating slowly and fast varying parts of the potential may be

applied to the real time axis (where these techniques have existed for much longer):

the long-range part of the potential, e.g. Coulomb interaction, is expected to change

slowly with time, which allows to use multiple-time stepping techniques and to update

the “slow” part of a potential once in a few steps of “fast” varying potential [144, 145].

Typically, the problem here is to find an appropriate “fast” potential. The fastest

vibrations correspond to covalent bonds, such as O-H and C-H, which implies that

the fast potential must be both cheap to calculate and at the same time capable of

describing intramolecular interactions, which in many cases is hard to fulfill.

3.2 Analysis of reaction pathways

In this section, I will discuss the problems appearing when one deals with the central

problem of chemical kinetics: the calculation of reaction rates. For a hypothetical set

of molecular compounds, Ai constituted from a given set of atoms, there are many

possible reactions

Ai → Aj, i, j ∈ {1..M}. (3.21)

where M is the number of possible compounds. The problem then can be formulated

very generally as the time evolution of the vector of the corresponding concentrations

n = (n1, n2, ..., nM):

n(0) = n0

n(t) = ?
(3.22)

If we assume that populations ni do not affect the probabilities of transition between

the states Ai, we can write the Markovian master equation for this problem:

dn

dt
= An, (3.23)

where we collected the rates of individual transitions into the time-independent matrix

A. Then, the solution of the general problem boils down to determining all the matrix

elements Aij.

It is useful to remember that what we called “molecular compounds” Ai, are, in

fact, the local minima of energy in the conformational space of the considered set of
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atoms. These minima are surrounded by their basins of attraction, which are separated

from each other by ridges. If the system has 3N degrees of freedom, then each ridge

has 3N − 1 dimensions. Depending the height and the width of these ridges, one can

use different approximations to find transition rates. If a barrier is comparable to or

lower than the average kinetic energy of considered particles, one has to solve it as a

scattering problem. If a barrier, in contrast, is much higher than the kinetic energy,

the system will tend to spend a long time in a certain basin of attraction. In such a

case, one can assume that the system reaches local equilibrium in that basin, and then,

the Boltzmann statistics can be applied to describe the system within the basin. If the

barrier is not wide enough to sufficiently suppress the under-barrier tail of the wave

function before it reaches another basin, one has to consider tunneling, but such a case

goes beyond the scope of this thesis. In the next sections, I will discuss the case of a

high barrier by first setting the theoretical stage based on the so-called saddle point

approximation, and then showing the computational methods used in practice.

3.2.1 Saddle point approximation

As stated in the previous section, the task of finding reaction rates can be formulated

as a problem of two basins of attraction with a ridge that separates them. If we assume

local thermodynamic equilibrium in the basin of reactants, then the relative probabil-

ity p that the system reaches energies E1 and E0 obeys the well-known Boltzmann

distribution:
p(E1)

p(E0)
= p(∆E) = exp

(
−∆E

kBT

)
(3.24)

We can take the energy of the lowest point of the basin as E0 and consider ∆E only.

If we integrate over all possible microscopic states at the (3N − 1)-dimensional ridge

hyperplane, we obtain the total probability that the system reaches the ridge. Although

this sounds clear, doing such integration in practice poses a significant problem. In

addition to high dimensionality, the ridge hyperplane and its energy have no analytical

representation in most cases. The same task of integrating functions multiplied by

the Boltzmann exponent appears in many problems of statistical physics. The idea

is very simple: since the exponent is a fast-decaying function, the most significant

contribution comes from the points on the ridge hyperplane where ∆E takes its lowest
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value. Then, we can employ Laplace’s method [146] and approximate the potential

energy landscape around the point with the lowest barrier up to the second order. The

resulting value of the integral is proportional to the probability p(∆E0) to find the

system having the energy of a saddle point ∆E0 (also known as activation energy Ea).

This simple model evolved since 1884 by the efforts of J. H. van ’t Hoff [147], S. A.

Arrhenius [148] and many others, until H. Eyring proposed its modern form in the

1930s, which is now known as transition state theory (TST) [49, 50]. The transition

state theory (TST) gives a practical way to calculate the probability to reach the saddle

point by calculating the partition function at the ground state and at the saddle point.

For any given system in the gas phase, there are 3 translational degrees of freedom, 2

or 3 rotational ones, and the rest (3N − 6) or (3N − 5) are the vibrational ones. If we

assume the ideal gas behavior, separability of rotational and vibrational states, treat

a molecule as a rigid rotor, and assume vibrations to be harmonic, we end up with the

following well-known expressions for their partition functions:

Ztransl =
∏
α

√
2πmkBTLα

h
(3.25)

with Lα being the “box length” available for free translation along the axis α;

Zrot (linear) =
8π2IkBT

σh2
, (3.26)

Zrot (nonlinear) =

√
πIAIBIC
σ

(
8π2kBT

h2

)3/2

(3.27)

with σ being the symmetry number of a molecule, and I (Iα) being the moment(s) of

inertia of a linear (non-linear) molecule;

Zvib =

3N−6(5)∏
i

exp
(
− ~ωi

2kBT

)
1− exp

(
− ~ωi

kBT

) (3.28)

with ωi being the angular frequency of the i-th vibrational normal mode.

Combining all the terms together, we get an expression for the relative concentration

of “activated complexes”:

n1

n0

=
Ztransl

1 × Zrot
1 × Zvib

1

Ztransl
0 × Zrot

0 × Zvib
0

× exp

(
−∆E

kBT

)
. (3.29)

In addition to this, a factor of roughly 1/2 has to appear in the expression for the

reaction rate in order to respect the fact that it’s not enough to reach the ridge – the
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Figure 3.3: Schematic representation of a configurational space of N atoms with two

stable compounds A and B and a single transition state on a ridge separating their

basins of attraction. Any path ζ has to cross the ridge, and the minimum energy path

ζ?? crosses it at the transition state.

activated complex also should have the momentum pointing towards the products, not

back to the reactants.

Once the transition state is known, all the terms in equation 3.29 can be calculated

quite straightforwardly using standard electronic-structure methods. However, the task

of finding the transition state itself is not easy. I discuss some aspects of this problem

in the following section.

Search for a transition state

Let us consider a PES with two basins of attraction, each having one strict minimum (I

denote them A and B). As was previously defined, a transition state is a point which

is located on the ridge dividing the basins of attraction and, within this constraint,

has the lowest energy. One can immediately see, that this is a very vague definition,

because we have no indicating function to determine whether the point lies in the basin

A, or B, or on the boundary between them. Exploiting the special property of a saddle

point that it has exactly one imaginary vibrational normal mode does not guarantee

finding the true activated complex, because the basins of attraction may contain saddle
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points outside the ridge. Therefore, it is nearly impossible to define a search for the

transition state only – we have to consider the TS in a wider context. We know that

every trajectory ζ(t) : R→ R3N which starts at point A and ends at B has to cross the

ridge. And each such path has a point with maximal energy, which is the ridge for that

particular path, although it doesn’t necessarily lie at the true boundary of the basins.

Having that in mind, we can reformulate the problem into a search for the minimal

barrier paths, which can be defined as the paths ζ?(t) which have the lowest intrinsic

maximum.

max
t

(E[ζ?(t)]) = min
ζ

(
max
t

(E[ζ(t)])
)

(3.30)

A stronger version of a minimal barrier path is a minimal energy path ζ?? (see fig. 3.3),

which satisfies an additional condition

E[ζ??] = min
ζ?

(∫ 1

0

E[ζ(t)]dt

)
. (3.31)

Although the requirement 3.31 is not necessary in the context of TST, it helps to

ensure that the path doesn’t lie in “unreasonable” areas that are unlikely to be visited

in equilibrium.

There are various methods of saddle point search, such as eigenvector-following [149,

150], “dimer” method [151] and others. In the next section, I will describe the Nudged

Elastic Band method (NEB) which became a de facto standard in the community and

which I implemented in the i-PI code and used to calculate the barriers for water

splitting reaction.

3.2.2 Nudged elastic band method

NEB is a chain-of-states method of local optimization designed to locate the minimum

energy path. It was suggested by G. Henkelman and his colleagues in a series of

papers [152, 153, 154]. By definition, a minimal-energy path (MEP) is a variational

minimum for the path ζ(t):
δE

δζ
= 0, (3.32)

which implies that the atomic forces should not have any component perpendicular to

the path:

∇E · τ = 0, (3.33)
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where τ = dζ/dt is a tangent vector of the path. In what follows, I will assume τ to

be normalized to unit length, unless the opposite is stated explicitly.

If we discretize the path by a set of points Ri and optimize the path by moving

these points, we want to keep the discretization of the path “good”, which may mean

different properties in different algorithms, but the most obvious criterion is that the

points are distributed uniformly along the path. There are two closely related methods:

NEB and String, which address the uniformity requirement in different ways. In the

NEB method, the replicasRi move according to two force components: a component of

the physical force perpendicular to the path, and an additional spring force, connecting

the i-th replica with its neighbors i± 1. The spring force, in opposition to the physical

one, is projected to be parallel to the tangent at the considered point:

Fi = F s
i |‖ −∇E(Ri)|⊥, (3.34)

∇E(Ri)|⊥ =∇E(Ri)−∇E(Ri) · τi, (3.35)

F s
i |‖ = k (|Ri+1 −Ri| − |Ri −Ri−1|) τi, (3.36)

where k is a spring constant, which is an adjustable parameter of the method. Such a

projection of forces is shown in the figure 3.4. One can see that the forces become zero

if the replicas of the system lie equidistantly on the MEP.

Climbing-Image NEB

One can see that the requirement of equidistance does not guarantee that the highest-

energy replica lies on the saddle point. An additional procedure was proposed to bring

the highest replica to the transition state. After the MEP is converged by the NEB

algorithm, all the replicas except the highest one are frozen, and the physical force on

the latter is modified so that the system “climbs” in the NEB tangent direction, while

keeping all the orthogonal force components from the physical force:

F climb = −∇E + 2 (∇E · τ ) τ (3.37)

Stability and performance of NEB

Being formulated in the late 90s, the NEB method immediately became very popular,

and soon it became clear that, despite its apparent simplicity and clear pictorial rep-
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Figure 3.4: The forces acting on an atomic system during the NEB path optimization.

The energy landscape is the Müller-Brown surface [6]. F s is the spring force defined

in 3.36, and ∇E⊥ is the perpendicular component of the physical force, as defined

in 3.35. The red line shows the true MEP, and the blue line with circles represents a

hypothetical state of the NEB with 6 moving nodes during the optimization process.

resentation, in practice it often behaves not as one intuitively expects, and has severe

issues with stability. It is hard to count all the papers that suggest modifications to the

method, and this effort is ongoing. Interestingly, none of the dozens of suggested im-

provements became a mainstream replacement of the original climbing-image nudged

elastic band (CI-NEB), as it was formulated in [153]. To name a few, researchers tried

to improve an optimization algorithm [155], or varied the number of NEB nodes during

the optimization [156, 157], introduced variable spring constants [153, 158, 159]. An

interesting attempt to improve the behavior of the algorithm was done by replacing

the piecewise-linear representation of the reaction path with a smooth spline represen-

tation, known as the String method [160, 161]. Force projection of the String method

is shown schematically in fig. 3.5. The idea of the method is to remove the tangential

component of the physical force, make an optimization step, and then to resample the

51



nodes equidistantly along the new spline-interpolated path.

-𝛁E

Fstring

Figure 3.5: The force acting on an atomic system during the String path optimization.

The energy landscape is the Müller-Brown surface [6]. Fstring is the force component

perpendicular to the tangent of the spline. The red line shows the true MEP, and the

blue line with circles represents a hypothetical state of the String with 6 moving nodes

during the optimization process.

A few years after the original paper, its authors reviewed the state of the art [162].

The most important observations, to my view, are the fact that the Hessian of the

NEB is not Hermitian [155], and the fact that small differences in the implementa-

tion of the optimization algorithms, that are often not reported, can drastically affect

the convergence of NEB. In fact, the choice of the upper limit for step size and the

choice of a value to put on the main diagonal of the Hessian for the quasi-Newton

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm continuously transform the al-

gorithm from a very slow, conservative limit to a highly unstable one. Many people

suggest using BFGS-family algorithms with a line search strategy for determining the

optimal step length, or the Runge-Kutta method to move the replicas of the NEB or

the String method. While it may increase the stability, the price to pay “on the spot”
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is the necessity of multiple force evaluations within a single NEB/String step, which

may easily override the gain in the number of the NEB steps.

Another observation that is worth mentioning is that the presence of degenerate

degrees of freedom xdegen., which have ∂E/∂xdegen. = 0 (e.g. free translations and

rotations), in combination with the discrete representation of the path and with the

fact that the NEB procedure does not contain any penalty for elongating the path,

leads to a completely distorted path, as present in the figure 3.6. In the context of

quantum chemistry codes, where people casually use internal molecular coordinates,

the problem of translations and rotations does not appear. However, in many popular

general-purpose DFT codes the Cartesian representation is used, in which free rotations

are not sorted out by default, therefore it becomes a responsibility of a developer of

an algorithm. A similar effect was noticed by W. Yang and his coauthors, when the

irrelevant DOFs are not completely degenerate, but are much softer than the relevant

ones [163]. In such a case, a distorted path is not a stable solution, but irrelevant

DOFs affect convergence and they often guide optimization to a very distorted path

that never converges. The solution that was proposed by W. Yang and coauthors is

rather ad hoc, because it relies on user-defined collective variables to define the distance

between the NEB nodes.
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Figure 3.6: Behavior of the NEB path in presence of a degenerate degree of freedom.

The black circles show reasonable equidistant MEP, and the red circles show the path

that is lower in energy and therefore is preferred by the algorithm.

To summarize, it seems to me that no universal treatment of NEB has been pro-
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posed, which would not require increasing the number of force evaluations. However,

it is possible to reduce the cost in a different way: instead of trying to decrease the

number of force evaluations, one could converge NEB on an approximate PES, which

improves iteratively until the NEB path on this approximate PES stops changing with

the refining of the approximation [164]. Thus, one can afford doing very small steps

when moving the replicas while keeping the number of ab initio force evaluations small.

3.2.3 Implementation of NEB in i-PI

There are different ways to use NEB with the FHI-aims code. The first one is the aim-

sChain package distributed together with the FHI-aims code [36]. While being proven

to be robust, it lacks several important features. To the present day, aimsChain is

not up-to-date with the augmentations of the FHI-aims geometry file format, such as

a specification of the vacuum level coordinate in periodic slab calculations and a spec-

ification of a homogeneous electric field, which both are necessary for the calculations

described in the Chapter 5. The second problem, which is more difficult to fix, is that

aimsChain does not offer parallel calculation of forces at different nodes of a path.

This drawback makes calculations considerably longer. Considering these obstacles

and also the possibility of using other ab initio codes, we chose to implement NEB in

the i-PI code [76].

General architecture

A diagram of the implementation is given in the figure 3.7. I-PI provides the Beads

class which handles multiple replicas of the same physical system. It performs energy

and force calculations and ensures that their values are consistent with the geome-

try – if forces are requested somewhere in the code and geometry changed since the

last calculation, the code enforces recalculation. However, it is implemented so that

consistency is checked across the whole 3N × P (P beads with N atoms) space simul-

taneously, which means that moving even one bead causes recalculation of the whole

path. Changing the number of beads during the simulation is not designed in the i-PI

workflow. To circumvent this, we created an additional Beads objects: of size (P − 2)

to avoid recalculation of the fixed endpoints of the path, and of size 1, when climbing
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class NEBGradientMapper

class NEBClimbGrMapper

Interface functions between a 
minimization algorithm and the rest of 
the i-PI structure. Being called, they take
coordinates and return forces with the 
projections necessary for NEB/CI-NEB.

class NEBMover

  def step():

Flow control of the algorithm

inputs/motion/neb.py

Contains the definition of an XML 
tree of control parameters and 
functions to fetch/store the state 
of a simulation.

utils/mintools

A collection of minimization 
algorithms used in i-PI.
The algorithms are agnostic to 
what they are used for.

Stage?

Step 0?

Calculate E
for N beads, store

Yes

No

Path
optimization

Single-bead
climbing

Initialize
(N–2)-bead

object
Do a step

of an optimizer
for (N–2) beads

Calculate E, F
for (N–2) beads

Do a step
of an optimizer
for the climbing

bead only

Calculate E, F
for the climbing

bead

Step 0?

No

Initialize a
1-bead object

Determine the
climbing bead

Yes

Converged?
No

Yes

Converged?

End

Start a step

Load from XML

No

Yes

Figure 3.7: A diagram of the NEB implementation in the i-PI code. The colors in

the flowchart show which part of the code is responsible for that particular part of the

flow.
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of a single bead is performed.

For the sake of unification with other optimization modules in i-PI, we implement

a 4-component scheme (input class, flow controller, mapper, optimizer) in our NEB

implementation. The idea of this scheme is the following: i-PI provides a collec-

tion of generic optimization algorithms, which are agnostic to the physical system at

which they are called. They operate in abstract n-dimensional space and minimize

the gradient of a given “mapper” function (some algorithms explicitly minimize the

value of the function as well), while the flow control class, which is a descendant of

Motion class, takes care of interpreting the inputs (parsed from an XML file by in-

put class), checking convergence criteria and performing other necessary technicalities.

Depending on inputs, the flow controller calls a particular optimizer to make a step

and passes a particular mapper function to it. In case of NEB, the controller is the

NebMover(Motion) class stored in ipi/engine/motion/neb.py. The mapper classes

are NEBGradientMapper and NEBClimbGrMapper, dealing with (P − 2)-bead object for

optimization of the path with fixed endpoints and with a single-bead object to perform

climbing-image optimization.

One drawback of the chosen architecture with task-agnostic optimizers (see fig. 3.7)

became apparent during the implementation of the String method. The structure of

dependencies in the i-PI code requires that the forces at the end of each step are consis-

tent with the atomic positions, i.e. if atoms are moved after the forces are calculated,

the forces have to be recalculated at the end of the step, otherwise the outputs of i-PI

will be inconsistent. This requirement serves good service for MD algorithms, which

are vastly present in i-PI, but causes complications in certain optimization algorithms.

Thus, in order to perform a 2-step movement of the string (an optimization step and

resampling of the spline), one has to incorporate resampling inside the optimization

algorithm, so that an optimizer evaluates the quality of a step only after the spline is

resampled – otherwise the forces are calculated twice per step, which is an unnecessary

waste of resources. It is impossible to achieve with the existing optimizers from the

utils/mintools.py collection. I implemented the String algorithm with two force

evaluations per step in i-PI following the same architecture as was used for NEB, and

further effort would be needed to achieve a scheme with a single force call. For the
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implementation I did and the test systems I tried, the String method did not reduce

significantly the number of steps to achieve convergence compared to NEB. Within this

work, I did not pursue the String method further.

Optimization algorithms

I-PI provides a collection of the optimization algorithms in mintools.py, including

several flavors of the efficient BFGS. However, their implementation relies on energy

to determine the step size – either via the trust-radius method or via the line-search

procedure. For NEB, only implementations which rely on forces solely are applicable,

because the projections prescribed by the NEB scheme lead to non-conservative forces,

and the energy is not consistent with them, even if we formally account for the spring

energy terms [162]. Using such energy in algorithms like trust-radius BFGS may cause

instabilities. Therefore, we have implemented a version of the BFGS algorithm which

includes damping of the BFGS update as described in Procedure 18.2 in the well-

known textbook of Nocedal and Wright [165]. BFGS provides the best performance

when it works, but it fails in some tasks. More generally, it is known that Hessian-

based methods may fail in cases when a system has non-Hermitian Hessian, which is

true for NEB. We stabilize BFGS by incrementally adding small values to the main

diagonal of its approximate Hessian in case its spectrum contains negative eigenvalues.

We also implemented the gradient-based “fast inertial relaxation engine” (FIRE) [166]

to handle cases when BFGS fails. In order to stabilize both algorithms further, the

“quality” of each step is assessed by comparing the direction of the step with the

direction of the NEB force. If the cosine of the angle between them is less than 0.5,

the maximal allowed step length is halved, and if it’s more than 0.6 (0.8), the maximal

step is increased by a factor 1.1 (1.3). We thus try to achieve an algorithm which is

assertive in areas of good behavior, which typically take place at the beginning of the

optimization, but quickly becomes conservative if problems occur.

Interpolation of the path

An initial path for NEB/String optimization can be created from an arbitrary number

of known points, which should necessarily include the endpoints, and expected inter-
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mediate states can be included optionally. These initial points then can be interpolated

either piecewise-linearly or with a cubic spline, and the resulting path is then sampled

equidistantly with a requested number of beads. Such a design allows reusing the pre-

calculated paths if the endpoints are slightly changed, which happens, for example, if

one simulates the same chemical reaction on a surface with a different electric field

applied. The script to perform interpolation is provided with the i-PI package and can

be found in tools/py/neb interpolate.py.

Other considerations

� From my experience I conclude that the geometry of a system has a major impact

on the stability of a NEB relaxation. Whenever it is possible to run the same sys-

tem with much cheaper calculation settings, being it a forcefield or much cheaper

electronic structure calculation (e.g. I used only one or two layers of surface for

testing), it is recommended to try it first. If the algorithm is stable for the cheap

system, it highly likely will remain stable on the actual task, and, in addition,

the converged geometry from the cheap calculation will be a reasonable initial

guess for the more expensive calculation. This also helps when very conservative

settings are required: starting from a linearly interpolated path and doing small

steps takes a very long time.

� Another observation from converging problematic cases is that NEB is sensitive

to the stiffness of its “springs”, as was noted by others [158]. For dissociation

of a single water molecule with 9 intermediate beads, quite stiff springs with

k ≈ 40 eV/Å showed the best convergence. It is higher than commonly suggested

values of 0.5 to 5 eV/Å.

� When allocating computational resources, it is beneficial to align the number of

moving beads with the number of i-PI “clients”, i.e. instances of a code that

calculates energies and forces. If the number of clients is the same as the number

of beads, i-PI assigns the next task for a certain bead to the same client which

calculated the previous step for this bead. In case of DFT, it gives a substantial

gain in the number of SCF iterations. It also implies that path optimization and

climbing stages need different computational setups to be efficient. To give an
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idea, I used 9 single-node DFT calculations to optimize the NEB path with 9

intermediate beads, and then a single calculation on 4 nodes for the climbing-

image optimization.
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Chapter 4

Quantum nuclei at weakly bonded

interface: cyclohexane on Rh(111)

This chapter summarizes our research of cyclohexane C6H12 and its fully deuterated

counterpart C6D12 adsorbed on the Rh(111) surface. The properties of both molecules

were studied by means of electronic-structure calculations using quasi-harmonic ap-

proximation (QHA), as well as ab initio path integral molecular dynamics (AI-PIMD).

We studied the isotope effects in work function, adsorption energy and geometry of the

adsorbate at thermal equilibrium at temperatures close to those used in experiments.

The results reported in this Chapter were published in collaboration with Dr. Iku-

taro Hamada and my supervisor Dr. Mariana Rossi [7] under the open CC-BY-NC

license1. Only the work that I did myself for that paper is included in this Chapter.

The text and the figures from this publication and its supplementary materials were

used in this chapter, therefore some fragments of the text repeat literally.

4.1 Isotope effects in cyclohexane-Rh(111) inter-

face

In most cases, the electronic properties of interfaces do not depend strongly on the

isotopic constitution of the atoms that compose them. The reason is that the elec-

tronic structure of different isotopes is the same, and nuclei can typically be considered

1https://creativecommons.org/licenses/by-nc/4.0/
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classical particles, which move on the PES defined by that electronic structure and

follow the statistical distribution which is mass-independent. These identical distribu-

tions, in return, produce the same distribution for the electronic subsystem. However,

when nuclei express more “quantumness”, especially moving towards the beginning of

the periodic table and towards lower temperatures, this picture becomes less and less

accurate. The measure for that is the ratio between the “classical” thermal energy

kBT , which doesn’t depend on mass, and the quantum zero point energy ~ω/2, which

is indeed mass-dependent via the frequency of vibration ω. In such cases, an isotopic

change may lead to structural changes in the material and thus to a considerable change

in the electronic structure. Such electron-phonon coupling effects can be captured to

a great extent in the adiabatic limit [167].

One known case to exhibit such isotopic effects is cyclohexane (C6H12) adsorbed

on platinum-group metal surfaces. In a series of papers by Koitaya, Yoshinobu and

coworkers [8, 168], it was shown that C6H12 and its fully deuterated counterpart C6D12

impose different amounts of work function change when adsorbed on the Rh(111) sur-

face. Based on work function measurements by the ultraviolet photoemission spec-

troscopy (UPS) and previous calculation of alkanes on metal surfaces [169], the authors

suggested that deuterated molecules should lie farther away from the surface. Another

affected property is the desorption energy: C6H12 at lower coverages binds to Rh(111)

surface 84 ± 23 meV stronger than C6D12, thus exhibiting an inverse kinetic isotope

effect. The availability of experimental data and the importance of cyclohexane in a

number of chemical processes, including reversible dehydrogenation to benzene with

the release of hydrogen, make cyclohexane a suitable target to study the performance

of different theoretical techniques in a realistically complex, but yet well-defined envi-

ronment.

Theoretical investigation of the aforementioned isotope effects is rather challenging

because one has to capture changes in the electronic structure of the high-dimensional

system as well as the behavior of quantum nuclei. At least an approximate description

of electron-phonon coupling is needed to relate nuclear fluctuations and electronic-

structure variations. As researchers turn towards soft and hybrid electronic materials,

where electron-phonon coupling tends to be more pronounced [13, 170], modelling of
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these effects becomes more important. A common way to address such problems is to

employ the harmonic approximation (HA) for the nuclear vibrations on first-principles

potential energy surfaces [171]. However, weakly bonded interfaces are known to be

anharmonic, for instance, molecules demonstrate mobility on a surface well beyond

harmonic oscillations, which raises a question of applicability of the HA.

On the other hand, there is the ab initio path integral molecular dynamics (AI-

PIMD) method capable of including nuclear quantum effects (NQE) fully anharmon-

ically [72]. It is a truly powerful method, however, the high computational cost of

AI-PIMD limits its applications severely. Therefore, in this work AI-PIMD simulations

are performed making use of the SL-RPC technique which reduces the amount of ring-

polymer “beads” required for simulations of weakly-bonded interfaces [143]. AI-PIMD

results are compared to harmonic approximation for the adsorption energy and to the

quasi-harmonic approximation, which we will explain below, for the structural prop-

erties and the work function change. With these simulations, we are able to explain

the physical mechanism of the observed isotope effects on the cyclohexane/Rh(111)

interface and assess when a quasi-harmonic analysis of these effects is valid. The AI-

PIMD approach has been successfully applied previously to reveal the impact of nuclear

quantum fluctuations on the electronic structure of diverse systems [172, 173, 174]. We

follow this approach for cyclohexane/Rh(111) and discuss its capabilities and limita-

tions.

It is known from the experiments that certain properties of the cyclohexane/Rh(111)

interface depend on the coverage [8]. In particular, at coverage values below 0.5 des-

orption of cyclohexane competes with its dehydrogenation. To have access to coverage-

dependent properties, we built a few systems with different adsorption patterns, taking

hints from low energy electron diffraction (LEED) and scanning tunneling microscopy

(STM) data. On a clean Rh(111) surface, experiment shows a high-order commensurate

(2
√

79× 2
√

79)R17.0° pattern [30]. Such a large structure is way beyond the capabili-

ties of ab initio calculations, given that at least a few atomic layers of metal are needed.

A few smaller structures proposed by experimentalists and suitable for DFT simula-

tions are (
√

7×
√

7)R19.1° with a single molecule in the unit cell, (
√

19×
√

19)R23.4°

with 3 molecules, (5 × 5) cell with 4 molecules and the (2
√

3 × 2
√

3)R13.9° pattern
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a) b)

c) d) θ = 0.12θ = 0.46

θ = 0.64θ = 1

Figure 4.1: The cyclohexane adsorption patterns considered in this work for modelling

different coverages θ. a) θ = 1, (2
√

3 × 2
√

3)R13.9° unit cell (0.173 molecules per Rh

atom). b) θ = 0.64, (3 × 3) unit cell. c) θ = 0.46, (5 × 5) unit cell. d) Coverage

θ = 0.12, (7× 7) unit cell. The figure is reproduced from [7].
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with 9 molecules in the unit cell [30, 175]. Although the (
√

7×
√

7)R19.1° structure is

the smallest one and the most convenient one from the perspective of a computational

cost, we didn’t want to restrict ourselves to the system with a single adsorbed molecule,

because all the periodic images of that molecule would move in a coordinated fashion

in a simulation, likely producing artifacts in spectra and in statistical distributions.

The (2
√

3 × 2
√

3)R13.9° structure, which is shown in Figure 4.1a, has, in contrast,

9 molecules occupying different adsorption, and it is the reachest structure from the

aforementioned ones to exhibit intermolecular interactions. We therefore took this

structure as a reference for the full-coverage monolayer structure. The effective cov-

erage values for other structures were derived from this one. Smaller unit cells which

we used in this work are shown in figures 4.1b-d. In the following, we perform our

calculations on the structure presented in figure 4.1c (θ = 0.46) unless explicitly stated

otherwise. This unit cell contains two cyclohexane molecules adsorbed on a Rh(111)

(5× 5) slab. It allows us to capture sufficiently the phonon band structure dispersion

of the metal substrate in the real-space dynamics simulations, which is known to be

modified by an adsorbate [176].

4.2 Details of simulations

Electronic structure calculations with FHI-aims

Energies and forces are calculated using density-functional theory DFT) with the PBE

XC functional [86] and the range-separated hybrid HSE06 functional [31]. The cal-

culations were done with the all-electron FHI-aims code, which uses numerical atom-

centered orbitals [36] as basis sets. The FHI-aims package contains predetermined

settings for numerical parameters and basis sets, which are aimed at different accuracy

levels. Light settings were used for PIMD and phonon calculations, and tight settings

were used for potential energy curves and electron density rearrangement. The param-

eters of Rh for the pairwise Tkatchenko-Scheffler van der Waals correction, modified

in order to capture the collective response of a surface in the Lifshitz-Zaremba-Kohn

form [10] (vdWsurf), were taken from Ref. [110]. The van der Waals interaction between

Rh atoms was not included. Further, we used β = 0.81 for the non-local many-body
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dispersion (nl-MBD) correction with the PBE functional and β = 0.83 for the same

correction with the HSE06 functional.

We considered 4 Rh(111) layers in all FHI-aims calculations. The 2 bottom layers

of the slab are fixed in the bulk geometry. The bulk geometry was calculated for the

single-atom FCC unit cell using a 16x16x16 k-point grid. The k-point grid for the

different surface unit cells was scaled accordingly. For the 5 × 5 Rh(111) surface unit

cell, a 2×2×1 k-point grid was employed. The resulting lattice constant of 3.83 Å is in

good agreement with the experimental value of 3.80 Å [177]. The surface was aligned

perpendicular to the z axis. In order to isolate the system from its periodic replicas in

the z direction, a dipole correction [1] and a vacuum layer of 30 Å in both directions

were applied.

Vibrational analysis was performed by a modified version of the Phonopy code cou-

pled to FHI-aims [178, 179], which allowed to build the Hessian only for the molecular

adsorbate and to account for a surface as a rigid environment. This approximation is

well justified because the coupling between Rh atoms and the molecules is weak, and

this weak coupling is concentrated in the low-frequency modes of the adsorbates, which

behave very similarly for H- and D-cyclohexane and thus do not impact isotope effects.

We set atomic displacements to 0.01 Å for finite difference calculations and considered

geometries relaxed with a maximum force threshold of 0.001 eV/Å.

Adsorption energies and free energies

The adsorption energies per molecule were calculated with

Epot
ads = (Epot

s+m − Epot
s )/Nmol − Epot

m , (4.1)

where Epot
s+m is the total energy at the potential energy surface of a slab with molecules

adsorbed, Epot
s is the total energy of a clean surface relaxed with 2 bottom layers fixed

in bulk position, Epot
m is the total energy of a molecule relaxed in vacuum, and Nmol is

the number of molecules in a unit cell. A similar expression can be written for a free

energy of adsorption F harm
ads .
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The harmonic vibrational free energy was calculated as

F harm =

Nmodes∑
i=1

[
~ωi
2

+ kBT ln

(
1− exp

− ~ωi
kBT

)]
+

+[if gas phase]

(
F trans + F rot

)
,

(4.2)

where Nmodes = 3N − 3 when the free energy of a clean surface is calculated (N is the

number of atoms in a unit cell), Nmodes = 3N−3Ns (Ns is the number of surface atoms

in a unit cell) when the free energy of molecules adsorbed on surface is calculated, and

3Nm−6 (Nm is the number of atoms in a molecule) when the free energy of an isolated

molecule is calculated. Rotational and translational contributions were added for the

free molecule according to the rigid-body and ideal-gas textbook expressions [101]:

F rot = −kBT
(

3/2 ln(T ) + ln

[
8πI1I2I3

~3

])
(4.3)

F trans = −kBT ln

[
ekBT

P

(
mT

2π~

)3/2
]

(4.4)

Expression 4.2 only takes into account vibrations at the Γ point of the unit cell. Since

we focus mostly on molecular vibrations, which show a very small phonon band disper-

sion, and employ large unit cells, this approximation does not introduce large errors in

the calculated free energy differences. For the translational term, we took the pressure

of 10−8 Pa, which is close to the reported experimental conditions [8].

The quasi-harmonic ZPE-corrected energy of adsorption E∗ads was calculated as a

difference between the energy at the equilibrium distance and at 10 Å away from the

surface, which is considered to be far enough to remove all molecule-surface interaction,

E∗ads(hCOM) =

(
Epot

s+m(hCOM) +
3Nm−3∑
i=1

~ωi
2

(hCOM)

)
−

−

(
Epot

s+m +
3Nm−3∑
i=1

~ωi
2

)∣∣∣∣∣
hCOM=10Å

,

(4.5)

where hCOM is the distance from the center of mass of the adsorbate to the Rh sur-

face. Although E∗ads is not the true adsorption energy, this procedure compensates for

spurious interactions that might appear in a particular simulation cell. A numerical

comparison of the energies calculated by the expressions 4.1 and 4.5 is given in the sec-

tion B.2 of the Appendix. For the ZPE contribution, we include (3Nm − 3) molecular

vibrations.
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Ab initio molecular dynamics

Ab initio molecular dynamics (AIMD) and AI-PIMD simulations were carried out by

connecting FHI-aims to the i-PI code [76]. For classical-nuclei MD, a timestep of 1 fs

was used. For PIMD simulations, a smaller timestep of 0.5 fs was employed.

In order to accelerate sampling in the NVT ensemble, we applied a colored-noise

GLE thermostat [131, 132] to the classical-nuclei ab initio molecular dynamics (AIMD)

simulations. For the AI-PIMD simulations, the PIGLET thermostat was used [140].

This approach preserves quantum distribution and gives a fast convergence of observ-

ables with respect to the number of replicas. The parameters for the thermostats are:

8 fictitious degrees of freedom s [132], and a frequency range of 0.32-3200 cm−1 for

C6H12 and 0.23-2300 cm−1 for C6D12. The A and C matrices (as defined in [132]) are

parameterized for ~ω/kBT = 50 using the GLE4MD library [180]. We observed con-

vergence with around 12 beads for the adsorbate atoms (H) at 150 K within this setup.

After thermalization, we have calculated 7 independent trajectories of a total length of

32 ps for C6H12, 5 trajectories of a total length of 30 ps for C6D12, and 5 trajectories

of a total length of 97 ps for classical-nuclei cyclohexane. Each force evaluation for the

model θ = 0.46 (FHI-aims program, light settings) amounts, on average, to 3.1 minutes

when parallelized over 240 cores (Intel Xeon Gold 6148 Skylake processors, MPCDF

COBRA supercomputer). This gives an idea of how expensive these simulations are

even without considering nuclear quantum effects.

The effects of nuclear fluctuations on electronic observables (work function, elec-

tronic density of states, etc.) were calculated as the average of single-point calculations

from AI-PIMD trajectories through the following general expression

〈A〉 =
1

Z
Tr

[
Âe

−Ĥ
kBT

]
ergodicity,

=========⇒
PIMD sampling

=⇒ 1

PNs

Nt∑
i

P∑
k

A
(
R(k)(ti)

)
,

(4.6)

where Â is a position-dependent observable, Ĥ is the Hamiltonian, Z is the partition

function, P is the number of beads of a ring polymer, Nt is the number of snapshots

considered from a PIMD trajectory, and R(k) is a position vector for a bead k. The

snapshots from the PIMD trajectory were picked so that they were statistically inde-

pendent. The criterion for independence is an autocorrelation time of the property A.
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In our PIMD calculations, the autocorrelation time is 30 fs for a velocity, 300 fs for a

work function and 600 fs for the z-coordinate of the center of mass of a molecule. We

also used these correlation times to calculate error bars. For classical nuclei simulations,

the same expression was used with P = 1.

In order to reduce the cost of AI-PIMD simulations, we use the fact that the bonding

between molecules and a surface is relatively weak in the case of cyclohexane and apply

the SL-RPC [143], described in Section 3.1.2.

The error of the SL-RPC for a cyclohexane on Rh(111) with P ′ = 1 does not exceed

37 meV per molecule for the total potential energy and 79 meV/molecule for the total

free energy. When comparing H- and D-cyclohexane, one can rely on error cancellation.

Then, the error in potential energy difference is 19 meV/molecule, and in free energy

difference about 36 meV/molecule. It is thus clear that although this approximation is

very useful, if quantitative results for this particular system are desired, a contraction

to the centroid (P ′ = 1) is not sufficient and we do not further pursue calculations of

free energies at this level of approximation. It should, however, be sufficient to capture

further important anharmonic effects if present.

4.3 Static results and the quasi-harmonic approxi-

mation

4.3.1 Adsorption energy

We calculated the adsorption energy Epot
ads per molecule for each structure shown in

fig. 4.1 as explained in sec. 4.2. The results obtained with PBE+vdWsurf [64, 10]

functional are given in column 2 of table 4.1, and the comparison between Light and

Tight computational settings is reported in table B.1 in the Appendix.

The harmonic free energy of adsorption at a temperature of 150 K was calculated

by eq. 4.2 and analogously to eq. 4.1. The temperature of 150 K was chosen to sat-

isfy several conditions. On one hand, it is desirable to avoid very low temperatures:

they increase the number of ring-polymer beads needed to converge PIMD simulation

considerably, and they would reduce the role of anharmonicity, which we aim to in-
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Table 4.1: Adsorption energies and harmonic free energies for different coverage val-

ues, calculated with the PBE+vdWsurf functional (light settings) according to eq. 4.1.

The free energy is calculated for the temperature of 150 K and all energies are given

in meV. Experimental data from temperature-programmed desorption (TPD) experi-

ments from Ref. [8].

coverage θ Epot
ads Epot

ads+ZPE ∆ ZPE F harm
ads ∆F

H D H – D H D H – D

0.12 945 1039 1004 35 742 705 37

0.46 953 1056 1022 34 786 750 36

0.64 946 1046 1013 33 780 745 35

1.0 1023 1066 1049 17 790 770 20

0.3 (TPD [8]) 728 ± 12 644 ± 20 84 ± 23

on a surface (red-shifted)

H

D

H

D
∆EH

∆ED

∆EH >  ∆ED

ZPE

in the gas phase

Figure 4.2: The effect of the red shift in the C-H stretching modes on the adsorption

energy, shown schematically. The difference in ZPE is between H and D is higher in

a vacuum than on the surface, due to the different masses and the red-shift of the

corresponding stretching mode upon binding. The figure is reproduced from [7].
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vestigate. On the other hand, the temperature should stay below the temperatures of

desorption and dehydrogenation, which are both known to be around 200 K [8].

The results for each coverage are summarized in table 4.1, columns 3-8. We note

that already in harmonic approximation, different values of ZPE lead to different ad-

sorption energies for C6H12 and C6D12. It is not an unexpected result. We show in

figure 4.2 a pictorial explanation of the phenomenon: the vibrational modes associated

with the C-H bonds of cyclohexane pointing towards the surface are red-shifted by up

to 300 cm−1 in comparison to the gas phase, as shown in figure 4.3. Because of the

difference in mass between H and D atoms, such a red shift has a stronger impact on

the ZPE of a C-H vibration, compared to a C-D one. In both cases, the effect of ZPE

increases the energy of adsorption (table 4.1, columns 3,4), and in the case of C6H12 this

effect is stronger. When the translational and rotational entropic contributions of the

gas-phase molecules are added, resulting adsorption free energy decreases compared to

ZPE-corrected Epot
ads (table 4.1, columns 6,7). However, these two terms do not give pro-

nounced isotope effects, despite the fact that they are formally mass-dependent. The

main reason is that for rigid-molecule motion mass or moment of inertia of the whole

molecule is the decisive value, and 84 (C6H12) vs 96 (C6D12) a.m.u. is not a large dif-

ference. The calculated isotope effect is approximately twice weaker than the reported

value obtained in the temperature-programmed desorption (TPD) experiment [8]. We

also observe that the difference between H/D adsorption energies decreases at full cov-

erage. It goes down from 37 meV for θ = 0.12 to 20 meV for θ = 1, while the values for

coverage 0.12, 0.46 and 0.64 differ negligibly. We explain it by analyzing the vibrational

spectra at different coverage. We show in figure 4.3 the harmonic vibrational density

of states (vDOS) for the adsorption patterns considered in this work. The key feature

is a red shift in the stretching vibrations of the CH groups pointing to the surface (de-

noted as (I) in figure 4.3b). This red shift slowly decreases with increasing coverage.

It means that surface-molecule interaction becomes weaker and, consequently, the C-H

bond strengthens. At the highest coverage (θ = 1), the picture is qualitatively different:

there are multiple splittings of CH stretching frequencies, because cyclohexane, when

packed closely, occupies the adsorption sites which are nonequivalent, unlike more free

patterns, which all follow the sketch 4.3a with 3 CH groups pinned to 3 adjacent Rh
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Figure 4.3: a) Different CH groups for a cyclohexane molecule adsorbed on a surface.

b) The vibrational spectra of CH stretching modes of cyclohexane in vacuum (black)

and on a Rh(111) surface with coverage θ = 0.12 (red), θ = 0.46 (blue), θ = 0.64 (green)

and θ = 1 (ochre). The grey arrows assign peaks to the CH groups given in (b). As

the red shift in CH stretching modes decreases, the H/D difference in the adsorption

energy decreases also. At the full coverage (θ = 1), the intermolecular interaction is

so strong that single adsorption sites become highly non-equivalent, which is reflected

in multiple peak splitting in the range between 2540 and 3040 cm−1. The figure is

reproduced from the SI of [7] with minor changes.
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atoms. We also note a blue shift in stretching vibrations of CH groups of type (III)

and a slight red shift in groups (II) and (IV).
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Figure 4.4: Adsorption curves calculated with different exchange-correlation func-

tionals and vdW corrections: PBE (dotted blue line), PBE +vdWsurf (solid blue line),

PBE+nl-MBD (solid red line), HSE06+nl-MBD (black points).Calculations were per-

formed with the unit cell of θ = 0.46. Shaded areas show the interval of reported

experimental values of the adsorption energy of C6H12 (red) and C6D12 (grey) around

the coverages we study [8]. The figure is reproduced from the publication [7] with

changes.

4.3.2 The role of the exchange-correlation functional

One of the important questions is how the results depend on the choice of XC func-

tional. To elucidate this, we have calculated the adsorption curves of cyclohexane with

different functionals and vdW corrections. We took the simulation cell corresponding

to θ = 0.46 and moved one of the two cyclohexane molecules along the z direction.

At each distance, geometry optimization was performed with the center of mass of

the molecule being constrained, while the two topmost layers of the Rh surface and

the other molecule were allowed to relax. Instead, we used the geometries optimized

with the PBE+vdWsurf functional. In figure 4.4, we show the adsorption profile with

the pure PBE functional, the PBE+vdWsurf functional, the PBE functional with the

recently proposed many-body dispersion method nl-MBD [67] and the range-separated
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calculated according to eq. 4.5 with PBE + vdWsurf . The blue line shows the adsorption

energy values calculated without ZPE correction. The figure is reproduced from the

publication [7].

hybrid functional HSE06 [31] combined with nl-MBD dispersion interactions. To the

moment of conducting these calculations, the implementation of the nl-MBD model in

FHI-aims did not include calculation of forces, therefore we didn’t perform geometry

optimization for the models with nl-MBD. The minima of these curves are tabulated

in table B.2 in the Appendix.

We first analyze the dataset based on the PBE functional, which gives us informa-

tion about the role of different models of dispersion interactions. Comparing the depth

of the adsorption curve obtained with the bare PBE functional and the others, we

conclude, as expected, that vdW interactions are the main component of the molecule-

surface binding. Without a vdW correction, the adsorption energy is only 147 meV,

which would mean desorption roughly at 30 K2. We proceed to compare the results

obtained with PBE+vdWsurf with the results obtained with PBE+nl-MBD. Both of

these vdW corrections do not enter the Kohn-Sham potential within the self-consistent

procedure and therefore cannot change the electronic density. We observe that vdWsurf

predicts a larger binding energy (0.90 eV) and an equilibrium distance closer to the

surface (3.36 Å) than nl-MBD (0.84 eV and 3.45 Å, respectively). Considering that

2calculated for the UHV pressure of 10−8 Pa
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modes (a and b, respectively). Solid lines show ZPE-corrected potential energy, and

dashed lines add finite temperature corrections at the temperature of 150 K. The curves

are aligned to zero at the distance of 10 Å. Calculations are done with PBE + vdWsurf

functional.

nl-MBD contains explicit many-body vdW effects and captures the electronic screening

of these interactions better than vdWsurf [67], we can conclude that the observed differ-

ences are due to both of these effects. Then, we can compare the results obtained with

the PBE+nl-MBD and the HSE06+nl-MBD functionals. In this case, the long-range

vdW interactions are treated at the same level, but the short-range exchange term

differs: HSE06 includes a fraction of exact exchange. HSE06 functional yields larger

adsorption energy (1.03 eV), and the equilibrium distance to the surface becomes even

smaller (3.30 Å). We can therefore assume that decreasing the self-interaction error

strengthens the bonding of molecules to the surface. For further calculations, we use

light settings of the FHI-aims code and PBE+vdWsurf functional. A comparison of

the adsorption curve between light and tight settings is shown in figure B.1 in the Ap-

pendix. An increase of the basis set and density of real-space grids slightly decreases

binding (by 58 meV), but we consider the effect small enough to proceed with lighter

settings, because the computational overhead of tight settings is considerable. Looking

at the adsorption curves, we note that the well is visibly asymmetric near its bottom,

therefore inclusion of anharmonic effects will shift the mean distance to the surface
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compared to the harmonic picture.

4.3.3 Quasi-harmonic approximation

Since the adsorption curve clearly exhibits anharmonicity near its minimum, we inves-

tigate the nuclear quantum effects with respect to the molecule-surface distance. We

calculate harmonic phonons and the corresponding ZPE contribution to the adsorption

energy for different molecule-surface distances, and do so for both isotopologues. Some-

what technical, but important question is how to treat rigid translations and rotations

of the molecule, which are free at large distances to the surface, but become hindered

when approaching the equilibrium distance. We included into the ZPE correction only

(3Nm − 3) molecular vibrations, where Nm is the number of atoms in a molecule, end

explain the reason in a separate section 4.3.4.

The quasi-harmonic (QH) ZPE-corrected energy of adsorption E∗ads was then calcu-

lated at each distance according to eq. 4.5. The results are presented in figure 4.5. The

adsorption energies and distances obtained for C6H12 and C6D12 in this way are also

summarized in table 4.2. With this procedure, a deformation of the binding energy

curve that is different for C6H12 and C6D12 is predicted, such that C6H12 has a larger

binding energy and adsorbs closer to the surface than C6D12. The H-D adsorption

energy difference is 37 meV, which is just slightly different from the value reported in

table 4.13. We have checked that adding finite temperature contributions in the HA

to these values, up to 150 K, does not appreciably change this calculated isotope effect

either (see figure 4.6).

Regarding the equilibrium distance of absorption, we observe an important effect.

The adsorption distance of C6H12 is 3.351 Å, and for C6D12, it is 3.364 Å. The H-D

equilibrium distance difference hD
COM−hH

COM is thus about 0.01 Å. It seems small, but

this difference is enough to induce a noticeable effect on the work function change. The

sensitivity of the work function change ∆φ of the interface to the distance between the

cyclohexane and the Rh surface is shown in figure 4.7. We calculated it by shifting an

adsorbate rigidly closer to the slab and farther away from it. The work function depends

linearly on the molecule-surface distance in the range around the equilibrium distance.

3The reason for the 1 meV discrepancy is the difference in definitions of Eads and E∗
ads.
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Table 4.2: Isotope effects on distance to surface and work function change, obtained

by QH model and aiPIMD simulations with PBE + vdWsurf functional for coverage

θ = 0.46.

C6H12 C6D12 no ZPE

ZPE-corrected E∗ads (meV) 1067 1030 956

QH hCOM (Å) 3.351 3.364 3.386

QH ∆φ (meV) -960 -945 -920

PIMD hCOM (Å) 3.41 ± 0.01 3.42 ± 0.01 3.416 ± 0.007

PIMD ∆φ (meV) -927 ± 9 -915 ± 9 -903 ± 5

The slope is 1.16 eV/Å with the PBE functional and 1.18 eV/Å with HSE06. The

∆φ with HSE06 is about 0.06 eV larger than with the PBE functional. Regardless the

XC functional, the H-D difference in ∆φ which corresponds to the 0.01 Å difference in

hCOM is 16-17 meV. This result qualitatively agrees with the experiment [8], although

the experiment gives slightly larger value of ≈ 25 meV at θ = 0.46. We obtained this

value by a different fitting of the experimental data compared to what the authors did.

We fitted a linear regression for the ∆φ dependence on coverage reported in Ref. [8],

in the interval 0.1 < θ < 0.65, and aligned the fits for C6H12 and C6D12 so that they

coincide at θ = 0. The reason to change the fitting procedure is that the reported data

has only one point at zero coverage, which makes it unclear whether the θ=0 reference

was different for C6H12 and C6D12 measurements or not. In the figure 4.8, we show

the comparison of work function dependences on distance for two adsorption patterns

with different coverage. Larger coverage considerably increases the value of ∆φ and

the slope d∆φ/dhCOM We show in the same plot the calculations performed with and

without including the van der Waals energy into the energy functional in SCF cycle.

Inclusion of self-consistent vdW interactions does not change appreciably the values or

the slopes of ∆φ.
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4.3.4 QH model at finite temperatures: rigid translations and

rotations

As mentioned above, we included into the ZPE correction for E∗ads only (3Nm − 3)

molecular vibrations. The remaining 3 lowest-frequency modes (0 to 55 cm−1 depend-

ing on the distance to the surface) correspond to the hindered translations of a rigid

molecule. They have completely classical behavior and high entropy, and they are

populated at very low temperatures. Including them into the QH model is technically

difficult because a) one of them is aligned with the parameter of the model (the distance

to the surface) and is ill-defined except the equilibrium point; and b) the frequencies

of the rest two translations, when calculated by finite differences, are very sensitive

to noise in forces. The impact of this noise on ZPE correction is negligible, but it

becomes divergent if one naively attempts to calculate vibrational entropy for these

modes. Therefore we decided to exclude them from consideration, admitting that it

decreases the applicability of the QH model at finite temperatures. Nevertheless, we

give a rough estimate of finite-temperature effects by looking at remaining rigid ro-

tations. In figure 4.6, we show harmonic free energy corrections at 150 K including

(3Nm− 3) modes, i.e. intramolecular vibrations and hindered rigid rotations, and only
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slicing plane (the dashed red line). The position of the plane is chosen as shown in the

inset. The figure is reproduced from the publication [7] with minor changes.

80



the (3Nm− 6) intramolecular vibrations. Clearly, temperature effects are concentrated

in the hindered rotations, and these effects are negligibly small in the higher frequency

intramolecular vibrations. hCOM when including (3Nm− 3) modes is 3.351 (3.365) Å

for H and 3.364 (3.384) Å for D at the temperature of 0 (150) K.

4.3.5 The nature of the work function change

The work function change upon the adsorption of neutral and non-polar molecules

like cyclohexane is typically attributed to two effects: (i) polarization of the molecule

induced by the mirror charge that forms in metal [181] and (ii) a “push” of the electron

density tail of the metal surface back towards the surface by the molecule due to the

Pauli exclusion, often referred as a “pushback effect” [14, 182]. To get an insight

into these effects, we calculate the electron density rearrangement upon adsorption.

We do it by calculating first the full interface system, and then the clean Rh(111)

surface and the cyclohexane molecule separately, using the same coordinates which

they have in the full system. We calculate the difference between the full system and

its “reactants” ∆ρ and plot it in two different ways: in figure 4.9a we plot ∆ρ integrated

over the lateral dimensions of the interface, and in 4.9b we plot the cut through the

molecule to see the spatial arrangement of ∆ρ. There is an electron depletion in the

C-H bonds and accumulation in the H· · ·Rh region, which is associated with H-Rh

bond formation. Similarly to what was reported by Bagus et al. for cyclohexane on

a Cu(111) cluster [182], we see the pushback effect: the tail of the electron density is

shrunk under the molecule. In figure 4.9b, the redistribution of the electron density on a

plane perpendicular to the surface, that crosses only carbon-carbon bonds, is shown. In

this plane, the contribution of H-metal bonds is small, therefore the electron depletion

which is present under the molecule can be mainly attributed to a pushback effect.

It is difficult to separate the role of H-metal bond formation and the pushback effect

clearly. By investigating the spatial arrangement of the electronic density changes, we

conclude that the contributions of these two effects are of comparable magnitudes (see

Appendix B, figures B.2 and B.3). Together, H-metal bonds and a pushback effect

cause a 2.13 Debye per molecule decrease in the dipole moment of the interface.
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4.4 Validity of the quasi-harmonic analysis
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Figure 4.10: Anharmonicity measure ε (see eq. 4.7) for individual Cartesian compo-

nents of atomic forces from the PIMD simulation of C6H12 (red squares) compared to

classical-nuclei MD (blue triangles), and difference in ε between PIMD simulations of

C6H12 and C6D12 (black crosses). All values calculated for θ = 0.46 (two cyclohexane

molecules in the unit cell) and at T = 150 K. Rhs1 and Rhs2 denote the 1st and the 2nd

layers of the surface atoms. The distinct group of Rh atoms with highly anharmonic

z components consists of atoms connected to cyclohexane via hydrogen-metal bonds.

The figure is reproduced from the publication [7] with minor changes.

The QH model gives a sufficient explanation of the isotope effects on geometry and

work function change. It gives qualitative and, under certain assumptions, quantitative

approximation of these effects. However, these assumptions are obvious weak points of

the approximation – particularly, the assumption that all the vibrational modes of the

adsorbate, except one, are either harmonic or not coupled to the isotope effects (the

hindered rotations). Therefore it is important to estimate the quality of the QH model

for such kind of molecular systems.

PIMD method described in section 3.1.2 can be employed in this context, in order

to calculate static thermodynamic averages with full accounting for anharmonicity of
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the PES. However, given the need for an ab initio PES and quite large size of the

studied system, AI-PIMD simulations of this sort are computationally expensive since

converging statistical averages requires long MD trajectories.

Therefore, we make a simpler test of the anharmonicity of the system before turn-

ing to PIMD. We study the anharmonic contributions to the forces in this system

and separate nuclear quantum effects from classical finite-temperature effects. For this

purpose, we use the method described in Ref. [183] and calculate an anharmonicity

measure ε for different degrees of freedom. Since it is interesting to compare the differ-

ence between quantum and classical anharmonic contributions to different coordinates

in the system, we calculate

ε(T )CL/QM =

√√√√〈(FCL/QM
DFT − FCL/QM

h )2〉T
σ2
FQM
DFT

(T )
, (4.7)

where FDFT are the full forces calculated by DFT, Fh are the harmonic forces calcu-

lated for the same geometry and with the Hessian matrix obtained for the full system,

σ2 is the variance, and 〈. . . 〉T is the ensemble average at the temperature T . The

superscripts CL and QM denote a classical-nuclei (AIMD) and a quantum-nuclei (AI-

PIMD) simulations, respectively. In the latter case, it is important to take the forces

on the actual bead positions, not on the centroid position. We normalize both classical

and quantum quantities by the respective PIMD variance of that quantity so that the

difference ε(T )QM− ε(T )CL serves as a measure of “quantum anharmonicity”: the part

of the anharmonic contribution that is not included in a classical-nuclei estimation.

We calculate ε(T ) and resolve it into Cartesian components of force on individual

atoms and plot it in figure 4.10 for C6H12 along with the H-D difference (all calculations

with PBE+vdWsurf). Such an analysis shows, as one could expect for a weakly bonded

interface, that the forces acting on the adsorbate atoms exhibit the most pronounced

anharmonicity. The rhodium surface is largely harmonic, with exception of those atoms

which bond to the hydrogen atoms of cyclohexane, pointing towards the surface: those

Rh atoms have a substantially anharmonic z-component of the force. We see also that

classical and “quantum anharmonicity” are nearly the same at the surface, except at

the aforementioned bonding sites, while at the adsorbate “quantum anharmonicity”

exceeds the classical one considerably in all 3 dimensions. At the same time, the H-D
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difference is very small in all considered atoms. We can draw three conclusions from

this analysis: (i) the quasi-harmonic model with the molecule-surface distance as a pa-

rameter is likely to capture the effects of H· · ·Rh bonds, because they are concentrated

in the z direction; (ii) there is a pronounced anharmonicity in the cyclohexane/Rh(111)

interface, and quantum anharmonicity is higher than the classical one, therefore PIMD

simulation is likely to improve the prediction of statistical observables; (iii) however,

the contribution of quantum anharmonicity on C6H12 and C6D12 is similar, suggesting

that they could largely cancel out in the evaluation of isotope effects.

4.5 Fully anharmonic model: path integral molec-

ular dynamics

We estimated structural properties of the classical and quantum C6H12 and C6D12

on Rh(111) at 150 K directly from the AIMD and AI-PIMD simulations (θ = 0.46,

PBE+vdWsurf). In addition, we managed to capture changes in the electronic struc-

ture including full electron-phonon coupling at the adiabatic limit, by averaging the

desired electronic quantities of interest over the trajectories. The only drawback, as

we will see below, is that even with the SL-RPC technique, statistically converging the

small energy differences and structural changes observed upon deuteration is a very

challenging task. We ensured at least 30 ps of trajectories for each of the systems that

we consider (see sec. 4.2).

The results are summarized in figure 4.11. In panel a, we show the distribution

of the distance from the adsorbate atoms to the top layer of the Rh(111) surface. As

expected, a more localized position distribution is observed for C6D12 than for C6H12,

and it is even more localized for classical-nuclei cyclohexane. The inset in panel a shows

that C6H12 can reach closer to the surface than C6D12 and classical-nuclei cyclohexane,

but it was not possible to resolve differences in the average position hCOM to an accuracy

of 0.01 Å.

In figure 4.11b, the distribution of work function values at 150 K is shown. Again,

C6H12 presents a broader distribution than C6D12 and classical-nuclei MD. The distri-

butions are shifted with respect to each other, and their mean values 〈∆φ〉 are ordered
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Figure 4.11: a) The distribution of distances from the Rh(111) surface to H/D atoms

(solid lines) and C atoms (dashed lines). The red (black) lines show PIMD simulations

of C6H12 (C6D12), and the blue lines represent MD simulations with classical nuclei. b)

The distribution of ∆φ values for PIMD simulations of C6H12 (red), C6D12 (black) and

classical MD simulation (blue). c) The species-projected electronic density of states

in a single-point calculation (black), a classical-nuclei MD simulation (yellow), PIMD

simulations for C6H12 (blue) and C6D12 (red). Peaks are broadened and shifted due

to coupling with nuclear vibrations. Typical Kohn-Sham eigenstates are shown near

the corresponding peaks. In all panels, T = 150 K. The figure is reproduced from the

publication [7].
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so that 〈∆φ〉H < 〈∆φ〉D < 〈∆φ〉Classical. The resulting values for 〈∆φ〉 are –927 ±

9 meV for C6H12, –915 ± 9 meV for C6D12, and –903 ± 5 meV for classical-nuclei

cyclohexane. We were careful in evaluating these uncertainties, by analyzing the auto-

correlation behavior of this quantity during the simulation. The H/Classical difference

is 24 ± 10 meV and we expect the H/D difference to be between zero and this value. In

fact, we compute the H/D difference to be 12 ± 13 meV, which, despite the large un-

certainty, shows the expected trend. Compared to the quasi-harmonic approximation

(QHA), the AIMD and AI-PIMD simulations predict the molecules (with either clas-

sical or quantum nuclei) to lie farther away from the surface (hCOM = 3.42± 0.01 Å)

by around 0.06 ± 0.01 Å (see estimation of hCOM within the QHA including tem-

perature effects in the section 4.3.4). Accordingly, the AI-PIMD simulations predict

a considerably smaller overall work function change. This is a consequence of taking

into account anharmonic contributions at a temperature of 150 K (we note that the

rigid “out of plane” vibrations of the adsorbates lie around 80-130 cm−1, thus having

components that are thermally activated at 150 K). This is also consistent with the

high anharmonic score of the forces in the z direction, especially at H-bonded sites.

Statistically converging the differences between C6H12 and C6D12 would require a con-

siderable computational effort. However, with the current uncertainty intervals, it is

possible to conclude that the isotope effects from the PIMD simulations cannot differ

largely from the QH results, confirming that anharmonic contributions play a minor

role in the geometric isotope effects in this potential energy surface. We were not able

to calculate the isotope effect on the binding energies because, as mentioned previously,

the SL-RPC approximation would have to include (many) more replicas of the system

for an accurate assessment, which would make the calculations prohibitive.

Resolution of electron-phonon coupling

The AI-PIMD simulations give access to the changes induced on the electron density

of states by the quantum fluctuations of the molecules. The nature of AI-PIMD re-

stricts electron-phonon coupling to the adiabatic limit, neglecting electronic friction

and other phenomena dependent on nuclear momenta. Nevertheless, it shows impor-

tant changes, as discussed below. We project the total electronic density of states on
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the atomic species using the Mulliken projection and average it over multiple snap-

shots of the simulations. The results are compared with the static density of states

in figure 4.11c. There is a pronounced broadening of the peaks only on the adsorbate

(for both quantum and classical nuclei), and this broadening is much more pronounced

when considering quantum nuclei. We note that it is not clear if one can assign any

physical interpretation to such broadening of Kohn-Sham single-particle orbitals. Nev-

ertheless, this effect is caused by the dependence of these ground-state orbital energies

on nuclear configurations and the interplay of this dependence with the distribution

of nuclear configurations. In addition, there are considerable energy shifts due to this

electron-phonon interaction in levels associated with sp3 orbitals. Since sp3 orbitals are

responsible for C-H bonding, we tentatively correlate these shifts with the anharmonic

effects in ZPE, which effectively change the length of the bonds and therefore the elec-

tronic structure as well. The semilocal/nonlocal functionals we employ are not able

to provide a quantitative level alignment of this interface, even if they can predict the

HOMO level reasonably well because of the cancellation of the self-interaction error

and the missing image-potential effect [184, 185]. Even though a much higher level

of theory, e.g. many-body perturbation theory, would be desirable for a quantitative

comparison with UPS experiments conducted at this interface [175], the magnitude of

changes that we observe in the Kohn-Sham electronic density of states highlights the

importance of taking nuclear fluctuations into account when analyzing the electronic

spectra of such interfaces.

4.6 Conclusions

We have studied isotope and anharmonic effects on the cyclohexane/Rh(111) interface

by means of DFT calculations coupled to harmonic lattice dynamics, AIMD, and AI-

PIMD.

Employing a QHA, in which the harmonic ZPE contributions were calculated with

the molecule fixed at different distances from the surface, it could be shown that the

binding energy of C6D12 is smaller than C6H12 and that C6D12 lies 0.01 Å farther

from the surface than C6H12, in qualitative agreement with the isotope effects previ-
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ously observed experimentally [8] at the same interface. By showing that the work

function change of the interface is very sensitive to the distance between the molecule

and the surface, this geometrical isotope effect could be correlated with the isotope-

induced change in the work function, thus confirming the hypothesis that Koitaya,

Yoshinobu and coworkers proposed [168], based on experimental observations. Finally,

these simulations also showed that the electronic-density rearrangement at the interface

is impacted by both bond formation and the pushback effect and that the inclusion of

van der Waals contributions improves the energetics and adsorption distances.

The reliability of the QHA was assessed by estimating the degree of anharmonicity

of the nuclear motions at a temperature of 150 K. Anharmonic contributions to the

forces are particularly pronounced at the surface sites which bond to hydrogens and

on the degrees of freedom describing the adsorbates. In these cases, in particular,

the difference between classical and quantum anharmonic contributions is also large,

meaning that techniques like PIMD are necessary to describe structural aspects and

related electron-phonon interactions in these systems. However, the quantum part

of the anharmonic contributions to C6H12 and C6D12 are very similar in magnitude

and character for coordinates parallel to the surface, and thus play a minor role when

addressing isotope effects. This explains why the QHA fares well for these quantities

in this case.

Indeed, in the AIMD and AI-PIMD simulations, the pronounced anharmonic char-

acter of certain degrees of freedom in the out-of-plane direction cause the equilibrium

distance of the adsorbates to be around 0.06 Å farther from the surface than a static

evaluation or the QHA would predict. This effect stems mostly from anharmonic terms

that are already captured with classical nuclei. This is accompanied by considerably

smaller work function changes. However, as expected due to the small contribution of

quantum anharmonic effects beyond the QHA and within the statistical error bars, the

observed isotope effects on this system (distance to surface and work function change)

do not differ significantly from the QH case. Finally, the effect of electron-phonon

coupling on the electronic density of states in the adiabatic limit causes a pronounced

shift (and broadening) of Kohn-Sham levels related to the CH bonds.

Although we obtain excellent qualitative agreement with the experiment and are
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able to provide an atomistic view of the origins of the isotope effects measured in

this interface, there are still remaining differences in the magnitude of the isotope

effect, in particular on the adsorption energy. We are left with the conclusion that this

disagreement is likely coming from slightly different conditions in the experiment e.g.,

clustering of molecules at lower coverages, or the remaining approximations that were

employed in this work. The most prominent approximations are the DFT functional

and the SL-RPC approximation. We also cannot rule out that very slow degrees of

freedom are not sufficiently sampled within the dynamical simulations. Nevertheless,

we suggest that the exchange-correlation functional would be the largest source of

remaining errors, given the known drawbacks that functionals based on generalized

gradient approximations present for adsorbates on metallic surfaces [186], and the

scatter of binding energies and distances we observed for different functionals and vdW

corrections. Moreover, the functionals that yield good binding energies in comparison

to the experiment, seem to predict a work-function variation with the distance to the

surface that is too small. All of these observations motivate the training of fitted or

machine-learned potentials that include long-range electrostatic interactions [187] and

are based on more accurate potential energy surfaces [188, 189]. Such potentials would

both decrease the cost related to statistical sampling and increase the (quantitative)

predictive power of these simulations.
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Chapter 5

Water electrolysis on a catalytic

surface: Pd(111)

Reactions of water with surfaces occur in many situations. Sometimes it is a desired

process, for instance, the production of hydrogen in an electrolytic cell, sometimes

it is harmful corrosion. Many electrochemical reactions are conducted in an aque-

ous solution – the simplest well-known example would be a lead-acid battery where

H2SO4 diluted by water serves as an electrolyte. Therefore the research of hetero-

geneous reactions involving water is a vast field existing for more than a century.

The arrangement of atoms in the interface layer remains a topic of both experimental

and theoretical research. Experimentalists use X-ray scattering and surface-enhanced

IR spectroscopy to access such structural information and report that potential bias

changes the orientation of molecules near the surface, affecting the chemical properties

of the interface [190, 191].

From a theoretical standpoint, a correct description of water requires a quite high

level of theory: it has many phases, and its liquid phase has an anomalous thermal ex-

pansion coefficient which changes its sign at 277 K. The network of hydrogen bonds and

shared protons are decisive for water properties [192, 27]. These phenomena are dy-

namical in nature and have substantial contributions of nuclear quantum effects [193],

therefore AIMD and even AI-PIMD methods are necessary to simulate water. The first

attempt to approach water on AIMD level was done at the very dawn of the AIMD

field by Parrinello, Car and coauthors [194], and to the end of 90s it was possible to
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simulate bulk water on AI-PIMD level [195, 196, 197]. AIMD simulations to reveal the

structure of the interface layer were for the first time performed by Izvekov et al. [198]

in 2001, and then were significantly expanded by many researchers, as summarized in

the recent review of Groß and Sakong [199].

Regarding the surface-mediated dissociation of water, there are still many open

questions. Several groups reported studies of the splitting of a single water molecule

on various transition metals, but without voltage applied and without accounting for

long-range dispersion interactions [200, 201, 202, 203]. When a potential bias is applied

to a water-metal interface, the issues discussed in section 2.6 come into play. Sugino

et al. performed MD simulations for liquid water near the biased surface using a

charged cell with effective screening medium (ESM) [204, 205] and Hagiwara et al.

later further improved the setup using grand-canonical SCF technique, and calculated

energy barriers of lateral diffusion of water molecule [5]. Hamada, Otani and their

colleagues studied water dissociation under potential bias by means of AIMD [206, 207].

They ran relatively short MD trajectories (of a few picoseconds each) of a metal-liquid

interface in the NVT ensemble. Although it may be enough to grasp some qualitative

differences, a quantitative analysis would require much longer MD simulations and,

probably, some acceleration technique to sample rare events properly – with the barrier

of roughly 0.9 eV, spontaneous dissociation of water on Pd(111) is truly a rare event.

Therefore, to the best of my knowledge, the behavior of the water dissociation barrier

under potential bias remains largely unknown.

In this Chapter, I present our simulations of water dissociation on a Pd(111) surface

under an electric field in a periodic slab model. First, I discuss the reactivity of the

Pd(111) surface in an electric field and extend some of the results of Carrasco et al. [9] in

section 5.2. Then, we reproduce the aforementioned NEB calculation of the dissociation

barrier for a single water molecule at a zero-field Pd(111) surface and extend it to the

case of a positive and negative electric field. I show the changes arising from the electric

field and the influence of nuclear quantum effects on the barrier in section 5.3.
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5.1 Details of simulations

We simulated a Pd(111) surface by a slab of 7 atomic layers in the periodic cell with a

large vacuum layer of 64 Å. A dipole correction [1] was applied to compensate for spuri-

ous interactions between periodic images. The FHI-aims code with PBE XC functional

was used. Dispersion interactions were included by the screened vdWsurf model [10]

with the coefficients for palladium taken from [110]. Lateral dimensions of the slab

were chosen as 4×4 in order to reduce finite-size effects such as the interaction between

periodic images of water as much as possible, while keeping the system reasonably

small. The finite-size effect on the adsorption energy is shown in fig. 5.1, and the self-

interaction of a water molecule in a periodic cell (spurious “cohesion energy”) is shown

for comparison. Both Eads and this spurious interaction are saturated sufficiently at

4×4 unit cell. 3×3 k-points were used, which is consistent with the single-atom bulk
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Figure 5.1: Adsorption energy of a single water molecule on a 6-layer Pd(111) slab

as a function of the x, y dimensions of the slab (black) Nx,y × Nkptx,y = 12 for all

points; the energy of a water molecule in the gas phase of the periodic cell of the same

dimensions, compared to the non-periodic simulation (red). The values are calculated

with PBE + vdWsurf .

Pd simulation with 12 k-points in each direction, which exhibits the cohesive energy

converged below 10 meV and a converged FCC lattice constant of 3.95 Å.

We mimic potential bias by an electric field, as described in section 2.6.2. Two

surfaces of the slab effectively become capacitor plates with opposite charges, and
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the slab is thick enough to screen the surfaces from the electric field of each other,

although they remain coupled by the charge conservation constraint. Dufils et al.

showed recently on a model system that such a system exhibits very similar properties

to a 2D-periodic setup with two metallic electrodes which are independently set to

different potentials [2]. We see a linear dependence of the surface charge on the applied

electric field in a range from –10 to +10 V/Å. An increase of the field by 1 V/Å

induces a surface charge of 0.0364 electron per Pd atom, which is equivalent to 8.734

C/cm2. The surface without an electric field is slightly negatively charged, which

offsets the linear dependence by –0.012 e per atom. For shortness, I will refer to a field

as “negative” or “positive” according to the charge that it induces to the surface of

interest.

For the phonon calculations, a modified version [179] of the Phonopy package [178]

was used, and only the water molecule and the first layer of the surface were included to

build the Hessian. The deeper layers of the surface are included as a rigid environment

By doing so, we lose the coupling Hessian elements between the atoms of the molecule

and the surface beyond the first layer, which affects low-frequency molecule-surface

phonons. Since the molecule is small and light, we assume that long-wave collective

vibrations of a surface do not play a significant role in water reactions, because the

water molecule will simply move together with the slowly “breathing” surface, while the

chemically relevant frequencies of the H-O-H bending and O-H stretching are separated

from low-frequency modes by two orders of the time scale.

5.2 Reactivity of Pd(111) surface under an electric

field

Before approaching a surface-mediated reaction mechanism, it is important to study

the adsorption of the reactant at the surface. Wilke et al. suggested a simple and

easily calculatable measure for the activity of different adsorption sites of a surface,

based on how easily the local electron density can be changed [208, 9].

W (r) =
ρ(r, Tel,2)− ρ(r, Tel,1)

k2
BTel,2(Tel,2 − Tel,1)

(5.1)
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Figure 5.2: Parallel to surface plane slices of the electron density difference between

the calculations with Tel,1 = 1.4 meV and Tel,2 = 123.8 meV. Four brown spheres show

the atoms of Pd(111) surface lying inside the 2 × 2 unit cell. The difference to the

results in [9] is probably related to the use of pseudopotentials in that work, while we

used an all-electron code.
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Figure 5.3: Adsorption geometries of a single water molecule on Pd(111) surface

under –0.44 V/Å (left), no field (center) and +0.44 V/Å (right). Large green, white

and blue spheres denote the 1st, 2nd and 3rd layers of the Pd(111) surface, respectively.

The electron density difference between the calculations with electronic temperatures

1.4 meV and 123.8 meV is shown in fig. 5.2. I plot the electron density difference

instead of W (r), because a normalization factor (2.04×106J2 for the chosen Tel,1, Tel,2)

is only important to compare different materials. Surprisingly, W (r) shows almost

no dependence on the electric field applied to the slab and therefore cannot be an

indicator of the changes induced by the field. In the range of electric fields from –

0.74 V/Å to +0.74 V/Å, the atop site is the most electronically “soft”. Following the

discussion in paper [9], we would assume that a water molecule, which is also considered

electronically “soft”, reacts with the atop site in the whole range of electric fields. As

we will see below, it is true for the neutral and positively charged surfaces, but not

for the negatively charged surface, where electrostatic effects apparently dominate over

the “hard and soft acid and base principle” of Pearson [209].

The adsorption geometries of a single water molecule at the electric field of –

0.44 V/Å, 0 and +0.44 V/Å are shown in fig. 5.3. We found that the water molecule

prefers a flat orientation if no field is applied, which agrees with previous works [200,
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Figure 5.4: Adsorption energy of a single water molecule on the Pd(111) surface as a

function of the applied electric field. The values are calculated with PBE + vdWsurf .

201, 202]. In a negative electric field, the flat orientation remains up to –0.37 V/Å,

after which the molecule “stands up” pointing both hydrogen atoms towards the sur-

face. In a positive field, the molecule deviates gradually from the flat geometry, and

hydrogen atoms turn more and more towards the vacuum. We did not observe any

abrupt changes in the range between –0.29 and +1 V/Å.

We calculated the adsorption energy of water in presence of an electric field, taking

an isolated molecule relaxed in the same field as a reference – in order to have consistent

contributions from the electrostatic potential. The adsorption energies Eads are sum-

marized in figure 5.4 and table 5.1. The highest adsorption energy is observed when

no electric field or a slight positive field of 0.07 V/Å is applied. The value that we get

without an electric field is 0.48 eV, which is expectedly higher than the values of 0.22-

0.31 eV obtained in previous studies of water dissociation on Pd(111) [201, 202, 203],

which we will use for comparison below. The reason is that no vdW interaction was

included in those simulations. As we will see below, it is not very important for the

dissociation barrier. When increasing the field towards positive values, Eads gradually

decreases. When a negative field is applied, Eads gradually decreases up to a field of

–0.44 V/Å, after which it remains the same. This change of the trend corresponds to

the flip of the preferred adsorption orientation discussed above.

One important question is how the molecular energy levels align with the surface

levels. We investigated it by projecting the total electronic density of states (DOS)

97



Table 5.1: Adsorption energy Eads of a water monomer on a Pd(111) surface, depend-

ing on the applied electric field. The electric field of 1 V/Å corresponds to the surface

charge of 0.0364 electron per Pd atom (8.734 C/cm2). The values are calculated with

PBE + vdWsurf , unless specified otherwise.

Electric field (V/Å) Eads (eV) Note

+0.74 0.40

+0.44 0.44

+0.15 0.47

+0.07 0.48

no field 0.48 this work

0.31 this work, PBE, no vdW

0.33 [210] PW91, no vdW

0.22 [201] PW91, no vdW

0.30 [202] PW91, no vdW

0.31 [203] PW91, no vdW

–0.07 0.45

–0.15 0.41

–0.29 0.34

–0.44 0.31

–0.74 0.30

–1.00 0.30
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water molecule, aligned so that its 1s orbital of oxygen matches that of the full system.
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Figure 5.6: Charge induced on water molecule on Pd(111) surface depending on the

applied electric field, measured by the Mulliken (filled points) and Hirshfeld (empty

points) analysis. The black triangles show the total charge on the molecule, and the

blue squares (red circles) show H (O) contributions to it.

on the atoms, employing a Mulliken analysis [211] on the numerical atomic orbitals of

FHI-aims. We show such projected density of states (DOS) in fig. 5.5 and the charge

induced on the water molecule, calculated by the Hirshfeld and the Mulliken analysis,

in fig. 5.6. On a positively charged surface, Hirshfeld and Mulliken analysis agree.

The molecule donates roughly 0.2 e to the surface, indicating orbital hybridization

and electron transfer from the molecule to the surface. At an electric field below –

0.44 V/Å, when the molecule “stands”, the Mulliken analysis shows, in contrast, a

negligibly small charge, while the Hirshfeld method shows again about 0.15 e. In

addition, below –0.44 V/Å the hybridization of the highest occupied molecular orbital

(HOMO) of the water molecule with the surface is reduced (see the peak at –2.5 eV in

fig. 5.5). We can interpret the discrepancy between the Hirshfeld and Mulliken charges

as a specific feature of the Hirshfeld definition of charge, which assigns local changes of

the electron density to atoms proportionally to their free-atom electron density at the

considered point. Therefore, a change of the “tail” of surface density can be assigned

to the molecule even if there is no hybridization of the orbitals of the surface and the

molecule.
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Figure 5.7: The difference between the electron density of the interface and its isolated

subcomponents. Left: ∆ρ(z). Dashed lines show the positions of the oxygen atom: the
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color means accumulation. The position of the slicing planes is marked by the white

lines in the insets.
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Similarly to what was done in Chapter 4, we can assess the influence of the electric

field on the molecule-surface bond by examining how the electron density rearranges

near the surface in the presence of the molecule. We subtract the electron densities of

the clean surface and of the isolated molecule from the total density of the interface

and integrate the difference over the directions parallel to the surface (x, y).

∆ρ(z) =

∫
dxdy [ρfull(r)− ρisolated water(r)− ρclean Pd(r)] . (5.2)

The results are shown in figure 5.7. Comparing zero-bias and +0.44 V/Å calculations,

which have very similar adsorbed geometries, we can conclude that the electric field it-

self does not induce a large difference in electron density rearrangement – the difference

comes mostly from structural changes.

5.3 Reaction paths in an electric field

We have calculated the reaction path of dissociation of a single water molecule on a

Pd(111) surface using the climbing-image nudged elastic band method (CI-NEB). The

resulting NEB path and corresponding energies of the nodes for the zero-field case are

shown in figure 5.8, and representative paths for positive and negative electric fields are

given in figure C.1 in Appendix C. We verified the transition states by the normal mode

analysis. In all cases, the transition state has exactly one imaginary-frequency mode,

which corresponds to a direction of barrier crossing. The geometry of the transition

state has little dependence on the surface charge, compared to the reactant state. The

activation energy for each bias is summarized in fig. 5.9 and in table 5.2.
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Figure 5.8: a) The reaction path of a water molecule splitting on a Pd(111) surface

without an electric field applied, found by CI-NEB algorithm, a combined view of all

NEB beads. The white numbers show the indices of NEB nodes, node 5 is the transition

state; b) Corresponding potential energies relative to the reactant state. c)Individual

NEB beads of the reaction path. Large green, white and blue spheres denote the 1st,

2nd and 3rd layers of the Pd(111) surface, respectively.
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Figure 5.9: The energy barrier of water splitting calculated by CI-NEB algorithm.

Black circles show the potential energy barrier, and red squares show the vibrational

free energy barrier calculated in the harmonic approximation. The dashed green line

marks the border between two orientations of the reactant state.

For zero bias, our value lies slightly (by 20-120 meV) below previously reported

calculations [200, 201, 202, 203], which did not include dispersion interactions. Most of

those authors used PW91 XC potential, but it was shown on various metals that the

water dissociation barrier calculated by PW91 and PBE are almost identical, e.g. see

the SI of [203]. Thus, the discrepancy with literature is consistent with the observation

of Litman et al. that inclusion of vdW interactions decreases the barrier of dissocia-

tion of water on metals [143]. The lowest barrier is observed at –0.29 V/Å, directly

before the water molecule changes its adsorption orientation. We calculated harmonic

vibrational normal modes to evaluate the ZPE, and summarize the changes of the dis-

sociation barrier in figure 5.9 and in table 5.2. The ZPE contribution decreases the

barrier by roughly 0.19-0.20 eV at all points except –0.44 V/Å, where the decrease is

0.17 eV. Such a constant effect is somewhat surprising, given that the geometry of the

reactant state changes considerably.
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Table 5.2: Potential energy barrier Ea and ZPE-corrected barrier for the dissociation

of a water monomer on a Pd(111) surface, depending on the applied electric field. The

values are calculated with PBE + vdWsurf , unless specified otherwise.

Electric field (V/Å) Ea (eV) ZPE-corrected Ea (eV) Note

+0.74 1.32 1.12

+0.44 1.18 0.98

+0.15 1.08 0.86

+0.07 1.06 —

no field 1.03 0.83 this work

1.12 — [200] PBE, no vdW

1.09 0.87 [201] PW91, no vdW

1.05 — [202] PW91, no vdW

1.15 0.96 [203] PW91, no vdW

–0.07 1.02 —

–0.15 1.0 0.80

–0.29 0.98 0.78

–0.44 1.02 0.85

–0.74 1.01 0.90

In order to resolve the effects of ZPE, we look at the vibrational density of states

(vDOS) spectra of the reactant and transition states, which are shown in figure 5.10, top

and bottom, respectively. The most pronounced difference appears in the two hindered

rotation modes of the reactant, which shift sharply from the range of 400-500 cm−1

down to 200-320 cm−1 when the field goes below –0.29 V/Å. These modes are shown

in fig. 5.11. These modes are particularly softened at –0.44 V/Å, which indicates that

the above-mentioned geometry flipping point is very close to –0.44 V/Å. In order to

see more clearly how the shifts of the vibrational modes contribute to the total ZPE

effect on the reaction barrier, we calculate a cumulative ZPE difference between the

reactant and the transition state as follows:

∆ZPE
cumul(ω) =

∑
ωi≤ω

~ωTS
i

2
−
∑
ωi≤ω

~ωini
i

2
, (5.3)
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Figure 5.10: Vibrational density of states of the initial state (top) and the transition

state (bottom) of water splitting reaction on a Pd(111) surface at different electric field

values.
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Figure 5.11: Hindered rotation modes of a water molecule on a Pd(111) surface at

–0.15 V/Å (left) and –0.44 V/Å (right).
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Figure 5.12: Cumulative contribution of the vibrational modes to the total ZPE effect

on the barrier of water dissociation, calculated by formula 5.3.

where ωTS
i and ωini

i are the normal modes of the transition state and the reactant,

respectively. We show ∆ZPE
cumul(ω) in figure 5.12. One can see that despite multiple

shifts of the individual modes, all the ZPE differences between the most distant electric

field values of + and –0.74 V/Å below 1000 cm−1 cancel out, ending up with almost

equal ZPE contribution to the barrier. The total ZPE effect comes almost entirely

from the high-frequency modes, namely the H-O-H bending mode and one of the two

O-H stretching modes, which exist in the reactant state and disappear at the transition

state. It is important to note that hindered rotation modes are expected to be strongly

anharmonic and thermally populated, therefore the harmonic analysis presented here

gives only an estimate of the effect.
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5.4 Conclusions and outlook

In this Chapter, we presented an ab initio study of water dissociation on Pd(111)

surface subjected to an external electric field, using a periodic slab model. We showed

that the previously suggested indicator of electronic “softness” of Wilke et al. [208] for

the surface reactivity is not sensitive to an external electric field.

We showed ab initio calculations of the reaction path of water monomer dissociation

on a Pd(111) surface under an electric field – a study that was not found in previous

literature. We conclude that the main feature that affects the reaction barrier is the

geometry of the reactant state, which is strongly influenced by the applied field. We

demonstrated that the lowest dissociation barrier for the monomer lies at the electric

field strength at which the molecule has two adsorption geometries equally preferred.

We evaluated NQE limited to ZPE in the harmonic approximation and demonstrated

that it reduces the barrier by roughly 0.2 eV, and this effect weakly depends on an

applied electric field. The reason for such a weak dependence is the mutual cancellation

of contributions of different vibrational modes. Harmonic approximation is an impor-

tant simplification of the model, since the important contributions to the ZPE come

from hindered rotations, which are expected to be anharmonic. The outlook that we

have in mind to clarify this question is the use of MD-based methods such as umbrella

sampling to calculate an anharmonic free energy profile along the reaction path.

Another simplification that we made is taking a single water molecule as an adsor-

bate. Clearly, a monomer does not give a realistic approximation of a structured water

layer near the electrode, which is governed by the intermolecular interactions [192, 27].

We started to increment in this direction by modeling a dimer and faced unexpected

difficulties. I summarize the results for the dimer in Appendix C.3. I expect this

direction to be fruitful, therefore this work should be continued.

Finally, we simplified the model of the surface by constraining the total charge of

the simulation cell to be zero, while a real electrode would allow charge fluctuations on

a larger scale and, possibly, with a lower energy penalty. We investigated the existing

openly available software to perform grand-canonical GF calculations, I summarize our

efforts in Appendix C.4. Although we didn’t achieve practical results so far, I think

that simulation of the grand-canonical ensemble of electrons is the right direction to
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increase accuracy, since it was demonstrated recently that the inclusion of surface

charge fluctuations affects the reaction barrier of the lateral diffusion of water on a

surface [5].
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Chapter 6

Conclusions

“... and she threw in two mites,

which make a farthing.”

Mark 12:42

In this thesis, I have summarized our theoretical studies of nuclear quantum effects

on two systems containing molecules physisorbed on platinum-group metallic surfaces.

These systems are relevant for hydrogen energy research and serve as model systems

for hydrogen production and storage.

In Chapter 4, we have presented the simulations of cyclohexane adsorbed on the

Rh(111) surface. We have shown, on one hand, that even in a weakly bound and fairly

anharmonic system, such as the cyclohexane-rhodium interface, reasonably accurate

results for the nuclear quantum effects in the electronic structure can be achieved by

means of the quasi-harmonic approximation (QHA). Moreover, the quality of such

predictions can be evaluated by the relatively simple estimator of anharmonicity of

atomic forces, thus allowing a researcher to decide whether there is a need for more

accurate methods such as AI-PIMD, or not, basing the decision on inexpensive cal-

culations solely. On the other hand, we have shown that using higher-level AI-PIMD

simulations we get access to properties beyond the reach of QHA, such as temperature-

dependent renormalization of the electronic density of states, which stems from the

coupling between thermally activated low-frequency vibrations, quantum fluctuations

in high-frequency modes and the electronic orbitals. Therefore, a researcher can ratio-

nally choose a minimal necessary level of description to calculate a particular property.
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Our failure to reproduce experimental results on the isotope effect in the adsorption

energy of cyclohexane underline the need for such decision-making: if a property of

interest (adsorption energy in this case) poses a demand for a higher level of electronic

structure theory, while not exhibiting pronounced anharmonic effects, it makes sense

to employ a simpler quasi-harmonic model and invest the computational resources to

perform calculations with a more accurate XC functional.

A concern that we did not directly address in this study is the error that we intro-

duced by applying the spatially localized ring polymer contraction (SL-RPC), in which

we kept only the centroid mode to describe the molecule-surface interactions. Although

we understood this could be an issue from the beginning, this choice was dictated by

necessity, because increasing the computational cost of AI-PIMD simulations would

have made them unreasonably expensive. This fact points to a problem that is known

in the community: the increasing complexity of methods to treat nuclei creates a need

for cheaper methods to treat the electronic structure, or at least to calculate potential

energy surfaces. The dawn of machine learning methods in this field gives us hope to

make PIMD simulations routinely available in the future, even though there are many

challenges to overcome when using ML potentials for interfaces.

In the second study, summarized in Chapter 5, we have employed a simple model

to simulate water splitting on an electrode surface: We used a periodic slab embedded

in an external electric field. Using this model, we have obtained valuable results for

the barriers of water splitting reaction in electric fields of various strengths. We have

demonstrated that the ZPE contribution is nearly constant across a wide range of

electric fields applied to the system due to the mutual compensation of red and blue

shifts of individual vibrational modes between reactant and transition states. We do

not consider such a weak dependence of ZPE on the field to be general, given that the

geometry and the vibrational frequencies of the reactant change noticeably. Therefore,

this phenomenon should be treated carefully in future work on similar systems.

We have demonstrated that the lowest barrier of water dissociation corresponds to a

frustrated geometry of the reactant. Although the flip of the adsorption orientation of

a water molecule is a feature of a single adsorbed molecule, which disappears with the

increase of lateral interactions when multiple molecules are involved, it is reasonable
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to assume that similar points of geometrical frustration exist in more complex adsor-

bate systems and to target them using an electric field (potential bias) as a control

parameter.

Our setup allows local charge fluctuations near the adsorbate, effectively using the

opposite side of the slab as a charge reservoir. However, the capacity of this reservoir

is limited and cannot accommodate a substantial change in the charge state of an

adsorbate. A real electrode allows charge fluctuations on a larger scale, therefore the

next step in the modeling of an electrode would be to lift the constraint of zero total

charge that we imposed on a simulation cell, and to move from the canonical to the

grand-canonical ensemble of electrons. We investigated the state of the art in grand-

canonical surface Green’s function methods. Our tests of the existing openly available

software for GF calculations led us to the conclusion that the numerical stability of

those implementations does not allow for routine calculations of arbitrary materials

at the moment. However, one can expect that the situation will improve in the near

future.

Although we had to restrict our work to a small system with a single water molecule,

the efficiency and scalability of the method make us sure that it is applicable on a larger

scale. We put in place the necessary infrastructure for such calculations. On the elec-

tronic structure side, we have tested and streamlined the relatively new functionality

for embedding a periodic system into an external electric field in the FHI-aims code,

thus making sure that future researchers with less access to the source code can rely on

this functionality. On the nuclear motion side, we have provided the community with

the infrastructure for NEB calculations in the i-PI code, which may be used with many

electronic-structure codes, providing a unified framework suitable for comparing and

benchmarking the results across a broad community. Although our NEB implemen-

tation works well in many cases, it sometimes requires performing small optimization

steps to achieve convergence, increasing the toll of force calculations. A promising

way to improve the performance, while keeping the commonly accepted formalism of

the original method, would be to employ a surrogate machine-learned potential as an

intermediate PES [164]. �
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Appendix A

Estimate of the error of SL-RPC

A.1 The error in potential energy

The expression 3.19 can be rewritten as

kBT

2

∑
i

∑
k

[
ω2

mol

ω2
(k) + ω2

i,full + ∆
− ω2

full

ω2
(k) + ω2

i,full

]
, (A.1)

where ∆ = ω2
i,mol−ω2

i,full. Since ∆ is much smaller than ω2
(k) +ω2

i,full, it can be omitted,

and we immediately get eq. 9 from the Ref. [143]. It is a reasonable approximation of

one fraction, which gives an error of not more than 10% in practical cases. However,

these two fractions have quite close values, therefore the difference between them can

be even smaller than the error introduced by omitting the ∆. This fact can lead to a

significant overestimation of the error, if eq. 9 from [143] is used.

A.2 The error in free energy

Assuming a system to be harmonic, the Hamiltonian of a ring polymer with P beads

in “physical” normal modes can be written as

H = K +
3N∑
i=1

P∑
k=1

[
miω

2
P

2

(
qi,(k) − qi,(k+1)

)2
+
miω

2
i

2
q2
i,(k)

]
. (A.2)

Here K is a kinetic energy, i denotes normal modes (NMs) of a physical system, mi is

an effective mass associated with the normal mode i. Note that here, k stands for a
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bead index – in contrast to the equations coming after the transformation (A.7), where

it will enumerate normal modes of a free ring polymer.

Expanding the spring-terms and rearranging the summation over k (also making

use of periodicity of a ring polymer q(P+1) = q(1)), one can rewrite a Hamiltonian as

following:

H = K +
3N∑
i=1

P∑
k=1

[
miω

2
P

2

(
2q2
i,(k) − qi,(k)qi,(k+1) − qi,(k)qi,(k−1)

)
+
miω

2
i

2
q2
i,(k)

]
. (A.3)

Then, the spring terms can be written in a matrix form (bold below means P -dimensional

vectors {q(j)}, j ∈ [1, ..., P ] and corresponding square matrices)

V spring =
3N∑
i=1

miω
2
P

2
q>i Aqi, (A.4)

A =



2 −1 0 ... −1

−1 2 −1 0

0 −1 2 ...

... 0 ...

−1

−1 −1 2


(A.5)

We diagonalize the A matrix by performing a normal mode transformation C:

A = CÃC>. (A.6)

q̃i = Cqi (A.7)

The matrix C is unitary, therefore the transformation to the normal modes of a free

ring polymer doesn’t change the physical potential term

miω
2
i

2
q2
i =

miω
2
i

2
q̃>i C

−1>C−1q̃i =
miω

2
i

2
q̃2
i . (A.8)

The Hamiltonian in the “double normal-mode” representation (i.e. the normal

modes of a physical system and the normal modes of a free ring polymer) reads as

H = K +
3N∑
i=1

P−1∑
k=0

mi(ω
2
(k) + ω2

i,full)

2
q̃2
i,(k), (A.9)

q̃i,(k) =
P∑
j=1

CP
jkqi,(j) (A.10)
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where k denotes NMs of a free ring polymer. Here and below, “full” index stands for

the “expensive” potential energy surface which describes all interactions in a system,

while “mol” stands for the “cheap” one. In case of spatially-localized contraction, a

“cheap” potential describes only interactions within an adsorbate.

Contraction procedure. Given a ring polymer of P beads, one can contract it

to a lower dimensionality. Many useful expressions can be found in [141]. Equations

21-22 from [141], rewritten in our notation:

qi,(j′) =
P ′∑
j=1

(T P
′

P )j′jqi,(j), (A.11)

where

(T P
′

P )j′j =
1

P

P ′/2∑
k=−P ′/2

CP ′

j′kC
P
jk (A.12)

is a contraction matrix from (P × 3N) to (P ′ × 3N)-dimensional space. It performs

transformation CP to a Fourier space, there it truncates the high-order coefficients

and transforms back to a lower-dimensional real space by CP ′ . Similarly, we define an

expansion matrix T PP ′ from (P ′ × 3N) to (P × 3N)-dimensional space. The expansion

procedure is a reverse of a contraction with only difference: instead of truncating

Fourier series, we have to expand it from P ′ to P terms. Since we do not have these

coefficients, we set them to be zero. It can be shown that the potential energies of the

P - and P ′-ring polymers are related as

P∑
k=1

V (q1,(k), ..., q3N,(k)) ≈
P

P ′

P ′∑
j=1

V (q′1,(j), ..., q
′
3N,(j)), (A.13)

with respect to the accuracy of contraction.

The Hamiltonian after the SL-RPC is applied:

H = K +
3N∑
i=1

[
P ′−1∑
k=0

mi(ω
2
(k) + ω2

i,full)

2
q̃2
i,(k) +

P−1∑
k=P ′

mi(ω
2
(k) + ω2

i,mol)

2
q̃2
i,(k)

]
. (A.14)

Then, the partition function of this system is

Q =
3N∏
i=1

P ′−1∏
k=0

1

βP~
√
ω2

(k) + ω2
i,full

P−1∏
k=P ′

1

βP~
√
ω2

(k) + ω2
i,mol

 (A.15)
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The free energy of a (single) physical system:

F = − 1

β
ln(Q) =

= − 1

β

3N∑
i=1

[
−

P ′−1∑
k=0

ln(βP~
√
ω2

(k) + ω2
i,full)−

P−1∑
k=P ′

ln(βP~
√
ω2

(k) + ω2
i,mol)

]
=

=
3NP ln(βP~)

β
+

1

2β

3N∑
i=1

[
P ′−1∑
k=0

ln(ω2
(k) + ω2

i,full) +
P−1∑
k=P ′

ln(ω2
(k) + ω2

i,mol)

]
.

(A.16)

The free energy difference between SL-RPC and P beads calculated with full po-

tential:

δF = (FRPC − F P beads) =
1

2β

3N∑
i=1

P−1∑
k=P ′

ln

(
ω2

(k) + ω2
i,mol

ω2
(k) + ω2

i,full

)
=

=
1

2β

3N∑
i=1

P−1∑
k=P ′

ln

(
1 +

ω2
i,mol − ω2

i,full

ω2
(k) + ω2

i,full

)
.

(A.17)
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Appendix B

Supplementing details for Chapter

4

B.1 Availability of data

The outputs of static DFT calculations, such as phonon calculations and adsorption

curves, are uploaded to the NOMAD repository https://nomad-lab.eu, the dataset

DOI is 10.17172/NOMAD/2020.12.22-1.

B.2 Adsorption properties

Adsorption energies Epot
ads for the systems discussed in Chapter 4 are provided in ta-

ble B.1.

A comparison of the adsorption energy curve between Light and Tight settings is

provided in figure B.1 for θ = 0.46. The difference in binding energy is 58 meV.

As mentioned in the main text, we use Eads calculated by the eq. 4.1 and E∗ads

calculated by the eq. 4.5. Only Eads rigorously satisfies the definition of an adsorption

energy. Comparing the numbers for coverage 0.46 and PBE + vdWsurf in tables B.1 and

B.2, one can compare the values obtained with these two definitions. The differences

are very small (less than 10 meV).
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Table B.1: Adsorption energy for different adsorption patterns, calculated with

PBE+vdWsurf by FHI-aims code with Light and Tight settings.

Eads

(
eV

molecule

)
θ = 1,

(
2
√

3× 2
√

3
)
R13.9°, 9 molecules, 4 Rh layers

Light, 2×2×1 k-points 1.023

θ = 0.64, 3×3 slab with 1 molecule

Light, 4×4×1 k-points 0.946

θ = 0.46, 5×5 slab with 2 molecules

Light, 2×2×1 k-points 0.953

Tight, 2×2×1 k-points 0.912

θ = 0.12, 7×7 slab with 1 molecule

Light, 2×2×1 k-points 0.945

B.3 Electron density rearrangement

Multiple slices of the electron density difference between the full system (surface+molecules)

and the superposition of an isolated adsorbate and a clean surface are presented (fig-

ures B.2, B.3). In these pictures, shades of blue mean electron depletion upon adsorp-

tion, and shades of red mean electron accumulation.
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Table B.2: Adsorption distance hCOM between the center of mass of a molecule and

a surface, and energy E∗ads, calculated as the energy difference between the minimal

point of the adsorption curve and the point at 10 Å distance from the surface.

Calculation setup hCOM (Å) E∗ads (meV)

θ = 0.46, Tight settings

PBE 3.71 147

PBE+nl-MBD 3.45 843

PBE + vdWsurf 3.36 905

HSE06+nl-MBD 3.30 1026

θ = 0.46, Light settings

PBE + vdWsurf 3.37 963

Experiment C6D12

Experiment C6H12
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Figure B.1: Adsorption curves calculated with PBE +vdWsurf [10] functional with

Tight (solid blue line) and Light (dashed black line) settings of FHI-aims. Calculations

were performed with the unit cell of θ = 0.46. Shaded areas show the experimental val-

ues of the adsorption energy of C6H12 (red) and C6D12 (grey), obtained by temperature

programmed desorption [8].
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13 14

Figure B.2: Difference between the electron density of a surface with molecules ad-

sorbed and the sum of isolated surface and isolated molecules, shown at different y− z

slices along x coordinate. Red color denotes electron density accumulation, and blue

denotes depletion.
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Figure B.3: Difference between the electron density of a surface with molecules ad-

sorbed and the sum of isolated surface and isolated molecules, shown at different x− y

slices along z coordinate. Red color denotes electron density accumulation, and blue

denotes depletion.
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Appendix C

Supplementing details for Chapter

5

C.1 Availability of data

Phonon calculations for the initial and transition states of water splitting reaction,

and the geometry relaxations of the adsorbed reactants and products for different

values of an electric field are uploaded to the NOMAD repository, the dataset DOI is

10.17172/NOMAD/2022.09.15-1.

C.2 Water dissociation paths with non-zero electric

fields

Dissociation paths for –0.74 and +0.74 V/Å are shown in figures C.1 (a) and (b),

respectively. Despite different reactant geometries, the transition states of the reaction

are quite similar.

C.3 Including lateral interaction: a water dimer

We simulated a water dimer to include water-water interactions, which are known to

have decisive impact on the structure of the interface layer of water [192, 27]. We

found that even one neighboring molecule is enough to prevent the flip of adsorbed
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a)

b)

Figure C.1: Reaction path of water molecule splitting on the Pd(111) surface at

–0.74 V/Å (a) and +0.74 V/Å (b), individual NEB beads. Large green, and white

spheres denote the 1st and the 2nd layers of the Pd(111) surface, respectively. The

underlined frame index denotes the transition state.
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configuration which happened for the monomer below –0.3 V/Å. In a dimer, the water

molecules form a hydrogen bond strong enough to prevent sharp changes in the range of

–0.74..+0.74 V/Å (see fig. C.2). At the same time, two competing adsorbed structures

were found for zero electric field. We tried to simulate the reaction

Figure C.2: Water dimer adsorbed on a Pd(111) surface under different electric field

values. Large green, white and blue spheres denote the 1st, 2nd and 3rd layers of the

Pd(111) surface, respectively. Structure #1 is 7 meV more preferable than #2.

2H2O→ H2O + OH + H. (C.1)

We tried to perform NEB optimization for this reaction following the same CI-NEB

protocol as for the monomer. For all bias values we managed to converge the NEB path

down to the force residue of 0.05 eV/Å. The path without an electric field is shown in

figure C.3). However, we were unable neither to converge it further, nor to perform
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climbing-image optimization from these reasonably-well converged geometries because

our NEB implementation started to diverge, and climbing algorithm also fails to refine

the position of the saddle point and drifts away from the path.

Figure C.3: The best reaction path that we achieved by the NEB algorithm for the

dissociation of a water dimer on the Pd(111) surface without electric field applied.

Individual NEB beads are shown. Bead 5 is the closest to the transition state. Large

green, white and blue spheres denote the 1st, 2nd and 3rd layers of the Pd(111) surface,

respectively.

C.4 Calculations of electronic Green’s functions

Attempting to go beyond the slab model, we tested two implementations of electronic

Green’s functions: SMEAGOL and TranSIESTA, both based on the SIESTA DFT

code. SMEAGOL currently supports the 2-electrode setup shown in fig. 2.5, and

TranSIESTA suppors both 1 and 2-electrode setups. As described in section 2.6.3,

sub-surface bulk metal is modelled as infinite repetitions of a principal layer (PL),
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which is thick enough to screen the interactions to the second-nearest neighboring

layer completely.

In 2-electrode setup, additional periodicity requirement takes place, because Poisson

solver and energy functional in SMEAGOL are taken from SIESTA with minor modifi-

cations only. An FCC(111) slab is 3-periodic (ABC layers), therefore a PL should have

3 or 6 atomic layers. The cell contains a PL on each side, plus a number of surface layers

sufficient to screen the PLs from vacuum. In the published work of our colleagues, gold

surface was simulated. For gold, an ABC layer has length of 7.704 Å, and double-zeta

basis set that was employed has a cut-off at 3.385 Å, which means that the electronic

densities of the second-nearest neighbors do not overlap. This rather coincidental fact

allows using a single ABC layer as a PL. For palladium, the lattice vector is smaller

and an ABC layer spans over 6.797 Å only. At the same time, the necessary basis set

is more extended than that of gold: we worked with two slightly different DZP basis

sets with the cut-off distances of 4.454 and 4.170 Å. It means that the densities of the

second-nearest neighbors will interact if the 3-layer is used as a PL, therefore a 6-layer

is needed. This fact increases a system size considerably: considering that at least 4×4

lateral dimensions are necessary to damp water self interaction across x, y boundaries

and 3-4 layers in z direction are needed to screen the PLs, the total number of atoms

in such a setup is close to 300 (see fig. C.4. Converging the SCF cycle for a thick metal

Figure C.4: Typical dimensions of a 2-electrode setup in SMEAGOL or TranSIESTA

with 6 atomic layers in a principal layer.

slab is difficult even in canonical KS-DFT [212], and fluctuating number of electrons

makes this task even harder [4]. To date, SMEAGOL does not offer mixing procedures

tailored for grand-canonical calculations, and we didn’t manage to converge any GF

calculation.

We then tried both 1 and 2-electrode setups available in TranSIESTA, and managed
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to converge a single point for zero bias, starting from the density converged by KS-DFT

in SIESTA. The reason for success is that converged KS-DFT is a very good initial

guess, since the ground state density does not depend on the method which is used to

calculate it. However, the density update algorithm appeared to be very unstable and

diverged after either the atoms were displaced or a potential bias was required.
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Landéschen Abstoßungskräfte, Zeitschrift für Physik 43 (1927), no. 8, 563–574.
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