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We leverage recent breakthrough calculations using second-order gravitational self-force (2GSF)
theory to improve both the gravitational-mode amplitudes and radiation-reaction force in effective-
one-body (EOB) waveform models. We achieve this by introducing new calibration parameters
in the SEOBNRv5HM mode amplitudes, and matching them to the newly available 2GSF energy-flux
multipolar data for quasicircular nonspinning binary black holes. We find that this significantly
improves the SEOBNRv5HM energy flux, when compared to numerical-relativity (NR) simulations
of binary black holes with mass ratios between 1:1 and 1:20. Moreover, we find that, once the
conservative part of the SEOBNRv5 dynamics is calibrated, the SEOBNRv5HM waveform model with
2GSF information reproduces the binding energy of NR simulations more accurately, providing a
powerful check of the consistency and naturalness of the EOB approach. While we only include
nonspinning 2GSF information, the more accurate binding energy and energy flux carry over to the
SEOBNRv5 waveform models for spinning binary black holes. Thus, our results improve the latest
generation of SEOBNR waveform models (i.e., SEOBNRv5), which has been recently completed for use
in the upcoming fourth observing (O4) run of the LIGO-Virgo-KAGRA Collaboration.

I. INTRODUCTION

During their first, second and third observing runs [1–
5], the LIGO [6] and Virgo [7] gravitational-wave (GW)
observatories have detected GWs from about ninety co-
alescences of compact binaries, composed of black holes
(BHs) and/or neutron stars. Moreover, independent con-
firmations of these detections, as well as claims of new
ones, were obtained in Refs. [8–13]. All together, these
results have firmly established the field of GW astronomy.
The vast majority of the observed GW signals involve bi-
naries with comparable masses [3, 10, 12, 14] although a
few signals show evidence for binaries with greater mass
asymmetry [15, 16], quantified by the ratio of the com-
ponent masses (q = m1/m2 ≥ 1 or ε = m2/m1 ≤ 1, m1

and m2 being the primary and secondary masses in the
binary, respectively).

As the number of GW detections is expected to in-
crease in upcoming observation runs [14, 17, 18], so likely
will the number of asymmetric coalescences. It is there-
fore important that waveform models used for detecting,
identifying, and analyzing the GW signals faithfully rep-
resent binaries in the small-mass-ratio (SMR) regime.

Effective-one-body (EOB) theory [19–23] provides
waveform models that can be used for the analysis of GW
signals by combining results from various first-principle
methods for solving the two-body problem in General
Relativity, such as post-Newtonian (PN) theory [24–27]
and numerical relativity (NR) [28–30]. Moreover, EOB
waveform models are constructed in such a way that they

reduce to test-body motion around a black hole in the
limit of vanishing ε. Thus, to improve fidelity of EOB
waveform models, it is in principle straightforward and
natural to incorporate results from SMR perturbation
theory or gravitational self-force (GSF) theory [31] in the
EOB formalism [32].

There are two main families of EOB models, SEOBNR
(e.g., see Refs. [33–35]) and TEOBResumS (e.g., see
Refs. [36–38]). We consider here the former, and in par-
ticular we focus on the latest generation of SEOBNR models
(i.e., SEOBNRv51) recently developed in Refs. [39–42] for
the upcoming fourth observing run of the LIGO-Virgo-
KAGRA (LVK) Collaboration, which will also include
the KAGRA [43, 44] detector in Japan.

The inclusion of GSF results in EOB waveforms has, so
far, been limited to the inclusion of higher PN test-body
coefficients in the energy flux and gravitational-mode am-
plitudes (e.g., see Refs. [33, 34, 36, 37]), fits of EOB-
mode amplitudes to the inspiral Teukolsky-multipolar
modes [45, 46] and the calibration of EOB Hamiltoni-
ans [33, 47] to match the first-order GSF correction to the
nonspinning shift of the innermost stable circular orbit
(ISCO) [48]. Various studies [49–53] considered improv-

1 The SEOBNRv5 family of models is publicly available through the
python package pySEOBNR:
https://git.ligo.org/waveforms/software/pyseobnr. Stable ver-
sions of pySEOBNR are published through the Python Package
Index (PyPI), and can be installed via pip install pyseobnr.
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ing the EOB Hamiltonian by incorporating GSF correc-
tions to the binding energy through use of the first law of
binary mechanics [54, 55]. In the standard gauge [19, 21]
used in EOB waveform models, this leads to a gauge sin-
gularity at the lightring (or photon orbit) radius [51, 52].
This singularity can be cured by reformulating the EOB
Hamiltonian in a different gauge [52, 56]. So far, this has
not been implemented in any fully featured EOB wave-
form model employed for LVK analyses. Recently, a ver-
sion of the TEOBResumS model has been produced [57]
that incorporates most of the previously calculated GSF
corrections to the EOB Hamiltonian without, however,
calibrating it to NR simulations, and focusing only on
the inspiral phase to avoid issues with the lightring di-
vergence.

Recent calculations in GSF theory have provided the
second-order GSF (henceforth, 2GSF) correction to the
energy flux [58] as well as corresponding post-adiabatic
waveforms [59]. References [60, 61] carried out a detailed
comparison of these results against NR waveforms us-
ing a version of the TEOBResumS waveforms; among other
things, 2GSF waveforms enabled a precise assessment
of the accuracy of the TEOBResumS family in the SMR
regime. However, these references did not seek to im-
prove EOB waveform models through direct use of 2GSF
information. In this work we will capitalize on the 2GSF
breakthrough by directly incorporating 2GSF energy flux
corrections in the latest generation of SEOBNR models. We
will see that, quite interestingly, including these correc-
tions does not only improve the waveform models at small
mass-ratios, but also for comparable masses.

In this paper, we employ units such that G = c = 1.
The component masses of a binary are denoted m1 and
m2 with m1 ≥ m2. The total mass is M = m1 + m2,
the reduced mass is µ = m1m2/M , while ν denotes the
symmetric mass-ratio µ/M .

II. BASICS OF THE EFFECTIVE-ONE-BODY
APPROACH

In the EOB formalism the dynamics of a compact bi-
nary is mapped onto that of an effective test mass (or
test spin) in a deformed BH background, with the defor-
mation parameter being the symmetric mass-ratio. The
EOB approach builds semi-analytical inspiral-merger-
ringdown waveforms by combining analytical predictions
for the inspiral and ringdown phases (from BH pertur-
bation theory) with physically-motivated ansatzes for the
plunge-merger stage. The EOB waveforms are then made
highly accurate via a calibration to NR waveforms. The
EOB formalism relies on three key ingredients: the EOB
conservative dynamics (i.e., a two-body Hamiltonian),
the EOB radiation-reaction forces (i.e., the energy flux)
and the EOB gravitational modes. In this paper we shall
limit to the inspiral-portion of the coalescence of non-
spinning BHs. Here, we describe each of the main EOB
ingredients, as necessary (e.g., see for details Ref. [40]).

A. EOB Hamiltonian

In the binary’s center-of-mass frame, the motion is de-
scribed by the orbital phase φ, the relative position r,
the radial momentum pr and the angular momentum pφ.
In the EOB formalism, the Hamiltonian HEOB, describ-
ing the conservative binary dynamics, is related to the
effective Hamiltonian Heff, describing the dynamics of a
test body in a deformed BH background, via the energy
map [19]

HEOB = M

√
1 + 2ν

(
Heff

µ
− 1

)
. (1)

For nonspinning binaries, in the ν → 0 limit, Heff re-
duces to the Hamiltonian of a (nonspinning) test mass
in a Schwarzschild background. The nonspinning EOB
Hamiltonian was first derived in Refs. [19, 20] with 2PN
information. It was then extended to 3PN order in
Ref. [21] and to 4PN order in Ref. [62]. As of today, the
5PN [63–65] and 6PN terms [66, 67] are partially known.
In the non-spinning limit Heff reads:

Heff =

√
p2
r∗ +A(r)

[
µ2 +

p2
φ

r2
+Q(r, pr∗)

]
, (2)

where pr∗ is the canonical momentum conjugate to the
tortoise coordinate r∗,

dr

dr∗
=
pr∗
pr

= A(r)
√
D̄(r). (3)

The 5PN Taylor-expanded potential A is given by

A(u) = 1− 2u+ 2νu3 + ν

(
94

3
− 41π2

32

)
u4

+

[
ν

(
2275π2

512
− 4237

60
+

128γE
5

+
256 ln 2

5

)
+

(
41π2

32
− 221

6

)
ν2 +

64

5
ν lnu

]
u5

+

[
νa6 − ν

(
144ν

5
+

7004

105

)
lnu

]
u6, (4)

where u ≡ M/r and γE ' 0.5772 is the Euler gamma
constant. In Eq. (4), except for the log part, we replace
the (partially known) coefficient of u6 by the parameter
a6. The latter is treated as a calibration parameter in
the construction of the SEOBNRv5 waveform models [40]
(and also in previous calibrations of EOB families). Fur-
thermore, the resummed form of A, the potentials D̄ and
Q, and the spinning EOB Hamiltonian used for the cal-
ibration of the SEOBNRv5 waveform model can be found
in Refs. [39, 40].
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B. EOB gravitational modes

The observer-frame’s gravitational polarizations read

h(t; ι, ϕ0) = h+(t; ι, ϕ0)− ih×(t; ι, ϕ0) (5)

=

∞∑
`=2

∑̀
m=−`

−2Y `m(ι, ϕ0)h`m(t), (6)

where we denote with ι the binary’s inclination angle
(computed with respect to the direction perpendicular to
the orbital plane), ϕ0 the azimuthal direction to the ob-
server, and Y−2 `m (ι, ϕ0)’s the -2 spin-weighted spherical

harmonics. For nonspinning binaries h`m = (−1)`h∗`−m,
therefore one can restrict the discussion to (`,m) modes
with m > 0.

In the SEOBNRv5HM waveform model, the 7 most
dominant modes are included, specifically (`,m) =
(2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3), and (5, 5). The
EOB modes for the entire coalescence (i.e., inspiral,
plunge, merger and ringdown (RD)), can be written as:

h`m(t) =

{
hinsp-plunge
`m (t), t < t`mmatch

hmerger-RD
`m (t), t > t`mmatch

, (7)

where t`mmatch is defined as

t`mmatch =


t22
peak , (`,m) = (2, 2), (3, 3), (2, 1),

(4, 4), (3, 2), (4, 3)

t22
peak − 10M, (`,m) = (5, 5),

(8)
where t22

peak is the peak of the (2, 2)-mode amplitude.

The choice of a different attachment point for the (5, 5)
mode is discussed in Refs. [34, 40]. In the SEOBNRv5HM
model, one imposes that [40]

t22
peak = tISCO + ∆t22

ISCO , (9)

where tISCO is the time at which r = rISCO, with rISCO

the ISCO radius of a Kerr BH [68] with the final mass
and spin of the remnant object [69, 70]. The parameter
∆t22

ISCO in Eq. (9) is the second EOB calibration parame-
ter (the first being a6 in the potential A of Eq. (4)), which
is determined by minimizing the disagreement between
EOB and NR waveforms throughout the inspiral-plunge

stage. Henceforth, we focus only on the hinsp−plunge
`m (t),

and do not provide details on how the hmerger−RD
`m (t) is

constructed.
The inspiral-plunge EOB modes are written as

hinsp-plunge
`m (t) = hF

`m(t)N`m(t) , (10)

where hF
`m(t)’s resum the PN-expanded GW modes

for circular orbits in factorized form [71–74], while
N`m(t)’s are the nonquasicircular (NQC) corrections [75–
77], aimed at incorporating relevant radial effects during
the plunge (see below). The factorized inspiral modes
are given by [73]

hF`m = hN
`mŜ`mT`mf`me

iδ`m . (11)

The first factor, hN
`m, encodes the leading (Newtonian)

order waveform, and its explicit expression is

hN
`m =

νM

dL
n`mc`+ε`m(ν)v`+ε`mφ Y`−ε`m,−m

(π
2
, φ
)
, (12)

where dL is the luminosity distance, Y`m is a scalar spher-
ical harmonic, ε`m is the parity of the mode,

ε`m =

{
0, `+m is even,

1, `+m is odd,
(13)

and the functions n`m and ck(ν) are given by

n`m =


8π(im)`

(2`+ 1)!!

√
(`+1)(`+2)
`(`−1) , `+m is even,

−16iπ(im)`

(2`+ 1)!!

√
(2`+1)(`+2)(`2−m2)
(2`−1)(`+1)`(`−1) , `+m is odd,

(14)
and

ck(ν) =
(

1−
√

1−4ν
2

)k−1

+ (−1)k
(

1+
√

1−4ν
2

)k−1

. (15)

Finally, vφ in Eq. (12) is given by

vφ = MΩrΩ, (16)

with

Ω =
∂HEOB

∂pφ
,

1

r
3/2
Ω

=
∂HEOB

∂pφ

∣∣∣∣
pr=0

. (17)

The second factor in Eq. (11), Ŝ`m, is an effective source
term. Depending on the parity of the mode, it is given
by

Ŝ`m =

{
Heff , `+m is even,

Leff = vΩpφ, `+m is odd,
(18)

with

vΩ = (MΩ)1/3. (19)

The third factor in Eq. (11), T`m, is an analytic resum-
mation of the leading-order tail terms in the PN expan-
sion [78],

T`m =
Γ(`+ 1− 2iΩ̂)

Γ(`+ 1)
eπmΩ̂

(
4mMΩ√

e

)2imΩ̂

, (20)

where Ω̂ = ΩHEOB is the orbital frequency normalized
by the total energy.

The final two factors in Eq. (11) encode additional
physical information included in the waveform from PN
theory. The function flm is expanded as

flm =

{
(ρ`m)`, m is even

(ρ`m)` + fS
lm, m is odd.

(21)

The functions δ`m, ρ`m, and fS
lm are fixed by requiring

that the waveform at fixed orbital frequency Ω matches
known analytical PN and test-body expressions. The full
expressions used in SEOBNRv5HM are given in Appendix B
of [40].
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C. EOB equations of motion and radiation-reaction
force

The EOB equations of motion read

dr

dt
=
∂HEOB

∂pr
,

dpr
dt

= −∂HEOB

∂r
+ Fr, (22a)

dφ

dt
=
∂HEOB

∂pφ
,

dpφ
dt

= Fφ, (22b)

where the radiation-reaction (RR) forces Fr and Fφ are
given by [23]

Fr = −F
EOB

MΩ

pr
pφ

, Fφ = −F
EOB

MΩ
, (23)

where FEOB is the energy flux, which is given as a sum
over (`,m) modes [73],

FEOB =

8∑
`=2

∑̀
m=1

FEOB
`m . (24)

Each of the (`,m)-mode contributions to the energy flux
is obtained from the inspiral-plunge waveform modes, as-
suming quasi-circular orbits

FEOB
`m = d2

L

(mMΩ)2

8π

∣∣∣hinsp−plunge
`m

∣∣∣2 . (25)

As discussed in Sec. II B, in the SEOBNRv5 model, as
in other EOB variants, the inspiral-plunge quasi-circular
waveform is enhanced by the NQC corrections N`m (see
Eq. (10)), which for the SEOBNR models take the form

N`m =

[
1 +

p2
r∗

(rΩ)2

(
ah`m

1 +
ah`m

2

r
+
ah`m

3

r3/2

)]

× exp

[
i

(
bh`m
1

pr∗

rΩ
+ bh`m

2

p3
r∗

rΩ

)]
, (26)

with the constants ah`m
i and bh`m

i chosen such that the
EOB modes agree with NR modes at the point where
the inspiral-plunge modes are matched to the merger-RD
modes (see Eq. (7) above and Ref. [40]).

In the initial SEOBNR models, the NQC corrections were
included in the energy flux (and RR forces) through
Eq. (25) via an iterative procedure or fits (e.g., see
Refs. [47, 79]). However, starting from the SEOBNRv4
model [35], the inspiral-plunge modes in Eq. (25) only
contain the factorized modes. The NQC corrections are
included only in the gravitational polarization modes.
The initial TEOBResumS models also included the NQC
corrections in the energy flux, but then in subsequent
versions the energy flux did not take them in. Recently,
the TEOBResumsS model of Ref. [80] incorporates fits to
the NQC corrections in the energy flux (and RR force)
through Eq. (25). Finally, in the SEOBNRv5 waveform
model used in this paper, the NQC corrections do not

enter the RR forces. As we shall discuss below, in the
nonspinning case, the calibration to 2GSF results im-
proves the EOB energy fluxes considerably, thus the NQC
corrections play a subdominant role. Furthermore, the
inclusion of higher-order PN spin terms in the gravita-
tional EOB modes, which were absent in the previous
SEOBNRv4 model, reduces the disagreement between EOB
and NR fluxes and pushes it mostly to the very late in-
spiral, where the effective test-body motion is almost un-
affected by dissipative effects (see for details Ref. [40]).

III. BASICS OF THE GRAVITATIONAL
SELF-FORCE APPROACH

The development of the GSF approach has tradition-
ally been driven by the need to model GW emission from
extreme-mass-ratio inspirals. This approach expands the
metric of the binary around the metric of the primary in
powers of ε = m2/m1 (see Eq. (27) below). It is well
known [81] that in order to get a waveform phase error
that scales as O(ε), the expansion of the metric pertur-
bation must be carried through O(ε2) (i.e., at 2GSF).
That is to say, the waveform phase error scales as O(ε0)
if second-order (in the mass-ratio) corrections are not in-
cluded in the metric.

Practical 2GSF calculations have recently been carried
out using a two-timescale framework [82]. Within this
approach the (multipolar) flux for a quasicircular, non-
spinning binary was recently computed [58]. This has
since been combined with a calculation of the binding
energy [83] to compute the associated inspiral dynam-
ics and waveforms [59]. Important additional details are
available in Ref. [60]. Here we will briefly review the
calculation of the 2GSF flux.

Restricting to quasicircular orbits, we expand the met-
ric of the binary as

gαβ +

∞∑
m=−∞

[
εh1,m
αβ (Ω) + ε2h2,m

αβ (Ω)
]
e−imφ +O(ε3),

(27)

where gαβ is the Schwarzschild metric of the primary and
φ is the orbital azimuthal angle of the secondary. The
metric amplitudes, hn,mαβ , depend on the binary’s slowly

evolving orbital frequency Ω ≡ dφ/dt2. During the in-
spiral (i.e., sufficiently far from the ISCO), the orbital
frequency, and thus the metric amplitudes, evolve on the
slow RR timescale tRR ∼ 1/(εΩ), whereas φ evolves on
the fast orbital timescale torb ∼ 1/Ω. The two-timescale

2 The metric amplitudes also depend on small corrections to the
primary’s mass and spin which evolve due to absorption of grav-
itational radiation. The magnitude of these corrections is very
small [60], so we ignore them in this work. Neglecting these ef-
fects, particularly the presence of a small but nonzero spin, is
also consistent with the EOB model.
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framework treats tRR and torb as independent. By substi-
tuting Eq. (27) into the Einstein field equations, we can
split them into (i) a set of Fourier-domain partial differen-
tial equations for the amplitudes at fixed Ω, and (ii) evo-
lution equations that determine Ω and φ as functions of
time. Decomposing the metric perturbation onto a basis
of tensor spherical harmonics and working in the Lorenz
gauge [84, 85], we arrive at the field equations which can
be found explicitly in Ref. [82]. Constructing the second-
order source, applying appropriate boundary conditions,
and integrating the field equations required the develop-
ment of a raft of new techniques and codes [86–91].

In our two-timescale scheme we assume the secondary
follows a quasicircular orbit in which Ω̇ = O(ε) 6= 0.
In order to satisfy the Einstein field equations through
second order in the mass ratio, we consistently account
for the nonzero Ω̇ everywhere that it appears (which is
in numerous places in the second-order field equation
and second-order flux). However, the assumption Ω̇ ∼ ε
breaks down near the ISCO, and the expansions based on
that assumption cause Ω̇ to unphysically diverge at the
ISCO. Due to the presence of Ω̇ terms, the 2GSF flux
computed using the above two-timescale expansion also
diverges at the ISCO. This non-physical divergence can
be removed by transitioning to a new expansion in the
vicinity of the ISCO [92]. The location where this tran-
sition occurs provides an estimate for where the inspiral
two-timescale expansion breaks down. Reference [60] es-
timated that, for small ν, this breakdown occurs around

vbreak
Ω = vISCO

Ω − 0.052ν1/4, (28)

where vISCO
Ω = 1/

√
6 ≈ 0.408.

The GSF energy flux is calculated from the (`,m)

modes of εh1,m
αβ + ε2h2,m

αβ at null infinity [93]. With the
polarizations expanded in -2 spin-weighted spherical har-
monics (see Eq. (6)), the flux is given by

FGSFε
`m = lim

dL→∞
|ḣ`m|2d2

L/(16π). (29)

Defining y = (m1Ω)2/3 we can write the flux as an ex-
pansion in ε at fixed y as

FGSFε
`m (ε, y) = ε2FGSF1ε

`m (y) + ε3FGSF2ε
`m (y) +O(ε4).

(30)

The symmetry of the physical binary system under the
interchange of the labels m1 ↔ m2 suggests that, for
comparable-mass binaries, it is natural to re-expand in
the symmetric mass-ratio ν at fixed total mass M . This
is known to improve agreement of perturbative results
with NR simulations of comparable-mass binaries [94, 95]
and also it is natural for comparing with PN and EOB
models. Defining x = (MΩ)2/3 = v2

Ω and using

ε = ν + 2ν2 +O(ν3), (31)

y = x(1− 2/3ν) +O(ν2), and (32)

m1 = M −m2ν +O(ν2), (33)

Figure 1. Comparison of the (5, 5)-mode flux extracted from
NR simulations and GSF calculations at r/GM ≡ 1/v2

Ω = 9.5
as function of the symmetric mass-ratio, ν. After subtracting
the 1GSF (resp. 2GSF) flux from the NR flux, we see the
residual scales as ν3 (ν4), as expected. We further observe the
significant improvement in the agreement with NR when using
the re-expanded normalized GSF flux defined in Eq. (36).
Similar results for the other mode fluxes considered in this
work are given in Appendix B.

we can re-expand the flux as

FGSFν
`m (ν, x) = ν2FGSF1ν

`m (x) + ν3FGSF2ν
`m (x) +O(ε4),

(34)

where

FGSF1ν
`m (x) = FGSF1ε

`m (x), (35a)

FGSF2ν
`m (x) = FGSF2ε

`m (x) + 4FGSF1ε
`m (x)− xdFGSF1ε

`m (x)

dx
.

(35b)

Hereafter we shall use FGSF
`m ≡ FGSFν

`m . For interfacing
with the EOB model, it is useful to define a re-expanded
(Newtonian-)normalized flux

FGSF
`m

FN
`m

= F̂GSF1
`m + νF̂GSF2

`m +O(ν2), (36)

with

FN
`m = d2

L

(mMΩ)2

8π

∣∣hN
`m

∣∣2 . (37)

We hereafter define F̂GSF
`m ≡ F̂GSF1

`m +νF̂GSF2
`m . Using the

re-expanded normalized flux also results in a significant
improvement in the agreement between the GSF and NR
fluxes for all modes other than the (2,2) mode.
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The first calculation of the 2GSF flux was presented
in Ref. [58], where remarkable agreement was found be-
tween the total GSF flux (first plus second order) and
the flux computed from NR simulations of comparable-
mass binaries. Figure 4 of Ref. [58] showed that for the
(2,2) and (3,3) mode the difference between the NR and
GSF flux scaled as O(ν4), as expected, over mass ra-
tios ranging from 10:1 to 1:1. In Fig. 1 we show that
this scaling also holds for the (5,5) mode across a wider
range of mass ratios from 20:1 to 3:1. In Appendix B we
show similar plots for the other modes considered in this
work. This excellent agreement with NR gives us further
confidence that the calculated 2GSF flux is capturing all
contributions to the flux through O(ν3). For this work
we also computed the 2GSF flux at many more orbital
frequencies than were previously presented in Ref. [58].

Figure 1 (and the related plots in Appendix B) also
shows the improvement gained by using the re-expanded
normalized GSF flux. We see that factoring out the
leading Newtonian behaviour brings the GSF flux much
closer to the NR flux, especially in the case of comparable
masses. This factorization is also a key part of the re-
summation of the EOB flux as described in Sec. II. This
further motivates us to incorporate the new 2GSF flux
information in the EOB flux.

IV. MATCHING EOB AND GSF MULTIPOLAR
FLUXES

In order to incorporate information from the 2GSF flux
into the EOB flux, we need to compare the two in a
gauge-invariant manner. In both cases, the energy flux
is decomposed into −2 spin-weighted spherical modes.
Consequently, we can compare the (`,m)-mode fluxes in-
dividually at a fixed value of the orbital frequency MΩ.
By its nature, the GSF result is given as an expansion
in powers of ν. We need to do the same with the EOB
energy flux modes FEOB

`m . Combining Eqs. (11) and (25)
gives

FEOB
`m = d2

L

(mMΩ)2

8π

∣∣hN
`m

∣∣2 ∣∣∣Ŝ`m∣∣∣2 |T`m|2 |ρ`m|2` . (38)

Instead of expanding the full flux, it is more convenient
to expand the flux normalized by its leading Newtonian
contribution,

F̂EOB
`m =

FEOB
`m

FN
`m

. (39)

This allows us to preserve the nonpolynomial dependence
of FN

`m on ν in the final EOB result, and ensure its correct
behaviour in the equal-mass limit. One potential compli-
cation in doing this is that FN

`m is not written directly in
terms of Ω, but instead depends indirectly on Ω through
vφ. However, expanding the dependence of vφ in powers
of ν and vΩ (see Eqs. (16) and (19)), we find that

vφ = vΩ +O(ν2v13
Ω ). (40)

Since in this comparison we are only interested in next-to-
leading order corrections in ν, we can thus safely replace
vφ by vΩ everywhere in the expansion.

Next, we need to expand the individual factors in
Eq. (39) in powers of ν at fixed values of Ω. Starting

with the effective source Ŝ`m given in Eq. (18), we write

Ŝ`m = Ŝ
(0)
`m + νŜ

(1)
`m +O(ν2). (41)

At leading order, this is simply given by the well-known
test-body result

Ŝ
(0)
`m =


M

1− 2v2
Ω√

1− 3v2
Ω

, `+m is even,

M
1√

1− 3v2
Ω

, `+m is odd,

(42)

which is reproduced exactly by the EOB Hamiltonian
(by construction). At next-to-leading order, the effective
source for quasicircular inspirals depends on the linear-
in-ν correction to the EOB A potential. In principle, this
contribution depends on the exact details of the imple-
mentation of the A-potential in the SEOBNRv5HM model,
including any calibration of a6 to NR results. (This is
one of the routes through which the calibration of the
A-potential becomes degenerate with calibration of the
energy flux in the EOB RR force.) However, through
use of the first law of binary mechanics [54], it is possi-
ble to directly compute the linear-in-ν correction to the
A potential [49, 50] in terms of the Detweiler redshift
invariant z(1) [96], the exact value of which can be com-
puted numerically in the GSF context [49, 51, 97]. This
gives

Ŝ
(1)
`m =

{
H

(1)
eff , `+m is even

L
(1)
eff , `+m is odd,

(43)

with

H
(1)
eff

M
=

1

2
z(1)(vΩ)− 1

6
vΩz

(1)′(vΩ) +
√

1− 3v2
Ω (44a)

+
x(7− 24x)

6(1− 3v2
Ω)3/2

+

(
1− 2v2

Ω√
1− 3v2

Ω

− 1

)2

− 1,

L
(1)
eff

M
= − 1

6vΩ
z(1)′(vΩ) +

4− 15x

6(1− 3v2
Ω)3/2

. (44b)

We use interpolated data for the redshift z(1) generated
with the code [97] from a previous work [52].

The next step is to expand the tail term T`m, given in
Eq. (20). This has a hidden dependence on ν through

Ω̂ = ΩHEOB. We start by expanding HEOB:

HEOB = H
(0)
EOB + νH

(1)
EOB +O(ν2), (45)

which straightforwardly gives

H
(0)
EOB = M, (46a)

H
(1)
EOB = M

(
1− 2v2

Ω√
1− 3v2

Ω

− 1

)
. (46b)
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Following [73], we note that the modulus square of the
tail term can be written as

|T`m|2 =
1

(`!)2

4πmΩ̂

1− e−4πmΩ̂

∏̀
k=1

[
k2 + (2mΩ̂)2

]
. (47)

We thus find the expansion of this term as

|T`m|2 = T (0)
`m + νT (1)

`m +O(ν2), (48)

with

T (0)
`m =

1

(`!)2

4πmMΩ

1− e−4πmMΩ

∏̀
k=1

[
k2 + (2mMΩ)2

]
, (49)

and

T (1)
`m

T (0)
`m

=
H

(1)
EOB

M

[
1 +

4πmMΩ

1− e4πmMΩ
+
∑̀
j=1

4m(MΩ)2

j2 + (2mMΩ)2

]
.

(50)

We now write the expansion of the final factor in
Eq. (38) as

ρ`m = ρ
(0)
`m + νρ

(1)
`m +O(ν2), (51)

and compare to the re-expanded normalized GSF flux in

Eq. (36). We can find the exact values of ρ
(0)
`m and ρ

(1)
`m in

terms of the GSF flux by matching the two expressions
for the normalized flux at fixed Ω order-by-order in ν,
yielding

ρ
(0),GSF
`m =

(
F̂GSF1
`m

T (0)
`m

∣∣∣Ŝ(0)
`m

∣∣∣2
)1/(2`)

, (52)

and

ρ
(1),GSF
`m =

ρ
(0)
`m

2`

(
F̂GSF2
`m

F̂GSF1
`m

−
T (1)
`m

T (0)
`m

− 2
Ŝ

(1)
`m

Ŝ
(0)
`m

)
. (53)

Equation (52), of course, matches the expression pre-

viously found in [73]. The expression for ρ
(1),GSF
`m is the

new expression needed to incorporate the 2GSF flux into
the EOB flux.

For including 2GSF information in the EOB mode am-
plitudes and energy flux, we focus on the 7 dominant
(`,m) modes that are inlcuded in the SEOBNRv5HM model.
For these modes we first determine the contributions to
ρ

(1)
`m already included in the EOB waveform modes by

0.00

0.02

0.04

0.06

0.08

0.0 0.1 0.2 0.3 0.4

Figure 2. The top panel shows the numerical values of ρ
(1),GSF
22

from applying Eq. (53) to the 2GSF fluxes, and the base EOB

ρ
(1),EOB
22 given by (54). In addition, we show the corrected ρ

(1)
22

after adding the fitted correction (55a). The bottom panel
shows the absolute difference between the GSF and EOB val-
ues with and without ∆ρ

(1)
22 .

expanding ρ`m in powers of ν,3

ρ
(1),EOB
22 = 55

84v
2
Ω − 33025

21168v
4
Ω −

[
48993925
9779616 −

41π2

192

]
v6

Ω, (54a)

ρ
(1),EOB
21 =

23

84
v2

Ω −
10993

14112
v4

Ω, (54b)

ρ
(1),EOB
33 = 2

3v
2
Ω − 1861

990 v
4
Ω −

[
129509
25740 −

41π2

192

]
v6

Ω, (54c)

ρ
(1),EOB
32 =

131

270
v2

Ω −
617123

1603800
v4

Ω, (54d)

ρ
(1),EOB
44 =

257

330
v2

Ω −
5072887

2202200
v4

Ω, (54e)

ρ
(1),EOB
43 =

103

176
v2

Ω, (54f)

ρ
(1),EOB
55 =

54

65
v2

Ω. (54g)

We augment the ρ
(1),EOB
`m by adding an additional poly-

nomial ∆ρ
(1)
`m in v2

Ω starting at the lowest order in v2
Ω

not already included. The ∆ρ
(1)
`m are determined by fit-

ting to the numerical ρ
(1),GSF
`m results. While these extra

terms take the form of higher-order PN terms, we empha-
size that the goal here is not to estimate the next-order
terms in the PN series (which would in general also con-
tain log vΩ contributions). Instead, the goal is to capture

3 Note that the SEOBNRv5HM model does not include all PN informa-
tion available at the time of writing (for details see Appendix B
of Ref. [40]).



8

0.00

0.02

0.04

0.06

0.08

0.0 0.1 0.2 0.3 0.4

0.00

0.02

0.04

0.06

0.08
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Figure 3. Same as in Fig. 2, but now for the (3,3), (3,2), (4,4), (4,3), (5,5), and (2,1) modes. The panels on the left show the
even parity modes, while the panels on the right show the odd parity modes. We note a different behaviour of the even and
odd parity 2GSF modes close to the divergence induced by the two-time scale expansion in the proximity of the ISCO.
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as much of the behaviour of the numerical ρ
(1),GSF
`m data

as possible.
To see how this fit works in practice, let us focus on

the case of the (2, 2)-mode shown in Fig. 2. There are
two complicating factors in performing the fit. The first
is that the GSF data has finite numerical accuracy. This
causes issues in the weak-field regime, where the EOB
approximation is more accurate than the GSF data, and
we thus run the risk of overfitting the numerical noise.
The second complication is that the GSF data diverges at
the Schwarzschild ISCO at vΩ = 1/

√
6, where the inspi-

ral two-timescale expansion breaks down (see Sec. III).
This feature is not physical and should not be reproduced
by the EOB flux. The combination of these complica-
tions with the small number of fitting parameters makes
it most practical to manually fit the parameters using
the residuals to judge both the location of the noise floor
and the divergence. In the case of the (2, 2)-mode this
produces

∆ρ
(1)
22 = 21.2v8

Ω − 411v10
Ω . (55a)

Repeating the process for the six remaining modes
(shown in Fig. 3) yields the following fits:

∆ρ
(1)
21 = 1.65v6

Ω + 26.5v8
Ω + 80v10

Ω , (55b)

∆ρ
(1)
33 = 12v8

Ω − 215v10
Ω , (55c)

∆ρ
(1)
32 = 0.333v6

Ω − 6.5v8
Ω + 98v10

Ω , (55d)

∆ρ
(1)
44 = −3.56v6

Ω + 15.6v8
Ω − 216v10

Ω , (55e)

∆ρ
(1)
43 = −0.654v4

Ω − 3.69v6
Ω + 18.5v8

Ω, (55f)

∆ρ
(1)
55 = −2.61v4

Ω + 1.25v6
Ω − 35.7v8

Ω. (55g)

Thus, in the GSF-augmented EOB model, ρ`m in
Eq. (21) is replaced as

ρ`m 7→ ρ`m + ν∆ρ
(1)
`m, (56)

both when computing the EOB gravitational polariza-

tions and RR force (taking ∆ρ
(1)
`m = 0 for modes for which

it has not been calculated, yet).
For two modes (the (3,2) and (4,3)) these fits contain

higher PN terms than included in the corresponding ρ
(0)
`m

in previous SEOBNR models. For the sake of consistency,

SEOBNRv5HM augments the corresponding ρ
(0)
`m-terms to

the appropriate PN order with corresponding 1GSF flux
terms, which are known up to very high PN order [98].

V. IMPACT OF GSF INFORMATION ON THE
SEOBNRV5HM MODEL ACCURACY

In this section we study the impact of including the
2GSF information in the energy flux and mode ampli-
tudes on the overall faithfulness of the SEOBNRv5HM model
developed in Ref. [40].

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.25 0.30 0.35 0.40 0.45 0.50 0.55

Figure 4. The normalized energy flux F̂ compared between a
quasicircular nonspinning NR simulation at mass-ratio q = 4,
and the SEOBNRv5HM flux with and without 2GSF calibration.
In addition we show what happens when the NQC corrections
are included in the SEOBNRv5HM flux. The top panel shows the
full flux as a function of vΩ. The circles indicate the merger
(peak of |hinsp−plunge

22 |), and the other markers indicate 1 (dia-
mond), 2 (square), 4 (triangle), and 10 (hexagon) GW cycles
before merger. The bottom panels show the relative differ-
ence between NR and the SEOBNRv5HM fluxes. The vertical
dashed line indicates the fixed frequency used for Fig. 5.

0.05 0.10 0.15 0.20 0.25

0.000

0.005

0.010

0.015

0.020

Figure 5. The relative difference at fixed frequency between
the energy flux from NR and SEOBNRv5HM fluxes with and
without 2GSF and NQC correction for a range of mass ra-
tios. The vertical line shows the mass ratio used in Fig. 4.
The shaded region at the bottom indicates an estimate of the
uncertainty in the NR data obtained by varying vΩ between
0.365 and 0.375.
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We start with comparing the energy flux of the
SEOBNRv5HM model to NR simulations from the SXS col-
laboration [99, 100]. Details of the simulations used can
be found in Appendix C. In Fig. 4 we compare the energy
flux of an NR simulation with mass-ratio q = m1/m2 = 4
to the SEOBNRv5HM flux (24) with and without the 2GSF
corrections. We see that even at the modest mass-ratio,
the 2GSF corrections improve the agreement with the NR
flux by a factor of a few across the frequencies spanned.
This improvement is much more substantial than that
obtained by including the NQCs in the energy flux [40].
Moreover, we see that adding the NQCs to the flux on top
of the 2GSF corrections leads to no substantial improve-
ment except in the last fraction of a GW cycle before
merger.

To understand how the improvement of the
SEOBNRv5HM flux due to the 2GSF corrections scales
with mass-ratio, in Fig. 5 we plot the same quantities
as in Fig. 4, but now for different NR simulations
at varying mass-ratio and fixed value of vΩ = 0.37.
We again see that the 2GSF calibration improves the
agreement with the NR flux by a factor of a few across
the range of sampled mass-ratios, and provides a much
more substantial improvement than merely including
NQC corrections in the energy flux. At low ν, adding
the NQC corrections on top of the 2GSF corrections
provides an additional small improvement, while near
equal masses the NQC corrections actually make the
agreement with NR slightly worse. Naively, one might
expect the relative error of the SEOBNRv5HM flux with
the 2GSF calibration to scale with ν2. However, instead
we see a relative error which is almost constant. This
suggests that insufficient accuracy in the ρ

(0),EOB
`m (i.e.

the test-body flux) is the dominant source of error.
However, note that while vΩ = 0.37 is smaller than
vbreak

Ω (28) for all mass-ratios, it is still close enough to
the ISCO for corrections to the flux from the transition
to plunge to be relevant. Such contributions would lead
to an almost flat relative error scaling as ν2/5 (see e.g.
Fig. 15 in Appendix B).

It thus appears that the calibration of the SEOBNRv5HM
flux against 2GSF results is successful in bringing the
EOB flux closer to the NR flux. Ultimately, the true
measure of the model is the waveforms that it produces.
In Fig. 6 we compare the (2,2)-mode of the SEOBNRv5HM
model (including 2GSF calibration) to waveforms from
the pure GSF-based waveform from Ref. [59] (in its 1PAT1
form)4, and NR waveforms at three different mass ratios.
The 2GSF waveforms are shown until the binary veloc-
ity reaches vbreak

Ω . For the first part, the waveforms are
visually indistinguishable, and only in the last ∼ 900M
before merger we start to see differences, especially with
the (inspiral only!) 2GSF waveforms with mass ratios

4 The 1PAT1 GSF waveform model makes a number of approxi-
mations. A detailed discussion of the approximations used and
domain of 1PAT1’s validity can be found in Sec. II of Ref. [60].

4 and 1. Indeed, when we look at the dephasing in the
lower panel, the 2GSF waveforms for mass ratios 9.99
and 4 (1) stay below 0.1 (0.3) radians up to ∼ 900M
before merger. Remarkably, the dephasing of the 2GSF
waveform for mass ratio 9.99 is still below 0.1 radians
when the velocity reaches vbreak

Ω , highlighting the impor-
tance of including large mass-ratio corrections, while for
mass ratios 4 and 1, the dephasing reaches 1 radian and
∼ 6 radians, respectively, at vbreak

Ω . The dephasing of
the SEOBNRv5HM waveforms is shown throughout the co-
alescence (i.e., during the inspiral, merger and ringdown
stages) and it is much smaller than that of the GSF wave-
forms. This is expected since the SEOBNRv5HM waveforms
have been calibrated to NR simulations [40].

To provide a more quantitative assessment of the
impact of including the 2GSF information in the
SEOBNRv5HM model, we calculate the mismatch (or un-
faithfulness) between (2,2)-modes of the SEOBNRv5HM
waveforms and of a set of NR waveforms with varying
mass ratios using (e.g., see Ref. [40])

M = 1−max
δφ,δt

(hNR
22 |hEOB

22 )√
(hNR

22 |hNR
22 )(hEOB

22 |hEOB
22 )

, (57)

where we maximize over the relative shift in phase (δφ)
and time (δt) between the two waveforms, while (·|·) de-
notes the noise weighted inner product [101, 102] given
by

(h1 | h2) ≡ 4 Re

[∫ fh

fl

h̃1(f)h̃∗2(f)

Sn(f)
df

]
, (58)

where Sn(f) is the one-sided power spectral density
(PSD) of the detector noise, which we assume to be
the design zero-detuned high-power noise of Advanced
LIGO [103].

For each NR simulation, we calculate the mismatches
for a range of total masses between 10M� and 290M�.
In Fig. 7, we show a histogram of the mismatches for the
three cases: the SEOBNRv5HM model without 2GSF cor-
rections, the SEOBNRv5HM model with 2GSF corrections
in the RR force (i.e., in the energy flux) and polariza-
tion modes, and the latter with the addition of NQC
corrections in the RR force. Each waveform model is
calibrated to NR by tuning the two calibration param-
eters introduced in Sec. II: a6, which appears in the
Hamiltonian, and ∆t22

ISCO, which determines the time
at which the inspiral-plunge waveform is matched to
the merger-ringdown one (for details see Ref. [40]). We
stress that the NR calibration is done by demanding that
the SEOBNRv5 (2,2) mode has mismacthes with NR be-
low 10−3 throughout the inspiral, merger and ringdown
stages.

After calibration to the NR simulations, the his-
tograms of the three models in Fig. 7 are very similar.
To gain insight into this, it is instructive to compare the
mismatches between the models and NR to the NR error.
Generally, there are several contributions to the NR-error
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Figure 6. Top panel: Comparison of the (2,2)-mode waveforms from NR, the GSF 1PAT1 model and the SEOBNRv5HM model
at three different mass-ratios q. The waveforms at each mass-ratio are aligned at the start of the NR waveforms using the
procedure described in Ref. [40]. The last −900M before the peak of the (2,2)-mode are shown magnified. Bottom panel:
Dephasing of the 1PAT1 and SEOBNRv5HM models relative to the NR waveforms. The GSF waveforms are truncated at vbreak

Ω

(28) indicated by the dots.

budget, including truncation error and error in extrapo-
lating the waveforms to infinity.5 For mismatch studies,
the former is more dominant [99], so we compute the mis-
match between the highest and second highest NR reso-
lution as a conservative measure of the NR error. From
Fig. 7 one can see that the mismatches between the mod-
els and NR are close to the NR error. This suggests that
part of the reason for minor differences between the mod-
els is that they are hitting the limits due to NR error.

However, a potentially more important factor is that
there is a large degree of degeneracy in the mismatch
between changes in the RR force and changes in the
Hamiltonian controlling the conservative dynamics (see
Eqs. (22) and (53)). Consequently, the calibration of
the Hamiltonian (through the calibration of the wave-
form modes) can largely compensate for imperfections in
the dissipative sector of the EOB approach. In Fig. 8,
we see the values of the two main calibration parame-
ters, a6 and ∆t22

ISCO of the SEOBNRv5HM models with and
without 2GSF corrections in the RR force and polariza-

5 It should be noted that there are other sources of error in the
NR simulations, in particular due to residual spin and residual
eccentricity. For the configurations considered here, these effects
are subdominant.

tion modes. The presence of the 2GSF corrections has
clear impact on the calibration coefficients. This implies
that the two calibrated models have somewhat different
dynamics; however, those differences do not lead to ap-
preciable differences in the corresponding waveforms, as
can be seen in Fig. 7.

Since the calibration parameter a6 controls part of the
EOB A-potential, the two SEOBNRv5HM models with and
without 2GSF information have different Hamiltonians,
and therefore differ in their binding energy. The latter is
given by

EEOB
bind = HEOB −M. (59)

In Fig. 9 we compare the SEOBNRv5HM binding energy to
the one extracted from NR simulations from Ref. [104].
The SEOBNRv5HM with 2GSF corrections reproduces the
NR binding energy much more faithfully, staying within
the NR error estimates until roughly one GW cycle before
merger. This improvement persists even when modeling
aligned-spin binaries despite only adding 2GSF correc-
tions to the nonspinning part of the waveform and RR
force. In Fig. 10, we compare the SEOBNRv5HM bind-
ing energy for models with and without the 2GSF in-
formation to that of a set of spin-aligned NR wave-
forms [104] at a fixed value vΩ = 0.447. Without the
2GSF calibration, the binding energy can be off by as
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Figure 7. A histogram of the mismatches of NR versus
SEOBNRv5HM models with and without 2GSF and NQC cor-
rections. As an indicator of the NR error, the mismatch of
the highest resolution NR waveforms against the next higher
resolution is shown in gray.
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Figure 8. The calibration parameters a6 and ∆t22
ISCO as a

function of the symmetric mass-ratio ν for SEOBNRv5HM models
with and without 2GSF corrections to the RR force (or in the
energy flux) and the gravitational modes.

much as 2.5% especially at high values of the effective
spin χeff = (χ1m1 +χ2m2)/M . However, with the 2GSF
calibration, we find deviations from the NR binding en-
ergy to be at the sub-percent level, with an average dif-
ference of just 0.24%.
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Figure 9. Relative difference between the binding energy
ENR

bind inferred from NR simulations, and EEOB
bind from the

SEOBNRv5HM models with and without 2GSF corrections. The
shaded area shows the estimated error on the NR binding
energy in the case q = 1, which is taken as representative
for the general NR error. The ticks on the top x-axis show
the number of GW cycles before merger for the q = 1 NR
simulation.

VI. DISCUSSION

In this paper, we have enhanced the accuracy of the
(factorized) gravitational modes used in the SEORBNRv5
models of Refs. [39–41] by calibrating them to nonspin-
ning, quasi-circular 2GSF multipolar data of Ref. [58].
This calibration affects also the EOB radiation reac-
tion (RR) force driving the dynamical evolution of the
binary black holes in the SEORBNRv5 model.

By direct comparison of the energy flux in the
SEORBNRv5HM model to that extracted from NR simula-
tions, we have confirmed in Figs. 4 and 5 that the 2GSF
calibration of the flux leads to a significant improvement
in the faithfulness of the SEORBNRv5HM flux. In particu-
lar, the improvement seems to make the inclusion of NQC
corrections in the RR force subdominant, and limited to
the very late inspiral (plunge), where the effective test-
body motion is almost unaffected by dissipative effects.

Furthermore, when looking at the mismatches between
the SEORBNRv5HM and NR waveforms in Fig. 7, the in-
clusion of the 2GSF calibration seems to only have a
marginal impact on the waveform mismatches after cal-
ibration to NR. If anything, this is a testament to the
effectiveness of the SEORBNRv5 Hamiltonian’s calibration
to NR, which is obtained by demanding that the mis-
matches of the SEORBNRv5 inspiral-merger-ringdown (2,2)
modes are below 10−3. Since the waveforms are com-
puted using the EOB equations of motion, which depend
on the conservative and dissipative dynamics, the mis-
matches have significant degeneracy between the calibra-
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Figure 10. Comparison of the SEOBNRv5HM binding energy
to NR data for spin-aligned waveforms at a fixed value vΩ =
0.447. The top (bottom) panel shows the binding energy from
the SEOBNRv5HM model with (without) 2GSF information.

tion terms in the EOB Hamiltonian and in the RR force
(notably the 2GSF terms in the energy flux). This is one
reason why the flux calibration terms that we have added
to the EOB flux could not have been added through the
NR calibration performed in Ref. [40]6. This degeneracy
also means that calibrating SEOBNRv5HM to NR with and
without the 2GSF calibration of the flux leads to a differ-
ent EOB Hamiltonian. The Hamiltonian itself however is
supposed to correspond to a gauge invariant observable
of the binary, the binding energy. Comparing the EOB
binding energy to results extracted from NR simulations
in Fig. 9, we find that the Hamiltonian calibrated with
the 2GSF information included reproduces the NR bind-

6 One could explore in the future the possibility of calibrating di-
rectly the Hamiltonian from the binding energy extracted from
NR simulations instead of doing it indirectly using the wave-
forms [104]. However, this procedure would require the compu-
tation of the binding energy for the entire set of 442 aligned-spin
SXS NR waveforms used to calibrate the SEOBNRv5 model.

ing energy much more faithfully than the Hamiltonian
calibrated without. This is a significant consistency test
of the SEOBNRv5HM model, and one that extends to binary
BHs with spins, as well (see Fig. 10). So, while adding
the 2GSF information to the SEOBNRv5HM model does not
necessarily improve the faithfulness of the corresponding
waveforms in the regime where they are calibrated to
NR, it does improve the overall consistency and natural-
ness of the model. This gives us greater confidence that
the SEOBNRv5HM model will remain (somewhat) faithful
to NR when extrapolated beyond the calibration region,
in particular for higher mass ratios.

In this work we focused on adding 2GSF corrections
to the nonspinning sector of the SEOBNRv5HM waveforms.
However, numerical results are also available for correc-
tions to the 2GSF flux linear in either the primary or
secondary spin [58, 105, 106]. In principle, the matching
procedure employed here can also be used to calibrate
the SEOBNRv5HM modes to these data. We will leave the
implementation of this to future work.

A limiting factor in this work has been that the 2GSF
multipolar flux data we used do not include corrections
due to the transition from inspiral to plunge, causing it
to diverge at the ISCO. This has limited our ability to
calibrate the RR force and gravitational modes in the
strong-field regime. Inclusion of these terms could lead
to further improvements of our results, and will be ad-
dressed once new 2GSF data becomes available.
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Figure 11. Similar to Fig. 7, but now we show the mismatches
for the model built by calibrating the SEOBNRv4 Hamiltonian,
and using the SEOBNRv5HM RR force and gravitational modes
with and without the 2GSF information. We label this model
SEOBNRv4.5HM.
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Figure 12. Similar to Fig. 9, but now we show results for the
SEOBNRv4.5HM model with and without 2GSF corrections.

Appendix A: Independence of results on the specific
EOB Hamiltonian

The accurate mismatches and small binding-energy
disagreements with NR found in Sec. V have been ob-
tained using the SEOBNRv5 nonspinning Hamiltonian of
Ref. [39, 40]. Here, we want to understand whether those
results are somehow tied to the particular structure (or
resummation) of the Hamiltonian and the PN content.
Thus, we repeat some of the analyses using the non-

spinning Hamiltonian from the previous SEOBNR family,
SEOBNRv4 [33, 47].

Figure 11 is similar to Fig. 7, but now we com-
pute the mismatches between the SEOBNRv4.5HM and NR
(2,2) waveforms, where the SEOBNRv4.5HM model is con-
structed calibrating the SEOBNRv4 Hamiltonian, and us-
ing the SEOBNRv5HM RR force and gravitational modes
with and without the 2GSF information. We find that
although the mismatches are a bit higher than for the
SEOBNRv5 ones, there is actually a noticeable improve-
ment when including the 2GSF information.

In Fig. 12 we revisit Fig. 9 with the SEOBNRv4.5HM
model. We again see that calibrating the model using
the 2GSF information in the RR force and gravitational
modes leads to a more accurate recovery of the bind-
ing energy, albeit less striking than in the case of the
SEOBNRv5HM model.

Appendix B: Extended comparison between GSF
and NR multipolar fluxes

In this appendix we show further comparisons between
GSF and NR multipolar energy fluxes. The comparisons
for the (3,2), (3,3), (4,3) and (4,4) modes are shown in
Fig. 13. The residual after subtracting the GSF flux from
the NR flux clearly shows the expected scaling. The com-
parisons for the (2,1) and (2,2) modes are presented in
Fig. 14. The scaling of the residuals for these modes is
less clear for the reasons given below and in the caption
of the figure. The SXS datasets used to make Figs. 1, 13,
and 14 are given in Table I.

Figure 14 shows that for the (2,2) mode, the flux’s
scaling with ν at vΩ = 0.324 is likely affected by the
transition to plunge. Such a transition occurs over a
frequency interval ∼ ν2/5/M on a time scale ∼ M/ν1/5,
during which the small parameter ν1/5 enters into the
SMR expansion [92]. The behavior of the energy flux
in this case can be obtained by combining Eq. (10) of
Ref. [108] with Eqs. (22) and (23) of Ref. [60]. In those
equations, we define R = (r− 6M)/ν2/5 and ∆Ω = (Ω−
ΩISCO)/ν2/5, where r is the orbital separation, such that
R ∼ M and ∆Ω ∼ 1/M in the transition regime. The
cited equations then give us

dE

dt
=
dE

dR

dR

d∆Ω

d∆Ω

dt
,

∼ (ν4/5 + ν6/5 + . . .)(ν0 + ν2/5 + . . .)

× (ν1/5 + ν3/5 + . . .),

∼ ν + ν7/5 + . . . . (B1)

Here E is the specific binding energy, meaning it is
related to the flux by F = −νdE/dt, which implies
F ∼ ν2 +ν12/5 + . . .. (In all of these schematic equations,
the reader should understand that powers of ν come with
∆Ω-dependent coefficients, which we omit to avoid in-
troducing additional notation.) Figure 15 repeats the
comparison in Fig. 14 at a frequency closer to the ISCO
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Figure 13. Comparison of the energy fluxes extracted from NR simulations and GSF calculations for the (3,3), (3,2), (4,4) and
(4,3) modes at r/GM ≡ 1/v2

Ω = 9.5 as a function of the symmetric mass-ratio, ν. After subtracting the 1GSF (resp. 2GSF)
flux from the NR flux, we see the residual scales as ν3 (ν4), as expected.

(vΩ = 0.370), and there we see clear evidence of the ν12/5

term appearing in the flux.

Appendix C: Numerical-relativity simulations

Throughout this paper we compare to NR simulations
produced by the SXS collaboration.7 In Table I, we pro-

vide some details of the NR simulations used in this pa-
per. We selected all public SXS nonspinning quasicircu-
lar simulations with sufficiently different mass ratios, and
initial eccentricity below 3×10−3. If more were available
for the same parameters, we took the most recent one,
or the second latest if that is at least 5 orbits longer.

7 See the SXS Gravitational Waveform Database https://data.

black-holes.org/waveforms/index.html.

https://data.black-holes.org/waveforms/index.html
https://data.black-holes.org/waveforms/index.html
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SXS ID q ν χ1 χ2 Used in Fig.

SXS:BBH:2325 1.000 0.2500 3.64× 10−5 3.60× 10−5 5,6,7,11

SXS:BBH:0198 1.202 0.2479 −5.04× 10−5 8.54× 10−5 5,7,11

SXS:BBH:0310 1.221 0.2475 1.46× 10−4 9.71× 10−5 5,7,11

SXS:BBH:1143 1.250 0.2469 −1.37× 10−4 −2.55× 10−5 5,7,11

SXS:BBH:2331 1.500 0.2400 −7.58× 10−5 −6.80× 10−6 5,7,11

SXS:BBH:0194 1.518 0.2394 3.19× 10−5 −8.57× 10−5 5,7,11

SXS:BBH:1354 1.832 0.2284 −1.50× 10−4 1.26× 10−4 5,7,11

SXS:BBH:1165 2.000 0.2222 7.91× 10−5 1.95× 10−5 1,13,14,15

SXS:BBH:2425 2.000 0.2222 −7.66× 10−5 −1.16× 10−4 5,7,11

SXS:BBH:0201 2.316 0.2106 6.23× 10−5 −4.16× 10−5 5,7,11

SXS:BBH:0259 2.500 0.2041 9.37× 10−8 2.48× 10−7 1,5,7,11,13,14,15

SXS:BBH:2265 3.000 0.1875 2.24× 10−6 5.41× 10−6 1,13,14,15

SXS:BBH:2498 3.000 0.1875 4.36× 10−6 3.13× 10−6 5,7,11

SXS:BBH:0200 3.272 0.1793 −5.03× 10−5 −1.09× 10−5 5,7,11

SXS:BBH:2483 3.500 0.1728 −2.71× 10−5 6.29× 10−5 1,5,7,11,13,14,15

SXS:BBH:2485 3.999 0.1600 2.65× 10−5 8.58× 10−5 1,13,14,15

SXS:BBH:1906 4.000 0.1600 5.77× 10−5 8.54× 10−5 1,13,14,15

SXS:BBH:2499 4.000 0.1600 8.41× 10−6 3.42× 10−6 4,5,6,7,11

SXS:BBH:1220 4.001 0.1600 5.63× 10−5 3.31× 10−5 1,13,14,15

SXS:BBH:2484 4.500 0.1488 1.82× 10−5 −8.99× 10−5 1,5,7,11,13,14,15

SXS:BBH:2374 5.000 0.1389 −8.13× 10−5 5.24× 10−5 5,7,11

SXS:BBH:2487 5.000 0.1389 8.38× 10−6 1.53× 10−5 1,13,14,15

SXS:BBH:0187 5.039 0.1381 8.80× 10−6 −1.20× 10−5 5,7,11

SXS:BBH:2486 5.500 0.1302 −2.80× 10−6 −9.81× 10−6 1,5,7,11,13,14,15

SXS:BBH:0197 5.522 0.1298 −3.70× 10−5 −1.52× 10−5 5,7,11

SXS:BBH:2489 5.999 0.1225 8.03× 10−6 3.72× 10−5 1,13,14,15

SXS:BBH:2164 6.000 0.1225 −2.71× 10−6 −1.42× 10−5 5,7,11

SXS:BBH:2488 6.500 0.1155 2.79× 10−5 −2.41× 10−5 1,5,7,11,13,14,15

SXS:BBH:0192 6.580 0.1145 2.51× 10−5 −5.07× 10−5 5,7,11

SXS:BBH:2491 7.000 0.1094 1.14× 10−5 4.51× 10−5 1,5,7,11,13,14,15

SXS:BBH:0188 7.187 0.1072 1.55× 10−6 −2.45× 10−5 5,7,11

SXS:BBH:2490 7.500 0.1038 −2.92× 10−5 −5.94× 10−6 1,7,11,13,14,15

SXS:BBH:0195 7.761 0.1011 1.32× 10−5 −4.01× 10−5 5,7,11

SXS:BBH:2493 8.000 0.09876 2.68× 10−5 −4.49× 10−5 1,5,7,11,13,14,15

SXS:BBH:0186 8.267 0.09626 1.02× 10−6 −8.82× 10−8 5,7,11

SXS:BBH:2492 8.501 0.09417 −3.20× 10−6 −1.83× 10−5 1,5,7,11,13,14,15

SXS:BBH:0199 8.729 0.09222 −1.11× 10−6 −3.31× 10−5 5,7,11

SXS:BBH:2495 9.001 0.08999 1.36× 10−6 −8.77× 10−6 1,5,7,11,13,14,15

SXS:BBH:0189 9.167 0.08868 1.18× 10−5 −6.79× 10−6 5,7,11

SXS:BBH:1108 9.200 0.08843 −2.25× 10−6 −1.46× 10−6 5,7,11

SXS:BBH:2494 9.497 0.08619 −1.57× 10−5 −3.54× 10−5 1,5,7,11,13,14,15

SXS:BBH:0196 9.663 0.08499 1.67× 10−6 −2.73× 10−5 5,7,11

SXS:BBH:0185 9.990 0.08271 1.28× 10−5 −1.43× 10−5 5,6,7,11

SXS:BBH:1107 10.00 0.08264 3.66× 10−6 1.06× 10−7 1,13,14,15

SXS:BBH:2480 14.00 0.06222 7.62× 10−6 −4.14× 10−6 1,5,7,11,13,14,15

SXS:BBH:2477 15.00 0.05859 6.43× 10−6 −4.52× 10−6 1,5,7,11,13,14,15

SXS:BBH:2516 20.00 0.04536 3.43× 10−5 −1.02× 10−4 1,5,7,11,13,14,15

Table I. Details of the SXS simulations used in Figures throughout the paper.
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Figure 14. Comparison of the fluxes extracted from NR simulations and GSF calculations for the l = 2 modes at r/GM ≡
1/v2

Ω = 9.5 as a function of the symmetric mass-ratio, ν. After the first-order flux is subtracted from the NR flux, the residual
scales as ν3. For the (2,1) mode after the second-order flux is also subtracted, the residual is within the magnitude of the
oscillations in the NR data and so the scaling of the residual is less clear. For the (2,2) mode the residual does not clearly
follow the dash-dotted (blue) ν4 curve as it is likely contaminated by effects related to the transition to plunge. The effect of
this transition is clear for orbital radii close to the ISCO, as one can see in Fig. 15.

Figure 15. The same as the left panel of Fig. 14, but now for
r/GM ≡ 1/v2

Ω = 7.3. The dashed (yellow) curve is a ν12/5

reference, which is the expected scaling for the flux near the
transition to plunge.
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[65] J. Blümlein, A. Maier, P. Marquard, and G. Schäfer,
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[92] G. Compère and L. Küchler, Asymptotically matched
quasi-circular inspiral and transition-to-plunge in the
small mass ratio expansion, SciPost Phys. 13, 043
(2022), arXiv:2112.02114 [gr-qc].

[93] S. Akcay, A Fast Frequency-Domain Algorithm
for Gravitational Self-Force: I. Circular Orbits in
Schwarzschild Spacetime, Phys. Rev. D 83, 124026
(2011), arXiv:1012.5860 [gr-qc].

[94] A. Le Tiec, A. H. Mroue, L. Barack, A. Buonanno, H. P.
Pfeiffer, N. Sago, and A. Taracchini, Periastron Advance
in Black Hole Binaries, Phys. Rev. Lett. 107, 141101
(2011), arXiv:1106.3278 [gr-qc].

[95] M. van de Meent and H. P. Pfeiffer, Intermediate mass-
ratio black hole binaries: Applicability of small mass-
ratio perturbation theory, Phys. Rev. Lett. 125, 181101
(2020), arXiv:2006.12036 [gr-qc].

[96] S. L. Detweiler, A Consequence of the gravitational self-
force for circular orbits of the Schwarzschild geometry,
Phys. Rev. D 77, 124026 (2008), arXiv:0804.3529 [gr-
qc].

[97] M. van de Meent and A. G. Shah, Metric perturba-
tions produced by eccentric equatorial orbits around
a Kerr black hole, Phys. Rev. D 92, 064025 (2015),
arXiv:1506.04755 [gr-qc].

[98] R. Fujita, Gravitational Waves from a Particle in Cir-
cular Orbits around a Schwarzschild Black Hole to the

22nd Post-Newtonian Order, Prog. Theor. Phys. 128,
971 (2012), arXiv:1211.5535 [gr-qc].

[99] M. Boyle et al., The SXS Collaboration catalog of binary
black hole simulations, Class. Quant. Grav. 36, 195006
(2019), arXiv:1904.04831 [gr-qc].

[100] V. Varma, M. A. Scheel, and H. P. Pfeiffer, Comparison
of binary black hole initial data sets, Phys. Rev. D 98,
104011 (2018), arXiv:1808.08228 [gr-qc].

[101] L. S. Finn and D. F. Chernoff, Observing binary inspi-
ral in gravitational radiation: One interferometer, Phys.
Rev. D 47, 2198 (1993), arXiv:gr-qc/9301003.

[102] B. S. Sathyaprakash and S. V. Dhurandhar, Choice of
filters for the detection of gravitational waves from co-
alescing binaries, Phys. Rev. D 44, 3819 (1991).

[103] L. Barsotti, P. Fritschel, M. Evans, and S. Gras (LIGO
Collaboration), Updated advanced ligo sensitivity de-
sign curve (2018), LIGO Document T1800044-v5.

[104] S. Ossokine, T. Dietrich, E. Foley, R. Katebi, and
G. Lovelace, Assessing the Energetics of Spinning Bi-
nary Black Hole Systems, Phys. Rev. D 98, 104057
(2018), arXiv:1712.06533 [gr-qc].

[105] S. Akcay, S. R. Dolan, C. Kavanagh, J. Moxon, N. War-
burton, and B. Wardell, Dissipation in extreme-mass
ratio binaries with a spinning secondary, Phys. Rev. D
102, 064013 (2020), arXiv:1912.09461 [gr-qc].

[106] J. Mathews, A. Pound, and B. Wardell, Self-force cal-
culations with a spinning secondary, Phys. Rev. D 105,
084031 (2022), arXiv:2112.13069 [gr-qc].

[107] Black Hole Perturbation Toolkit, (bhptoolkit.org).
[108] S. N. Albalat, A. Zimmerman, M. Giesler, and M. A.

Scheel, Post-geodesic corrections to the binding energy
during the transition to plunge in numerical relativity
simulations, (2022), arXiv:2207.04066 [gr-qc].

https://arxiv.org/abs/2206.08179
https://arxiv.org/abs/2206.08179
https://doi.org/10.1103/PhysRevD.92.084019
https://doi.org/10.1103/PhysRevD.92.084019
https://arxiv.org/abs/1505.07841
https://doi.org/10.21468/SciPostPhys.13.2.043
https://doi.org/10.21468/SciPostPhys.13.2.043
https://arxiv.org/abs/2112.02114
https://doi.org/10.1103/PhysRevD.83.124026
https://doi.org/10.1103/PhysRevD.83.124026
https://arxiv.org/abs/1012.5860
https://doi.org/10.1103/PhysRevLett.107.141101
https://doi.org/10.1103/PhysRevLett.107.141101
https://arxiv.org/abs/1106.3278
https://doi.org/10.1103/PhysRevLett.125.181101
https://doi.org/10.1103/PhysRevLett.125.181101
https://arxiv.org/abs/2006.12036
https://doi.org/10.1103/PhysRevD.77.124026
https://arxiv.org/abs/0804.3529
https://arxiv.org/abs/0804.3529
https://doi.org/10.1103/PhysRevD.92.064025
https://arxiv.org/abs/1506.04755
https://doi.org/10.1143/PTP.128.971
https://doi.org/10.1143/PTP.128.971
https://arxiv.org/abs/1211.5535
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1088/1361-6382/ab34e2
https://arxiv.org/abs/1904.04831
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
https://arxiv.org/abs/1808.08228
https://doi.org/10.1103/PhysRevD.47.2198
https://doi.org/10.1103/PhysRevD.47.2198
https://arxiv.org/abs/gr-qc/9301003
https://doi.org/10.1103/PhysRevD.44.3819
https://dcc.ligo.org/LIGO-T1800044/public
https://dcc.ligo.org/LIGO-T1800044/public
https://doi.org/10.1103/PhysRevD.98.104057
https://doi.org/10.1103/PhysRevD.98.104057
https://arxiv.org/abs/1712.06533
https://doi.org/10.1103/PhysRevD.102.064013
https://doi.org/10.1103/PhysRevD.102.064013
https://arxiv.org/abs/1912.09461
https://doi.org/10.1103/PhysRevD.105.084031
https://doi.org/10.1103/PhysRevD.105.084031
https://arxiv.org/abs/2112.13069
http://bhptoolkit.org/
https://arxiv.org/abs/2207.04066

	Enhancing the SEOBNRv5 effective-one-body waveform model with  second-order gravitational self-force fluxes
	Abstract
	I Introduction
	II Basics of the effective-one-body approach
	A EOB Hamiltonian
	B EOB gravitational modes
	C EOB equations of motion and radiation-reaction force

	III Basics of the gravitational self-force approach
	IV Matching EOB and GSF multipolar fluxes
	V Impact of GSF information on the SEOBNRv5HM model accuracy
	VI Discussion
	 Acknowledgments
	A Independence of results on the specific EOB Hamiltonian
	B Extended comparison between GSF and NR multipolar fluxes
	C Numerical-relativity simulations
	 References


