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We leverage recent breakthrough calculations using second-order gravitational self-force (2GSF)
theory to improve both the gravitational-mode amplitudes and radiation-reaction force in effective-one-
body (EOB) waveform models. We achieve this by introducing new calibration parameters in the
SEOBNRv5HM mode amplitudes, and matching them to the newly available 2GSF energy-flux multipolar
data for quasicircular nonspinning binary black holes. We find that this significantly improves the
SEOBNRv5HM energy flux, when compared with numerical-relativity (NR) simulations of binary black
holes with mass ratios between 1∶1 and 1∶20. Moreover, we find that, once the conservative part of the
SEOBNRv5 dynamics is calibrated, the SEOBNRv5HM waveform model with 2GSF information
reproduces the binding energy of NR simulations more accurately, providing a powerful check of the
consistency and naturalness of the EOB approach. While we only include nonspinning 2GSF information,
the more accurate binding energy and energy flux carry over to the SEOBNRv5 waveform models for
spinning binary black holes. Thus, our results improve the latest generation of SEOBNR waveform models
(i.e., SEOBNRv5), which has been recently completed for use in the upcoming fourth observing run (O4)
of the LIGO-Virgo-KAGRA Collaboration.
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I. INTRODUCTION

During their first, second and third observing runs [1–5],
the LIGO [6] and Virgo [7] gravitational-wave (GW)
observatories have detected GWs from about ninety coa-
lescences of compact binaries, composed of black holes
(BHs) and/or neutron stars. Moreover, independent con-
firmations of these detections, as well as claims of new
ones, were obtained in Refs. [8–13]. All together, these
results have firmly established the field of GW astronomy.
The vast majority of the observed GW signals involve
binaries with comparable masses [3,10,12,14] although a

few signals show evidence for binaries with greater mass
asymmetry [15,16], quantified by the ratio of the compo-
nent masses (q ¼ m1=m2 ≥ 1 or ϵ ¼ m2=m1 ≤ 1, m1 and
m2 being the primary and secondary masses in the binary,
respectively).
As the number of GW detections is expected to increase

in upcoming observation runs [14,17,18], so likely will the
number of asymmetric coalescences. It is therefore impor-
tant that waveform models used for detecting, identifying,
and analyzing the GW signals faithfully represent binaries
in the small-mass-ratio (SMR) regime.
Effective-one-body (EOB) theory [19–23] provides wave-

form models that can be used for the analysis of GW signals
by combining results from various first-principle methods
for solving the two-body problem in general relativity, such
as post-Newtonian (PN) theory [24–27] and numerical
relativity (NR) [28–30]. Moreover, EOB waveform models
are constructed in such a way that they reduce to test-body
motion around a black hole in the limit of vanishing ϵ.
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Thus, to improve fidelity of EOB waveform models, it is in
principle straightforward and natural to incorporate results
from SMR perturbation theory or gravitational self-force
(GSF) theory [31] in the EOB formalism [32].
There are two main families of EOB models, SEOBNR

(e.g., see Refs. [33–35]) and TEOBResumS (e.g., see
Refs. [36–38]). We consider here the former, and in
particular we focus on the latest generation of SEOBNR
models (i.e., SEOBNRv51) recently developed in
Refs. [39–42] for the upcoming fourth observing run of
the LIGO-Virgo-KAGRA (LVK) Collaboration, which
will also include the KAGRA [43,44] detector in Japan.
The inclusion of GSF results in EOB waveforms has,

so far, been limited to the inclusion of higher PN test-
body coefficients in the energy flux and gravitational-
mode amplitudes (e.g., see Refs. [33,34,36,37]), fits
of EOB-mode amplitudes to the inspiral Teukolsky-
multipolar modes [45,46] and the calibration of EOB
Hamiltonians [33,47] to match the first-order GSF correc-
tion to the nonspinning shift of the innermost stable circular
orbit (ISCO) [48]. Various studies [49–53] considered
improving the EOB Hamiltonian by incorporating GSF
corrections to the binding energy through use of the first law
of binary mechanics [54,55]. In the standard gauge [19,21]
used in EOB waveform models, this leads to a gauge
singularity at the lightring (or photon orbit) radius [51,52].
This singularity can be cured by reformulating the EOB
Hamiltonian in a different gauge [52,56]. So far, this has not
been implemented in any fully featured EOB waveform
model employed for LVK analyses. Recently, a version of
the TEOBResumS model has been produced [57] that
incorporates most of the previously calculated GSF correc-
tions to the EOB Hamiltonian without, however, calibrating
it to NR simulations, and focusing only on the inspiral phase
to avoid issues with the lightring divergence.
Recent calculations in GSF theory have provided the

second-order GSF (henceforth, 2GSF) correction to the
energy flux [58] as well as corresponding postadiabatic
waveforms [59]. References [60,61] carried out a detailed
comparison of these results against NR waveforms using a
version of the TEOBResumS waveforms; among other
things, 2GSF waveforms enabled a precise assessment of
the accuracy of the TEOBResumS family in the SMR
regime. However, these references did not seek to incor-
porate the 2GSF data into EOB waveform models. In this
work we will capitalize on the 2GSF breakthrough by
directly incorporating 2GSF energy-flux corrections in the
latest generation of SEOBNRmodels. We will see that, quite
interestingly, including these corrections does not only

improve the waveform models at small mass ratios, but
also for comparable masses.
In this paper, we employ units such that G ¼ c ¼ 1. The

component masses of a binary are denoted m1 and m2 with
m1 ≥ m2. The total mass is M ¼ m1 þm2, the reduced
mass is μ ¼ m1m2=M, while ν denotes the symmetric mass
ratio μ=M.

II. BASICS OF THE EFFECTIVE-ONE-BODY
APPROACH

In the EOB formalism the dynamics of a compact binary
is mapped onto that of an effective test mass (or test spin) in
a deformed BH background, with the deformation param-
eter being the symmetric mass ratio. The EOB approach
builds semianalytical inspiral-merger-ringdown waveforms
by combining analytical predictions for the inspiral and
ringdown phases (from BH perturbation theory) with
physically motivated Ansätze for the plunge-merger stage.
The EOB waveforms are then made highly accurate via a
calibration to NR waveforms. The EOB formalism relies on
three key ingredients: the EOB conservative dynamics (i.e.,
a two-body Hamiltonian), the EOB radiation-reaction
forces (i.e., the energy flux) and the EOB gravitational
modes. In this paper we shall limit to the inspiral portion of
the coalescence of nonspinning BHs. Here, we describe
each of the main EOB ingredients, as necessary (e.g., see
Ref. [40] for details).

A. EOB Hamiltonian

In the binary’s center-of-mass frame, the motion is
described by the orbital phase ϕ, the relative position r,
the radial momentum pr and the angular momentum pϕ. In
the EOB formalism, the Hamiltonian HEOB, describing the
conservative binary dynamics, is related to the effective
Hamiltonian Heff , describing the dynamics of a test body in
a deformed BH background, via the energy map [19]

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
: ð1Þ

For nonspinning binaries, in the ν → 0 limit, Heff reduces
to the Hamiltonian of a (nonspinning) test mass in a
Schwarzschild background. The nonspinning EOB
Hamiltonian was first derived in Refs. [19,20] with 2PN
information. It was then extended to 3PN order in Ref. [21]
and to 4PN order in Ref. [62]. As of today, the 5PN [63–65]
and 6PN terms [66,67] are partially known. In the non-
spinning limit Heff reads as

Heff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r� þ AðrÞ

�
μ2 þ p2

ϕ

r2
þQðr; pr� Þ

�s
; ð2Þ

1The SEOBNRv5 family of models is publicly available
through the PYTHON package pySEOBNR: https://git.ligo.org/
waveforms/software/pyseobnr. Stable versions of pySEOBNR are
published through the Python Package Index (PyPI), and can be
installed via pip install pyseobnr.
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where pr� is the canonical momentum conjugate to the
tortoise coordinate r�,

dr
dr�

¼ pr�
pr

¼ AðrÞ
ffiffiffiffiffiffiffiffiffiffi
D̄ðrÞ

q
: ð3Þ

The 5PN Taylor-expanded potential A is given by

AðuÞ ¼ 1 − 2uþ 2νu3 þ ν

�
94

3
−
41π2

32

�
u4

þ
�
ν

�
2275π2

512
−
4237

60
þ 128γE

5
þ 256 ln 2

5

�

þ
�
41π2

32
−
221

6

�
ν2 þ 64

5
ν lnu

�
u5

þ
�
νa6 − ν

�
144ν

5
þ 7004

105

�
ln u

�
u6; ð4Þ

where u≡M=r and γE ≃ 0.5772 is the Euler gamma
constant. In Eq. (4), except for the log part, we replace
the (partially known) coefficient of u6 by the parameter a6.
The latter is used in the construction of the SEOBNRv5
waveform models [40] (and also in previous EOB fam-
ilies) to calibrate against NR simulations. Furthermore, the
resummed form of A, the potentials D̄ and Q, and
the spinning EOB Hamiltonian used for the calibration
of the SEOBNRv5 waveform model can be found in
Refs. [39,40].

B. EOB gravitational modes

The observer frame’s gravitational polarizations read as

hðt; ι;φ0Þ ¼ hþðt; ι;φ0Þ − ih×ðt; ι;φ0Þ ð5Þ

¼
X∞
l¼2

Xl
m¼−l

−2Ylmðι;φ0ÞhlmðtÞ; ð6Þ

where we denote with ι the binary’s inclination angle
(computed with respect to the direction perpendicular to
the orbital plane), φ0 the azimuthal direction to the observer,
and −2Ylmðι;φ0Þ’s the −2 spin-weighted spherical harmon-
ics. For nonspinning binaries hlm ¼ ð−1Þlh�l−m, therefore
one can restrict the discussion to ðl; mÞ modes with m > 0.
In the SEOBNRv5HM waveform model, the seven most

dominant modes are included, specifically ðl; mÞ ¼ ð2; 2Þ;
ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð4; 4Þ; ð4; 3Þ, and (5,5). The EOB
modes for the entire coalescence [i.e., inspiral, plunge,
merger and ringdown (RD)], can be written as

hlmðtÞ ¼
(
hinsp−plungelm ðtÞ; t < tlmmatch

hmerger−RD
lm ðtÞ; t > tlmmatch

; ð7Þ

where tlmmatch is defined as

tlmmatch ¼

8>><
>>:

t22peak; ðl; mÞ ¼ ð2; 2Þ; ð3; 3Þ; ð2; 1Þ;
ð4; 4Þ; ð3; 2Þ; ð4; 3Þ

t22peak − 10M; ðl; mÞ ¼ ð5; 5Þ;
ð8Þ

where t22peak is the peak of the (2,2)-mode amplitude. The
choice of a different attachment point for the (5,5) mode is
discussed in Refs. [34,40]. In the SEOBNRv5HM model,
one imposes that [40]

t22peak ¼ tISCO þ Δt22ISCO; ð9Þ

where tISCO is the time at which r ¼ rISCO, with rISCO the
ISCO radius of a Kerr BH [68] with the final mass and
spin of the remnant object [69,70]. The parameter Δt22ISCO
in Eq. (9) is the second EOB calibration parameter [the
first being a6 in the potential A of Eq. (4)], which is
determined by minimizing the disagreement between
EOB and NR waveforms throughout the inspiral-plunge
stage. Henceforth, we focus only on the hinsp−plungelm ðtÞ,
and do not provide details on how the hmerger−RD

lm ðtÞ is
constructed.
The inspiral-plunge EOB modes are written as

hinsp−plungelm ðtÞ ¼ hFlmðtÞNlmðtÞ; ð10Þ

where hFlmðtÞ’s resum the PN-expanded GW modes for
circular orbits in factorized form [71–74], while NlmðtÞ’s
are the nonquasicircular (NQC) corrections [75–77], aimed
at incorporating relevant radial effects during the plunge
(see below). The factorized inspiral modes are given by [73]

hFlm ¼ hNlmŜlmTlmflmeiδlm: ð11Þ

The first factor, hNlm, encodes the leading (Newtonian) order
waveform, and its explicit expression is

hNlm ¼ νM
dL

nlmclþϵlmðνÞvlþϵlm
ϕ Yl−ϵlm;−m

�
π

2
;ϕ

�
; ð12Þ

where dL is the luminosity distance, Ylm is a scalar
spherical harmonic, ϵlm is the parity of the mode,

ϵlm ¼
�
0; lþm is even;

1; lþm is odd;
ð13Þ

and the functions nlm and ckðνÞ are given by

nlm ¼

8><
>:

8πðimÞl
ð2lþ1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ1Þðlþ2Þ

lðl−1Þ
q

; lþm is even;

−16iπðimÞl
ð2lþ1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þðlþ2Þðl2−m2Þ
ð2l−1Þðlþ1Þlðl−1Þ

q
; lþm is odd;

ð14Þ
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and

ckðνÞ ¼
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p

2

!
k−1

þ ð−1Þk
 
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p

2

!
k−1

:

ð15Þ

Finally, vϕ in Eq. (12) is given by

vϕ ¼ MΩrΩ; ð16Þ

with

Ω ¼ ∂HEOB

∂pϕ
;

1

r3=2Ω

¼ ∂HEOB

∂pϕ

����
pr¼0

: ð17Þ

The second factor in Eq. (11), Ŝlm, is an effective source
term. Depending on the parity of the mode, it is given by

Ŝlm ¼
(
Heff; lþm is even;

Leff ¼ vΩpϕ; lþm is odd;
ð18Þ

with

vΩ ¼ ðMΩÞ1=3: ð19Þ

The third factor in Eq. (11), Tlm, is an analytic
resummation of the leading-order tail terms in the PN
expansion [78],

Tlm ¼ Γðlþ 1 − 2iΩ̂Þ
Γðlþ 1Þ eπmΩ̂

�
4mMΩffiffiffi

e
p

�
2imΩ̂

; ð20Þ

where Ω̂ ¼ ΩHEOB is the orbital frequency normalized by
the total energy.
The final two factors in Eq. (11) encode additional

physical information included in the waveform from PN
theory. The function flm is expanded as

flm ¼
(
ðρlmÞl; m is even

ðρlmÞl þ fSlm; m is odd:
ð21Þ

The functions δlm, ρlm, and fSlm are fixed by requiring that
the waveform at fixed orbital frequency Ω matches known
analytical PN and test-body expressions. The full expres-
sions used in SEOBNRv5HM are given in Appendix B
of [40]. In this work, we will further use ρlm to incorporate
the new 2GSF energy-flux results.

C. EOB equations of motion
and radiation-reaction force

The EOB equations of motion read as

dr
dt

¼ ∂HEOB

∂pr
;

dpr

dt
¼ −

∂HEOB

∂r
þ Fr; ð22aÞ

dϕ
dt

¼ ∂HEOB

∂pϕ
;

dpϕ

dt
¼ Fϕ; ð22bÞ

where the radiation-reaction (RR) forces Fr and Fϕ are
given by [23]

Fr ¼ −
FEOB

MΩ
pr

pϕ
; Fϕ ¼ −

FEOB

MΩ
; ð23Þ

where FEOB is the energy flux, which is given as a sum
over ðl; mÞ modes [73],

FEOB ¼
X8
l¼2

Xl
m¼1

FEOB
lm : ð24Þ

Each of the ðl; m)-mode contributions to the energy flux is
obtained from the inspiral-plunge waveform modes, assum-
ing quasicircular orbits

FEOB
lm ¼ d2L

ðmMΩÞ2
8π

jhinsp−plungelm j2: ð25Þ

As discussed in Sec. II B, in the SEOBNRv5 model, as in
other EOB variants, the inspiral-plunge quasicircular wave-
form is enhanced by the NQC corrections Nlm [see
Eq. (10)], which for the SEOBNR models take the form

Nlm ¼
�
1þ p2

r�

ðrΩÞ2
�
ahlm1 þ ahlm2

r
þ ahlm3

r3=2

��

× exp

�
i

�
bhlm1

pr�

rΩ
þ bhlm2

p3
r�

rΩ

��
; ð26Þ

with the constants ahlmi and bhlmi chosen such that the EOB
modes agree with NRmodes at the point where the inspiral-
plunge modes are matched to the merger-RD modes
[see Eq. (7) above and Ref. [40] ].
In the initial SEOBNR models, the NQC corrections were

included in the energy flux (and RR forces) through Eq. (25)
via an iterative procedure or fits (e.g., see Refs. [47,79]).
However, starting from the SEOBNRv4 model [35], the
inspiral-plunge modes in Eq. (25) only contain the factor-
ized modes. The NQC corrections are included only in the
gravitational polarization modes. The initial TEOBResumS
models also included the NQC corrections in the energy
flux, but then in subsequent versions the energy flux did not
take them in. Recently, the TEOBResumS model of
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Ref. [80] incorporates fits to the NQC corrections in the
energy flux (and RR force) through Eq. (25). Finally, in the
SEOBNRv5 waveform model used in this paper, the NQC
corrections do not enter the RR forces. As we shall discuss
below, in the nonspinning case, the calibration to 2GSF
results improves the EOB energy fluxes considerably; thus
the NQC corrections play a subdominant role. Furthermore,
the inclusion of higher-order PN spin terms in the gravi-
tational EOB modes, which were absent in the previous
SEOBNRv4model, reduces the disagreement between EOB
and NR fluxes and pushes it mostly to the very late inspiral,
where the effective test-body motion is almost unaffected by
dissipative effects (see for details Ref. [40]).

III. BASICS OF THE GRAVITATIONAL
SELF-FORCE APPROACH

The development of the GSF approach has traditionally
been driven by the need to model GW emission from
extreme-mass-ratio inspirals. This approach expands the
metric of the binary around the metric of the primary
in powers of ϵ ¼ m2=m1 [see Eq. (27) below]. It is well
known [81] that in order to get a waveform phase error that
scales as OðϵÞ, the expansion of the metric perturbation
must be carried throughOðϵ2Þ (i.e., at 2GSF). That is to say,
the waveform phase error scales asOðϵ0Þ if second-order (in
the mass ratio) corrections are not included in the metric.
Practical 2GSF calculations have recently been carried

out using a two-timescale framework [82]. Within this
approach the (multipolar) flux for a quasicircular, non-
spinning binary was recently computed [58]. This has
since been combined with a calculation of the binding
energy [83] to compute the associated inspiral dynamics and
waveforms [59]. Important additional details are available in
Ref. [60]. Here we will briefly review the calculation of the
2GSF flux.
Restricting to quasicircular orbits, we expand the metric

of the binary as

gαβ þ
X∞

m¼−∞
½ϵh1;mαβ ðΩÞ þ ϵ2h2;mαβ ðΩÞ�e−imϕ þOðϵ3Þ; ð27Þ

where gαβ is the Schwarzschild metric of the primary and ϕ
is the orbital azimuthal angle of the secondary. The metric
amplitudes, hn;mαβ , depend on the binary’s slowly evolving
orbital frequency Ω≡ dϕ=dt.2 During the inspiral (i.e.,
sufficiently far from the ISCO), the orbital frequency, and
thus the metric amplitudes, evolve on the slow RR time-
scale tRR ∼ 1=ðϵΩÞ, whereas ϕ evolves on the fast orbital

timescale torb ∼ 1=Ω. The two-timescale framework treats
tRR and torb as independent. By substituting Eq. (27) into
the Einstein field equations, we can split them into (i) a set
of Fourier-domain partial differential equations for the
amplitudes at fixed Ω, and (ii) evolution equations that
determine Ω and ϕ as functions of time. Decomposing the
metric perturbation onto a basis of tensor spherical har-
monics and working in the Lorenz gauge [84,85], we arrive
at the field equations which can be found explicitly in
Ref. [82]. Constructing the second-order source, applying
appropriate boundary conditions, and integrating the field
equations required the development of a raft of new
techniques and codes [86–91].
In our two-timescale scheme we assume the secondary

follows a quasicircular orbit in which Ω̇ ¼ OðϵÞ ≠ 0. In
order to satisfy the Einstein field equations through second
order in the mass ratio, we consistently account for the
nonzero Ω̇ everywhere that it appears (which is in numerous
places in the second-order field equation and second-order
flux). However, the assumption Ω̇ ∼ ϵ breaks down near the
ISCO, and the expansions based on that assumption cause Ω̇
to unphysically diverge at the ISCO. Due to the presence of
Ω̇ terms, the 2GSF flux computed using the above two-
timescale expansion also diverges at the ISCO. This
nonphysical divergence can be removed by transitioning
to a new expansion in the vicinity of the ISCO [92]. The
location where this transition occurs provides an estimate
for where the inspiral two-timescale expansion breaks
down. Reference [60] estimated that, for small ν, this
breakdown occurs around

vbreakΩ ¼ vISCOΩ − 0.052ν1=4; ð28Þ

where vISCOΩ ¼ 1=
ffiffiffi
6

p
≈ 0.408.

The GSF energy flux is calculated from the ðl; mÞmodes
of ϵh1;mαβ þ ϵ2h2;mαβ at null infinity [93]. With the polar-
izations expanded in -2 spin-weighted spherical harmonics
[see Eq. (5)], the flux is given by

FGSFϵ
lm ¼ lim

dL→∞
jḣlmj2d2L=ð16πÞ: ð29Þ

Defining y ¼ ðm1ΩÞ2=3 we can write the flux as an
expansion in ϵ at fixed y as

FGSFϵ
lm ðϵ; yÞ ¼ ϵ2FGSF1ϵ

lm ðyÞ þ ϵ3FGSF2ϵ
lm ðyÞ þOðϵ4Þ: ð30Þ

The symmetry of the physical binary system under the
interchange of the labels m1 ↔ m2 suggests that, for
comparable-mass binaries, it is natural to re-expand in
the symmetric mass ratio ν at fixed total mass M. This is
known to improve agreement of perturbative results with
NR simulations of comparable-mass binaries [94,95], and
also it is natural for comparing with PN and EOB models.
Defining x ¼ ðMΩÞ2=3 ¼ v2Ω and using

2The metric amplitudes also depend on small corrections to the
primary’s mass and spin which evolve due to absorption of
gravitational radiation. The magnitude of these corrections is very
small [60], so we ignore them in this work. Neglecting these
effects, particularly the presence of a small but nonzero spin, is
also consistent with the EOB model.
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ϵ ¼ νþ 2ν2 þOðν3Þ; ð31Þ

y ¼ xð1 − 2=3νÞ þOðν2Þ; and ð32Þ

m1 ¼ M −m2νþOðν2Þ; ð33Þ
we can re-expand the flux as

FGSFν
lm ðν;xÞ¼ ν2FGSF1ν

lm ðxÞþν3FGSF2ν
lm ðxÞþOðϵ4Þ; ð34Þ

where

FGSF1ν
lm ðxÞ ¼ FGSF1ϵ

lm ðxÞ; ð35aÞ

FGSF2ν
lm ðxÞ ¼ FGSF2ϵ

lm ðxÞ þ 4FGSF1ϵ
lm ðxÞ − x

dFGSF1ϵ
lm ðxÞ
dx

:

ð35bÞ

Hereafter we shall use FGSF
lm ≡ FGSFν

lm . For interfacing with
the EOB model, it is useful to define a re-expanded
(Newtonian-)normalized flux

FGSF
lm

FN
lm

¼ F̂GSF1
lm þ νF̂GSF2

lm þOðν2Þ; ð36Þ

with

FN
lm ¼ d2L

ðmMΩÞ2
8π

jhNlmj2: ð37Þ

We hereafter define F̂GSF
lm ≡ F̂GSF1

lm þ νF̂GSF2
lm . Using the

re-expanded normalized flux also results in a significant
improvement in the agreement between the GSF and NR
fluxes for all modes other than the (2,2) mode. Presumably,
this is due to this resummed flux having the correct leading
Newtonian behavior for all mass ratios.
The first calculation of the 2GSF flux was presented in

Ref. [58], where remarkable agreement was found between
the total GSF flux (first plus second order) and the flux
computed from NR simulations of comparable-mass bina-
ries. Figure 4 of Ref. [58] showed that for the (2,2) and
(3,3) mode the difference between the NR and GSF flux
scaled asOðν4Þ, as expected, over mass ratios ranging from
10∶1 to 1∶1. In Fig. 1 we show that this scaling also holds
for the (5,5) mode across a wider range of mass ratios from
20∶1 to 3∶1. In Appendix B we show similar plots for the
other modes considered in this work. This excellent agree-
ment with NR gives us further confidence that the calcu-
lated 2GSF flux is capturing all contributions to the flux
through Oðν3Þ. For this work we also computed the 2GSF
flux at many more orbital frequencies than were previously
presented in Ref. [58].
Figure 1 (and the related plots in Appendix B) also

shows the improvement gained by using the re-expanded
normalized GSF flux. We see that factoring out the leading

Newtonian behavior brings the GSF flux much closer to
the NR flux, especially in the case of comparable masses.
This factorization is also a key part of the resummation of
the EOB flux as described in Sec. II. This further motivates
us to incorporate the new 2GSF flux information in the
EOB flux.

IV. MATCHING EOB AND GSF
MULTIPOLAR FLUXES

In order to incorporate information from the 2GSF
flux into the EOB flux, we need to compare the two in
a gauge-invariant manner. In both cases, the energy flux is
decomposed into −2 spin-weighted spherical modes.
Consequently, we can compare the ðl; mÞ-mode fluxes
individually at a fixed value of the orbital frequency MΩ.
By its nature, the GSF result is given as an expansion in
powers of ν. We need to do the same with the EOB energy
flux modes FEOB

lm . Combining Eqs. (11) and (25) gives

FEOB
lm ¼ d2L

ðmMΩÞ2
8π

jhNlmj2jŜlmj2jTlmj2jρlmj2l: ð38Þ

Instead of expanding the full flux, it is more convenient to
expand the flux normalized by its leading Newtonian
contribution,

FIG. 1. Comparison of the (5,5)-mode flux extracted from
NR simulations and GSF calculations at r=GM ≡ 1=v2Ω ¼ 9.5
as a function of the symmetric mass ratio, ν. After subtracting
the 1GSF (respectively 2GSF) flux from the NR flux, we see the
residual scales as ν3 (ν4), as expected. We further observe
the significant improvement in the agreement with NR when
using the re-expanded normalized GSF flux defined in Eq. (36).
Similar results for the other mode fluxes considered in this work
are given in Appendix B.
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F̂EOB
lm ¼ FEOB

lm

FN
lm

: ð39Þ

This allows us to preserve the nonpolynomial dependence
of FN

lm on ν in the final EOB result, and ensure its correct
behavior in the equal-mass limit. One potential compli-
cation in doing this is that FN

lm is not written directly in
terms of Ω, but instead depends indirectly on Ω through
vϕ. However, expanding the dependence of vϕ in powers of
ν and vΩ [see Eqs. (16) and (19)], we find that

vϕ ¼ vΩ þOðν2v13Ω Þ: ð40Þ

Since in this comparison we are only interested in next-
to-leading order corrections in ν, we can thus safely
replace vϕ by vΩ everywhere in the expansion.
Next, we need to expand the individual factors in

Eq. (39) in powers of ν at fixed values of Ω. Starting with
the effective source Ŝlm given in Eq. (18), we write

Ŝlm ¼ Ŝð0Þlm þ νŜð1Þlm þOðν2Þ: ð41Þ

At leading order, this is simply given by the well-known
test-body result

Ŝð0Þlm ¼

8><
>:

M 1−2v2Ωffiffiffiffiffiffiffiffiffiffi
1−3v2Ω

p ; lþm is even;

M 1ffiffiffiffiffiffiffiffiffiffi
1−3v2Ω

p ; lþm is odd;
ð42Þ

which is reproduced exactly by the EOB Hamiltonian
(by construction). At next-to-leading order, the effective
source for quasicircular inspirals depends on the linear-in-ν
correction to the EOB A potential. In principle, this
contribution depends on the exact details of the implemen-
tation of the A potential in the SEOBNRv5HM model,
including any calibration of a6 to NR results. (This is
one of the routes through which the calibration of the A
potential becomes degenerate with calibration of the energy
flux in the EOB RR force.) However, through use of the first
law of binary mechanics [54], it is possible to directly
compute the linear-in-ν correction to the A potential [49,50]
in terms of the Detweiler redshift invariant zð1Þ [96], the
exact value of which can be computed numerically in the
GSF context [49,51,97]. This gives

Ŝð1Þlm ¼
(
Hð1Þ

eff ; lþm is even

Lð1Þ
eff ; lþm is odd;

ð43Þ

with

Hð1Þ
eff

M
¼ 1

2
zð1ÞðvΩÞ −

1

6
vΩzð1Þ0ðvΩÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 3v2Ω

q

þ xð7− 24xÞ
6ð1− 3v2ΩÞ3=2

þ
�

1− 2v2Ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 3v2Ω

p − 1

�
2

− 1; ð44aÞ

Lð1Þ
eff

M
¼ −

1

6vΩ
zð1Þ0ðvΩÞ þ

4 − 15x

6ð1 − 3v2ΩÞ3=2
: ð44bÞ

We use interpolated data for the redshift zð1Þ generated with
the code [97] from a previous work [52]. This ensures that
the matching procedure will not depend on the precise
feature of the dynamics in SEOBNRv5HM, in particular
removing any possibly circular dependence on the calibra-
tion to NR.
The next step is to expand the tail term Tlm, given in

Eq. (20). This has a hidden dependence on ν through
Ω̂ ¼ ΩHEOB. We start by expanding HEOB:

HEOB ¼ Hð0Þ
EOB þ νHð1Þ

EOB þOðν2Þ; ð45Þ

which straightforwardly gives

Hð0Þ
EOB ¼ M; ð46aÞ

Hð1Þ
EOB ¼ M

�
1 − 2v2Ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3v2Ω

p − 1

�
: ð46bÞ

Following [73], we note that the modulus square of the tail
term can be written as

jTlmj2 ¼
1

ðl!Þ2
4πmΩ̂

1 − e−4πmΩ̂

Yl
k¼1

½k2 þ ð2mΩ̂Þ2�: ð47Þ

We thus find the expansion of this term as

jTlmj2 ¼ T ð0Þ
lm þ νT ð1Þ

lm þOðν2Þ; ð48Þ

with

T ð0Þ
lm ¼ 1

ðl!Þ2
4πmMΩ

1 − e−4πmMΩ

Yl
k¼1

½k2 þ ð2mMΩÞ2�; ð49Þ

and

T ð1Þ
lm

T ð0Þ
lm

¼ Hð1Þ
EOB

M

�
1þ 4πmMΩ

1 − e4πmMΩ þ
Xl
j¼1

4mðMΩÞ2
j2 þ ð2mMΩÞ2

�
:

ð50Þ

We nowwrite the expansion of the final factor in Eq. (38) as

ρlm ¼ ρð0Þlm þ νρð1Þlm þOðν2Þ; ð51Þ
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and compare to the re-expanded normalized GSF flux in

Eq. (36). We can find the exact values of ρð0Þlm and ρð1Þlm in
terms of the GSF flux by matching the two expressions for
the normalized flux at fixed Ω order by order in ν, yielding

ρð0Þ;GSFlm ¼
 

F̂GSF1
lm

T ð0Þ
lmjŜð0Þlmj2

!
1=ð2lÞ

; ð52Þ

and

ρð1Þ;GSFlm ¼ ρð0Þlm

2l

 
F̂GSF2

lm

F̂GSF1
lm

−
T ð1Þ

lm

T ð0Þ
lm

− 2
Ŝð1Þlm

Ŝð0Þlm

!
: ð53Þ

Equation (52), of course, matches the expression pre-

viously found in [73]. The expression for ρð1Þ;GSFlm is the new
expression needed to incorporate the 2GSF flux into the
EOB flux.
For including 2GSF information in the EOB mode

amplitudes and energy flux, we focus on the seven dominant
ðl; mÞmodes that are included in the SEOBNRv5HMmodel.

For these modes we first determine the contributions to ρð1Þlm
already included in the EOBwaveformmodes by expanding
ρlm in powers of ν,3

ρð1Þ;EOB22 ¼ 55

84
v2Ω −

33025

21168
v4Ω −

�
48993925

9779616
−
41π2

192

�
v6Ω;

ð54aÞ

ρð1Þ;EOB21 ¼ 23

84
v2Ω −

10993

14112
v4Ω; ð54bÞ

ρð1Þ;EOB33 ¼ 2

3
v2Ω −

1861

990
v4Ω −

�
129509

25740
−
41π2

192

�
v6Ω; ð54cÞ

ρð1Þ;EOB32 ¼ 131

270
v2Ω −

617123

1603800
v4Ω; ð54dÞ

ρð1Þ;EOB44 ¼ 257

330
v2Ω −

5072887

2202200
v4Ω; ð54eÞ

ρð1Þ;EOB43 ¼ 103

176
v2Ω; ð54fÞ

ρð1Þ;EOB55 ¼ 54

65
v2Ω: ð54gÞ

We augment the ρð1Þ;EOBlm by adding an additional poly-

nomial Δρð1Þlm in v2Ω starting at the lowest order in v2Ω not
already included, no power higher than v10Ω , and at most

three terms. The Δρð1Þlm are determined by fitting to the

numerical ρð1Þ;GSFlm results. While these extra terms take the
form of higher-order PN terms, we emphasize that the goal
here is not to estimate the next-order terms in the PN series
(which would in general also contain log vΩ contributions).
Instead, the goal is to capture as much of the behavior of the

numerical ρð1Þ;GSFlm data as possible.
To see how this fit works in practice, let us focus on the

case of the (2,2) mode shown in Fig. 2. There are two
complicating factors in performing the fit. The first is that
the GSF data have finite numerical accuracy. This causes
issues in the weak-field regime, where the EOB approxi-
mation is more accurate than the GSF data, and we
thus run the risk of overfitting the numerical noise. The
second complication is that the GSF data diverge at the
Schwarzschild ISCO at vΩ ¼ 1=

ffiffiffi
6

p
, where the inspiral

two-timescale expansion breaks down (see Sec. III). This
feature is not physical and should not be reproduced by the
EOB flux.
As a result of these complications the residual after

subtracting ρð1Þ;EOBlm from ρð1Þ;GSFlm has three main features
(as visible in the lower panel of Fig. 2): In the low
frequency regime the residual is (nearly) constant, indicat-
ing the numerical noise floor. At high frequencies the
residual shows a sharp increase due to the divergence at the
ISCO. In the middle the residual scales with a power law
compatible with the lowest unknown PN orders. Our goal

FIG. 2. The top panel shows the numerical values of ρð1Þ;GSF22

from applying Eq. (53) to the 2GSF fluxes, and the base EOB

ρð1Þ;EOB22 given by (54). In addition, we show the corrected ρð1Þ22

after adding the fitted correction (55a). The bottom panel shows
the absolute difference between the GSF and EOB values with

and without Δρð1Þ22 .

3Note that the SEOBNRv5HM model does not include all PN
information available at the time of writing (for details see
Appendix B of Ref. [40]).
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FIG. 3. Same as in Fig. 2, but now for the (3,3), (3,2), (4,4), (4,3), (5,5), and (2,1) modes. The panels on the left show the even parity
modes, while the panels on the right show the odd parity modes. We note a different behavior of the even and odd parity 2GSF modes
close to the divergence induced by the two-timescale expansion in the proximity of the ISCO.
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is to fit this middle feature without digging into either
source of systematic bias. Typical automated fitting pro-
cedures will fail at the latter, and adjusting them to avoid
doing so will typically introduce more new adjustable
parameters than are being fitted for in the first place.
Consequently, the most practical approach is to manually
adjust the fitting parameters until the middle feature
completely disappears, and the residual is completely
dominated by the systematic biases from either end of
the spectrum. In the case of the (2,2) mode this produces

Δρð1Þ22 ¼ 21.2v8Ω − 411v10Ω : ð55aÞ

Repeating the process for the six remaining modes
(shown in Fig. 3) yields the following fits:

Δρð1Þ21 ¼ 1.65v6Ω þ 26.5v8Ω þ 80v10Ω ; ð55bÞ

Δρð1Þ33 ¼ 12v8Ω − 215v10Ω ; ð55cÞ

Δρð1Þ32 ¼ 0.333v6Ω − 6.5v8Ω þ 98v10Ω ; ð55dÞ

Δρð1Þ44 ¼ −3.56v6Ω þ 15.6v8Ω − 216v10Ω ; ð55eÞ

Δρð1Þ43 ¼ −0.654v4Ω − 3.69v6Ω þ 18.5v8Ω; ð55fÞ

Δρð1Þ55 ¼ −2.61v4Ω þ 1.25v6Ω − 35.7v8Ω: ð55gÞ

Thus, in the GSF-augmented EOB model, ρlm in
Eq. (21) is replaced as

ρlm ↦ ρlm þ νΔρð1Þlm; ð56Þ

both when computing the EOB gravitational polarizations

and RR force (taking Δρð1Þlm ¼ 0 for modes for which it has
not been calculated yet).
For two modes [the (3,2) and (4,3)] these fits contain

higher PN terms than included in the corresponding ρð0Þlm in
previous SEOBNR models, which included terms up to
v8Ω and v6Ω respectively. For the sake of consistency,

SEOBNRv5HM [40] augments the corresponding ρð0Þlm terms
with terms at v10Ω and v8Ω using 1GSF flux terms, which are
known up to very high PN order [98].

V. IMPACT OF GSF INFORMATION
ON THE SEOBNRV5HM MODEL ACCURACY

In this section we study the impact of including the 2GSF
information in the energy flux and mode amplitudes on the
overall faithfulness of the SEOBNRv5HMmodel developed
in Ref. [40].

We start with comparing the energy flux of the
SEOBNRv5HM model to NR simulations from the SXS
Collaboration [99,100]. Details of the simulations used can
be found in Appendix C. In Fig. 4 we compare the energy
flux of an NR simulation with mass ratio q ¼ m1=m2 ¼ 4
to the SEOBNRv5HM flux (24) with and without the 2GSF
corrections. We see that even at the modest mass ratio, the
2GSF corrections improve the agreement with the NR flux
by a factor of a few across the frequencies spanned. This
improvement is much more substantial than that obtained by
including the NQCs in the energy flux [40]. Moreover, we
see that adding the NQCs to the flux on top of the 2GSF
corrections leads to no substantial improvement except in
the last fraction of a GW cycle before merger.
To understand how the improvement of the

SEOBNRv5HM flux due to the 2GSF corrections scales
with mass ratio, in Fig. 5 we plot the same quantities as in
Fig. 4, but now for different NR simulations at varying
mass ratio and fixed value of vΩ ¼ 0.37. We again see that
the 2GSF calibration improves the agreement with the NR
flux by a factor of a few across the range of sampled mass
ratios, and provides a much more substantial improvement
than merely including NQC corrections in the energy flux.

FIG. 4. The normalized energy flux F̂ compared between a
quasicircular nonspinning NR simulation at mass ratio q ¼ 4, and
the SEOBNRv5HM flux with and without 2GSF calibration. In
addition we show what happens when the NQC corrections are
included in the SEOBNRv5HM flux. The top panel shows the full
flux as a function of vΩ. The circles indicate the merger (peak of
jhinsp−plunge22 j), and the other markers indicate 1 (diamond), 2
(square), 4 (triangle), and 10 (hexagon) GW cycles before merger.
The bottom panels show the relative difference between NR and
the SEOBNRv5HM fluxes. The vertical dashed line indicates the
fixed frequency used for Fig. 5.
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At low ν, adding the NQC corrections on top of the 2GSF
corrections provides an additional small improvement,
while near equal masses the NQC corrections actually
make the agreement with NR slightly worse. Naively, one
might expect the relative error of the SEOBNRv5HM flux
with the 2GSF calibration to scale with ν2. However,
instead we see a relative error which is almost constant.

This suggests that insufficient accuracy in the ρð0Þ;EOBlm
(i.e. the test-body flux) is the dominant source of error
(see also [60,61]). However, note that while vΩ ¼ 0.37 is
smaller than vbreakΩ (28) for all mass ratios, it is still close
enough to the ISCO for corrections to the flux from the
transition to plunge to be relevant. Such contributions
would lead to an almost flat relative error scaling as ν2=5

(see e.g. Fig. 15 in Appendix B).
It thus appears that the calibration of the SEOBNRv5HM

flux against 2GSF results is successful in bringing the EOB
flux closer to the NR flux. Ultimately, the true measure of
the model is the waveforms that it produces. In Fig. 6 we
compare the (2,2) mode of the SEOBNRv5HM model
(including 2GSF calibration) to waveforms from the pure
GSF-based waveform from Ref. [59] (in its 1PAT1 form),4

and NR waveforms at three different mass ratios. The 2GSF
waveforms are shown until the binary velocity reaches
vbreakΩ . For the first part, the waveforms are visually
indistinguishable, and only in the last ∼900M before

merger do we start to see differences, especially with the
(inspiral only!) 2GSF waveforms with mass ratios 4 and 1.
Indeed, when we look at the dephasing in the lower panel,
the 2GSF waveforms for mass ratios 9.99 and 4 (1) stay
below 0.1 (0.3) radians up to ∼900M before merger.
Remarkably, the dephasing of the 2GSF waveform for
mass ratio 9.99 is still below 0.1 radians when the velocity
reaches vbreakΩ , highlighting the importance of including
large mass-ratio corrections, while for mass ratios 4 and 1,
the dephasing reaches 1 radian and ∼6 radians, respec-
tively, at vbreakΩ . The dephasing of the SEOBNRv5HM
waveforms is shown throughout the coalescence (i.e.,
during the inspiral, merger and ringdown stages), and it
is much smaller than that of the GSF waveforms. This is
expected since the SEOBNRv5HM waveforms have been
calibrated to NR simulations [40].
To provide a more quantitative assessment of the impact

of including the 2GSF information in the SEOBNRv5HM
model, we calculate the mismatch (or unfaithfulness)
between (2,2) modes of the SEOBNRv5HM waveforms
and of a set of NR waveforms with varying mass ratios
using (e.g., see Ref. [40])

M ¼ 1 −max
δϕ;δt

ðhNR22 jhEOB22 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhNR22 jhNR22 ÞðhEOB22 jhEOB22 Þ

p ; ð57Þ

where we maximize over the relative shift in phase (δϕ) and
time (δt) between the two waveforms, while ð·j·Þ denotes
the noise weighted inner product [101,102] given by

ðh1jh2Þ≡ 4Re
�Z

fh

fl

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df
�
; ð58Þ

where SnðfÞ is the one-sided power spectral density of the
detector noise, which we assume to be the design zero-
detuned high-power noise of Advanced LIGO [103].
For each NR simulation, we calculate the mismatches for

a range of total masses between 10M⊙ and 290M⊙. In
Fig. 7, we show a histogram of the mismatches for the three
cases: the SEOBNRv5HM model without 2GSF correc-
tions, the SEOBNRv5HM model with 2GSF corrections in
the RR force (i.e., in the energy flux) and polarization
modes, and the latter with the addition of NQC corrections
in the RR force. Each waveform model is calibrated to NR
by tuning the two calibration parameters introduced in
Sec. II: a6, which appears in the Hamiltonian, and Δt22ISCO,
which determines the time at which the inspiral-plunge
waveform is matched to the merger-ringdown one (for
details see Ref. [40]). We stress that the NR calibration is
done by demanding that the SEOBNRv5 (2,2) mode has
mismatches with NR below 10−3 throughout the inspiral,
merger and ringdown stages.

FIG. 5. The relative difference at fixed frequency between the
energy flux from NR and SEOBNRv5HM fluxes with and without
2GSF and NQC correction for a range of mass ratios. The vertical
line shows the mass ratio used in Fig. 4. The shaded region at the
bottom indicates an estimate of the uncertainty in the NR data
obtained by varying vΩ between 0.365 and 0.375.

4The 1PAT1 GSF waveform model makes a number of
approximations. A detailed discussion of the approximations
used and domain of 1PAT1’s validity can be found in Sec. II of
Ref. [60].
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After calibration to the NR simulations, the histograms
of the three models in Fig. 7 are very similar. To gain
insight into this, it is instructive to compare the mismatches
between the models and NR to the NR error. Generally,
there are several contributions to the NR-error budget,
including truncation error and error in extrapolating the
waveforms to infinity.5 For mismatch studies, the former is
more dominant [99], so we compute the mismatch between
the highest and second highest NR resolution as a
conservative measure of the NR error. From Fig. 7 one
can see that the mismatches between the models and NR
are close to the NR error. This suggests that part of the
reason for minor differences between the models is that
they are hitting the limits due to NR error.
However, a potentially more important factor is that

there is a large degree of degeneracy in the mismatch
between changes in the RR force and changes in the
Hamiltonian controlling the conservative dynamics [see
Eqs. (22) and (53)]. Consequently, the calibration of the

FIG. 6. Top panel: comparison of the (2,2)-mode waveforms from NR, the GSF 1PAT1model and the SEOBNRv5HMmodel at three
different mass ratios q. The waveforms at each mass ratio are aligned at the start of the NR waveforms using the procedure described in
Ref. [40]. The last −900M before the peak of the (2,2) mode are shown magnified. Bottom panel: dephasing of the 1PAT1 and
SEOBNRv5HM models relative to the NR waveforms. The GSF waveforms are truncated at vbreakΩ (28) indicated by the dots.

FIG. 7. A histogram of the mismatches of NR versus
SEOBNRv5HM models with and without 2GSF and NQC
corrections. As an indicator of the NR error, the mismatch of
the highest resolution NR waveforms against the next higher
resolution is shown in gray.

5It should be noted that there are other sources of error in the
NR simulations, in particular due to residual spin and residual
eccentricity. For the configurations considered here, these effects
are subdominant.
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Hamiltonian (through the calibration of the waveform
modes) can largely compensate for imperfections in the
dissipative sector of the EOB approach. In Fig. 8, we see
the values of the two main calibration parameters, a6 and
Δt22ISCO of the SEOBNRv5HM models with and without
2GSF corrections in the RR force and polarization modes.
The presence of the 2GSF corrections has clear impact on
the calibration coefficients. This implies that the two
calibrated models have somewhat different dynamics;
however, those differences do not lead to appreciable
differences in the corresponding waveforms, as can be
seen in Fig. 7.
Since the calibration parameter a6 controls part of the

EOB A potential, the two SEOBNRv5HM models with and
without 2GSF information have different Hamiltonians,
and therefore differ in their binding energy. The latter is
given by

EEOB
bind ¼ HEOB −M: ð59Þ

In Fig. 9 we compare the SEOBNRv5HM binding energy to
the one extracted from NR simulations from Ref. [104].
The SEOBNRv5HM with 2GSF corrections reproduces the
NR binding energy much more faithfully, staying within
the NR error estimates until roughly one GW cycle before
merger. This improvement persists even when modeling
aligned-spin binaries despite only adding 2GSF corrections
to the nonspinning part of the waveform and RR force. In
Fig. 10, we compare the SEOBNRv5HM binding energy for
models with and without the 2GSF information to that of a
set of spin-aligned NR waveforms [104] at a fixed value
vΩ ¼ 0.447. Without the 2GSF calibration, the binding

energy can be off by as much as 2.5% especially at high
values of the effective spin χeff ¼ ðχ1m1 þ χ2m2Þ=M.
However, with the 2GSF calibration, we find deviations
from the NR binding energy to be at the subpercent level,
with an average difference of just 0.24%.

VI. DISCUSSION

In this paper, we have enhanced the accuracy of the
(factorized) gravitational modes used in the SEORBNRv5
models of Refs. [39–41] by calibrating them to non-
spinning, quasicircular 2GSF multipolar data of Ref. [58].
This calibration affects also the EOB radiation reaction
(RR) force driving the dynamical evolution of the binary
black holes in the SEORBNRv5 model.
By direct comparison of the energy flux in the

SEORBNRv5HM model to that extracted from NR simu-
lations, we have confirmed in Figs. 4 and 5 that the 2GSF
calibration of the flux leads to a significant improvement in
the faithfulness of the SEORBNRv5HM flux. In particular,
the improvement seems to make the inclusion of NQC
corrections in the RR force subdominant, and limited to the
very late inspiral (plunge), where the effective test-body
motion is almost unaffected by dissipative effects.
Furthermore, when looking at the mismatches between

the SEORBNRv5HM and NR waveforms in Fig. 7, the
inclusion of the 2GSF calibration seems to only have a
marginal impact on the waveform mismatches after cali-
bration to NR. If anything, this is a testament to the
effectiveness of the SEORBNRv5 Hamiltonian’s calibration

FIG. 8. The calibration parameters a6 and Δt22ISCO as a function
of the symmetric mass ratio ν for SEOBNRv5HM models with
and without 2GSF corrections to the RR force (or in the energy
flux) and the gravitational modes.

FIG. 9. Relative difference between the binding energy ENR
bind

inferred from NR simulations, and EEOB
bind from the SEOBNRv5HM

models with and without 2GSF corrections. The shaded area
shows the estimated error on the NR binding energy in the case
q ¼ 1, which is taken as representative for the general NR error.
The ticks on the top x axis show the number of GW cycles before
merger for the q ¼ 1 NR simulation.

ENHANCING THE SEOBNRV5 EFFECTIVE-ONE-BODY … PHYS. REV. D 108, 124038 (2023)

124038-13



to NR, which is obtained by demanding that the mismatches
of the SEORBNRv5 inspiral-merger-ringdown (2,2) modes
are below 10−3. Since the waveforms are computed using
the EOB equations of motion, which depend on the
conservative and dissipative dynamics, the mismatches have
significant degeneracy between the calibration terms in the
EOB Hamiltonian and in the RR force (notably the 2GSF
terms in the energy flux). This is one reason why the flux
calibration terms that we have added to the EOB flux could
not have been added through the NR calibration performed
in Ref. [40].6 This degeneracy also means that calibrating
SEOBNRv5HM to NR with and without the 2GSF

calibration of the flux leads to a different EOB
Hamiltonian. The Hamiltonian itself however is supposed
to correspond to a gauge invariant observable of the binary,
the binding energy. Comparing the EOB binding energy to
results extracted from NR simulations in Fig. 9, we find
that the Hamiltonian calibrated with the 2GSF information
included reproduces the NR binding energy much more
faithfully than the Hamiltonian calibrated without. This is
a significant consistency test of the SEOBNRv5HM
model, and one that extends to binary BHs with spins,
as well (see Fig. 10). So, while adding the 2GSF
information to the SEOBNRv5HM model does not nec-
essarily improve the faithfulness of the corresponding
waveforms in the regime where they are calibrated to NR,
it does improve the overall consistency and naturalness of
the model. This gives us greater confidence that the
SEOBNRv5HM model will remain (somewhat) faithful
to NR when extrapolated beyond the calibration region,
in particular for higher mass ratios.
In this work we focused on adding 2GSF corrections to

the nonspinning sector of the SEOBNRv5HM waveforms.
However, numerical results are also available for correc-
tions to the 2GSF flux linear in either the primary or
secondary spin [58,105,106]. In principle, the matching
procedure employed here can also be used to calibrate the
SEOBNRv5HM modes to these data. We will leave the
implementation of this to future work.
A limiting factor in this work has been that the 2GSF

multipolar flux data we used do not include corrections due
to the transition from inspiral to plunge, causing it to
diverge at the ISCO. This has limited our ability to calibrate
the RR force and gravitational modes in the strong-field
regime. Inclusion of these terms could lead to further
improvements of our results, and will be addressed once
new 2GSF data become available.

ACKNOWLEDGMENTS
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6One could explore in the future the possibility of calibrating
directly the Hamiltonian from the binding energy extracted
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the computation of the binding energy for the entire set of
442 aligned-spin SXS NR waveforms used to calibrate the
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models is publicly available through the PYTHON package
pySEOBNR git.ligo.org/lscsoft/pyseobnr. Stable versions of
pySEOBNR are published through the Python Package
Index (PyPI), and can be installed via pip install
pyseobnr.

APPENDIX A: INDEPENDENCE OF RESULTS
ON THE SPECIFIC EOB HAMILTONIAN

The accurate mismatches and small binding-
energy disagreements with NR found in Sec. V have been
obtained using the SEOBNRv5 nonspinning Hamiltonian
of Refs. [39,40]. Here, we want to understand whether
those results are somehow tied to the particular structure
(or resummation) of the Hamiltonian and the PN content.
Thus, we repeat some of the analyses using the non-
spinning Hamiltonian from the previous SEOBNR family,
SEOBNRv4 [33,47].
Figure 11 is similar to Fig. 7, but now we compute the

mismatches between the SEOBNRv4.5HM and NR (2,2)
waveforms, where the SEOBNRv4.5HM model is con-
structed calibrating the SEOBNRv4 Hamiltonian, and
using the SEOBNRv5HM RR force and gravitational
modes with and without the 2GSF information. We find
that although the mismatches are a bit higher than for the
SEOBNRv5 ones, there is actually a noticeable improve-
ment when including the 2GSF information.

In Fig. 12 we revisit Fig. 9 with the SEOBNRv4.5HM
model. We again see that calibrating the model using
the 2GSF information in the RR force and gravitational
modes leads to a more accurate recovery of the binding
energy, albeit less striking than in the case of the
SEOBNRv5HM model.

APPENDIX B: EXTENDED COMPARISON
BETWEEN GSF AND NR MULTIPOLAR FLUXES

In this Appendix we show further comparisons between
GSF and NR multipolar energy fluxes. The comparisons
for the (3,2), (3,3), (4,3) and (4,4) modes are shown in
Fig. 13. The residual after subtracting the GSF flux from
the NR flux clearly shows the expected scaling. The
comparisons for the (2,1) and (2,2) modes are presented
in Fig. 14. The scaling of the residuals for these modes is
less clear for the reasons given below and in the caption of
the figure. The SXS datasets used to make Figs. 1, 13,
and 14 are given in Table I.
Figure 14 shows that for the (2,2) mode, the flux’s scaling

with ν at vΩ ¼ 0.324 is likely affected by the transition to
plunge. Such a transition occurs over a frequency interval
∼ν2=5=M on a timescale ∼M=ν1=5, during which the small
parameter ν1=5 enters into the SMR expansion [92]. The
behavior of the energy flux in this case can be obtained by
combining Eq. (10) of Ref. [108] with Eqs. (22) and (23) of
Ref. [60]. In those equations, we define R ¼ ðr − 6MÞ=ν2=5
and ΔΩ ¼ ðΩ − ΩISCOÞ=ν2=5, where r is the orbital sepa-
ration, such that R ∼M and ΔΩ ∼ 1=M in the transition
regime. The cited equations then give us

FIG. 12. Similar to Fig. 9, but now we show results for the
SEOBNRv4.5HM model with and without 2GSF corrections.

FIG. 11. Similar to Fig. 7, but now we show the mismatches
for the model built by calibrating the SEOBNRv4 Hamiltonian,
and using the SEOBNRv5HM RR force and gravitational modes
with and without the 2GSF information. We label this model
SEOBNRv4.5HM.
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dE
dt

¼ dE
dR

dR
dΔΩ

dΔΩ
dt

;

∼ ðν4=5 þ ν6=5 þ � � �Þðν0 þ ν2=5 þ � � �Þ
× ðν1=5 þ ν3=5 þ � � �Þ;

∼ νþ ν7=5 þ � � � : ðB1Þ

Here E is the specific binding energy, meaning it is related
to the flux by F ¼ −νdE=dt, which implies F ∼ ν2 þ
ν12=5 þ � � �. (In all of these schematic equations, the
reader should understand that powers of ν come with
ΔΩ-dependent coefficients, which we omit to avoid

introducing additional notation.) Figure 15 repeats the
comparison in Fig. 14 at a frequency closer to the ISCO
(vΩ ¼ 0.370), and there we see clear evidence of the ν12=5

term appearing in the flux.

APPENDIX C: NUMERICAL-RELATIVITY
SIMULATIONS

Throughout this paper we compare to NR simulations
produced by the SXS Collaboration.7 In Table I, we provide

FIG. 13. Comparison of the energy fluxes extracted from NR simulations and GSF calculations for the (3,3), (3,2), (4,4) and (4,3)
modes at r=GM ≡ 1=v2Ω ¼ 9.5 as a function of the symmetric mass ratio, ν. After subtracting the 1GSF (respectively 2GSF) flux from
the NR flux, we see the residual scales as ν3 (ν4), as expected.

7See the SXS Gravitational Waveform Database https://data
.black-holes.org/waveforms/index.html.
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some details of the NR simulations used in this paper. We
selected all public SXS nonspinning quasicircular simu-
lations with sufficiently different mass ratios, and initial

eccentricity below 3 × 10−3. If more were available for the
same parameters, we took the most recent one, or the
second latest if that is at least five orbits longer.

FIG. 14. Comparison of the fluxes extracted from NR simulations and GSF calculations for the l ¼ 2 modes at r=GM ≡ 1=v2Ω ¼ 9.5
as a function of the symmetric mass ratio, ν. After the first-order flux is subtracted from the NR flux, the residual scales as ν3. For the
(2,1) mode after the second-order flux is also subtracted, the residual is within the magnitude of the oscillations in the NR data, and so
the scaling of the residual is less clear. For the (2,2) mode the residual does not clearly follow the dash-dotted (blue) ν4 curve as it is
likely contaminated by effects related to the transition to plunge. The effect of this transition is clear for orbital radii close to the ISCO, as
one can see in Fig. 15.

FIG. 15. The same as the left panel of Fig. 14, but now for r=GM ≡ 1=v2Ω ¼ 7.3. The dashed (yellow) curve is a ν12=5 reference, which
is the expected scaling for the flux near the transition to plunge.
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TABLE I. Details of the SXS simulations used in Figures throughout the paper.

SXS ID q ν χ1 χ2 Used in Figs.

SXS:BBH:2325 1.000 0.2500 3.64 × 10−5 3.60 × 10−5 5,6,7,11
SXS:BBH:0198 1.202 0.2479 −5.04 × 10−5 8.54 × 10−5 5,7,11
SXS:BBH:0310 1.221 0.2475 1.46 × 10−4 9.71 × 10−5 5,7,11
SXS:BBH:1143 1.250 0.2469 −1.37 × 10−4 −2.55 × 10−5 5,7,11
SXS:BBH:2331 1.500 0.2400 −7.58 × 10−5 −6.80 × 10−6 5,7,11
SXS:BBH:0194 1.518 0.2394 3.19 × 10−5 −8.57 × 10−5 5,7,11
SXS:BBH:1354 1.832 0.2284 −1.50 × 10−4 1.26 × 10−4 5,7,11
SXS:BBH:1165 2.000 0.2222 7.91 × 10−5 1.95 × 10−5 1,13,14,15
SXS:BBH:2425 2.000 0.2222 −7.66 × 10−5 −1.16 × 10−4 5,7,11
SXS:BBH:0201 2.316 0.2106 6.23 × 10−5 −4.16 × 10−5 5,7,11
SXS:BBH:0259 2.500 0.2041 9.37 × 10−8 2.48 × 10−7 1,5,7,11,13,14,15
SXS:BBH:2265 3.000 0.1875 2.24 × 10−6 5.41 × 10−6 1,13,14,15
SXS:BBH:2498 3.000 0.1875 4.36 × 10−6 3.13 × 10−6 5,7,11
SXS:BBH:0200 3.272 0.1793 −5.03 × 10−5 −1.09 × 10−5 5,7,11
SXS:BBH:2483 3.500 0.1728 −2.71 × 10−5 6.29 × 10−5 1,5,7,11,13,14,15
SXS:BBH:2485 3.999 0.1600 2.65 × 10−5 8.58 × 10−5 1,13,14,15
SXS:BBH:1906 4.000 0.1600 5.77 × 10−5 8.54 × 10−5 1,13,14,15
SXS:BBH:2499 4.000 0.1600 8.41 × 10−6 3.42 × 10−6 4,5,6,7,11
SXS:BBH:1220 4.001 0.1600 5.63 × 10−5 3.31 × 10−5 1,13,14,15
SXS:BBH:2484 4.500 0.1488 1.82 × 10−5 −8.99 × 10−5 1,5,7,11,13,14,15
SXS:BBH:2374 5.000 0.1389 −8.13 × 10−5 5.24 × 10−5 5,7,11
SXS:BBH:2487 5.000 0.1389 8.38 × 10−6 1.53 × 10−5 1,13,14,15
SXS:BBH:0187 5.039 0.1381 8.80 × 10−6 −1.20 × 10−5 5,7,11
SXS:BBH:2486 5.500 0.1302 −2.80 × 10−6 −9.81 × 10−6 1,5,7,11,13,14,15
SXS:BBH:0197 5.522 0.1298 −3.70 × 10−5 −1.52 × 10−5 5,7,11
SXS:BBH:2489 5.999 0.1225 8.03 × 10−6 3.72 × 10−5 1,13,14,15
SXS:BBH:2164 6.000 0.1225 −2.71 × 10−6 −1.42 × 10−5 5,7,11
SXS:BBH:2488 6.500 0.1155 2.79 × 10−5 −2.41 × 10−5 1,5,7,11,13,14,15
SXS:BBH:0192 6.580 0.1145 2.51 × 10−5 −5.07 × 10−5 5,7,11
SXS:BBH:2491 7.000 0.1094 1.14 × 10−5 4.51 × 10−5 1,5,7,11,13,14,15
SXS:BBH:0188 7.187 0.1072 1.55 × 10−6 −2.45 × 10−5 5,7,11
SXS:BBH:2490 7.500 0.1038 −2.92 × 10−5 −5.94 × 10−6 1,7,11,13,14,15
SXS:BBH:0195 7.761 0.1011 1.32 × 10−5 −4.01 × 10−5 5,7,11
SXS:BBH:2493 8.000 0.09876 2.68 × 10−5 −4.49 × 10−5 1,5,7,11,13,14,15
SXS:BBH:0186 8.267 0.09626 1.02 × 10−6 −8.82 × 10−8 5,7,11
SXS:BBH:2492 8.501 0.09417 −3.20 × 10−6 −1.83 × 10−5 1,5,7,11,13,14,15
SXS:BBH:0199 8.729 0.09222 −1.11 × 10−6 −3.31 × 10−5 5,7,11
SXS:BBH:2495 9.001 0.08999 1.36 × 10−6 −8.77 × 10−6 1,5,7,11,13,14,15
SXS:BBH:0189 9.167 0.08868 1.18 × 10−5 −6.79 × 10−6 5,7,11
SXS:BBH:1108 9.200 0.08843 −2.25 × 10−6 −1.46 × 10−6 5,7,11
SXS:BBH:2494 9.497 0.08619 −1.57 × 10−5 −3.54 × 10−5 1,5,7,11,13,14,15
SXS:BBH:0196 9.663 0.08499 1.67 × 10−6 −2.73 × 10−5 5,7,11
SXS:BBH:0185 9.990 0.08271 1.28 × 10−5 −1.43 × 10−5 5,6,7,11
SXS:BBH:1107 10.00 0.08264 3.66 × 10−6 1.06 × 10−7 1,13,14,15
SXS:BBH:2480 14.00 0.06222 7.62 × 10−6 −4.14 × 10−6 1,5,7,11,13,14,15
SXS:BBH:2477 15.00 0.05859 6.43 × 10−6 −4.52 × 10−6 1,5,7,11,13,14,15
SXS:BBH:2516 20.00 0.04536 3.43 × 10−5 −1.02 × 10−4 1,5,7,11,13,14,15
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