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We present SEOBNRv5HM, a more accurate and faster inspiral-merger-ringdown gravitational waveform model
for quasi-circular, spinning, nonprecessing binary black holes within the effective-one-body (EOB) formal-
ism. Compared to its predecessor, SEOBNRv4HM, the waveform model i) incorporates recent high-order post-
Newtonian results in the inspiral, with improved resummations, ii) includes the gravitational modes (`, |m|) =

(3,2), (4,3), in addition to the (2,2), (3,3), (2,1), (4,4), (5,5) modes already implemented in SEOBNRv4HM, iii)
is calibrated to larger mass-ratios and spins using a catalog of 442 numerical-relativity (NR) simulations and
13 additional waveforms from black-hole perturbation theory, iv) incorporates information from second-order
gravitational self-force (2GSF) in the nonspinning modes and radiation-reaction force. Computing the unfaith-
fulness against NR simulations, we find that for the dominant (2,2) mode the maximum unfaithfulness in the
total mass range 10–300M� is below 10−3 for 90% of the cases (38% for SEOBNRv4HM). When including all
modes up to ` = 5 we find 98% (49%) of the cases with unfaithfulness below 10−2 (10−3), while these num-
bers reduce to 88% (5%) when using SEOBNRv4HM. Furthermore, the model shows improved agreement with
NR in other dynamical quantities (e.g., the angular momentum flux and binding energy), providing a powerful
check of its physical robustness. We implemented the waveform model in a high-performance Python package
(pySEOBNR), which leads to evaluation times faster than SEOBNRv4HM by a factor 10 to 50, depending on the
configuration, and provides the flexibility to easily include spin-precession and eccentric effects, thus making it
the starting point for a new generation of EOBNR waveform models (SEOBNRv5) to be employed for upcoming
observing runs of the LIGO-Virgo-KAGRA detectors.

I. INTRODUCTION

Gravitational-wave (GW) astronomy has rapidly advanced
since the first detection of GWs from a binary black-hole
(BBH) merger in 2015 [1], recording about ten events in the
initial and second observing runs [2, 3] and about one hundred
events in the third observing run [4–8] of the LIGO-Virgo de-
tectors [9–13]. With upcoming upgrades of existing detec-
tors and new facilities on the ground, such as Einstein Tele-
scope [14] and Cosmic Explorer [15, 16], and the space-based
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mission LISA [17], it is expected that the merger rates of com-
pact binaries will significantly increase. Accurately modeling
the GWs emitted by binary systems is essential to take full ad-
vantage of the discovery potential of ever more sensitive GW
detectors, enriching our knowledge of astrophysics, cosmol-
ogy, gravity and fundamental physics.

Numerical relativity (NR) simulations [18–20] can provide
the most accurate waveforms, but they are computationally
expensive, which makes it important to develop waveform
models that combine analytical approximation methods with
NR results. The most commonly used approaches to build
complete inspiral-merger-ringdown (IMR) waveform models
of compact binaries are the NR surrogate, phenomenolog-
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ical and effective-one-body (EOB) families. NR surrogate
models [21–30] interpolate NR waveforms in a reduced or-
der representation, thus they provide us with the most ac-
curate models for higher multipoles [24] and spin preces-
sion [23, 25], but they are limited to the region of param-
eter space where NR simulations exist. Furthermore, their
length restricts their use to binaries with total masses &
60M�, unless the NR surrogates are hybridized to EOB wave-
forms [24, 30]. Inspiral-merger-ringdown phenomenological
models (IMRPhenom) [31–48] combine post-Newtonian (PN)
and EOB waveforms for the inspiral with fits to NR results
for the late inspiral and merger-ringdown parts of the wave-
form, and aim to be as fast as possible for data-analysis pur-
poses. The EOB formalism [49–53] combines information
from several analytical approximation methods with NR re-
sults. It maps the dynamics of a compact binary to that
of a test mass (or test spin) in a deformed Schwarzschild
(or Kerr) background, with the deformation parameter being
the symmetric mass ratio. EOB waveform models of BBHs
have been constructed for nonspinning [49–51, 54–62], spin-
ning [52, 53, 63–83], and eccentric binaries [84–90]. To re-
duce the computational cost of EOB waveforms, surrogate or
reduced-order models have been developed in Refs. [91–100].
Parameter-estimation codes based on machine-learning meth-
ods, notably neural posterior estimation, are also available to
speed up inference studies [101, 102]. More specifically, there
are currently two state-of-the-art families of EOB waveform
models: SEOBNR (e.g., see Refs. [75, 76, 79, 89, 96, 103]) and
TEOBResumS (e.g., see Refs. [62, 81, 83, 86, 104, 105]). Here,
we focus on the former.

The expected increase in sensitivity during the fourth ob-
serving run (O4) [106] of the LIGO-Virgo-KAGRA (LVK)
Collaboration [9, 10, 107], which is planned to start in May
2023, will likely allow us to observe events in unexplored re-
gions of parameter space with high spins and large mass ra-
tios. In these regions of parameter space state-of-the-art wave-
form models tend to disagree [47, 75, 79, 108, 109], as they
are mostly calibrated to NR simulations having both moder-
ate spins, say . 0.5, and comparable mass ratios, say 1–4,
and waveform modeling systematics could be comparable to
statistical errors. In order to improve the accuracy of EOB
models, one takes advantage of the strong-field information
from NR simulations, and also includes the latest results from
the main analytical approximation methods, that is PN, post-
Minkowskian and gravitational self-force theory [110–116].

Within the SEOBNR family of EOB models, we present
SEOBNRv5HM 1 , a new IMR multipolar waveform model
for quasi-circular, spinning, nonprecessing BBHs. In
SEOBNRv5HM we employ the most recent PN results for
the three main components of the dynamics and gravita-
tional radiation: the Hamiltonian [71, 72, 117], the radiation-
reaction (RR) force and waveform modes [118]. Further-

1 SEOBNRv5HM is publicly available through the python package pySEOBNR
git.ligo.org/waveforms/software/pyseobnr. Stable versions of
pySEOBNR are published through the Python Package Index (PyPI), and
can be installed via pip install pyseobnr.

more, we directly incorporate information from second-
order self-force (2GSF) [116, 119, 120] in the modes
and RR force. SEOBNRv5HM includes the gravitational
modes (`, |m|) = (3,2), (4,3), in addition to the (`, |m|) =

(2,2), (3,3), (2,1), (4,4), (5,5) modes already implemented in
SEOBNRv4HM [76], and models the mode-mixing in the
merger-ringdown of the (3,2), (4,3) modes. We calibrate
SEOBNRv5HM to 442 numerical-relativity (NR) waveforms,
all produced with the pseudo-Spectral Einstein code (SpEC)
of the Simulating eXtreme Spacetimes (SXS) collaboration
[21, 22, 24, 25, 30, 75, 121–131], except for a simulation with
mass ratio and (dimensionless spins) q = 8, χ1 = 0.85, χ2 =

0.85 produced with the Einstein Toolkit code [76, 132].
We also incorporate information from 13 waveforms com-
puted by solving the Teukolsky equation in the framework of
BH perturbation theory [133, 134], with mass ratio q = 103

and dimensionless spins values in the range −0.99 ≤ χ ≤ 0.99.
This greatly extends the NR calibration coverage with respect
to SEOBNRv4 [75], which used 140 NR waveforms, especially
towards larger mass-ratios and spins. Indeed, we include sev-
eral NR simulations with mass ratios between 10 and 20, in
a region of parameter space where no simulations were avail-
able when SEOBNRv4 was developed.

We validate the model by computing the unfaithfulness
against NR simulations, and by comparing several dynami-
cal quantities, such as the angular-momentum flux and bind-
ing energy, providing an important check of its physical ro-
bustness and giving confidence of its reliability when ex-
trapolating it outside the NR calibration region. Compu-
tational efficiency is also a key aspect of waveform mod-
els, as Bayesian parameter estimation of GW events with
stochastic sampling techniques typically requires millions of
waveform evaluations. For this purpose, we implemented
SEOBNRv5HM in a flexible, high-performance Python pack-
age (pySEOBNR [135]), which leads to evaluation times faster
than SEOBNRv4HM. We then show that the SEOBNRv5HMmodel
can be employed for GW parameter estimation with stan-
dard stochastic samplers thanks to its high computational
efficiency. We perform Bayesian inference studies using
SEOBNRv5HM by injecting synthetic NR signals in zero noise,
and by reanalysing GW events from previous observing runs.
Further speedup in waveform evaluation time of about an or-
der of magnitude can be obtained by surrogate models. We
build a frequency domain reduced order model of SEOBNRv5,
following Ref. [96].

This work is part of a series of articles [116, 117, 135, 136]
describing the SEOBNRv5 family for O4 [106], and it is orga-
nized as follows. After an introduction to the notation used
in this paper, in Sec. II we describe the SEOBNRv5 aligned-
spin Hamiltonian and equations of motion. In Sec. III we
outline the construction of the multipolar waveform modes,
highlighting improvements and differences with respect to
SEOBNRv4HM, and in Sec. IV we illustrate how SEOBNRv5HM
is calibrated against 442 NR simulations. In Sec. V we
compare the accuracy of SEOBNRv5HM, and of other state-
of-the-art waveform models, against NR simulations, and in-
vestigate the regions of parameter space where they exhibit
the largest differences from NR waveforms and from each

https://git.ligo.org/waveforms/software/pyseobnr
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other. We also present comparisons against NR results for
the angular-momentum flux and binding energy of SEOBNRv4
and SEOBNRv5. In Sec. VI we study the model’s accuracy
in Bayesian inference analyses, by performing a synthetic
NR injection in zero noise and by analyzing GW events ob-
served by the LVK detectors. In Sec. VII we outline the
performance of a frequency-domain reduced-order model of
SEOBNRv5. Section VIII summarizes our main conclusions
and discusses future work. Finally, Appendices A and B
provide the complete expression for the Hamiltonian and the
multipolar waveform modes used for this work. In Appen-
dices C and D, we provide all expressions for the fits to NR
simulations entering the construction of the waveform modes.
The Appendix E presents some tests of the robustness of the
calibration pipeline to NR waveforms, and in Appendix F
we check the potential impact of including additional correc-
tions in the RR force for a specific binary configuration. Fi-
nally, in Appendix G, we extend the comparison of Sec. V
to the state-of-the-art time-domain phenomenological model
IMRPhenomTHM [45, 46].

NOTATION

We use natural units in which c = G = 1. We consider a
binary with masses m1 and m2, with m1 ≥ m2, and define the
following combinations of the masses:

M ≡ m1 + m2, µ ≡
m1m2

M
, ν ≡

µ

M
,

δ ≡
m1−m2

M
, q ≡

m1

m2
.

(1)

For binaries with nonprecessing spins of magnitude S 1 and
S 2, we define the dimensionless spins

χi ≡
ai

mi
=

S i

m2
i

, (2)

where i = 1,2, and define the following spin variables:

χS ≡
χ1 +χ2

2
, χA ≡

χ1−χ2

2
,

χeff ≡
(m1χ1 + m2χ2)

m1 + m2
,

a± ≡ a1±a2 = m1χ1±m2χ2.

(3)

The relative position and momentum vectors, in the bi-
nary’s center-of-mass frame, are denoted rrr and ppp, with

ppp2 = p2
r +

L2

r2 , pr = nnn · ppp, LLL = rrr× ppp, (4)

where nnn ≡ rrr/r, and LLL is the orbital angular momentum with
magnitude L. Since in this work we discuss nonprecessing
(or aligned-spin) BHs, we consider equatorial orbits, and use
polar-coordinates phase-space variables (r,φ, pr, pφ), where
the angular momentum reduces to L = pφ.

The orbital frequency is denoted Ω, and we define the di-
mensionless frequency parameter vΩ ≡ (MΩ)1/3. We also of-
ten use u ≡ M/r instead of r.

II. THE SEOBNRv5 ALIGNED-SPIN HAMILTONIAN AND
EQUATIONS OF MOTION

In the EOB formalism [49–53], the two-body dynamics is
mapped onto the effective dynamics of a test body in a de-
formed Schwarzschild or Kerr background, with the deforma-
tion parametrized by the symmetric mass-ratio ν. The energy
map relating the effective Hamiltonian Heff and the two-body
EOB Hamiltonian HEOB is given by

HEOB = M

√
1 + 2ν

(
Heff

µ
−1

)
. (5)

The generic-spin Hamiltonian we use in SEOBNRv5 is based
on that of a test mass in a deformed Kerr background [52,
64, 65, 69–72, 117]. In contrast, the SEOBNRv4 [75, 76, 79]
Hamiltonian was based on the one of a test spin in a deformed
Kerr background [68, 137, 138].

The SEOBNRv5 Hamiltonian includes most of the 5PN non-
spinning contributions, together with spin-orbit (SO) infor-
mation up to the next-to-next-to-leading order (NNLO), spin-
spin (SS) information to NNLO, as well as cubic- and quartic-
in-spin terms at leading order (LO), corresponding to all PN
information up to 4PN order for precessing spins. More de-
tails about the derivation of the generic-spin Hamiltonian, to-
gether with the full expressions, are given in Ref. [117]. Here,
we summarize the structure of the aligned-spin Hamiltonian,
and its zero-spin limit, highlighting where NR calibration pa-
rameters enter the expressions.

A. Nonspinning effective Hamiltonian

The effective Hamiltonian for nonspinning (noS) binaries
can be written as

HnoS
eff =

√√√
p2

r∗ + AnoS(r)

µ2 +
p2
φ

r2 + QnoS(r, pr∗ )

, (6)

where we use the tortoise-coordinate pr∗ instead of pr, since
it improves the stability of the equations of motion during the
plunge and close to merger [65, 139]. For nonspinning bina-
ries, r∗ is defined by

dr∗
dr

=
1
ξ(r)

, ξ(r) ≡ AnoS(r)
√

D̄noS(r), (7)

with the conjugate momentum pr∗ given by

pr∗ = pr ξ(r). (8)

For the potentials AnoS(r) and D̄noS(r), we use the 5PN re-
sults of Refs. [140, 141], which are complete except for two
quadratic-in-ν coefficients. The 5PN Taylor-expanded AnoS is
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given by

ATay
noS(u) = 1−2u + 2νu3 + ν

(
94
3
−

41π2

32

)
u4

+

[
ν

(
2275π2

512
−

4237
60

+
128γE

5
+

256ln2
5

)
+

(
41π2

32
−

221
6

)
ν2 +

64
5
ν lnu

]
u5

+

[
νa6 +

(
−

144ν2

5
−

7004ν
105

)
lnu

]
u6, (9)

where u ≡ M/r, and we replace the coefficient of u6, except
for the log part, by the parameter a6, which is calibrated to
NR simulations.

The 5PN Taylor-expanded D̄noS(r) potential is given by
Eq. (A1) in Appendix A. The 5.5PN contributions to AnoS(r)
and D̄noS(r) are known from Refs. [61, 141]; however, since
we Padé resum these potentials (as explained in Sec. IV), we
find it more convenient to stop at 5PN. For the QnoS(r) poten-
tial, we use the full 5.5PN expansion, which is also expanded
in eccentricity to O(p8

r ), as given by Eq. (A2).
The calibration parameter a6 is a function of ν; to deter-

mine its value in the limit ν→ 0, we use the GSF results of
Refs. [142, 143] for the frequency shift of the innermost stable
circular orbit (ISCO), which is given by

MΩ1SF
ISCO = 6−3/2(1 +CΩ/q),

CΩ = 1.25101539±4×10−8.
(10)

The ISCO can be computed from the EOB Hamiltonian by
solving (∂H/∂r)|pr=0 = 0 = (∂2H/∂r2)|pr=0 for r and pφ. We
find the value of a6 that gives the best agreement with Ω1SF

ISCO
is

a6|ν→0 ' 39.0967. (11)

The fit we use for a6(ν) is given by Eq. (78) below.

B. Aligned-spin effective Hamiltonian

For aligned-spins, the effective Hamiltonian reduces to the
equatorial Kerr Hamiltonian in the test-particle limit (TPL),
with the Kerr spin a mapped to the binary’s spins via a = a1 +

a2 ≡ a+. To include 4PN information for spinning binaries and
arbitrary mass-ratios, we use the following ansatz [117]:

Halign
eff
≡ Hodd + Heven ,

=
Mpφ

(
ga+a+ +ga−δa−

)
+ SOcalib +Galign

a3

r3 + a2
+(r + 2M)

+

[
Aalign

(
µ2 + p2 + Balign

np p2
r + BKerr eq

npa

p2
φa2

+

r2 + Qalign
)]1/2

,

(12)

where the first term on the right-hand side only includes the
odd-in-spin contributions (in the numerator), while the second
term (square root) includes the even-in-spin contributions.

The gyro-gravitomagnetic factors ga+ (r) and ga− (r) in the
SO part of the Hamiltonian (12) are sometimes chosen to
be in a gauge such that they are functions of 1/r and p2

r
only [64, 69], though Refs. [67, 68] made different choices.
In building the SEOBNRv5 model, we find better agreement
with NR waveforms when using a gauge in which ga+ (r) and
ga− (r) depend only on 1/r and p2

φ/r
2. The 4.5PN SO cou-

pling was derived in Refs. [144–147], and can be included in
the gyro-gravitomagnetic factors (see Eqs. (30a) and (30b) in
Ref. [117]). However, when calibrating to NR simulations,
we find that using a calibration term at 5.5PN has a small ef-
fect on the dynamics, and thus we only include the 3.5PN SO
information (given in Eqs. (A3)) with a 4.5PN SO calibration
term of the form

SOcalib = νdSO
M4

r3 pφa+. (13)

Furthermore, the function Galign
a3 (r) in Eq. (12) contains S3

corrections. The nonspinning and SS contributions are in-
cluded in Aalign(r), Balign

np (r) and Qalign(r), with no S4 correc-
tions needed since the Kerr Hamiltonian reproduces all even-
in-spin leading PN orders for binary BHs [148]. Explicit ex-
pressions for the functions in the Hamiltonian are provided in
Appendix A (and also in Ref. [117]).

When using tortoise-coordinates for spinning binaries, a
convenient choice for ξ(r) is

ξ(r) =

√
D̄noS

(
AnoS + a2

+/r
2
)

1 + a2
+/r2

, (14)

which is similar to what was used in SEOBNRv4 [65, 73] except
for the different resummation and PN orders in AnoS and D̄noS.
In the ν→ 0 limit, ξ reduces to the Kerr value (dr/dr∗) = (r2−

2Mr + a2
+)/(r2 + a2

+).

C. Equations of motion and radiation-reaction force

The equations of motion for aligned-spins, in terms of pr∗ ,
are given by Eqs. (10) of Ref. [59], and read

ṙ = ξ
∂H
∂pr∗

, ṗr∗ = −ξ
∂H
∂r

+
pr∗

pφ
Fφ,

φ̇ =
∂H
∂pφ

, ṗφ = Fφ,

(15)

where the RR force Fφ is obtained by summing the GW
modes in factorized form [56, 57, 139, 149], hF

`m, which we
define in Sec. III A, that is

Fφ ≡ −
MΩ

8π

8∑
`=2

∑̀
m=1

m2
∣∣∣dLhF

`m

∣∣∣2 , (16)

where Ω is the orbital frequency, and dL is the luminosity dis-
tance of the binary to the observer.
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The equations of motion can be written more explicitly as
follows:

ṙ =
MAalign

2HEOBHeven

[
2pr∗

ξ
(1 + Balign

np ) + ξ
∂Qalign

∂pr∗

]
, (17a)

φ̇ =
M

HEOB

[
pφ
∂H̄odd

∂pφ
+ H̄odd +

Aalign

Heven

pφ
r2

(
1 + BKerr eq

npa a2
+

)]
,

(17b)

ṗr∗ = −
Mξ

HEOB

(
∂Heven

∂r
+ pφ

∂H̄odd

∂r

)
+

pr∗

pφ
Fφ, (17c)

where we define H̄odd ≡ Hodd/pφ. The derivative of Heven is
given by

∂Heven

∂r
=

1
2Heven

(
K0 p2

φ + K1
)
, (18a)

K0 ≡ Aalign

− 2
r3

(
1 + BKerr eq

npa a2
+

)
+

a2
+

r2

dBKerr eq
npa

dr


+

dAalign

dr

(
1
r2 +

a2
+

r2 BKerr eq
npa

)
, (18b)

K1 ≡ Aalign

 p2
r∗

ξ2

dBalign
np

dr
−

2
ξ

dξ
dr

(
1 + Balign

np

)+
∂Qalign

∂r


+

dAalign

dr

µ2 +
p2

r∗

ξ2

(
1 + Balign

np

)
+ Qalign

 . (18c)

When evolving the equations of motion, we use the same
quasi-circular adiabatic initial conditions derived in Ref. [53],
then integrate numerically Eqs. (15) to solve for the binary
dynamics.

In SEOBNRv5, one can also employ the post-adiabatic (PA)
approximation for the inspiral dynamics, which allows speed-
ing up the evaluation of the model, especially for very long
waveforms [60, 150]. This technique has been used exten-
sively with great success in the TEOBResumS family of models
(see, e.g., Refs. [83, 104, 105, 150, 151]), and recently also in
the SEOBNRv4HM PAmodel [103]. To obtain explicit algebraic
equations for the momenta, we follow the same procedure as
described in Refs. [150, 151], which results in the following
equations:

pr∗ =
ξ

2
(
1 + Balign

np

) Fφ(dpφ
dr

)−1 2HEOBHeven

MAalign − ξ
∂Qalign

∂pr∗

 ,
(19)

K0 p2
φ + 2Heven

∂H̄odd

∂r
pφ + K1

+
2HevenHEOB

Mξ

(
dpr∗

dr
dr
dt
−

pr∗

pφ
Fφ

)
= 0. (20)

Here, the only unknowns are the explicit pr∗ in the left-hand
side of the first equation, and the explicit p2

φ and pφ in the sec-
ond; all the other instances of pr∗ and pφ are obtained from
previous orders. We employ the PA approximation at 8th or-
der.

III. THE SEOBNRv5 MULTIPOLAR WAVEFORM

In this section, we describe the building blocks used in the
construction of the multipolar spinning, nonprecessing wave-
form modes h`m of the SEOBNRv5HMmodel. We closely follow
the construction of the SEOBNRv4HM model [76] and highlight
differences when needed.

In general, the complex linear combination of GW polar-
izations, h(t) ≡ h+(t)− ih×(t), can be expanded in the basis of
−2 spin-weighted spherical harmonics [59] as follows:

h(t;λλλ, ι,ϕ0) =
∑
`≥2

∑
|m|≤`

−2Y`m(ι,ϕ0)h`m(t;λλλ), (21)

where λλλ denotes the intrinsic parameters of the compact bi-
nary source, such as masses (m1,2) and spins (χ1,2). The wave-
form modes h`m depend on only three parameters (q,χ1,χ2),
since the waveform scales trivially with the total mass M.
The parameters (ι,ϕ0) describe the binary’s inclination angle
(computed with respect to the direction perpendicular to the
orbital plane) and the azimuthal direction to the observer, re-
spectively 2.

In the EOB framework, the GW modes defined in Eq. (21)
are decomposed into inspiral-plunge and merger-ringdown
modes. In SEOBNRv5HM, we model the (2,2) and the largest
subdominant modes [76]: (3,3), (2,1), (4,4), (3,2), (5,5) and
(4,3). For aligned-spin binaries h`m = (−1)`h∗`−m, therefore we
restrict the discussion to (`,m) modes with m > 0. We have:

h`m(t) =

hinsp-plunge
`m (t), t < t`mmatch

hmerger-RD
`m (t), t > t`mmatch

, (22)

where we define t`mmatch as

t`mmatch =


t22
peak , (`,m) = (2,2), (3,3), (2,1),

(4,4), (3,2), (4,3)
t22
peak −10M, (`,m) = (5,5),

(23)

where t22
peak is the peak of the (2,2)-mode amplitude. The

choice of a different attachment point for the (5,5) mode is
motivated, as in Ref. [76], by the fact that t55

peak − t22
peak > 0,

and at late times, the error in some of the NR waveforms
used to calibrate the model is too large to accurately extract
the quantities that are needed to build the full inspiral-merger-
ringdown waveforms (see below).

A. Inspiral-plunge h`m modes

The inspiral-plunge EOB waveform modes can be written
as

hinsp-plunge
`m = hF

`mN`m , (24)

2 In general, the GW polarizations emitted by a quasi-circular BBH depend
on its masses and spins λλλ = {m1,m2,χχχ1,2}, the angles (ι,ϕ0), the luminosity
distance of the binary to the observer dL and the time of arrival tc. Inserting
back units, the modes scale as ∼GM/(c2dL).
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where hF
`m is a factorized, resummed form of the PN-expanded

GW modes for aligned-spins in circular orbits [57, 139, 149],
while N`m is the nonquasi-circular (NQC) correction, aimed at
incorporating relevant radial effects during the plunge, toward
the merger.

The factorized inspiral modes are written as

hF
`m = hN

`mŜ effT`m f`meiδtm . (25)

The first factor, h(N,ε`m)
`m is the leading (Newtonian) order wave-

form and its explicit expression is [57, 149]

hN
`m =

νM
dL

n`mc`+ε`m (ν)v`+ε`mφ Y`−ε`m,−m

(
π

2
,φ

)
. (26)

Here dL is the luminosity distance of the binary to the ob-
server, Y`m is the scalar spherical harmonic, ε`m is the parity
of the mode, such that

ε`m =

{
0, `+ m is even
1, `+ m is odd

, (27)

and the functions n`m and ck(ν) are given by

n`m =


8π(im)`

(2`+ 1)!!

√
(`+1)(`+2)
`(`−1) , `+ m is even

−16iπ(im)`

(2`+ 1)!!

√
(2`+1)(`+2)(`2−m2)
(2`−1)(`+1)`(`−1) , `+ m is odd,

(28)

and

ck(ν) =

1−
√

1−4ν
2

k−1

+ (−1)k
1 +

√
1−4ν
2

k−1

. (29)

Finally, vφ in Eq. (26) is given by

vφ = MΩrΩ, (30)

where Ω is the orbital frequency and

rΩ =

(
∂HEOB

∂pφ

)−2/3
∣∣∣∣∣∣∣
pr=0

. (31)

The (dimensionless) effective source term Ŝ eff is given by ei-
ther the effective energy Eeff or the orbital angular momentum
pφ, both expressed as functions of vΩ ≡ (MΩ)1/3, such that

Ŝ eff =


Eeff(vΩ)

µ , `+ m even,

vΩ
pφ(vΩ)

Mµ , `+ m odd,
(32)

where Eeff is related to the total energy E via the EOB energy
map E = M

√
1 + 2ν (Eeff/µ−1).

The factor T`m in Eq. (25) resums an infinite number of
leading logarithms entering the tail contributions [152], and is
given by

T`m =
Γ
(
`+ 1−2ik̂

)
Γ(`+ 1)

eπk̂e2ik̂ ln(2mΩr0), (33)

where Γ(...) is the Euler gamma function, k̂ ≡ mΩE and the
constant r0 takes the value 2M/

√
e to give agreement with

waveforms computed in the test-body limit [149].
The remaining part of the factorized modes (25) is ex-

pressed as an amplitude f`m and a phase δ`m, which are com-
puted such that the expansion of hF

`m agrees with the PN-
expanded modes. For nonspinning binaries, f`m is further
resummed as [57] f`m = (ρ`m)` to reduce the magnitude of
the 1PN coefficient, which grows linearly with `. Following
Refs. [73, 74, 149], for spinning binaries we separate the non-
spinning and spin contributions for the odd m modes, such
that

f`m =


ρ`
`m, m even,

(ρNS
`m )` + f S

`m, m odd,
(34)

where ρNS
`m is the nonspinning part of ρ`m, while f S

`m is the spin
part of f`m.

The explicit expressions for ρ`m, f`m and δ`m that are used in
the SEOBNRv5HM model are provided in Appendix B, and are
mostly similar to those in SEOBNRv4HM as derived in Refs. [73,
75, 76, 149]. The main differences are as follows:
• We correct the O(v5δχAν) coefficient in ρ22, whose

value is 19/42, but was mistakenly replaced in the
SEOBNRv4 code by 196/42.
• We add in ρ22 the NLO spin-squared contribution at

3PN and the LO spin-cubed part at 3.5PN, which are
given by Eq. (4.11a) of Ref. [118].
• We add all the known spin terms in the (3,2) and (4,3)

amplitudes (Eqs. (B2a) and (B5b) from Ref. [118]).
• We correct the expressions for the (2,1) mode. As

pointed out in Ref. [118], the O(v6χ2ν2) terms in the
(2,1) mode in the SEOBNRv4HM model [76] are not cor-
rect, as well as the O(νv5) nonspinning part of δ21,
whose coefficient had the value −493/42 [57, 59] in-
stead of −25/2, due to an error in the (2,1) mode in
Ref. [153], which was later corrected in an erratum.
• We consistently include the high-order PN terms from

Appendix A of Ref. [76] in the RR force, and not just
in the waveform modes.

The new terms we add in the modes were derived in
Ref. [118], which was made public when the model was close
to being finalized; hence, we only added the terms we con-
sidered most important, and we will add in a future update of
the model all the 3.5PN contributions to the waveform modes,
as derived in Refs. [118, 154]. We remark that adding ad-
ditional PN information in the waveform modes (except for
the phases) modifies the energy flux (i.e., the RR force), and
would require a recalibration of the EOB dynamics to NR sim-
ulations.

As discussed in the SEOBNRv4HM model of Ref. [76], the
presence of minima, close to merger, in the amplitude of some
modes, leads to the introduction of additional calibration pa-
rameters before applying the NQC corrections. The modes for
which this is needed are the (2,1), (5,5) and (4,3). The min-
ima occur for q ∼ 1 and large |χA|, and can lead to unphysical
features in the amplitude after applying the NQC corrections
if they occur close to the attachment point t ∼ tmatch. For the
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(2,1) mode, this behavior is also found in NR simulations,
while for the (5,5) and (4,3) we do not observe it in the NR
waveforms at our disposal, and is likely an artifact of the PN-
expanded modes [76]. Calibration terms in the modes take the
form c`mv

β`m
Ω

, and are added in f`m, with β`m being the lowest
PN order not already included. The calibration parameter c`m
is determined by imposing the following condition:∣∣∣∣hF

`m

(
t`mmatch

)∣∣∣∣ ≡ ∣∣∣hN
`mŜ effT`meiδ`m f`m (c`m)

∣∣∣
t=t`mmatch

,

=
∣∣∣∣hNR
`m

(
t`mmatch

)∣∣∣∣ , for (`,m) = (2,1), (5,5), (4,3),
(35)

where |hNR
`m

(
t`mmatch

)
| is the amplitude of the NR modes at

the matching point, given by fits in parameter space in Ap-
pendix C.

The remaining N`m factor in the inspiral-plunge modes (24)
is the NQC correction and reads

N`m =

1 +
p̂2

r∗

(rΩ)2

ah`m
1 +

ah`m
2

r̂
+

ah`m
3

r̂3/2




× exp

ibh`m
1

p̂r∗

rΩ
+ bh`m

2

p̂3
r∗

rΩ

 ,
(36)

where r̂ ≡ r/M and p̂r∗ ≡ pr∗/µ. The use of the NQC cor-
rections guarantees that the modes’ amplitude and frequency
agree with NR input values (see below), given in Appendix C,
at the matching point t`mmatch. In particular, one fixes the 5 con-
stants (ah`m

1 , ah`m
2 , ah`m

3 , bh`m
1 , bh`m

2 ) by requiring the following
[74–76]:
• The amplitude of the EOB modes is the same as that of

the NR modes at the matching point t`mmatch:∣∣∣∣hinsp-plunge
`m (t`mmatch)

∣∣∣∣ =
∣∣∣hNR
`m (t`mmatch)

∣∣∣ . (37)

We note that this condition is different from that in
Eq. (35) because it affects hinsp-plunge

`m (t`mmatch) and not
hF
`m(t`mmatch). Because of the calibration parameter in

Eq. (35), for the modes (2,1), (5,5) and (4,3), this con-
dition becomes simply |N`m| = 1.
• The first derivative of the amplitude of the EOB modes

is the same as that of the NR modes at the matching
point t`mmatch:

d
∣∣∣∣hinsp-plunge
`m (t)

∣∣∣∣
dt

∣∣∣∣∣∣∣∣∣
t=t`mmatch

=
d
∣∣∣hNR
`m (t)

∣∣∣
dt

∣∣∣∣∣∣∣
t=t`mmatch

. (38)

• The second derivative of the amplitude of the EOB
modes is the same as that of the NR modes at the match-
ing point t`mmatch:

d2
∣∣∣∣hinsp-plunge
`m (t)

∣∣∣∣
dt2

∣∣∣∣∣∣∣∣∣
t=t`mmatch

=
d2

∣∣∣hNR
`m (t)

∣∣∣
dt2

∣∣∣∣∣∣∣
t=t`mmatch

. (39)

• The frequency of the EOB modes is the same as that of
the NR modes at the matching point t`mmatch:

ω
insp-plunge
`m (t`mmatch) = ωNR

`m (t`mmatch). (40)

• The first derivative of the frequency of the EOB modes
is the same as that of the NR modes at the matching
point t`mmatch:

dωinsp-plunge
`m (t)

dt

∣∣∣∣∣∣∣
t=t`mmatch

=
dωNR

`m (t)

dt

∣∣∣∣∣∣∣
t=t`mmatch

. (41)

The RHS of Eqs. (37)–(41) (usually called input values),
are given as fitting formulae for every point of the parame-
ter space (ν,χ1,χ2) in Appendix C. These fits are produced
using the NR SXS catalog [121, 122], and BH-perturbation-
theory waveforms described in Sec. IV. We point out that the
NQC corrections and the c`m calibration coefficients are not
included in the SEOBNRv5HM radiation-reaction force.

In the SEOBNRv5 model, the input values are enforced at
t = t`mmatch, given in Eq. (23) as a function of t22

peak. We take

t22
peak = tISCO +∆t22

ISCO , (42)

where tISCO is the time at which r = rISCO, with rISCO the ra-
dius of the geodesic ISCO in Kerr spacetime [155] with the
same mass and spin as the remnant, computed with NR fitting
formulas [156, 157], and ∆t22

ISCO is a calibration parameter, to
be determined by comparing against NR simulations. In the
SEOBNRv4 model, the merger time was given by

t22
peak = tΩpeak +∆t22

peak , (43)

with tΩpeak being the peak of the orbital frequency. The purpose
of ∆t22

peak is still to introduce a time delay between the peak of
the orbital frequency and the peak of the (2,2) mode, as ob-
served in the test-body limit [133, 134, 158]. However, we
find the new definition to be more robust, since it is indepen-
dent of features in the late dynamics, like the existence of a
peak in the orbital frequency, which is not necessarily present
for all BBH parameters when the Hamiltonian and modes are
not the same as the ones used in the SEOBNRv4 model. More
specifically, in the latter the A-potential was designed (log-
resummation) [67, 68] in such a way always to guarantee the
presence of the light ring (the peak in the orbital frequency)
for aligned-spin binaries. This is no longer the case when the
Padé resummation of the A-potential is employed, as done in
SEOBNRv5 (see below).

Another notable improvement in the SEOBNRv5HM wave-
forms is the addition of 2GSF calibration coefficients in the
nonspinning modes and RR force from Ref. [116]. In that
work, one defines

ρ`m = ρ(0)
`m + νρ(1)

`m +O
(
ν2

)
, (44)

and augments the ρ(1),EOB
`m by adding an extra polynomial ∆ρ(1)

`m
in v2

Ω
starting at the lowest order in v2

Ω
not already included.
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The ∆ρ(1)
`m are determined by fitting to the numerical ρ(1),GSF

`m
results, leading to the following expressions:

∆ρ(1)
22 = 21.2v8

Ω−411v10
Ω , (45a)

∆ρ(1)
21 = 1.65v6

Ω + 26.5v8
Ω + 80v10

Ω , (45b)

∆ρ(1)
33 = 12v8

Ω−215v10
Ω , (45c)

∆ρ(1)
32 = 0.333v6

Ω−6.5v8
Ω + 98v10

Ω , (45d)

∆ρ(1)
44 = −3.56v6

Ω + 15.6v8
Ω−216v10

Ω , (45e)

∆ρ(1)
43 = −0.654v4

Ω−3.69v6
Ω + 18.5v8

Ω, (45f)

∆ρ(1)
55 = −2.61v4

Ω + 1.25v6
Ω−35.7v8

Ω. (45g)

In the 2GSF calibration, terms ∆ρ(1)
`m are then added directly to

the full (not ν-expanded) ρ`m coefficients. In Ref. [116], it is
also found beneficial to include additional terms in the (3,2)
and (4,3) modes obtained by matching to the PN expansions
of the test-mass limit (TML) GW energy flux. Thus, we add
the following terms:

∆ρ(0),TML
32 =

(
−

1312549797426453052
176264081083715625

+
18778864
12629925

eulerlog(2, vΩ)
)
v10
Ω , (46a)

∆ρ(0),TML
43 =

(
−

2465107182496333
460490801971200

+
174381
67760

eulerlog(3, vΩ)
)
v8
Ω, (46b)

where we define

eulerlog (m, vΩ) ≡ γE + log(2mvΩ) , (47)

in which γE is the Euler constant.

B. Merger-ringdown h`m modes

The merger-ringdown modes are constructed with a phe-
nomenological ansatz, using information from NR simula-
tions and TML waveforms. The ansatz we employ for the
modes (2,2), (3,3), (2,1), (4,4), (5,5), which show monotonic
amplitude and frequency evolution, is the same as the one im-
plemented in Refs. [75, 76] and reads:

hmerger-RD
`m (t) = νÃ`m(t)eiφ̃`m(t)e−iσ`m0

(
t−t`mmatch

)
, (48)

where σ`m0 = σR
`m − iσI

`m is the complex frequency of the
least-damped quasi-normal mode (QNM) of the remnant BH.
The QNM frequencies are obtained for each (`,m) mode as
a function of the BH’s final mass and spin using the qnm
Python package [159]. The BH’s mass and spin are in turn
computed using the fitting formulas of Refs. [156] and [157],
respectively. The ansätze for the two functions Ã`m and φ̃`m in
Eq. (48) are the following [75, 76]

Ã`m(t) = c`m1,c tanh
[
c`m1, f

(
t− t`mmatch

)
+ c`m2, f

]
+ c`m2,c, (49)

φ̃`m(t) = φ`mmatch −d`m1,c log

1 + d`m2, f e−d`m1, f

(
t−t`mmatch

)
1 + d`m2, f

 , (50)

where φ`mmatch is the phase of the inspiral-plunge mode (`,m)
at t = t`mmatch . The coefficients d`m1,c and c`mi,c (i = 1,2) are con-
strained by the requirement that the amplitude and phase
of h`m(t) in Eq. (22) are continuously differentiable at t =

t`mmatch, and can be written in terms of c`m1, f , c`m2, f , σR
`m,∣∣∣∣hinsp-plunge

`m

(
t`mmatch

)∣∣∣∣, ∂t

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣, as follows

c`m1,c =
1

c`m1, f ν

[
∂t

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣
−σR

`m

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣]cosh2
(
c`m2, f

)
,

(51)

c`m2,c =

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣
ν

−
1

c`m1, f ν

[
∂t

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣
−σR

`m

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣]cosh
(
c`m2, f

)
sinh

(
c`m2, f

)
,

(52)
or in terms of d`m1, f ,d

`m
2, f ,σ

I
`m,ω

insp-plunge
`m

(
t`mmatch

)
for d`m1,c

d`m1,c =
[
ω

insp-plunge
`m

(
t`mmatch

)
−σI

`m

] 1 + d`m2, f

d`m1, f d`m2, f

. (53)

The remaining parameters in Eqs. (49) and (50) are the free
coefficients c`mi, f and d`mi, f , i = 1,2.

The NQC corrections ensure that the waveform’s amplitude
and frequency coincide with the NR input values at t = t`mmatch ,
and make the merger-ringdown modes independent of the
EOB inspiral modes, allowing for an independent calibration
of the two. To obtain c`mi, f and d`mi, f , we first extract them from
each NR and TML waveform by least-square fits, and then in-
terpolate the values obtained across the parameter space using
polynomial fits in ν and χ. While in Ref. [76] the same poly-
nomial was used for most of the free coefficients, in this work
we use a recursive-feature-elimination (RFE) [160] algorithm
with polynomial features of third and fourth order, depend-
ing on the quantity to fit. Applying a log transformation to
some of the coefficients is also beneficial, both to improve the
quality of the fits and to ensure the positivity of those quanti-
ties when extrapolating outside of the region where NR data
is available. Finally, we apply a similar RFE strategy to most
of the fits for the input values, the only exceptions being the
fits of the amplitude of the odd-m modes and their derivatives.
The odd m modes vanish in the equal-mass and equal-spin
limit, since they need to satisfy the symmetry under rotation
ϕ0→ ϕ0 +π, therefore, the corresponding amplitudes are bet-
ter captured by ad-hoc nonlinear ansätze that enforce this limit
by construction (see also Appendix D).
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C. Mode mixing in the (3,2) and (4,3) merger-ringdown h`m
modes

The merger-ringdown (3,2) and (4,3) modes show post-
merger oscillations [54, 161], mostly related to the mismatch
between the spherical harmonic basis used for extraction in
NR simulations, and the spheroidal harmonics adapted to the
perturbation theory of Kerr BHs. Because of this, it is not
possible to use the same ansatz of Eqs. (48), (49) and (50)
straightforwardly.

Equation (21) can be formulated in terms of −2 spin-
weighted spheroidal harmonics as:

h(t;λλλ, ι,ϕ0) =
∑
`′≥2

∑
|m|≤`′

∑
n≥0
−2S `′mn(ι,ϕ0) S h`mn(t,λλλ), (54)

where S `mn ≡ S `m(a fσ`mn) are the −2 spin-weighted
spheroidal harmonics associated with the QNM frequencies
σ`mn, and with a f M f being the spin angular momentum of the
final BH of mass M f [162]. The superscript S denotes that the
S h`mn modes are expanded in the spheroidal harmonics basis.

One can switch from the spherical harmonic basis to the
spheroidal harmonic basis via:

−2S `′mn =
∑
`≥|m|

µ∗m``′n−2Y`m , (55)

where µm``′n are mode mixing coefficients, which we compute
using fits provided in Ref. [163] (more complex fits can be
found in Ref. [164]), and the star denotes the usual complex
conjugation. Inserting Eq. (55) in Eq. (54) for the spheroidal
harmonics we get,

h(t; ι,ϕ0) =
∑
`′≥2

∑
|m|≤`′

∑
n≥0

∑
`≥|m|

−2Y`m(ι,ϕ0) S h`mn(t)µ∗m``′n, (56)

where we have suppressed the λλλ parameter from the ex-
pression to ease the notation. Comparing Eq. (56) with
Eq. (21), we obtain the following relation between spherical
and spheroidal modes,

h`m(t) =
∑
`′≥|m|

∑
n≥0

S h`′mn(t)µ∗m``′n. (57)

Starting from Eq. (57), we can model the mode-mixing be-
havior [165] to obtain monotonic functions that can be fitted
by the ansatz already used for the other modes. Practically,
it is not feasible to sum over all the spheroidal modes to get
each spherical mode, so we make a few reasonable approxi-
mations. First, we neglect the overtone (n > 0) contributions
in the right-hand side of Eq. (57), because their decay times
are & 3 smaller than the dominant overtone n = 0. Second,
for a given (`,m) mode, we neglect the contributions from the
spheroidal modes with `′ > ` since their amplitudes are sub-
dominant compared to the (`,m,0) mode. With these approx-
imations, we can rewrite Eq. (57) as

h`m(t) '
∑
`′≤`

S h`′m0(t)µ∗m``′0. (58)

Writing it explicitly for the modes of interest,

h22(t) ' µ∗2220
S h220(t), (59a)

h33(t) ' µ∗3330
S h330(t), (59b)

h32(t) ' µ∗2320
S h220(t) +µ∗2330

S h320(t), (59c)

h43(t) ' µ∗3430
S h330(t) +µ∗3440

S h430(t). (59d)

From these equations, we can solve for the S h`m0 modes to
obtain

S h320(t) '
h32(t)µ∗2220−h22(t)µ∗2320

µ∗2330µ
∗
2220

, (60a)

S h430(t) '
h43(t)µ∗3440−h33(t)µ∗3430

µ∗3330µ
∗
3440

. (60b)

We show in Fig. 1 the characteristics of the S h`m0 mode ob-
tained from the spherical mode h`m via Eqs. (60a) and (60b)
for the NR waveform SXS:BBH:2138. The h32 mode shows
oscillations in its amplitude and frequency, while the S h320
mode obtained from Eq. (60a) has a nearly monotonic behav-
ior. Most importantly, the frequency of the S h320 mode oscil-
lates around the QNM frequency predicted in BH perturbation
theory for the spheroidal (3,2,0) mode.

Thus, we model the spheroidal S hlm0 modes using the
ansatz of Eq. (48), where in Eq. (50) φmatch

`m is replaced by
S φmatch

`m0 , which is the phase of S hlm0 at t = tmatch
`m . In Eqs. (51)

and (52) we replace h`m by S hlm0, and in Eq. (53) we replace
ω`m by Sω`m0. Once we have a model for S h320 and S h430, it
is straightforward to obtain the (3,2) and (4,3) modes by com-
bining them with the (2,2) and (3,3) ones previously obtained
by inverting Eqs. (60a) and (60b).

The NQC corrections for the inspiral-plunge h`m modes
require the values for the spherical NR modes hNR

`m (tmatch
`m ),

and those are the quantities that we fit and interpolate across
the parameter space. However, we need the input values for
S hmatch

lm0 ≡ S hlm0(tmatch
`m ) and its derivative in order to fix the co-

efficients c`mi,c and d`mi,c . They can be derived from Eqs. (60a)
and (60b) starting from the h`m input values.

First, we introduce the following quantities:

ρ = |µm``′0|
|hmatch
`′m |

|µm`′`′0||hmatch
`m |

, (61a)

δφ = φ`
′m

match−φ
`m
match− arg(µm``′0) + arg(µm`′`′0), (61b)

F =

√
(1−ρcos(δφ))2 +ρ2 sin2(δφ), (61c)

ρ̇ = |µm``′0|

(
∂t |hmatch

`′m |

|hmatch
`m |

−
|hmatch
`′m |

|hmatch
`m |2

∂t |hmatch
`m |

)
, (61d)

δφ̇ = ∂tφ
`′m
match−∂tφ

`m
match, (61e)

Ḟ =
(ρρ̇+ρsin(δφ)δφ̇− ρ̇cos(δφ))

F
, (61f)
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Figure 1. Mode-mixing in the NR simulation SXS:BBH:2138 (q = 3.0,χ1 = −0.6,χ2 = 0.4). Upper panel: Amplitude of the modes |h`m| and
of |S h`m0|, after the mode-mixing removal (Eqs. (60a) and (60b)). We denote with t = 0 the time of the peak of the (2,2)-mode amplitude.
Lower panel: Frequencies of the modes h`m and of S h`m0. The ringdown frequencies of the S h320 and S h430 modes are well approximated by
the (3,2,0) and (4,3,0) QNM frequencies (dashed horizontal lines) after the mode-mixing removal.

where |hmatch
`m | ≡

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣. Then,

|S hmatch
`m0 | =

|hmatch
`m |F

|µm``0|
, (62a)

S φ`m0
match = φ`mmatch + arg(µm``0) + arctan

(
−ρsin(δφ)

1−ρcos(δφ)

)
,

(62b)

∂t |
S hmatch

`m0 | =
(∂t |hmatch

`m |F + |hmatch
`m |Ḟ)

|µm``0|
, (62c)

Sωmatch
`m0 = ωmatch

`m +
(ρ2δφ̇−ρcos(δφ)δφ̇− ρ̇sin(φ))

F2 , (62d)

where for the (3,2) mode m = 2, ` = 3, `′ = 2, and for the (4,3)
mode m = 3, ` = 4, `′ = 3.

IV. CALIBRATION TO NUMERICAL-RELATIVITY
WAVEFORMS

The inspiral-plunge modes described in Sec. V are func-
tions of the binary parameters (q,χ1,χ2), the initial orbital
frequency Ω0 at which the evolution is started, and a set of
calibration parameters, which are determined as a function
of (q,χ1,χ2) such that we maximize the agreement between

the waveform model and NR simulations of BBHs. In the
SEOBNRv5model we employ the following calibration param-
eters:
• aaa666: a 5PN, linear in ν, parameter that enters the non-

spinning AnoS(u) potential of Eq. (9).
• dddSO: a 4.5PN spin-orbit parameter, that enters the odd-

in-spin part of the effective Hamiltonian (see Eqs. (12)
and (13)).
• ∆∆∆ttt22

ISCO: a parameter that determines the time shift be-
tween the Kerr ISCO, computed from the final mass
and spin of the remnant [156, 157], and the peak of the
(2,2)-mode amplitude, as given by Eq. (42). We remark
that this quantity is different from ∆t22

peak used in the
SEOBNRv4model, where it corresponded to the time dif-
ference between the peak of the orbital frequency (light
ring) and the peak of the (2,2)-mode amplitude.

The resummation of the analytical information that en-
ters the EOB potentials is critical in determining the model’s
flexibility to reduce differences with NR waveforms. In the
SEOBNRv5 model we perform a (1,5) Padé resummation of
the Taylor-expanded potential ATay

noS(u), given by Eq. (9), while
treating lnu as a constant, i.e., we use

AnoS(u) = P1
5[ATay

noS(u)]. (63)

The Padé resummation of AnoS was originally introduced in
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Ref. [51] to guarantee the presence of an ISCO in the EOB
dynamics at 3PN order for any mass ratio. It was then adopted
in nonspinning and initial spinning EOBNR models (e.g., see
Refs. [55, 59, 65]), and in all TEOBResumS models (e.g., see
Refs. [56, 64, 81, 83, 104]). For D̄noS(u) we perform a (2,3)
Padé resummation of the 5PN Talyor-expanded D̄Tay

noS(u) given
by Eq. (A1) in Appendix A, such that

D̄noS(u) = P2
3[D̄Tay

noS(u)]. (64)

This resummation of D̄noS(u) was recently explored in
Ref. [166], although combined with different choices for
AnoS(u) and QnoS(u) than the ones used in SEOBNRv5.
TEOBResumS includes information through 3PN order in
D̄noS(u), which is Taylor expanded (DnoS(u) ≡ 1/D̄noS(u) is
inverse-Taylor resummed) [104, 105].

The SEOBNRv4 model adopted a log-resummation for these
potentials, which was designed to guarantee the presence of
a light ring (a peak in the orbital frequency) for aligned-spin
binaries. The light ring was needed to determine the point
at which to attach the merger-ringdown waveforms, based on
∆t22

peak. The use of ∆t22
ISCO as reference for the attachment of

the merger-ringdown in the SEOBNRv5 model eliminates the
dependence on the existence of a peak in the orbital frequency.
This enables us to use resummed potentials that may not nec-
essarily exhibit a light ring, but lead to a better agreement
with NR simulations compared to the log-resummed ones in
SEOBNRv4.

We calibrate SEOBNRv5HM to 442 numerical-relativity (NR)
waveforms, all produced with the pseudo-Spectral Einstein
code (SpEC) of the Simulating eXtreme Spacetimes (SXS) col-
laboration [21, 22, 24, 25, 30, 75, 121–131], except for a sim-
ulation with mass ratio and dimensionless spins q = 8, χ1 =

0.85, χ2 = 0.85 produced with the Einstein Toolkit code
[76, 132]. We also incorporate information from 13 wave-
forms computed by solving the Teukolsky equation in the
framework of BH perturbation theory [133, 134], with mass
ratio q = 103 and dimensionless spins values in the range
−0.99 ≤ χ ≤ 0.99. 3

In Fig. 2 we show the coverage of NR and BH-perturbation-
theory waveforms projected on the binary’s parameters ν and
χeff = (χ1m1 +χ2m2)/M, separated in different regions. In the
first region 1 ≤ q ≤ 3 there is a large number of configurations
with both BHs carrying spin. The spins’ magnitude reach
χ1,2 = 0.998 in the equal-mass limit, while they are limited
to χ1,2 = 0.85 for q = 3. The NR coverage in this region is
mostly comparable to SEOBNRv4HM. The second region is be-
tween 3 < q ≤ 10. This region includes a significant number
of configurations, with primary spins −0.9 ≤ χ1 ≤ 0.85, and
is much more densely populated than for SEOBNRv4HM. The
third region is between 10 < q ≤ 20 and it includes simula-
tions with spins only on the heavier BH, with spin magnitudes

3 The full list of simulations is provided as an ancillary file. For each simula-
tion we list the mass-ratio q, the dimensionless spins χ1,2, the initial orbital
frequency Ω0, the initial eccentricity e0 and the number of orbits Norb up
to the merger.
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Figure 2. NR and BH-perturbation-theory waveforms used to
calibrate SEOBNRv5HM, projected on the binary’s parameters ν and
χeff = (χ1m1 +χ2m2)/M. We highlight four regions as explained in
the text, and use different markers to distinguish between 327 simula-
tions from the public SXS catalog [122], 114 private SXS waveforms,
one Einstein Toolkit simulation and 13 Teukolsky-code wave-
forms. We refer to private waveforms as all those which can not be
downloaded from the SXS website [121] at the time of this publica-
tion.

only up to χ1 = 0.5, or nonspinning waveforms. SEOBNRv4HM
was not calibrated to any NR simulation in this region. Fi-
nally, the fourth region covers the 13 Teukolsky-code wave-
forms, with q = 103 and dimensionless spins values in the
range −0.99 ≤ χ ≤ 0.99.

The rest of this section explains how we determine the cal-
ibration parameters by comparing the SEOBNRv5 waveform
model to NR waveforms. We closely follow the procedure
adopted in Ref. [75] and highlight differences when needed.

A. Calibration requirements

In order to calibrate the waveform model to NR we first
need to establish when two waveforms are close to each other.
Given two waveforms h1(t) and h2(t), we introduce the match,
which is defined as the noise-weighted inner product [167,
168]

(h1 | h2) ≡ 4Re
∫ fh

fl

h̃1( f )h̃∗2( f )
S n( f )

d f , (65)

where h̃1( f ) and h̃2( f ) indicate Fourier transforms, and S n( f )
is the one-sided power spectral density of the detector noise,
which we assume to be the design zero-detuned high-power
noise PSD of Advanced LIGO [169]. The faithfulness is then
defined as the overlap between the normalized waveforms,
maximized over the relative time and phase shift, that is

〈h1 | h2〉 = max
φc,tc

(h1 (φc, tc) | h2)
√

(h1 | h1) (h2 | h2)
. (66)
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In Eq. (65), we fix fh = 2048 Hz and choose fl to be fl =

1.35 fstart, where we identify the start of the NR simulation
fstart as the peak of the NR waveform in the frequency domain.
The choice of a buffer factor of 1.35 is needed to exclude fea-
tures caused by the Fourier transform, which would spoil the
match. This is particularly important when comparing a time-
domain signal and a frequency-domain approximant, as will
be done in following sections.4 We fix fh = 2048 Hz. We ta-
per the time-domain waveforms using a Planck window func-
tion [170], before transforming them in frequency domain.

Given the binary parameters:

ΛΛΛ ≡ {q,χ1,χ2}, (67)

and calibration parameters

θθθ ≡ {a6,dSO,∆t22
ISCO}, (68)

we define the unfaithfulness (or mismatch) of hEOB to hNR,
for the same physical parameters ΛΛΛ, and as a function of the
calibration parameters θθθ, as

M(θθθ) = 1−〈hEOB(ΛΛΛ;θθθ) | hNR(ΛΛΛ)〉 . (69)

The goal that we set for the calibration of the SEOBNRv5model
is to find values of the calibration parameters θθθ(ΛΛΛ) such that
the (2,2) mode matches with the NR (2,2) mode above 99.9%
(for the SEOBNRv4 model the goal was set to 99%). The 10−3

requirement as maximum mismatch is challenging, but still
reasonable, considering that other state-of-the-art aligned-spin
approximants [42, 45, 81] can reach mismatches of 10−3 or
smaller against most of NR configurations. More importantly,
we need to push the accuracy of the SEOBNR models in view
of more sensitive runs with current facilities and new detectors
on the ground and in space [171]. A 10−4 goal would be ex-
tremely challenging, and would demand a more sophisticated
calibration with additional parameters, as well as a careful
treatment of NR errors, which are often of this order of mag-
nitude (as estimated, for example, by comparing different res-
olutions or extrapolation orders of the same simulation). We
also require, as in the SEOBNRv4 model, that the difference
in merger time δtmerger (defined as the peak of the (2,2)-mode
amplitude) after a low-frequency phase alignment is smaller
than 5M, as the mismatch alone is not very sensitive to such
differences.

B. Nested-sampling analysis

Given the dimensionality of the problem and the large num-
ber of NR simulations at our disposal, it is especially impor-
tant to devise a computationally efficient and flexible cali-
bration procedure. For this work, we improve on the strat-
egy adopted in the SEOBNRv4 model, which consisted in a

4 If fl < 10 Hz, or when comparing different waveform models between each
other, we instead take fl = 10 Hz.

Markov-chain Monte Carlo (MCMC) analysis to obtain a
posterior distribution for the calibration parameters for each
NR simulation. MCMC methods allow to easily explore
high-dimensional parameter spaces, and have the advantage
of providing information on the structure of the calibration
space, particularly on the correlations between calibration pa-
rameters. For our problem, we find the best computational
performance with nested samplig [172], using the sampler
nessai [173] through Bilby [174]. We compare our result
to other samplers available in Bilby and to the emcee [175]
MCMC sampler used to calibrate SEOBNRv4 for a few cases,
finding consistent results.

We define the likelihood function to be:

P(hNR|θθθ) ∝ exp

−1
2

(
Mmax(θθθ)
σM

)2

−
1
2

(
δtmerger(θθθ)

σt

)2 , (70)

whereMmax(θθθ) is the maximum unfaithfulness between EOB
and NR waveforms over the total mass range 10M ≤ M� ≤
200M, σM is chosen to be 10−3, and σt is chosen to be
5M, to impose our calibration requirements. We carry out
the calibration for 441 SXS NR waveforms plus 1 Einstein
Toolkit NR waveform, as summarized above. We take uni-
form priors for all calibration parameters, specifically a6 ∈

[−500,500], ∆t22
ISCO ∈ [−100,40], dSO ∈ [−500,500].

For each NR simulation we obtain a posterior distribution
P(θθθ|hNR) whose mean and variance (and mutual correlations
between the parameters) relate to the calibration requirements.
The next step in the calibration procedure is to compute a fit
for the calibration parameters as functions of the binary pa-
rameters θθθ(ΛΛΛ), starting from the set of calibration posteriors.
In some cases, the correlations between the parameters lead
to a secondary mode. To obtain a more regular fit, we select
only one mode of each calibration posterior, based on conti-
nuity considerations. After this step, we discard samples that
do not satisfy the calibration requirements for each posterior.
If this would discard more than 50% of the points, we instead
keep half of the original samples of the selected mode with
the best likelihood values. We do this since, for a few of the
most challenging NR simulations, like SXS:BBH:1124 with
q = 1,χ1 = χ2 = 0.998, we do not find values of the calibra-
tion parameters that satisfy both requirements on Mmax and
δtmerger. In Fig. 3 we show an example of a calibration poste-
rior for the NR simulation SXS:BBH:2420.

As done for the SEOBNRv4 model, we find it convenient to
perform the calibration hierarchically, starting from nonspin-
ning (noS) and then moving to aligned-spin waveforms. First,
we sample over 18 nonspinning configurations (the remain-
ing 21 nonspinning simulations are only used for validation)
using as calibration parameters

θθθnoS ≡ {a6,∆t22
ISCO,noS}. (71)

We then fix a6(ν), ∆t22
ISCO,noS(ν) by the respective fits, as de-

scribed in the next section, and sample over the remaining 403
aligned-spin configurations using as calibration parameters

θθθS ≡ {dSO,∆t22
ISCO,S}, (72)
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Figure 3. Posterior for the calibration parameters {dSO,∆t22
ISCO,S},

obtained by comparing to the NR simulation SXS:BBH:2420 (q =

1.0,χ1 = 0.2,χ2 = 0.2). The blue posterior is the result of the nested-
sampling analysis described in Sec. IV B, and shows values mostly
clustered around two distinct regions or modes. The green posterior
is what we obtain after removing one of the two modes and keep-
ing only the points with Mmax < 10−3 and δtmerger < 5M. We use
these processed posteriors to obtain fits for the calibration parame-
ters across parameter space.

where

∆t22
ISCO = ∆t22

ISCO,noS +∆t22
ISCO,S, (73)

and ∆t22
ISCO,S is assumed to vanish in the nonspinning limit.

We investigate the possibility of adding a spin dependence to
a6, or adding a spin-spin calibration parameter dSS at 5PN or-
der similar to the one used in the SEOBNRv4model, but we find
no significant improvements — for example by comparing the
mismatch and time to merger against NR taking the maximum
likelihood points of the calibration posteriors. On the other
hand, limiting the sampling to two dimensions makes it faster,
and produces more Gaussian-like posteriors which are signif-
icantly simpler to fit.

C. Calibration-parameter fits and extrapolation

We now discuss how we obtain fits for the calibration pa-
rameters θθθ = {a6,∆t22

ISCO,dSO} as functions of the binary pa-
rameters ΛΛΛ = {q,χ1,χ2}, given the calibration posteriors. To
help with the extrapolation, we also use some knowledge of
the conservative dynamics in the ν→ 0 limit. For a6 we em-
ploy Eq. (11), which is obtained by requiring that the ISCO
shift predicted by the SEOBNRv5 Hamiltonian agrees with the
1GSF ISCO shift, as explained is Sec. (II A). For ∆t22

ISCO we
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Figure 4. Fits for the nonspinning calibration parameters θθθnoS =

{a6,∆t22
ISCO,noS}. The parameters are obtained by least-square fits of

the maximum likelihood points (blue dots) of the calibration pos-
teriors (shaded violins), for a set of NR simulations with different
mass-ratios ν, together with estimates of the test-mass limit values
(green dots). We rescale ∆t22

ISCO,noS by ν1/5 to improve its extrapola-
tion in the ν→ 0 limit. No processing is needed for the nonspinning
calibration posteriors, as the maximum likelihood point lies in the
same mode for all configurations.

estimate the test-mass values, for different spin magnitudes,
using results of Ref. [134]. We do so by imposing that the
difference between the peak of the (2,2) mode and the peak of
the orbital frequency in the EOB test-mass–limit waveforms
matches the one measured in the Teukolsky-code waveforms
(see, e.g., Fig. 13 of Ref. [134]). We then convert the cor-
responding value to the difference between the ISCO and the
peak of the (2,2)-mode amplitude. Since the Teukolsky-code
waveforms were produced using a different EOB dynamics,
we prefer to relate those quantities closer to merger, and not
directly match the difference between the ISCO and the peak
of the (2,2) mode of Teukolsky-code and EOB waveforms.
Nevertheless, we find that the difference is not be very large.

In the nonspinning limit, the data for θθθnoS = {a6,∆t22
ISCO,noS}

are simple enough to allow for an independent direct fit of the
maximum-likelihood point of the calibration posteriors and
TML values, using least square fits. For a6 we use a quartic
polynomial in ν, while for ∆t22

ISCO,noS, that is an ansatz of the
form

∆t22
ISCO,noS = (a0 + a1 ν+ a2 ν

2 + a3 ν
3)ν−1/5+a4 ν, (74)

where the ν−1/5 factor ensures the expected test-mass scaling
for (t22

peak − tISCO) [50], and provides a better extrapolation of
the fit in the ν→ 0 limit. Figure 4 shows the {a6,∆t22

ISCO,noS}

data and the resulting fits.
For the aligned-spin fit of θθθS = {dSO,∆t22

ISCO,S}, we use a
similar approach as in the SEOBNRv4 model [75], with a
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few important differences. We fit the median of the cali-
bration posteriors, instead of the mean, as this provides bet-
ter unfaithfulness when comparing against NR. In principle,
fitting the maximum-likelihood also for aligned-spin cases
would give the best result, but does not turn out to be a vi-
able option due to the lack of regularity in the data. We
use three variables in the fit (ν,a+,a−), instead of just (ν,χ),
where χ = χS +χAδ/(1− 2ν), as this provides a better result,
also when using a subset of NR simulations for the fit (see
also Appendix E), or when comparing to independent sets of
NRHybSur3dq8 [24] waveforms not used in the calibration.
We rescale ∆t22

ISCO,S by ν1/5 to ensure the correct test-mass
scaling.

More specifically, after removing secondary modes and dis-
carding samples that don’t meet the calibration requirements,
and after rescaling ∆t22

ISCO,S by ν1/5, we consider the medi-
ans 〈θθθS〉(n) and covariance matrices CS(n) of the calibration
posteriors, with n labeling each of the 442 NR simulations.
We parametrize dSO by a cubic polynomial in (ν,a+,a−) and
∆t22

ISCO,Sν
1/5 by a cubic polynomials in (ν,a+,a−) with an ad-

ditional a4
+ feature. We determine the coefficients of these

polynomials by minimizing the following function, using a
Sequential Least Squares Programming (SLSQP) minimiza-
tion algorithm [75]

χ2
s ≡

∑
n∈Ss

w

2

(
θθθS−〈θθθS〉(n)

) (
C−1

S

)
(n)

(
θθθS−〈θθθS〉(n)

)T
+χ2

TML,

(75)

where χ2
TML is a term that penalizes deviations from the test-

mass limit of ∆t22
ISCO,S and takes the form

χ2
TML =

∑
χi,0

(
∆t22

ISCO,S−∆t22,TML
ISCO,χi

)2

σ2
TML

, (76)

in which ∆t22,TML
ISCO,χi

are the estimated test-mass values of
∆t22

ISCO,S, for different spin magnitudes χi for which Teukol-
sky waveforms are available, and we take σTML = 5M. As for
the SEOBNRv4 model, the function w is a weighting function
of the form

w ≡ χ2
1 +χ2

2 +
|χ|

2ν
, (77)

which accounts for the inhomogeneous distribution of NR
simulations in the BBH parameter space.

We finally list the calibration-parameter fits:

a6 = 329523.262ν4−169019.14ν3 + 33414.4394ν2−3021.93382ν+ 41.787788, (78)

∆t22
ISCO,noS = ν−1/5+10.051322ν

(
55565.2392ν3−9793.17619ν2−1056.87385ν−59.62318

)
, (79)

∆t22
ISCO,S =ν−1/5

(
−6.789139a4

+ + 5.399623a3
+ + 6.389756a2

+a−−132.224951a2
+ν+ 49.801644a2

+

+ 8.392389a+a2
−+ 179.569825a+a−ν−40.606365a+a−+ 384.201019a+ν

2−141.253182a+ν

+17.571013a+−16.905686a2
−ν+ 7.234106a2

−+ 144.253396a−ν2−90.192914a−ν+ 14.22031a−
)
, (80)

dSO =−7.584581a3
+−10.522544a2

+a−−42.760113a2
+ν+ 18.178344a2

+−17.229468a+a2
−

+ 362.767393a+a−ν−85.803634a+a−−201.905934a+ν
2−90.579008a+ν+ 49.629918a+

−7.712512a3
−−238.430383a2

−ν+ 69.546167a2
−−1254.668459a−ν2 + 472.431938a−ν

−39.742317a−+ 478.546231ν3 + 679.52177ν2−177.334832ν−37.689778. (81)

V. PERFORMANCE OF THE SEOBNRV5HMMODEL
AGAINST NUMERICAL-RELATIVITY SIMULATIONS

To assess the impact of the improvements introduced in
the SEOBNRv5HM waveform model, we compare it to the set
of NR simulations described in Sec. IV, and to other state-
of-the-art aligned-spin approximants. We do so by perform-

ing unfaithfulness computations, as well as comparisons of
angular-momentum flux and binding energy against NR. Fi-
nally, we assess the computational efficiency of the model for
GW data-analysis purposes, providing benchmarks.
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A. Faithfulness for multipolar waveforms

The GW signal emitted by a quasi-circular aligned-spin
BBH system depends on 11 parameters: the masses and spins
λλλ = {m1,2,χ1,2}, the direction of the observer from the source
described by (ι,ϕ0), the luminosity distance dL, the polariza-
tion angle ψ, the location in the sky of the detector (θ,φ), and
the time of arrival tc. The strain in the detector caused by a
passing GW can be expressed as

h(t) ≡F+(θ,φ,ψ) h+(t; ι,ϕ0,dL,λλλ, tc)
+ F×(θ,φ,ψ) h×(t; ι,ϕ0,dL,λλλ, tc) , (82)

where F+,× are the antenna pattern functions [167, 168]. The
strain in Eq. (82) can be expressed in terms of an effective
polarization angle κ(θ,φ,ψ) as

h(t) =A(θ,φ)(h+ cosκ+ h× sinκ), (83)

where the dependences of κ, h+ and h× have been removed to
ease the notation, and the definition of the coefficient A(θ,φ)
can be found in Refs. [76, 79].

To assess the agreement between two waveforms with
higher-order multipoles [44, 76, 79], which we denote as the
signal, hs and the template, ht, observed by a detector, we de-

fine the faithfulness function [76, 79],

F (Ms, ιs,ϕ0s, κs) = max
tc,ϕ0t ,κt

 〈hs|ht〉
√
〈hs|hs〉〈ht |ht〉

∣∣∣∣∣∣ ιs=ιt
λλλs(ts=t0s )=λλλt(tt=t0t )

 ,
(84)

where the inner product is defined in Eq. (65). Typically, we
set the inclination angle of the template and the signal to be
the same, while the coalescence time, azimuthal and effective
polarization angles of the template, (t0t ,ϕ0t , κt), are adjusted
to maximize the faithfulness of the template. The maximiza-
tions over the coalescence time tc, and coalescence phase ϕ0t
are performed numerically, while the optimization over the ef-
fective polarization angle κt is done analytically as described
in Ref. [176].

To reduce the dimensionality of the faithfulness function it
is useful to define the sky-and-polarization-averaged faithful-
ness [78, 79] as

F (Ms, ιs) ≡
1

8π2

∫ 2π

0
dκs

∫ 2π

0
dϕ0 sF (Ms, ιs,ϕ0 s, κs) . (85)

We also define the sky-and-polarization-averaged, signal-to-
noise-ratio (SNR)-weighted faithfulness as [76, 79]:

F SNR (Ms, ιs) ≡
3

√√√√∫ 2π
0 dκs

∫ 2π
0 dϕ0 sF 3 (Ms, ιs,ϕ0 s, κs)SNR3 (ιs,ϕ0 s, κs)∫ 2π

0 dκs
∫ 2π

0 dϕ0 s SNR3 (ιs,ϕ0 s, κs)
, (86)

where the SNR
(
ιs,ϕ0s , θs,φs, κs,dLs,λλλs, tc s

)
is defined as

SNR
(
ιs,ϕ0s , θs,φs, κs,dLs,λλλs, tc s

)
≡

√
(hs,hs). (87)

The weighting by the SNR in Eq. (87) takes into account
the dependence on the phase and effective polarization of the
signal at a fixed distance. Finally, we define the sky-and-
polarization-averaged, SNR-weighted unfaithfulness (or mis-
match) as

MSNR = 1−F SNR. (88)

B. Accuracy of SEOBNRv5 (2,2) mode

We start by considering (2,2)-mode only mismatches. In
this case, the result does not depend on the inclination, and
the mismatch definition reduces to the one used in Sec. IV.
Figure 5 shows the (2,2)-mode mismatch over a range of to-
tal masses between 10 and 300M� using the 442 NR sim-
ulations summarized in Sec. IV for different state-of-the-
art aligned-spin approximants: SEOBNRv5, its predecessor
SEOBNRv4 [75], the aligned-spin model from the other EOB
family TEOBResumS [62, 81, 104, 105] and IMRPhenomXAS

[42], from the 4th generation of Fourier-domain phenomeno-
logical waveform models. All approximants are called
through LALSimulation, except for SEOBNRv5 and for
TEOBResumS, for which we use the latest available public ver-
sion TEOBResumSv4.1.4-GIOTTO. 5

The colored lines highlight cases with the worst maximum
mismatch for each model: as expected, the most challenging
cases have high mass ratio and high spins, as all models have
been calibrated to few NR simulations in this region of pa-
rameter space. We note that SEOBNRv5 has no outliers beyond
0.3% and many more cases at lower unfaithfulness, especially
compared to SEOBNRv4 and TEOBResumS-GIOTTO. Compar-
ing the two upper panels of Fig. 5, we can see in particular that
SEOBNRv5 yields unfaithfulnesses almost one order of magni-
tude smaller than those of its predecessor SEOBNRv4 model.

The top panel of Fig. 6 shows histograms of the maximum
(2,2)-mode mismatch over the same range of total masses. We

5 This corresponds to the commit fc4595df72b2eff4b36e563f607eab5374e695fe
of the public bitbucket repository https://bitbucket.org/eob_ihes/
teobresums, and it’s the latest tagged version at the time of this
publication.

https://bitbucket.org/eob_ihes/teobresums
https://bitbucket.org/eob_ihes/teobresums
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Figure 5. (2,2)-mode mismatch over a range of total masses between 10 and 300 M�, between different aligned-spin approximants and the 442
NR simulations used in this work. The colored lines highlight cases with the worst maximum mismatch for each model. Note that SEOBNRv5
has no outliers beyond 0.3% and many more cases at lower unfaithfulness, especially compared to SEOBNRv4 and TEOBResumS-GIOTTO.

also show an estimate of the NR error computed as the mis-
match between NR simulations with the highest and second-
highest resolutions, if available. The mismatch between NR
simulations of the highest resolution and different extrapola-
tion order is typically one order of magnitude smaller than
the one obtained comparing different resolutions, hence we
do not show it in these comparisons. The vertical dashed
lines correspond to the medians of the distributions. Over-
all IMRPhenomXAS achieves the lowest median unfaithfulness
(1.31×10−4), while still having two outliers above 0.3%, with
SEOBNRv5 closely following with median mismatch 1.99 ×
10−4, but a larger tail of cases with low unfaithfulness ap-
proaching 10−5. TEOBResumS-GIOTTO is slightly less accu-
rate with median mismatch 5.12× 10−4, while SEOBNRv4 is
the least faithful model with median value 1.44×10−3, almost
one order of magnitude larger than SEOBNRv5. These results
are summarized in Table I, together with the fraction of cases
falling below 10−3 and 10−4 for each approximant.

The NR error is about one order of magnitude smaller than
the SEOBNRv5 modeling error, with median value ∼ 2×10−5.
Still, there are a few cases where the two are comparable, and

improving the accuracy of the NR simulations used to cali-
brate the model would be critical to reducing the modeling
errors by another order of magnitude. The bottom panel of
Fig. 6 provides a complementary summary of the unfaithful-
ness calculation, by showing the distribution of the maximum
(blue), median (orange) and minimum (green) mismatch over
the same range of total masses for the different models.

We find that 10% of the cases are above 0.1% maximum
mismatch for SEOBNRv5: most of those correspond, as ex-
pected, to high spins, both for large mass-ratios and for q ' 1
where spin magnitudes can reach values up to 0.998. In a fu-
ture update of the model, the description of these cases could
be improved by suitably including the full 5PN spin contribu-
tions (NNNLO SO and SS, NLO S3 and S4) to the conserva-
tive dynamics recently obtained in Refs. [144–147, 177–182],
by including all spin-contributions up to 3.5PN to the wave-
form modes, as derived in Refs. [118, 154], or by additional
spin-dependent calibration coefficients other than dSO.

Other challenging cases for SEOBNRv5 are those with
large mass-ratio, small a+, but large secondary spin,
for example SXS:BBH:1430, with parameters (q,χ1,χ2) =
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Figure 6. Top panel: Histogram of the maximum (2,2)-mode mis-
match over a range of total masses between 10 and 300 M�, between
different aligned-spin approximants and the 442 NR simulations used
in this work. The NR error is estimated by computing the mismatch
between NR simulations with the highest and second-highest reso-
lutions. The vertical dashed lines show the medians. Bottom panel:
distribution of the maximum (blue), median (orange) and minimum
(green) mismatch over the same range of total masses for the differ-
ent models.

(8.0,0.284,−0.751). The calibration term, which has the form
∼ a+dSO, is suppressed, and deviations of the model from NR
are only partially captured by having dSO itself depending also
on the spin difference a−. To understand what could be the er-
ror when one has exactly a+ = 0, but a− is large, we can com-
pare the model to NRHybSur3dq8 waveforms: taking q = 8
and varying χ2, while fixing χ1 so that a+ = 0, we see at most
mismatches around 0.004 for large negative secondary spin
χ2 <−0.9, where NRHybSur3dq8 is also extrapolating from its
training region (χi ≤ 0.8). While additional calibration terms
with a different spin dependence could improve these cases,
this shows that for the moment the analytical spin information
captures the correct behavior at a level comparable to other
modeling errors.

C. Accuracy of SEOBNRv5HM modes

We now turn to mismatches for the full polariza-
tions, including higher-multipoles. Figure 7 shows
the sky-and-polarization averaged, SNR-weighted mis-
match, for inclination ι = π/3, over a range of to-
tal masses between 20 and 300 M� between the 441
SXS NR simulations used in this work and different
multipolar aligned-spin approximants: SEOBNRv4HM [76],
SEOBNRv5HM, TEOBResumS-GIOTTO [62, 81, 104, 105] and
IMRPhenomXHM [44]. For each approximant we include all
modes available6, while for NR waveforms we use modes up
to `max = 5. The modes included are specifically (`, |m|) =

(2,2), (2,1), (3,3), (4,4), (5,5) for SEOBNRv4HM, (`, |m|) =

(2,2), (2,1), (3,3), (3,2), (4,4), (4,3), (5,5) for SEOBNRv5HM,
(`, |m|) = (2,2), (2,1), (3,3), (3,2), (4,4) for IMRPhenomXHM
and (`, |m|) = (2,2), (2,1), (3,3), (3,2), (3,1), (4,4), (4,3), (4,2)
for TEOBResumS-GIOTTO.

In this comparison we omit the Einstein Toolkit simu-
lation, for which we only have the (2,2) mode. As in the previ-
ous results, we highlight with a different color cases with the
worst maximum mismatch for each model: unsurprisingly the
worst cases are at the corners of the NR parameter space, and
correspond to configurations with very high q and non-zero
spins, where the impact of higher-multipoles is substantial,
also due to the significant inclination ι = π/3.

First of all, we note that all models perform worse com-
pared to the (2,2)-mode only case, as expected due to the lim-
ited alignment freedom with a global phase and time shift, but
also because the higher modes are available today at lower
PN order than the dominant one, and their modeling close to
merger is complicated by numerical noise in NR simulations.

Focusing on the upper panels, comparing SEOBNRv4HM and
SEOBNRv5HM, we see an overall improvement, with many
more cases between 10−4 and 10−3 for SEOBNRv5HM, and just
a few outliers above 1% for large values of the total mass.
The improvement for low total mass, where an accurate in-
spiral is primarily important, is particularly significant, and
SEOBNRv5HM is always well below 1%, never exceeding 0.3%.
On the other hand the increase of the mismatch with the total
mass for SEOBNRv5HM, absent in the (2,2)-mode only compar-
ison, points to limitations in the merger-ringdown modeling
of the higher modes, as in other models. A related limitation
is the absence of some of the higher modes in the waveform
models, which contribute significantly to the ringdown sig-
nal for high mass-ratio systems at a high inclination, as we
quantify below. Focusing on the bottom panels, we see that
IMRPhenomXHM also has many cases between 10−4 and 10−3,
but reaches high values of the unfaithfulness for the most chal-
lenging configurations with q = 15, exceeding 10%. We point
out that IMRPhenomXHM has not been calibrated to q = 15
SXS simulations, that became only recently available [30], but

6 For TEOBResumS-GIOTTO we do not include the (5,5) mode, after finding
that, in the version of the code used for these comparisons, it has an un-
physically large amplitude close to merger in some corners of the parameter
space (equal-mass, large opposite spins, as for example SXS:BBH:2132).
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Approximant SEOBNRv4 SEOBNRv5 IMRPhenomXAS TEOBResumS-GIOTTO

medianmaxMM 1.44×10−3 1.99×10−4 1.31×10−4 5.12×10−4

%maxMM < 10−3 38% 90% 97% 76%

%maxMM < 10−4 1% 27% 29% 1%

Table I. Summary of the (2,2)-mode mismatch over a range of total masses between 10 and 300 M�, between different aligned-spin approxi-
mants and the 442 NR simulations used in this work. We display the median of the maximum mismatch across total mass, and the fraction of
cases falling below 10−3 and 10−4.
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Figure 7. The sky-and-polarization averaged, SNR-weighted mismatch, for inclination ι = π/3, over a range of total masses between 20 and
300 M� between different aligned-spin multipolar approximants and the 441 SXSNR simulations used in this work. The colored lines highlight
cases with the worst maximum mismatch for each model.

was calibrated to private q = 18 BAM waveforms, with differ-
ent spin values, which have not been used for SEOBNRv5HM.
TEOBResumS-GIOTTO achieves unfaithfulness between 10−3

and 10−2 for most cases, but also has an appreciable number
of outliers reaching mismatch 10%, possibly pointing to ro-
bustness issues in some of the higher modes close to merger.

In order to quantify how much the increase of the
mismatch with the total mass is related to the missing
modes, we show in Fig. 8 the sky-and-polarization aver-

aged, SNR-weighted mismatch, for inclination ι = π/3, over
a range of total masses between 20 and 300 M� of NR
waveforms with the same modes as SEOBNRv5HM (`,m) =

(2,2), (3,3), (2,1), (4,4), (5,5), (3,2), (4,3) against NR wave-
forms with all (` ≤ 5) modes. As expected we see an increase
of the mismatch with total mass, indicating that the error due
to neglecting some higher modes is mostly important in the
ringdown, and we see it can reach more than 0.4% for high q
and large spins. This tells us that to reach the same accuracy of
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Figure 8. The sky-and-polarization averaged, SNR-weighted mis-
match, for inclination ι = π/3, over a range of total masses be-
tween 20 and 300 M�, of NR waveforms with the same modes
as SEOBNRv5HM (`,m) = (2,2), (3,3), (2,1), (4,4), (5,5), (3,2), (4,3)
against NR waveforms with all (` ≤ 5) modes

.

just the (2,2) mode (< 0.3%) for the full polarizations at high ι
one would need to include additional modes in SEOBNRv5HM.

Figure 9 summarizes the comparison of Fig. 7: in the
top panel we show histograms of the maximum unfaithful-
ness over the same range of total masses, with the verti-
cal lines corresponding to the medians of the distributions,
and an estimate of the NR error computed as the mismatch
between NR simulations with different resolutions. As for
the (2,2)-mode only case, the NR error is about one order
of magnitude smaller than the SEOBNRv5HM modeling error,
with median ∼ 1 × 10−4. Overall SEOBNRv5HM achieves a
lower unfaithfulness than SEOBNRv4HM, IMRPhenomXHM and
TEOBResumS-GIOTTO, with the median value 1.01×10−3 and
only 7 cases above 1%, as summarized in Table II. The vi-
olin plots in the bottom panel provide a further comparison
by showing the distribution of the maximum (blue), median
(orange) and minimum (green) mismatch for each model.

We note that in the unfaithfulness computation we in-
clude all modes up to `max = 5 in the NR waveforms,
while the (5,5) mode is not included in IMRPhenomXHM and
TEOBResumS-GIOTTO. To check the impact of neglecting the
(5,5) mode in these two models, we also repeat the com-
parison presented in this section using only multipoles up to
`max = 4, in both the models and the NR waveforms. We find
a result very similar to what is shown above, with all models
displaying a slightly better performance, due to fewer missing
modes, and the same hierarchy for the accuracy of different
approximants.

To validate SEOBNRv5HM, we compare it to the multipo-
lar aligned-spin surrogate model NRHybSur3dq8 [24]. This
model was built for binaries with mass-ratios 1− 8 and spin
magnitudes up to 0.8, and provides waveforms with errors
comparable to the NR accuracy in the region where the model
was trained. NRHybSur3dq8 waveforms were not used in the
construction of SEOBNRv5HM, so this is an important valida-
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Figure 9. Top panel: Histogram of the maximum sky-and-
polarization averaged, SNR-weighted mismatch, for inclination ι =

π/3, over a range of total masses between 20 and 300 M�, between
different aligned-spin multipolar approximants and the 441 SXS NR
simulations used in this work. The NR error is estimated by com-
puting the mismatch between NR simulations with the highest and
second-highest resolutions. The vertical dashed lines show the me-
dians. Bottom panel: distribution of the maximum (blue), median
(orange) and minimum (green) mismatch over the same range of to-
tal masses for the different models.

tion check of the NR calibration pipeline. We point out that
NRHybSur3dq8 is trained on NR waveforms hybridized with
PN and SEOBNRv4 waveforms in the early inspiral. In the fol-
lowing comparisons, we generate waveforms from an initial
geometric frequency of 0.015, for which the impact of the hy-
bridization should not be large.

Figure 10 compares SEOBNRv4HM and SEOBNRv5HM against
NRHybSur3dq8, showing a kernel density estimation of the
distribution of the maximum mode-by-mode mismatches be-
tween them. We use 5000 random configurations with q ∈
[1,8], |χi| ≤ 0.9, allowing some extrapolation outside of the
surrogate’s training region, as to also test the extrapolation of
the SEOBNRv5HM calibration.

First, we notice that the (2,2)-mode median mismatch ∼
3× 10−4 is comparable to the one against NR, only slightly
higher because of the larger number of challenging cases with
high q and high spin in this comparison. The maximum un-
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Approximant SEOBNRv4HM SEOBNRv5HM IMRPhenomXHM TEOBResumS-GIOTTO

medianmaxMMSNR 3.11×10−3 1.01×10−3 2.50×10−3 4.59×10−3

%maxMMSNR < 10−2 88% 98% 86% 74%

%maxMMSNR < 10−3 5% 49% 23% 0%

Table II. Summary of the sky-and-polarization averaged, SNR-weighted mismatch, for inclination ι= π/3, over a range of total masses between
20 and 300 M�, between different aligned-spin multipolar approximants and the 441 SXS NR simulations used in this work. We display the
median of the maximum mismatch across total mass, and the fraction of cases falling below 10−2 and 10−3.

(2, 2) (3, 3) (2, 1) (4, 4) (5, 5) (3, 2) (4, 3)
10−5

10−4

10−3

10−2

10−1

100

m
ax M
M

SEOBNRv4HM

SEOBNRv5HM

Figure 10. Mode-by-mode mismatches between SEOBNRv4HM,
SEOBNRv5HM and NRHybSur3dq8, for 5000 random configurations
with q ∈ [1,8], |χi| ≤ 0.9. For each mode we show the maximum mis-
match over a range of total masses between 10 and 300 M�. The
horizontal lines show the medians.

faithfulness for the (2,2) mode, which is reached, as expected,
for large mass ratios and positive spins, remains below 0.01,
if we limit the comparison to the region q ∈ [1,8], |χi| ≤ 0.8
where the surrogate was trained, and can be only slightly
above 0.01 if going up to |χi| = 0.9 in the surrogate’s ex-
trapolation region. This confirms a good extrapolation of the
SEOBNRv5HM fits. Comparing to SEOBNRv4HM, we have as ex-
pected fewer cases above 0.01, and much lower median un-
faithfulness.

Going to the higher multipoles, we see larger errors for the
smaller higher-modes, as for most other state-of-the-art mod-
els. The subdominant higher modes in NR simulations are
noisier, and more difficult to model (both for EOB models and
for NRHybSur3dq8). Some of the higher modes also include
considerably less analytical information compared to the (2,2)
mode (see Appendix B), and adding the full 3.5PN contribu-
tions from Refs. [118, 154] would likely bring a significant
improvement to some of them. Nonetheless, we see a consis-
tent improvement comparing SEOBNRv5HM to SEOBNRv4HM,
mostly due to the enhanced calibration and merger-ringdown
description.

The (2,1) mode shows a tail of cases with large mismatches
for both SEOBNRv5HM and SEOBNRv4HM: as also discussed
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Figure 11. Mode-by-mode mismatches between SEOBNRv4HM,
SEOBNRv5HM and NRHybSur2dq15, for 5000 random configurations
with q ∈ [1,15], |χ1| ≤ 0.6,χ2 = 0. For each mode we show the maxi-
mum mismatch over a range of total masses between 10 and 300 M�.
The horizontal lines show the medians.

in Ref. [76] those are cases with a minimum in the ampli-
tude close to merger, which can be especially difficult to
model given that the current merger-ringdown ansatz assumes
a monotonic post-merger amplitude evolution. Nonetheless,
these are configurations where the (2,1) mode is highly sup-
pressed, and would not impact significantly in the full po-
larizations. We also compare the (3,2) and (4,3) modes of
SEOBNRv5HM against NRHybSur3dq8 (these modes are not in-
cluded in SEOBNRv4HM). We see that these modes show the
largest modeling errors, which is expected considering they
are among the smallest modes for most configurations, and
also keeping in mind that the mode-mixing modeling in the
ringdown is approximated.

Figure 11 shows a similar comparison against
NRHybSur2dq15 [30], limited to the modes modeled by
the surrogate. This model was built for binaries with
mass-ratios 1 − 15, primary spin up to 0.5 and no sec-
ondary spin. We consider 5000 random configurations with
q ∈ [1,15], |χ1| ≤ 0.6,χ2 = 0, allowing again some extrapola-
tion outside of the surrogate’s training region, as to also test
the extrapolation of the SEOBNRv5HM calibration fits. We see
a similarly large improvement for all the modes comparing
SEOBNRv5HM to SEOBNRv4HM, and the (2,2) mode result, with



21

maximum value 2.3× 10−3 and median 1.5× 10−4, confirms
the robustness of the calibration procedure.

In Fig. 12 we show the sky-and-polarization averaged,
SNR-weighted mismatch, for inclination ι = π/3, between
SEOBNRv5HM and NRHybSur3dq8, for 2000 random config-
urations with q ∈ [1,8], |χi| ≤ 0.8. In particular, we plot the
maximum mismatch as a function of the mass-ratio q and the
primary spin χ1. The unfaithfulness grows with mass ratio
and spin, with the highest unfaithfulness reaching 0.04. This
effect also is enhanced by the fact that we start all the wave-
forms at the same frequency and for higher mass ratios, the
number of cycles in band grows as ∼ 1/ν.

We plot in Fig. 13 a similar comparison between
SEOBNRv5HM and IMRPhenomXHM, for 2000 random config-
urations with q ∈ [1,20], |χi| ≤ 0.99 in order to examine the be-
havior of the models outside of the region in which they were
calibrated to NR. As in the previous comparsion, the unfaith-
fulness grows with mass-ratio and spin, and can reach very
large values for q ' 20 and high χeff. This confirms that wave-
form systematics are important, even for aligned-spin systems
observed by current detectors, in the region where waveform
models are not calibrated to NR simulations.

D. Accuracy of SEOBNRv5 angular-momentum flux and
binding energy

The performance of waveform models is typically assessed
by computing the unfaithfulness between the waveforms pro-
duced by the model and NR waveforms with corresponding
parameters, as the waveform itself is the relevant quantity used
in data analysis. In EOB models, however, the knowledge of
the binary’s dynamics allows us to complement the waveform
comparison with other dynamical quantities. Since the cali-
bration of the model to NR is based on the waveforms, seeing
an improvement in different dynamical quantities is a pow-
erful check of the physical robustness of the model. In par-
ticular, we examine the angular-momentum flux radiated at
infinity [183, 184], and the binding energy [185–187].

We compute the NR angular-momentum flux at infinity
from the waveform modes using

J̇ = −
1

8π

`max∑
`=2

∑̀
m=−`

m=
(
ḣ`mh∗`m

)
, (89)

where we assume `max = 8. For clarity, we normalize the flux
by the leading (Newtonian) one for circular orbits,

J̇N =
32
5
ν2 (MΩ)7/3 , (90)

where we estimate the NR orbital frequency ΩNR from the NR
(2,2)-mode frequency as

ΩNR ≡
ωNR

22

2
. (91)

We denote the normalized flux as

˙̂J =
J̇

J̇N
. (92)

We note again that the SEOBNRv5 flux does not include NQC
corrections, and we practically compute it from the dynamics
as J̇ = ṗφ. In the following, we always consider it as a function
of ΩEOB, which is read from the orbital dynamics.

As an example, in Fig. 14 we compare the SEOBNRv4
and SEOBNRv5 angular-momentum fluxes against the one ex-
tracted from the NR simulation BFI:q2-3d-95:001 with pa-
rameters (q,χ1,χ2) = (1.0,−0.95,−0.949). We plot the fluxes
as function of v = (MΩ)1/3, where it is intended that v =

(MΩNR)1/3 for NR, and v = (MΩEOB)1/3 for the EOB models,
and we highlight with the triangle, square and diamond where
3, 1 and 0 GW cycles before merger (taken as the peak of |h22|)
are. The SEOBNRv5 flux shows a better agreement, thanks to
the additional PN information summarized in Sec. III A and
the calibration to 2GSF. As highlighted in Ref. [116], the lat-
ter seems to be the most significant source of improvement.

To quantify the improvement of the SEOBNRv5 model with
respect to SEOBNRv4 across parameter space, we show in
Fig. 15 the fractional difference between of the Newtonian-
normalized angular-momentum flux ˙̂J of SEOBNRv4 and
SEOBNRv5, and the one obtained from the NR simulations de-
scribed in Sec. IV, evaluated two cycles before merger. The
median fractional difference goes from 4.83% to 1.15%, and
while the difference can be as high as 18% for the SEOBNRv4
model, it is always below 9% for the SEOBNRv5 model.

The other comparison we consider is of the binding energy
[185–187]. The NR binding energy data used here was ob-
tained in Ref. [187], while the EOB binding energy is simply
computed by evaluating

Ebind
EOB = HEOB−M, (93)

along the EOB dynamics. Henceforth, to ease the notation,
we will refer to EEOB instead of Ebind

EOB. The EOB orbital fre-
quency is obtained from ΩEOB = ∂HEOB/∂pφ, to be consistent
with the gauge-invariant definition used for NR in Ref. [187].

In Fig. 16 we show the fractional difference between the
NR binding energy for nonspinning configurations, and the
one of SEOBNRv4 and SEOBNRv5, for different mass-ratios.
The gray region is an estimate of the NR error obtained from
the q = 1 data. Both EOB models show minor errors during
most of the inspiral, and stay within the NR uncertainty until
around 3 GW cycles before merger. The SEOBNRv5 model
shows, however, a much better agreement in the late-inspiral,
between 3 and 1 cycles before merger, and remains within
the error until v ' 0.45 for all mass-ratios. As highlighted in
Ref. [116], this improvement is mostly a consequence of the
calibration to 2GSF results.

We now turn to aligned-spin cases, and as starting point
we compare different spin contributions to the binding energy,
which can be extracted by combining results for various spin
combinations as in Refs. [72, 187, 188]

ESO =−
1
6

(−0.6,0) +
8
3

(0.3,0)−2(0,0)−
1
2

(0.6,0), (94a)

ES2 =
3
2

(−0.6,0)−2(0,0) +
3
2

(0.6,0)− (0.6,−0.6), (94b)

ES3 =−
5
6

(−0.6,0)−
8
3

(0.3,0) + 3(0,0)−
1
2

(0.6,0)
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Figure 12. Sky-and-polarization averaged, SNR-weighted mismatch, for inclination ι = π/3, between SEOBNRv5HM and NRHybSur3dq8, for
2000 random configurations with q ∈ [1,8], |χi| ≤ 0.8. We show maximum mismatch over a range of total masses between 20 and 300 M� as a
function of the mass-ratio q and the primary spin χ1.
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Figure 13. Sky-and-polarization averaged, SNR-weighted mismatch, for inclination ι = π/3, between SEOBNRv5HM and IMRPhenomXHM, for
2000 random configurations with q ∈ [1,20], |χi| ≤ 0.99. We show maximum mismatch over a range of total masses between 20 and 300 M�
as a function of the mass-ratio q and the effective spin χeff.
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1
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where the numbers in brackets correspond to the dimension-
less spins (χ1,χ2) of the BHs. The spin-squared contributions

to the binding energy ES2 refer to both S2
i and S1S2 interac-

tions, and similarly the spin-cubic contributions ES3 refer to
both S3

i and S2
i Sj. Among these contributions the spin-orbit

term dominates throughout the inspiral, while the quadratic
and cubic-in-spin terms have comparable magnitudes, with
the quadratic terms growing larger close to merger.

We begin by considering the spin-orbit effects. In Fig. 17
we compare the NR data to SEOBNRv4 and SEOBNRv5. In both
cases, we consider calibrated and uncalibrated models, where
by uncalibrated we mean that we set to zero all calibration
parameters entering the Hamiltonian (the values of ∆t22

ISCO or
∆t22

peak, on the other hand, do not affect these comparisons, as
they only determine the time at which the merger-ringdown
waveform modes are attached). SEOBNRv5 has a better agree-
ment with NR compared to SEOBNRv4, and remains within
the NR error almost until merger. Moreover, the calibrated
SEOBNRv5model performs better than the uncalibrated model
during the entire inspiral, whereas in SEOBNRv4 the calibra-
tion degrades the agreement after v ' 0.45.

The results for the spin-spin term are shown in the left panel
of Fig. 18: again, SEOBNRv5 clearly outperforms SEOBNRv4,
and has differences compatible with the NR uncertainty al-
most up to merger. An interesting difference is that, while un-
calibrated SEOBNRv4 has a smaller difference with NR com-
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Figure 15. Fractional difference between of the Newtonian-
normalized angular-momentum flux ˙̂J of SEOBNRv4 and SEOBNRv5,
and the one obtained from the NR simulations used in this work,
evaluated two cycles before merger.
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pared to the calibrated model, the same trend is not present
in SEOBNRv5. This shows that the calibration of the model,
which focuses on producing accurate waveforms, is not guar-
anteed to provide a better description of the conservative dy-
namics in the strong-field regime. A possible reason for this
difference might be the additional presence of a spin-spin cal-
ibration parameter dSS in SEOBNRv4, breaking the symmetry
underlying the extraction of the terms used here. It is also
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Figure 17. Spin-orbit contribution to the binding energy as a func-
tion of v for SEOBNRv4 (blue), SEOBNRv5 (green) and NR (gray). The
uncalibrated models are obtained by setting to zero the calibration
parameters entering the Hamiltonian. The dashed vertical line rep-
resents the merger of the NR configuration in Eq. (94a) that merges
at the lowest frequency, and the numbers of cycles also refer to the
same simulation, while the EOB curves terminate at EOB merger.
The shaded regions represent the NR error. SEOBNRv5 has a better
agreement with NR compared to SEOBNRv4, and remains within the
NR error almost until merger.

possible that, due to degeneracies between changes in the dis-
sipative and conservative dynamics, the less accurate flux of
SEOBNRv4 is compensated by the calibration of the Hamilto-
nian, and results in an overall worse agreement of the conser-
vative dynamics with NR.

We consider cubic-in-spin contributions to the binding en-
ergy in the right panel of Fig. 18. These effects are minor,
and contribute little to the overall disagreement, however one
can see similarly to the spin-squared contributions that for
SEOBNRv4 the calibration worsens the agreement with NR,
making it the only model that does not stay within the NR
error.

We finally quantify the improvement across parameter
space by computing the fractional energy difference in the
binding energy |EEOB−ENR|/ENR at a fixed frequency v =
√

0.2 ' 0.45 for several configurations. Constructing the bind-
ing energy curves is not a straightforward process, as one
needs to take into account a shift of the curves due to the pres-
ence of junk radiation in NR waveforms, therefore we only
focus on the simulations examined in Ref. [187]. In Fig. 19
we show such a comparison for the SEOBNRv4 and SEOBNRv5
models. In the first case the difference in the binding energy
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Figure 18. Same as Fig 17, but for spin-spin contributions (left panel) and for cubic-in-spin contributions (right panel).

can reach more than 2.5%, especially for large values of the
effective spin χeff , while for SEOBNRv5 we always find devia-
tions from the NR binding energy at the sub-percent level. The
median relative difference is also considerably smaller, going
from 1.15% for SEOBNRv4 to only 0.16% for the SEOBNRv5
model.

E. Computational performance

The fifth generation of SEOBNR models, starting from
SEOBNRv5HM, is implemented in pySEOBNR, a Python package
for developing and using waveform models within the SEOBNR
framework. As described in Ref. [135], pySEOBNR offers a
simple, object-oriented interface for building, calibrating, de-
ploying, and profiling waveform models in both time and fre-
quency domain. The pySEOBNR package moves the develop-
ment core of the SEOBNR framework from the previously used
C-based LALSuite [189] to a much more flexible, modern and
widely used Python infrastructure, setting a new standard for
developing waveform models for current and future GW de-
tectors. The user interface is implemented in pure Python, to
facilitate ease of use and quick adoption by other researchers.
The backend of the package relies on well-known, regularly
maintained packages under open-software licenses, including
Cython [190] and Numba [191] for fast Hamiltonian evalu-
ation and waveform generation, and NumExpr [192] for effi-
cient numpy [193] vectorized operations.

In this section we discuss the computational performance
of the SEOBNRv5HM implementation in pySEOBNR, in terms of
walltime for generating a waveform, and compare the model

to other time-domain aligned-spin approximants that include
higher modes, SEOBNRv4HM, with and without PA approxima-
tion, TEOBResumS-GIOTTO, which also employs the PA ap-
proximation, and IMRPhenomTHM.

Figure 20 shows the walltime for generating a waveform in
the time domain, including interpolation on a constant time
step, for total masses between 10 and 100M�, at starting fre-
quency of 10 Hz, for three values of the mass ratio q = 1,3,10
and spins χ1 = 0.8, χ2 = 0.3. For all approximants we include
all modes up to ` = 4, and keep all other settings as default.
We choose the sampling rate such that the Nyquist criterion is
satisfied for the ` = 4 multipoles. 7

Comparing the SEOBNRv5HM and SEOBNRv4HM models
without the use of the PA approximation (dashed lines), we
find a major performance improvement across all values of the
total mass M. The speedup is most significant for lower total
mass (∼ 50×), and decreases for higher total mass to ∼ 10×.
The difference between SEOBNRv5HM and SEOBNRv4HM PA,
with the PA approximation being used in both cases (plotted
in solid lines), is less drastic. Nonetheless, SEOBNRv5HM is
consistently faster, despite including two additional modes.
The speed-up is up to ∼ 70% for low total-mass binaries.
When using the PA approximation, a significant improvement
in SEOBNRv5HM is the use of analytic equations for the mo-
menta (see Eqs. (19) and 20), whereas these quantities are

7 All benchmarks were performed on the Hypatia computer cluster at the
Max Planck Institute for Gravitational Physics in Potsdam, on a compute
node equipped with a dual-socket 64-core AMD EPYC (Rome) 7742 CPU.
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√
0.2 ' 0.45.

determined numerically in SEOBNRv4HM. We note that the dif-
ference between SEOBNRv4HM with and without the PA ap-
proximation is not limited to the use of the PA approximation,
since SEOBNRv4HM PA features several optimizations, such as
the use of analytic derivatives of the Hamiltonian, which have
also been implemented in the SEOBNRv5HM model indepen-
dently of the use of the PA approximation. This is one of
the reasons why the difference between SEOBNRv5HM with
and without PA is not as large as in the previous generation
of SEOBNR models. It can reach up to ∼ 2× for low total
mass systems, while it is between 10–40% for M ∼ 100M�,
for cases where the cost of integrating the dynamics is less
high. Comparing SEOBNRv5HM to a different EOB model,
TEOBResumS-GIOTTO, employing in both cases the PA ap-
proximation, we see that TEOBResumS-GIOTTO is faster for
high total-mass binaries, with a difference ranging from ∼ 3×
for q = 1 to ∼ 1.5× for q = 10, while the two are compara-
ble for low total masses. The time-domain phenomenological
model IMRPhenomTHM outperforms all EOB models, for large
total-mass systems, by over an order of magnitude. This is due
to its use of fast closed-form expressions, rather than ODE in-
tegration. The gap between the models narrows as the total
mass decreases, as the mode interpolation on a constant time-
step needed for the Fast-Fourier-Transform becomes a major
cost for long inspirals (excluding SEOBNRv4HMwithout PA ap-
proximation, where ODE integration remains by far the main
cost factor).
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Figure 20. Walltimes for SEOBNRv5HM and SEOBNRv4HM,
with PA approximation (solid lines) and without (dashed lines),
TEOBResumS-GIOTTO and IMRPhenomTHM, starting from fstart =

10 Hz, as a function of the total mass M. SEOBNRv5HM outper-
forms SEOBNRv4HM, particularly for low total mass systems, both
with and without the PA approximation, and shows walltimes close to
TEOBResumS-GIOTTO. IMRPhenomTHM is the fastest model for low
total masses due to its use of closed-form expressions, with the gap
narrowing for lower total masses. The analytic PA approximation
and several optimizations, such as the use of analytic derivatives of
the Hamiltonian, play a crucial role in the SEOBNRv5HM performance.

VI. PARAMETER-ESTIMATION STUDY

One of the most relevant applications of waveform mod-
els is to perform parameter inference for GW signals. Cur-
rent parameter-estimation codes for inferring the properties
of compact-binary coalescences are based on Bayesian infer-
ence, where the posterior probability distribution P(λλλ|d|) for
the parameters λλλ, given a signal d, is given by the Bayes the-
orem [194]

P(λλλ|d) =
π(λλλ)L(d|λλλ)

Z
, (95)
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where L(d|λλλ) is the likelihood of reproducing the data given
a set of parameter values and a model for the signal, π(λλλ) is
the prior probability and Z =

∫
dλλλπ(λλλ)L(d|λλλ) is the evidence

of the model reproducing the data. The posterior distribution
is stochastically sampled across the model parameter space,
typically using nested sampling [172] or MCMC methods,
which require from millions to hundred of millions of wave-
form evaluations (see e.g. Refs. [173, 195, 196]). Therefore,
besides requiring that the waveform models accurately repro-
duce the data, it is also important that they are computationally
efficient, to perform parameter estimation with reasonable re-
sources and in a reasonable time. In this section we study the
performance of SEOBNRv5HM for the recovery of parameters
with a synthetic signal and three GW events observed during
O1, O2 and O3.

A. Inference with a numerical-relativity synthetic signal

We begin by examining the parameter recovery on a syn-
thetic signal injected in a network of three detectors, at the
locations of LIGO Hanford, LIGO Livingston and Virgo,
with a zero-noise configuration, to decouple the impact of the
model’s accuracy from any particular noise realization. We in-
ject the NR waveform SXS:BBH:2464 from the SXS Collabo-
ration with intrinsic parameters 1/q = m2/m1 = 0.067, χ1 = 0.5
and χ2 = 0, choosing a detector-frame total mass of 162M�,
inclination ι= π/3 in order to emphasize the higher harmonics
of the signal, and a luminosity distance of 700 Mpc to give a
network SNR of ∼ 16.6. These and the selected injected val-
ues for the phase and the sky-location parameters are listed in
the left column of Table III.

We employ the Bilby parameter-estimation code [174],
with version 2.0.0 and the nested sampler dynesty [197] us-
ing the acceptance-walk method, which is well-suited for
executing on a multicore machine, in particular, we run on
1 node of 64 CPUs. For the sampler settings for the re-
covery, we employ a number of accepted jumps during each
MCMC chain naccept = 20 and a total number of live points
nlive = 1000. We employ the sky parameterization option
H1L1, which enables us to sample the sky position in azimuth
and zenith, converted in post-processing to right ascension
and declination, since this typically improves the convergence
of the sampler, and we enable distance marginalization, to fur-
ther improve convergence. We leave the rest of the sampler
parameters with their default values.

The prior distributions are uniform for most of the param-
eters, except for the individual dimensionless spin values,
which follow a distribution implied by the isotropic spin prior
commonly employed in GW parameter estimation. Though
a non-uniform prior could shift the posterior from the true
values for moderate SNR in a zero-noise setup, we decide to
employ this spin prior as it is commonly employed in actual
analyses [2, 4–6, 198].

We perform two parameter estimation runs on this injected
signal, one with the SEOBNRv5HM model presented in this
paper, and a run with the state-of-the-art waveform model
IMRPhenomXHM from the 4th generation of Fourier-domain

Parameter
Injected

value
IMRPhenomXHM

recovery
SEOBNRv5HM

recovery

M/M� 162.0 139.6+9.55
−10.93 160.58+11.57

−12.91

M/M� 29.53 29.65+1.46
−0.94 29.7+1.07

−0.9

m1/M� 151.88 128.09+9.95
−11.81 150.27+12.12

−13.64

m2/M� 10.13 11.54+1.26
−0.86 10.32+0.98

−0.78

1/q 0.067 0.09+0.02
−0.01 0.07+0.01

−0.01

χeff 0.469 0.37+0.06
−0.07 0.47+0.05

−0.06

χ1z 0.50 0.4+0.07
−0.07 0.5+0.05

−0.06

χ2z 0.0 0.02+0.56
−0.49 0.03+0.59

−0.51

ι/rad 1.047 1.08+0.2
−0.23 0.98+0.2

−0.2

dL/Mpc 700.0 792.04+262.38
−222.3 798.97+198.04

−180.23

φref/rad 0.80 3.57+1.98
−2.1 3.05+2.92

−2.73

ψ/rad 2.17 2.29+0.3
−0.28 2.33+0.22

−0.23

α/rad 3.81 3.84+0.09
−0.09 3.84+0.07

−0.07

δ/rad 0.63 0.6+0.09
−0.11 0.59+0.06

−0.09

ρH1
mf 8.42 8.05+0.08

−0.15 8.26+0.07
−0.14

ρL1
mf 9.98 9.54+0.09

−0.17 9.79+0.08
−0.17

ρV1
mf 10.18 9.67+0.08

−0.16 9.98+0.08
−0.16

logBF 91.26±0.20 97.53±0.21

Table III. Injected and median values of the posterior distributions
for the synthetic NR injection, corresponding to the NR simulation
SXS:BBH:q15Sur002 from the SXS Collaboration, recovered with
IMRPhenomXHM and SEOBNRv5HM. The binary parameters correspond
to the total mass M, chirp massM, individual masses m1,2, inverse
mass ratio 1/q, effective spin parameter χeff, individual spin compo-
nents χ1z,2z, inclination angle ι, luminosity distance dL, coalescence
phase φref, polarization angle ψ, right ascension α, declination δ,
matched-filtered SNR for LIGO-Hanford/Livingston and Virgo de-
tectors ρH1,L1,V1

mf and signal-versus-noise log Bayes factor logBF .

phenomenological waveform models, to crosscheck the re-
sults. For SEOBNRv5HM, we employ the conditioning routine
implemented in pySEOBNR, which closely mimics the proce-
dure of LALSimulation [189].

The median recovered values for both models, and the 90%
confidence intervals, are listed in Table III, and some rele-
vant 2D contours are highlighted in Fig. 21. The results show
that the SEOBNRv5HM model is able to recover better the syn-
thetic signal, especially for the intrinsic parameters, with the
injected value of all the parameters inside the 90% confidence
intervals and very small deviations between the median val-
ues of the posterior distributions and the actual injected val-
ues (the main deviation is in the reference phase parameter,
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Figure 21. 2D and 1D posterior distributions for some relevant parameters measured from the synthetic BBH signal with mass ratio q = 15,
total source-frame mass of 162M�, dimensionless spins χ1z = 0.5 and χ2z = 0.0. The inclination with respect to the line of sight of the binary
is ι = π/3 rad. The other parameters are specified in the text and in Table III. The injected signal is the SXS NR waveform SXS:BBH:2464.
In the 2D posteriors the solid contours represent the 90% credible intervals and black dots show the values of the parameters of the injected
signal. In the 1D posteriors they are represented by dashed and solid vertical lines, respectively. The parameter estimation is performed with
the SEOBNRv5HM model (green) and the IMRPhenomXHM model (orange).

whose recovered distribution is prior-dominated). On the con-
trary, the results inferred by the IMRPhenomXHM model con-
tain important biases in most of the intrinsic parameters, with
the injected values outside the 90% confidence intervals for
the component masses, the total mass, the mass-ratio, and
the effective-spin parameter χeff . For the extrinsic parame-
ters, both models recover the injected values within the 90%
confidence intervals, with small but similar deviations in the
median values for the distance and the inclination. The im-
proved accuracy of SEOBNRv5HM in this challenging region of
parameter space (high asymmetric masses and spinning pri-
mary black hole) is also reflected in the recovered matched-

filter SNR in the three detectors and the Bayes factor of the
inference run, which are consistently higher than the corre-
sponding values for IMRPhenomXHM. These results are con-
sistent with the fact that SEOBNRv5HM has lower unfaithful-
ness than IMRPhenomXHM against this NR simulation, 0.5%
and 6.7% respectively, for the injected value of the total mass.

B. Inference of real gravitational-wave events

We then perform parameter estimation on three real
GW events: GW150914 [1], the first detection which has
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Run/event GW150914 GW170729 GW190412
SEOBNRv5HM
Bilby (64 cores) 23h 20h 1d 18h

Table IV. Evaluation time for the different parameter estimation runs
on real GW events with the SEOBNRv5HM model. The time reported
is actual real-time, while the total computational cost in CPU hours
can be obtained by multiplying this time by the reported number of
CPU cores employed.

become a benchmark for testing new waveform models,
GW170729 [199], an interesting event from O2, which
has been analysed with multimode waveform models, and
GW190412 [200], the first confident mass-asymmetric binary
reported during O2. For each event, we employ the strain data,
detector calibration uncertainties and PSD provided by the
Gravitational Wave Open Science Center (GWOSC) [201].
We perform the runs using Bilby [174] version 2.0.0 with
the nested sampler dynesty [197], and we employ the same
settings as in the previous section, except for the number
of accepted jumps during each MCMC chain that we set to
naccept = 60. For each GW signal, we perform a run with
SEOBNRv5HM, employing the PA approximation, and a cross-
checking run with the IMRPhenomXHM waveform model.

In Fig. 22 we show some relevant 2D posterior distribu-
tion for the parameters, and observe good agreement between
waveform models. These results are also consistent with the
published results for the events, taking into account that LVK
catalog results employ precessing-spin waveform models and
therefore minor differences are expected. The good agreement
between the SEOBNRv5HM and IMRPhenomXHM posteriors is
consistent with the fact that, for the events considered here,
the recovered parameters are within the NR calibration re-
gion of both models. As in the case of the NR-injected signal,
we observe a slight improvement in matched-filter SNR and
Bayes factor for SEOBNRv5HMwith respect to IMRPhenomXHM,
more pronounced for the two more massive events, as seen in
Fig 23. Although the improvement is not drastic, these results
suggest that SEOBNRv5HM describes the data more accurately,
which is consistent with the unfaithfulness results discussed
in Sec. V A.

In Table IV we report the real-time spent on the inference
for the parameters of these events for the waveform model
SEOBNRv5HM. Employing Bilby on a single computing node
(of 64 cores) requires less than a day for GW150914 and
GW170729, and less than two days for GW190412, with a
moderately low chirp mass. Therefore, the model is suffi-
ciently efficient to be employed with the preferred parameter
estimation pipeline by the LVK Collaboration.

VII. FREQUENCY DOMAIN REDUCED ORDER MODEL

The requirement of integrating a system of ODEs to solve
for the dynamics of the binary in EOB models increases the
time needed for generating a waveform. Surrogate or re-

duced order modeling (ROM) techniques [21–25, 91–93, 95–
97, 100, 202, 203] have been applied in several contexts to
accelerate slow waveform computation, in both EOB and NR
models. These techniques involve decomposing the wave-
forms from a training set in orthonormal bases on sparse grids
in time or frequency and then interpolating or fitting the re-
sulting waveform data pieces over the binary parameter space.
The result is a highly accurate, yet fast, method for generat-
ing waveforms for data analysis applications, which can re-
duce computational time by orders of magnitude compared to
ODE-based waveform models.

A frequency domain (FD) ROM of SEOBNRv4HM was built
in Ref. [96], with modeling error introduced in building the
ROM below the unfaithfulness of SEOBNRv4HM against NR
simulations used to calibrate the model, and waveform eval-
uation times reduced by two orders of magnitude. In this
section we show the performance of SEOBNRv5 ROM, a FD
ROM of SEOBNRv5, built following the same techniques of
SEOBNRv4HM ROM [92, 93, 96]. These mostly involve mod-
eling in FD the phase of a carrier signal, based on the time-
domain orbital phase, and the “coorbital modes” obtained af-
ter extracting the carrier phasing from each FD mode. The
coorbital modes have an almost constant phase in the inspi-
ral, and allow us to avoid zero-crossings in the subdominant
harmonics which would complicate the interpolation of the
training data. As for SEOBNRv4HM ROM, the SEOBNRv5 ROM
model combines a higher resolution high-frequency ROM,
starting from 20 Hz for binaries with total mass of 50M�,
and a lower resolution low-frequency ROM, starting from
20 Hz for binaries with total mass of 5M�, and can be ex-
tended to arbitrarily low frequencies by hybridizing it with
multipolar PN waveforms. SEOBNRv5 ROM can be gener-
ated for mass-ratios between 1 and 100, dimensionless spins
between [−0.998,0.998], and includes only the dominant
(`, |m|) = (2,2) mode. A multipolar reduced order model
of SEOBNRv5HM (SEOBNRv5HM ROM), including the (`, |m|) =

(2,2), (3,3), (2,1), (4,4), (5,5), (3,2), (4,3) modes, is also under
development, and will be presented in near future work. De-
spite the speed of SEOBNRv5HM being sufficient for many GW
data analysis applications, using a ROM can still lead to a sig-
nificant increase in efficiency. Additionally, there are several
applications for which it is desirable to be able to generate
clean FD waveforms of any length.

In Fig. 24 we show a histogram of the unfaithfulness
between SEOBNRv5 ROM and SEOBNRv5, for different val-
ues of the total mass, for 105 configurations with mass-
ratios between 1 and 100 and dimensionless spins between
[−0.998,0.998]. We observe an excellent agreement, with me-
dian values . 10−5. The unfaithfulness increases with the to-
tal mass of the system, as in previous ROM models [75, 96],
because the ROM modes are generated up to a maximum fre-
quency that scales with the inverse of the total mass. In partic-
ular, the mismatch is larger for cases with high mass ratio and
negative spins, as the maximum frequency of each mode is
proportional to its least damped QNM frequency [96], which
decreases in this region of the parameter space. Nonetheless,
the modeling error introduced in the construction of the ROM
is negligible compared to the inaccuracy of the SEOBNRv5
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Figure 22. 1D and 2D posterior distributions for several parameters for the GW events GW150914, GW170729 and GW190412.
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waveforms with respect to the NR simulations.

Figure 25 highlights the speedup of the ROM with re-
spect to SEOBNRv5, by comparing walltimes of the two mod-
els for generating a FD waveform with the same parameters
(q = 1, χ1 = 0.8, χ2 = 0.3), as a function of the total mass
M. For SEOBNRv5 we also employ the PA approximation. As
for Fig. 20, we use a starting frequency fstart = 10 Hz and we
choose the sampling rate for the time domain model such that
the Nyquist criterion is satisfied for the ` = 2 multipoles. The
FD SEOBNRv5 ROM model is instead generated up to a maxi-
mum frequency equal to the corresponding Nyquist frequency.
Notably, we obtain an improvement from a factor ∼ 7 for low
total-mass binaries, to more than ∼ 20 for M ∼ 100M�. Over-
all, we can appreciate that SEOBNRv5 ROM can be generated in
less than 10 ms for M & 20M�.

VIII. CONCLUSIONS

In this paper we have presented SEOBNRv5HM, a new
EOBNR waveform model for quasi-circular, spinning, non-
precessing BBHs, which improves the previous generation,
SEOBNRv4HM [76], on both speed and accuracy against NR
simulations. The waveform model includes the modes
(`, |m|) = (2,2), (3,3), (2,1), (4,4), (5,5), (3,2), (4,3), and mod-
els the mode-mixing in the merger-ringdown for the modes
(3,2), (4,3), which were not included in SEOBNRv4HM.

Sections II and III have outlined the building blocks of the
waveform model. The aligned-spin SEOBNRv5 Hamiltonian
is based on a deformation of the equatorial Kerr Hamilto-
nian, and includes most of the known 5PN nonspinning and
full 4PN information for spinning binaries, with improved re-
summations [117]. The factorized waveform modes and RR
force of SEOBNRv4HM have been enhanced by additional PN
information (as well as corrections to some of the terms) from
Ref. [118], and have been calibrated to 2GSF fluxes in the
nonspinning limit in Ref. [116]. To improve the accuracy
of the model in the inspiral, we have refined the calibration
pipeline employed by Ref. [75], and largely upgraded its effi-
ciency, in order to be able to tune the model to a large catalog
of 442 NR simulations as shown in Sec. IV. We have also im-
proved the modeling of the merger and ringdown using the
full NR dataset at our disposal, as well as 13 waveforms from
BH perturbation theory.

In Sec. V we have compared SEOBNRv5HM and other state-
of-the-art waveform approximants to NR simulations, us-
ing mismatch calculations. Results showed that the dom-
inant (2,2) mode of SEOBNRv5 is, on average, more accu-
rate than SEOBNRv4 [75] by an order of magnitude, it is
more accurate than the other state-of-the-art EOB model,
TEOBResumS-GIOTTO [62, 81, 104, 105], by more than a
factor 2, and is overall comparable to the Fourier-domain
phenomenological model IMRPhenomXAS [42]. By com-
puting mismatches of the full polarizations at inclination
ι = π/3, we noted that all models become less accurate,
nonetheless SEOBNRv5HM outperforms both SEOBNRv4HM [76]
and TEOBResumS-GIOTTO, as well as the phenomenological
model IMRPhenomXHM [44], both considering average values
and number of cases above 0.01. We have validated the model
against the NR surrogate models NRHybSur3dq8 [24] and
NRHybSur2dq15 [30] and found results consistent with the
NR comparison, demonstrating the robustness of our calibra-
tion procedure. Further tests of the calibration pipeline are
described in Appendix E. In particular, we show that the accu-
racy of the model against the entire NR dataset of 442 wave-
forms does not change appreciably when using only 137 to
calibrate the model. We also show that our calibration pipeline
is robust with respect to changes in the shape of the PSD
used, as the unfaithfulness of the model against NR remains
very similar when using a white noise curve, the Einsten Tele-
scope [204] and Cosmic Explorer [16] PSDs. Nonetheless,
such a comparison is limited by the length of the available
NR simulations, which do not cover the entire bandwidth of
next-generation GW detectors, and more detailed studies will
be needed to assess the accuracy SEOBNRv5HM in such a con-
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text. Comparing SEOBNRv5HM and IMRPhenomXHM against
each other in a larger parameter space, we have seen instead
that the mismatches can become very large in the region where
both models are not calibrated to NR waveforms, in particu-
lar for both high mass ratio, say ≥ 5, and high positive spin,
say ≥ 0.8, configurations. Thus, producing new NR simula-
tions for these parameters would be critical to reduce model-
ing systematics. Comparing the angular-momentum flux and
binding energy of SEOBNRv5 and SEOBNRv4 against NR, we
have highlighted a similar improvement, also thanks to the
2GSF information [116], despite the fact that these quantities
do not enter directly the calibration. This is a powerful check
of the physical robustness of the model, and provides confi-
dence in its reliability when extrapolating outside of the NR
calibration region. We have implemented SEOBNRv5HM in a
flexible, high-performance, Python package pySEOBNR, and
we have shown that the model is fast enough for typical GW
data-analysis applications: it is more than 10 times faster than
SEOBNRv4HM without using the PA approximation, up to two
times faster than SEOBNRv4HM PA when using it, and overall
close to TEOBResumS-GIOTTO.

In Sec. VI we have demonstrated that the model can be re-
liably used for GW parameter estimation, by performing a re-
covery on a NR injection, and by analyzing 3 events observed
by LIGO and Virgo, GW150914, GW170729, GW190412.
For the 3 events, we have found consistent results when
comparing the parameters recovered by SEOBNRv5HM and by
IMRPhenomXHM, while still observing a slight improvement
in matched-filter SNR and Bayes factor for SEOBNRv5HM
with respect to IMRPhenomXHM. On the other hand, the NR
injection in a challenging region of parameter space (high
asymmetric masses and spinning primary black hole) shows
more significant differences. SEOBNRv5HM accurately recov-
ers all the binary parameters, while the results inferred by the
IMRPhenomXHM model contain biases in most of the intrinsic
parameters due to larger modeling errors.

In Sec. VII we have finally shown the performance of a
FD ROM model (SEOBNRv5 ROM) developed following the
techniques used in Ref. [96], which allows for a significant
speedup in evaluation time, while retaining identical accuracy
against NR.

The pySEOBNR code infrastructure [135] is a framework de-
veloped with the goal of facilitating the development of fu-
ture SEOBNR waveform models, and upcoming work would
naturally revolve around adding more physical effects to the
SEOBNRv5 family, as well as improving its efficiency and ac-
curacy by including ever more information from both NR sim-
ulations and different analytical frameworks. The first ex-
tension of SEOBNRv5HM, as far as additional physical effects
are concerned, involves modeling spin precession, and such a
model (SEOBNRv5PHM) has been developed in parallel to this
work in Ref. [136].

An upcoming extension would also involve eccentric and
hyperbolic orbits (SEOBNRv5EHM), following similar strate-
gies adopted in the SEOBNRv4EHM model of Ref. [89]. The
more efficient, flexible and parallelized calibration pipeline
described in this work would allow having a more accurate
eccentric model, with a consistent treatment of eccentric cor-

rections in the waveform modes and RR force, after appropri-
ately recalibrating the quasi-circular limit of the model. More-
over, the efficiency of SEOBNRv5HM compared to SEOBNRv4HM
without PA approximation, which is slow to use when adding
eccentricity, means that one could expect a significant speed-
up of SEOBNRv5EHM compared to SEOBNRv4EHM. Further on-
going developments in the SEOBNRv5 family involve the mod-
eling of tidal effects, already incorporated in SEOBNRv4 mod-
els [95, 205–207], and the addition of parametrized GR devi-
ations to perform theory agnostic tests of GR [208–210].

Another direction for improvements revolves around push-
ing the accuracy of the model against NR even further. Ex-
ploring different ways to incorporate and resum information
from the PN, PM and 2GSF approximations, while still re-
taining flexibility in the calibration, would be crucial, and an
efficient calibration code (pySEOBNR [135]) is essential to un-
derstand the impact of different modeling and resummation
choices. At the same time, more and better NR simulations,
especially in currently unexplored regions of the binary pa-
rameter space, are also critical to reach the accuracy require-
ments of next-generation detectors [171, 211]. A limitation of
all state-of-the-art approximants is the modeling of the higher-
modes, and a straightforward improvement to be done in fu-
ture work would be to add all terms through 3.5PN to the
waveform modes and RR force from Refs. [118, 154]. Fur-
ther work should also go into improving the modeling of the
HMs through merger and ringdown, as well as including ad-
ditional modes. Finally, a calibration pipeline similar to the
one developed here could be used to calibrate SEOBNRv5PHM
[136] to spin-precessing NR simulations.
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Appendix A: Hamiltonian coefficients

We summarize here results that were derived in Ref. [117].
In the nonspinning limit, the Hamiltonian is given by Eq. (6).

The 5PN-expanded D̄noS, which enters the Hamiltonian
through Eq. (8), is given by [140, 141]

D̄Tay
noS(u) = 1 + 6νu2 +

(
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)
u3 +
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where we set the remaining unknown coefficient dν
2

5 to zero. To improve agreement with NR, we perform a (2,3) Padé resum-
mation of D̄Tay

noS(u).
For QnoS, we use the full 5.5PN expansion derived in Refs. [141, 212], which is expanded in eccentricity to O(p8

r ). Instead of
using pr, we write QnoS in terms of pr∗ using Eq. (8), then PN expand to 5.5PN order, leading to
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In the aligned-spin Hamiltonian, the 3.5PN SO gyro-gravitomagnetic factors in Eq. (12) are given by
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where the square brackets collect different PN orders, and we
defined L̃ ≡ L/(Mµ) ≡ pφ/(Mµ). The cubic-in-spin term Ga3

reads

Galign
a3 =

Mpφ
4r2

(
δa−a2

+−a3
+

)
. (A4)

The potentials in the even-in-spin part of the effective
Hamiltonian in Eq. (12) include the 4PN SS information, and
are given by

Aalign =
a2

+/r
2 + AnoS + Aalign

SS

1 + (1 + 2M/r)a2
+/r2

, (A5a)

Balign
np = −1 +

a2
+

r2 + AnoSD̄noS + Balign
np,SS, (A5b)

BKerr eq
npa = −

1 + 2M/r
r2 + a2

+(1 + 2M/r)
, (A5c)

Qalign = QnoS + Qalign
SS , (A5d)

where

Aalign
SS =

M2

r4

[
9a2

+

8
−

5
4
δa−a+ + a2

−

(
ν

2
+

1
8

)]

+
M3

r5

[
a2

+

(
−

175ν
64
−

225
64

)
+δa−a+

(
117
32
−

39ν
16

)
+ a2
−

(
21ν2

16
−

81ν
64
−

9
64

) ]
, (A6a)

Balign
np,SS =

M
r3

[
a2

+

(
3ν+

45
16

)
−

21
8
δa−a+ + a2

−

(
3ν
4
−

3
16

)]
+

M2

r4

[
a2

+

(
−

1171ν
64

−
861
64

)
+δa−a+

(
13ν
16

+
449
32

)
+ a2
−

(
ν2

16
+

115ν
64
−

37
64

) ]
, (A6b)

Qalign
SS =

Mp4
r

µ2r3

[
a2

+

(
25
32
−5ν2 +

165ν
32

)
+δa−a+

(
45ν
8
−

5
16

)
+ a2
−

(
−

15ν2

8
+

75ν
32
−

15
32

) ]
. (A6c)

Appendix B: Expressions for the factorized waveform modes

In this Appendix, we list the expressions for ρ`m, f`m and
δ`m, which are used in the factorized modes (see Eqs. (25) and
(34)).

In the (2,2) mode, ρ22 and δ22 are given by

ρ22 = 1 + v2
Ω

(
55
84ν−

43
42

)
+ v3

Ω

[(
2
3ν−

2
3

)
χS −

2
3δχA

]
+ v4

Ω

[
19583
42336ν

2− 33025
21168ν−

20555
10584 +

(
1
2 −2ν

)
χ2

A +δχAχS + 1
2χ

2
S

]
+ v5

Ω

[
δ
(
− 19

42ν−
34
21

)
χA +

(
209
126ν

2 + 49
18ν−

34
21

)
χS

]
+ v6

Ω

[
10620745ν3

39118464 −
6292061ν2

3259872 + 41π2ν
192 −

48993925ν
9779616 −

428
105 eulerlog(2, vΩ) + 1556919113

122245200

+δ
(

89
126 −

781
252ν

)
χAχS +

(
− 27

14ν
2− 457

504ν+ 89
252

)
χ2

A +
(

10
9 ν

2− 1817
504 ν+ 89

252

)
χ2

S

]
+ v7

Ω

[
δ
(

97865
63504ν

2 + 50140
3969 ν+ 18733

15876

)
χA +

(
50803
63504ν

3− 245717
63504 ν

2 + 74749
5292 ν+ 18733

15876

)
χS +δχ3

A

(
1
3 −

4
3ν

)
+δ(2ν+ 1)χAχ

2
S

+
(
−4ν2−3ν+ 1

)
χ2

AχS +
(
ν+ 1

3

)
χ3

S

]
+ v8

Ω

[
9202
2205 eulerlog(2, vΩ)− 387216563023

160190110080

]
+ v10

Ω

[
439877
55566 eulerlog(2, vΩ)− 16094530514677

533967033600

]
, (B1a)

δ22 = 7
3 ΩHEOB +

(
ΩHEOB

)2
[(

8
3ν−

4
3

)
χS −

4
3δχA + 428

105π
]
+

(
ΩHEOB

)3
[

1712
315 π

2− 2203
81

]
−24νv5

Ω, (B1b)

where eulerlog(m, vΩ) is defined by Eq. (47). The coefficient 19/42 of O(v5
Ω
δχAν) in ρ22 corrects a typo in the SEOBNRv4 code,

and we added in ρ22 the NLO spin-squared and LO spin-cubed contributions, which are given by Eq. (4.11a) of Ref. [118].
The (2,1) mode reads

ρNS
21 = 1 + v2

Ω

(
23
84ν−

59
56

)
+ v4

Ω

(
617
4704ν

2− 10993
14112ν−

47009
56448

)
+ v6

Ω

[
7613184941
2607897600 −

107
105 eulerlog (1, vΩ)

]
+ v8

Ω

[
− 1168617463883

911303737344 + 6313
5880 eulerlog (1, vΩ)

]
+ v10

Ω

[
− 63735873771463

16569158860800 + 5029963
5927040 eulerlog (1, vΩ)

]
, (B2a)

f S
21 = − 3

2 vΩ

(
χA

δ
+χS

)
+ v3

Ω

[ (
131
84 ν+ 61

12

) χA

δ
+

(
79
84ν+ 61

12

)
χS

]
+ v4

Ω

[
(−2ν−3)χ2

A +
(

21
2 ν−6

) χAχS

δ
+

(
1
2ν−3

)
χ2

S

]
+ v5

Ω

[ (
− 703

112ν
2 + 8797

1008ν−
81
16

) χA

δ
+

(
613
1008ν

2 + 1709
1008ν−

81
16

)
χS +

(
3
4 −3ν

) χ3
A

δ
+

(
9
4 −6ν

) χAχ
2
S

δ
+

(
9
4 −3ν

)
χ2

AχS + 3
4χ

3
S

]
+ v6

Ω

[ (
5
7ν

2− 9287
1008ν+ 4163

252

)
χ2

A +
(

139
72 ν

2− 2633
1008ν+ 4163

252

)
χ2

S +
(

9487
504 ν

2− 1636
21 ν+ 4163

126

) χAχS

δ

]
, (B2b)

δ21 = 2
3 ΩHEOB + 107

105π
(
ΩHEOB

)2
+

(
214
315π

2− 272
81

) (
ΩHEOB

)3
− 25

2 νv
5
Ω, (B2c)

where the O(v6
Ω
χ2ν2) terms in f S

21 correct those used in the SEOBNRv4HM model [76]. We also fixed the coefficient −25/2 of
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O(νv5
Ω

) in δ21, which was the result of an error in Ref. [153], which was later corrected in an erratum, as noted in Ref. [118].
The (3,3) mode is given by

ρNS
33 = 1 + v2

Ω

(
2
3ν−

7
6

)
+ v4

Ω

(
− 6719

3960 −
1861
990 ν+ 149

330νv
2
Ω

)
+ v6

Ω

[
3203101567
227026800 +

(
− 129509

25740 + 41π2

192

)
ν− 274621

154440ν
2 + 12011

46332ν
3− 26

7 eulerlog(3, vΩ)
]

+ v8
Ω

[
− 57566572157

8562153600 + 13
3 eulerlog (3, vΩ)

]
+ v10

Ω

[
− 903823148417327

30566888352000 + 87347
13860 eulerlog(3, vΩ)

]
, (B3a)

f S
33 = v3

Ω

[(
19
2 ν−2

) χA

δ
+

(
5
2ν−2

)
χS

]
+ v4

Ω

[ (
3
2 −6ν

)
χ2

A + (3−12ν)
χAχS

δ
+ 3

2χ
2
S

]
+ v5

Ω

[(
407
30 ν

2− 593
60 ν+ 2

3

) χA

δ
+

(
241
30 ν

2 + 11
20ν+ 2

3

)
χS

]
+ v6

Ω

[ (
−12ν2 + 11

2 ν−
7
4

)
χ2

A +
(
44ν2− ν− 7

2

) χAχS

δ
+

(
6ν2− 27

2 ν−
7
4

)
χ2

S

]
+ i

(
ΩHEOB

)2
[(

7339
540 ν−

81
20

) χA

δ
+

(
593
108ν−

81
20

)
χS

]
, (B3b)

δ33 = 13
10 (HEOBΩ) + 39π

7 (HEOBΩ)2 +
(
− 227827

3000 + 78π2

7

)
(HEOBΩ)3− 80897

2430 νv
5
Ω, (B3c)

where the imaginary part of f S
33 is included in δ33 in Ref. [118], but we moved it to f S

33 to facilitate the implementation in the
equal-mass limit, for which we pull the factor δ from the leading order hN

33 into f`m to cancel the divergent 1/δ.
For the (4,4) mode, we use

ρ44 = 1 + v2
Ω

[
1614−5870ν+2625ν2

1320(−1+3ν)

]
+ v3

Ω

[(
2
3 −

41ν
15 + 14ν2

5

)
1

(−1+3ν)χS +δ
(

2
3 −

13ν
5

)
1

(−1+3ν)χA
]

+ v4
Ω

[
− 14210377

8808800(1−3ν)2 + 32485357ν
4404400(1−3ν)2 −

1401149ν2

1415700(1−3ν)2 −
801565ν3

37752(1−3ν)2 + 3976393ν4

1006720(1−3ν)2 + 1
2χ

2
A−2νχ2

A +δχAχS + 1
2χ

2
S

]
+ v5

Ω

[ (
− 69

55 + 16571ν
1650 −

2673ν2

100 + 8539ν3

440 + 591ν4

44

)
1

(1−3ν)2 χS +δ
(
− 69

55 + 10679ν
1650 −

1933ν2

220 + 597ν3

440

)
1

(1−3ν)2 χA

]
+ v6

Ω

[
16600939332793
1098809712000 −

12568
3465 eulerlog(4, vΩ)

]
+ v8

Ω

[
− 172066910136202271

19426955708160000 + 845198
190575 eulerlog(4, vΩ)

]
+ v10

Ω

[
− 17154485653213713419357

568432724020761600000 + 22324502267
3815311500 eulerlog(4, vΩ)

]
, (B4a)

δ44 =
(112+219ν)
120(1−3ν) (ΩHEOB) + 25136π

3465 (ΩHEOB)2 +
(

201088
10395 π

2− 55144
375

)
(ΩHEOB)3 , (B4b)

and for the (5,5) mode

ρNS
55 =1 + v2

Ω

[
487

390(−1+2ν) −
649ν

195(−1+2ν) + 256ν2

195(−1+2ν)

]
− 3353747

2129400 v
4
Ω

+ v6
Ω

[
190606537999247
11957879934000 −

1546
429 eulerlog(5, vΩ)

]
+ v8

Ω

[
− 1213641959949291437

118143853747920000 + 376451
83655 eulerlog(5, vΩ)

]
+ v10

Ω

[
− 150082616449726042201261

4837990810977324000000 + 2592446431
456756300 eulerlog(5, vΩ)

]
, (B5a)

f S
55 =

[(
− 70ν

3(−1+2ν) + 110ν2

3(−1+2ν) + 10
3(−1+2ν)

) χA

δ
+

(
10

3(−1+2ν) −
10ν
−1+2ν + 10ν2

−1+2ν

)
χS

]
v3
Ω +

[
5
2δ

2χ2
A + 5δχAχS + 5

2χ
2
S

]
v4
Ω, (B5b)

δ55 =
(96875+857528ν)

131250(1−2ν) (ΩHEOB) + 3865π
429 (ΩHEOB)2 + −7686949127+954500400π2

31783752 (ΩHEOB)3 , (B5c)

which are both the same as in SEOBNRv4HM [76].
The (3,2) mode is given by

ρ32 = 1 + vΩ
4νχS

3(1−3ν)
+ v2

Ω

− 32
27ν

2 + 223
54 ν−
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135

1−3ν
−

16ν2χ2
S

9(1−3ν)2
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Ω
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9
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+

(
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9
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S
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Ω
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40095ν
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3
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+

(
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27ν+ 2
3

) δχAχS

(1−3ν)2

+
(
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243 ν
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3

) χ2
S

(1−3ν)3

]
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+ v5
Ω
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962280 ν3− 14103833
192456 ν2 + 20471053

962280 ν− 2788
1215

) χS

(1−3ν)3 +
(
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(
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]
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Ω

[
− 1312549797426453052

176264081083715625 +
18778864 eulerlog(2,vΩ)

12629925

]
, (B6a)

δ32 =
(

11
5 ν+ 2

3

) ΩHEOB

1−3ν
+ 52

21π(ΩHEOB)2 +
(

208
63 π

2− 9112
405

)
(ΩHEOB)2, (B6b)

where we added all spin contributions beyond the LO spin-orbit in ρ32, as well as the test-mass limit terms given in Eq. (46a).
The (4,3) mode is given by

ρNS
43 = 1 +

v2
Ω

1−2ν

(
− 10

11ν
2 + 547

176ν−
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)
− 6894273

7047040 v
4
Ω + v6

Ω

[
1664224207351
195343948800 −
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]
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67760 eulerlog(3, vΩ)

]
(B7a)

f S
43 =

vΩ
1−2ν

(
5
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5
2ν
χA

δ
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+
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δ
+

(
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+

v4
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(
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δ
+

(
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S

]
, (B7b)

δ43 =
(

4961
810 ν+ 3

5

) ΩHEOB

1−2ν
+ 1571

385 π(ΩHEOB)2, (B7c)

where we added all spin contributions beyond the LO spin-orbit in f S
43, and the test-mass limit terms of Eq. (46b) in ρNS

43 .
All other modes, which are used in the RR force in Eq. (16), are the same as in SEOBNRv4HM. They are written in Refs. [73,

149], but we also list them here for completeness:

ρNS
31 = 1− v2

Ω

[
2
9
ν+

13
18

]
+ v4

Ω

[
−
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1782

ν2−
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101
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]
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−
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Ω)

]
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Ω
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f S
31 = v3

Ω

[(
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2
ν−2

)
χA

δ
+

(
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2
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)
χS

]
, (B9)

δ31 =
13
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ΩHEOB +
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π(ΩHEOB)2 +

(
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81000

)
(ΩHEOB)3, (B10)

ρ42 = 1 +
285ν2−3530ν+ 1146

1320(3ν−1)
v2
Ω−

v3
Ω

15(1−3ν)

[
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]
+
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Ω

+

[
848238724511
219761942400

−
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3465

eulerlog(2, v2
Ω)

]
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Ω , (B11)

δ42 =

(
7
15

+
14
5
ν

)
ΩHEOB

1−3ν
+
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3465

π(ΩHEOB)2, (B12)

ρNS
41 = 1 +

288ν2−1385ν+ 602
528(2ν−1)

v2
Ω−
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v4
Ω +

[
1227423222031
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−
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eulerlog(1, v2
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]
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Ω , (B13)

f S
41 =

5
2
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)
, (B14)

δ41 =

(
1
5

+
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1−2ν
+
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ρ54 = 1 +
33320ν3−127610ν2 + 96019ν−17448

13650(5ν2−5ν+ 1)
v2
Ω−

16213384
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v4
Ω , (B16)
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δ54 =
8
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ΩHEOB, (B17)

ρ53 = 1 +
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390(2ν−1)
v2
Ω−
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709800

v4
Ω , (B18)

δ53 =
31
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ΩHEOB, (B19)

ρ52 = 1 +
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v2
Ω−
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Ω , (B20)

δ52 =
4
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ΩHEOB, (B21)

ρ51 = 1 +
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v2
Ω−
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Ω , (B22)

δ51 =
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ΩHEOB, (B23)
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659736
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Ω , (B24)

δ66 =
43
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ΩHEOB, (B25)

ρ65 = 1 +
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v2
Ω , (B26)

δ65 =
10
21

ΩHEOB, (B27)

ρ64 = 1 +
133ν3−581ν2 + 462ν−86

84(5ν2−5ν+ 1)
v2
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Ω , (B28)

δ64 =
43
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ΩHEOB, (B29)

ρ63 = 1 +
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144(3ν2−4ν+ 1)
v2
Ω , (B30)

δ63 =
2
7

ΩHEOB, (B31)

ρ62 = 1 +
49ν3−413ν2 + 378ν−74

84(5ν2−5ν+ 1)
v2
Ω−
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Ω , (B32)

δ62 =
43
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ΩHEOB, (B33)

ρ61 = 1 +
124ν3−670ν2 + 694ν−161

144(3ν2−4ν+ 1)
v2
Ω , (B34)

δ61 =
2

21
ΩHEOB, (B35)

ρ77 = 1 +
1380ν3−4963ν2 + 4246ν−906
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(
3ν2−4ν+ 1
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Ω , (B36)

δ77 =
19
36

ΩHEOB, (B37)

ρ76 = 1 +
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(
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) v2
Ω , (B38)

ρ75 = 1 +
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(
3ν2−4ν+ 1

) v2
Ω , (B39)

δ75 =
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ρ74 = 1 +
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(
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) v2
Ω , (B41)
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ρ73 = 1 +
420ν3−2563ν2 + 2806ν−666
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(
3ν2−4ν+ 1

) v2
Ω , (B42)

δ73 =
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ρ72 = 1 +
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(
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Ω , (B44)
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Ω , (B45)

δ71 =
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ρ88 = 1 +
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Ω , (B47)

ρ87 = 1 +
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Ω , (B48)
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Ω , (B49)
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Ω , (B50)

ρ84 = 1 +
2666−19434ν+ 42627ν2−28965ν3 + 4899ν4

2736(−1 + 7ν−14ν2 + 7ν3)
v2
Ω , (B51)

ρ83 = 1 +
20598−131059ν+ 249018ν2−149950ν3 + 24520ν4

18240(−1 + 6ν−10ν2 + 4ν3)
v2
Ω , (B52)

ρ82 = 1 +
2462−17598ν+ 37119ν2−22845ν3 + 3063ν4

2736(−1 + 7ν−14ν2 + 7ν3)
v2
Ω , (B53)

ρ81 = 1 +
20022−126451ν+ 236922ν2−138430ν3 + 21640ν4

18240(−1 + 6ν−10ν2 + 4ν3)
v2
Ω . (B54)

Appendix C: Fits of nonquasicircular input values

In this appendix we provide fits for the nonquasicir-
cular (NQC) input values,

∣∣∣∣h`m (
t`mmatch

)∣∣∣∣, ∂t

∣∣∣∣h`m (
t`mmatch

)∣∣∣∣,
∂2

t

∣∣∣∣h`m (
t`mmatch

)∣∣∣∣, ω`m (
t`mmatch

)
, ∂tω`m

(
t`mmatch

)
. To produce the

fits we used NR simulations with the highest level of resolu-
tion available and extrapolation order N = 2. Depending on
the mode, we excluded a different number of NR waveforms
from the fits, where numerical errors prevented us from fit-
ting them accurately. As in Ref. [76] we define the following
combinations of m1, m2, χ1, χ2 to be used in the fits.

δ =
(m1−m2)
(m1 + m2

), (C1)

χ33 = χS δ+χA (C2)

χ21A =
χS

1−1.3ν
δ+χA (C3)

χ44A = (1−5ν)χS +χAδ (C4)

χ21D =
χS

1−2ν
δ+χA (C5)

χ44D = (1−7ν)χS +χAδ (C6)

χ = χS +χA
δ

1−2ν
(C7)

The variables χ33, χ21A, χ21D vanish by construction for
equal-mass equal-spin configurations, and are used to enforce
that the odd-m modes also vanish in the same limit as required
by symmetry.

1. Amplitude’s fits

|hNR
22 (tmatch

22 )|
ν

=|0.430147χ3ν−0.084939χ3 + 0.619889χ2ν2−0.020826χ2−13.357614χν3

+ 7.194264χν2−1.743135χν+ 0.18694χ+ 71.979698ν4−46.87586ν3
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+ 12.440405ν2−0.868289ν+ 1.467097| (C8)

|hNR
33 (tmatch

33 )|

ν
=| −0.088371χ2

33δν+ 0.036258χ2
33δ+ 1.057731χ33ν

2−0.466709χ33ν

+ 0.099543χ33 + 1.96267δν2 + 0.027833δν+ 0.558808δ| (C9)

|hNR
21 (tmatch

21 )|
ν

=| −0.033175χ3
21Aδ+ 0.086356χ2

21Aδν−0.049897χ2
21Aδ+ 0.012706χ21Aδ

+ 0.168668χ21Aν−0.285597χ21A + 1.067921δν2−0.189346δν+ 0.431426δ| (C10)

|hNR
44 (tmatch

44 )|
ν

=|0.031483χ2
44A−0.180165χ44Aν+ 0.063931χ44A + 6.239418ν3−1.947473ν2

−0.615307ν+ 0.262533| (C11)

|hNR
55 (tmatch

55 )|

ν
=| −7.402839χ33ν

3 + 3.965852χ33ν
2−0.762776χ33ν+ 0.062757χ33

+ 1.093812δν2−0.462142δν+ 0.125468δ| (C12)

|hNR
32 (tmatch

32 )|

ν
=|0.022598χ2 + 0.307803χν−0.020771χ+ 8.917771ν3−2.194506ν2

−0.387911ν+ 0.155446| (C13)

|hNR
43 (tmatch

43 )|

ν
=| −0.071554χ2

33δν+ 0.021932χ2
33δ−1.738079χ33ν

2 + 0.436576χ33ν

−0.020081χ33 + 0.809615δν2−0.273364δν+ 0.07442δ| (C14)

2. Amplitude-first-derivative’s fits

1
ν

d|hNR
22 (t)|
dt

∣∣∣∣∣
t=tmatch

22

≡0 (C15)

1
ν

d|hNR
33 (t)|

dt

∣∣∣∣∣
t=tmatch

33

=χ2
33δ (0.004941ν−0.002094)

+ 0.001781
∣∣∣χ2

33 +χ33δ (39.247538ν−2.986889) +δ2 (85.173306ν+ 4.637906)
∣∣∣1/2 (C16)

1
ν

d|hNR
21 (t)|
dt

∣∣∣∣∣
t=tmatch

21

=χ21Dδ (0.023534ν−0.008064) +δ (0.006743−0.0297ν)

+ 0.008256
∣∣∣∣χ21D−δ

(
5.471011ν2 + 1.235589ν+ 0.815482

)∣∣∣∣ (C17)

1
ν

d|hNR
44 (t)|
dt

∣∣∣∣∣
t=tmatch

44

=−0.001251χ3
44D + 0.006387χ2

44Dν−0.001223χ2
44D−0.034308χ44Dν

2

+ 0.014373χ44Dν−0.000681χ44D + 1.134679ν3−0.417056ν2

+ 0.024004ν+ 0.003498 (C18)

1
ν

d|hNR
55 (t)|

dt

∣∣∣∣∣
t=tmatch

55

=χ2
33δ (0.008568ν−0.00155) +χ33δ (0.002705ν−0.001015)

+δ (0.002563−0.010891ν) + 0.000284 |χ33 +δ (32.459725ν+ 0.165336)| (C19)

1
ν

d|hNR
32 (t)|

dt

∣∣∣∣∣
t=tmatch

32

=−0.000806χ3−0.011027χ2ν+ 0.002999χ2−0.14087χν2 + 0.063211χν

−0.006783χ+ 1.693423ν3−0.510999ν2 + 0.020607ν+ 0.003674 (C20)
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1
ν

d|hNR
43 (t)|

dt

∣∣∣∣∣
t=tmatch

43

=χ2
33δ (0.001773−0.012159ν) +χ33δ (0.022249ν−0.004295)

+δ (0.012043ν−0.001067) + 0.00082 |χ33 +δ (3.880171−20.015436ν)| (C21)

3. Amplitude-second-derivative’s fits

1
ν

d2|hNR
22 (t)|

dt2

∣∣∣∣∣
t=tmatch

22

=0.000386χ2 + 0.003589χν+ 0.001326χ−0.003353ν2−0.005615ν−0.002457 (C22)

1
ν

d2|hNR
33 (t)|

dt2

∣∣∣∣∣
t=tmatch

33

=χ33δ (0.000552ν+ 0.001029)−0.000218

·

∣∣∣∣χ33 +δ
(
−2188.340923ν4 + 1331.981345ν3−289.772357ν2 + 32.212775ν+ 3.396168

)∣∣∣∣ (C23)

1
ν

d2|hNR
21 (t)|

dt2

∣∣∣∣∣
t=tmatch

21

=0.00015δ−
∣∣∣∣0.000316χ3

21D−χ
2
21Dδ

(
−0.043291ν2 + 0.005682ν+ 0.000502

)
+0.000372χ21Dδ−δ

(
0.003643ν+ 2.8 ·10−5

)∣∣∣∣ (C24)

1
ν

d2|hNR
44 (t)|

dt2

∣∣∣∣∣
t=tmatch

44

=−0.000591χ2ν+ 0.000174χ2−0.000501χν+ 0.000318χ+ 0.138496ν3

−0.047008ν2 + 0.003899ν−0.000451 (C25)

1
ν

d2|hNR
55 (t)|

dt2

∣∣∣∣∣
t=tmatch

55

=χ2
33 ·

(
0.000278ν−5.6 ·10−5

)
+χ33δ

(
0.000246ν−6.8 ·10−5

)
+δ

(
0.000118−5.9 ·10−5ν

)
(C26)

1
ν

d2|hNR
32 (t)|

dt2

∣∣∣∣∣
t=tmatch

32

=−0.002882χ2ν+ 0.000707χ2−0.027461χν2 + 0.008481χν−0.000691χ

+ 0.20836ν3−0.053191ν2 + 0.001604ν−5.6 ·10−5 (C27)

1
ν

d2|hNR
43 (t)|

dt2

∣∣∣∣∣
t=tmatch

43

=χ33δ (0.00291ν−0.000348)−5.0 ·10−6

·

∣∣∣∣χ33 +δ
(
−25646.358742ν4 + 12647.805787ν3 + 291.751053ν2−531.965263ν+ 23.849357

)∣∣∣∣ (C28)

4. Frequency and frequency-derivative fits

ωNR
22 (tmatch

22 ) =−0.015259χ4 + 0.241948χ3ν−0.066927χ3−0.971409χ2ν2 + 0.518014χ2ν

−0.087152χ2 + 3.751456χν3−1.697343χν2 + 0.250965χν−0.091339χ

+ 5.893523ν4−3.349305ν3 + 0.285392ν2−0.317096ν−0.268541 (C29)

ωNR
33 (tmatch

33 ) =−0.045141χ3 + 0.346675χ2ν−0.119419χ2−0.745924χν2 + 0.478915χν

−0.17467χ+ 8.887163ν3−4.226831ν2−0.427167 (C30)

ωNR
21 (tmatch

21 ) =−0.01009χ3 + 0.077343χ2ν−0.02411χ2−0.168854χν2 + 0.159382χν

−0.047635χ−1.965157ν3 + 0.53085ν2−0.237904ν−0.176526 (C31)
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ωNR
44 (tmatch

44 ) =−0.042529χ3 + 0.415864χ2ν−0.155222χ2−0.768712χν2 + 0.592568χν

−0.244508χ+ 13.651335ν3−5.490329ν2−0.574041 (C32)

ωNR
55 (tmatch

55 ) =−0.091629χ3 + 0.802759χ2ν−0.246646χ2−3.04576χν2 + 1.43471χν

−0.329591χ+ 13.81386ν3−6.61611ν2 + 0.472474ν−0.589341 (C33)

ωNR
32 (tmatch

32 ) =−0.045647χ2−2.758635χν2 + 0.811353χν−0.112477χ−2.346024ν3

+ 1.57986ν2−0.317756ν−0.331141 (C34)

ωNR
43 (tmatch

43 ) =−0.037919χ3 + 0.226903χ2ν−0.087288χ2−0.905919χν2 + 0.291092χν

−0.1198χ−55.534105ν3 + 23.913277ν2−3.487986ν−0.34306 (C35)

ω̇NR
22 (tmatch

22 ) =0.000614χ3−0.008393χ2ν+ 0.001948χ2 + 0.07799χν2−0.028772χν

+ 0.001705χ−0.237126ν3 + 0.092215ν2−0.03104ν−0.005484 (C36)

ω̇NR
33 (tmatch

33 ) =0.001697χ3−0.016231χ2ν+ 0.003985χ2 + 0.154378χν2−0.050618χν

+ 0.002721χ+ 0.255402ν3−0.08663ν2−0.027405ν−0.009736 (C37)

ω̇NR
21 (tmatch

21 ) =0.00149χ3−0.008965χ2ν+ 0.002739χ2 + 0.033831χν2−0.005752χν

+ 0.002003χ−0.204368ν3 + 0.120705ν2−0.035144ν−0.006579 (C38)

ω̇NR
44 (tmatch

44 ) =0.001812χ3−0.024687χ2ν+ 0.00568χ2 + 0.162693χν2−0.061205χν

+ 0.003623χ+ 0.536664ν3−0.094797ν2−0.045406ν−0.013038 (C39)

ω̇NR
55 (tmatch

55 ) =0.001509χ3−0.01547χ2ν+ 0.002802χ2 + 0.164011χν2−0.056516χν

+ 0.002072χ+ 0.043963ν3 + 0.048045ν2−0.045197ν−0.008688 (C40)

ω̇NR
32 (tmatch

32 ) =−0.036711χ2ν+ 0.005532χ2 + 0.09192χν2−0.030713χν+ 0.005927χ

−2.494788ν3 + 0.995116ν2−0.10163ν−0.010763 (C41)

ω̇NR
43 (tmatch

43 ) =0.000537χ3−0.009876χ2ν+ 0.003279χ2 + 0.13296χν2−0.060884χν

+ 0.008513χ−5.160613ν3 + 2.180781ν2−0.292607ν−0.005308 (C42)

Appendix D: Fits for amplitude and phase of merger-ringdown
model

In this appendix we provide fits across parameter space for
the free coefficients in the merger-ringdown ansatz given by

Eqs. (49) and (50). To produce the fits we use NR simulations
with the highest level of resolution available and extrapolation
order N = 2. They read:

c22
1, f =−0.001777χ4 + 0.062842χ3ν−0.018908χ3 + 0.013161χ2ν2 + 0.049388χ2ν

−0.019314χ2 + 1.867978χν3−0.702488χν2 + 0.033885χν−0.011612χ

−4.238246ν4 + 2.043712ν3−0.406992ν2 + 0.053589ν+ 0.086254 (D1)

c22
2, f =1.021875χ3ν−0.20348χ3−3.556173χ2ν2 + 1.970082χ2ν−0.264297χ2

+ 2.002947χν3−5.585851χν2 + 1.837724χν−0.27076χ−63.286459ν4

+ 44.331389ν3−9.529573ν2 + 1.155695ν−0.528763 (D2)

d22
1, f =−0.013321χ4 + 0.047305χ3ν−0.024203χ3 + 1.033352χ2ν2−0.254351χ2ν

−0.007847χ2 + 4.113463χν3−1.652924χν2 + 0.090834χν−28.423701ν4

+ 20.719874ν3−6.075679ν2 + 0.780093ν+ 0.135758 (D3)

d22
2, f =exp(−0.163113χ4−3.398858χ3ν+ 0.728816χ3 + 23.975132χ2ν2−10.064954χ2ν

+ 1.2115χ2 + 9.057306χν3−5.268296χν2 + 0.464553χν+ 0.56269χ
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−352.249383ν4 + 275.843499ν3−81.483314ν2 + 11.184576ν+ 0.03571) (D4)

c33
1, f =−0.00956χ3 + 0.029459χ2ν−0.020264χ2−0.494524χν2 + 0.169463χν

−0.026285χ−5.847417ν3 + 1.957462ν2−0.171682ν+ 0.093539 (D5)

c33
2, f =−0.057346χ3 + 0.237107χ2ν−0.094285χ2−4.250609χν2 + 1.763105χν

−0.315826χ+ 14.801916ν3−7.060581ν2 + 1.158627ν−0.646888 (D6)

d33
1, f =−0.016524χ3 + 0.221466χ2ν−0.066323χ2 + 0.678442χν2−0.261264χν

+ 0.006664χ+ 2.316434ν3−2.192227ν2 + 0.424582ν+ 0.161577 (D7)

d33
2, f =exp(0.275999χ3−1.830695χ2ν+ 0.512734χ2 + 29.072515χν2−10.581319χν

+ 1.310643χ+ 324.310223ν3−124.681881ν2 + 13.200426ν+ 0.410855) (D8)

c21
1, f =0.173462χ2ν−0.028873χ2 + 0.197467χν2−0.026139χ−2.934735ν3

+ 1.009106ν2−0.112721ν+ 0.099889 (D9)

c21
2, f =0.183489χ3 + 0.10573χ2−20.792825χν2 + 6.867746χν−0.484948χ

−54.917585ν3 + 16.466312ν2 + 0.426316ν−0.92208 (D10)

d21
1, f =0.018467χ4 + 0.398621χ3ν−0.050499χ3−0.877201χ2ν2 + 0.414553χ2ν

−0.068277χ2−10.648526χν3 + 4.104918χν2−0.723576χν+ 0.039227χ

+ 42.715534ν4−18.280603ν3 + 2.236592ν2−0.048094ν+ 0.16335 (D11)

d21
2, f =exp(0.814085χ3−1.197363χ2ν+ 0.560622χ2 + 6.44667χν2−5.630563χν

+ 0.949586χ+ 91.269183ν3−27.329751ν2 + 1.101262ν+ 1.040761) (D12)

c44
1, f =4.519504χν2−1.489036χν+ 0.068403χ−1656.065439ν4 + 817.835726ν3

−127.055379ν2 + 6.921968ν+ 0.009386 (D13)

c44
2, f =0.964861χ3ν−0.185226χ3−12.647814χ2ν2 + 5.264969χ2ν−0.539721χ2

−254.719552χν3 + 105.698791χν2−12.107281χν+ 0.2244χ−393.727702ν4

+ 145.32788ν3−15.556222ν2 + 1.592449ν−0.677664 (D14)

d44
1, f =−0.020644χ3 + 0.494221χ2ν−0.127074χ2 + 4.297985χν2−1.284386χν

+ 0.062684χ−44.280815ν3 + 11.021482ν2−0.162943ν+ 0.166018 (D15)

d44
2, f =exp(37.735116χν2−12.516669χν+ 1.309868χ−528.368915ν3 + 155.115196ν2

−6.612448ν+ 0.787726) (D16)

c55
1, f =−0.009957χ3 + 0.059748χ2ν−0.02146χ2−0.206811χν2 + 0.055078χν

−0.014528χ−5.966891ν3 + 1.76928ν2−0.055272ν+ 0.080368 (D17)

c55
2, f =0.119703χ4 + 1.638345χ2ν2−0.064725χ2−28.499278χν3 + 3.73034χν2

+ 1.853723χν−0.225283χ−1887.591102ν4 + 794.134711ν3−107.010824ν2

+ 6.32117ν−1.507483 (D18)

d55
1, f =−0.021537χ3 + 0.168071χ2ν−0.050263χ2 + 0.871799χν2−0.230057χν

+ 9.018546ν3−5.009488ν2 + 0.606313ν+ 0.150622 (D19)

d55
2, f =exp(28.839035χν2−9.726025χν+ 0.901423χ+ 143.745208ν3−64.478227ν2

+ 6.223833ν+ 2.058139) (D20)

c32
1, f =−0.133035χ3 + 0.641681χ2ν−0.111865χ2 + 8.987763χν2−1.582259χν

+ 0.095604χ−26.991806ν3 + 13.716801ν2−1.63083ν+ 0.157543 (D21)

c32
2, f =0.121608χ3−1.590623χ2ν+ 0.167231χ2−25.544931χν2 + 10.127968χν
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−0.999062χ−51.469773ν3 + 46.209833ν2−6.484571ν−0.716883 (D22)

d32
1, f =exp(−0.764015χ3−8.684722χ2ν+ 0.691946χ2−0.518291χν2−1.407934χν

+ 0.236427χ+ 81.222175ν3−18.040529ν2 + 2.216406ν−1.879455) (D23)

d32
2, f =exp(−1.819822χ3−24.501503χ2ν+ 3.287882χ2−39.324579χν2 + 14.379901χν

−215.372399ν3 + 136.20936ν2−16.842816ν+ 1.463485) (D24)

c43
1, f =0.041585χ3 + 4.188908χν2−1.365732χν+ 0.058908χ+ 44.311948ν3

−22.114177ν2 + 3.386082ν−0.035315 (D25)

c43
2, f =0.125764χ3 + 0.337235χ2ν+ 0.146202χ2−9.803187χν2 + 3.995199χν

−0.240976χ−57.968821ν3 + 7.820929ν2 + 3.364741ν−1.121716 (D26)

d43
1, f =exp(−0.888286χ3 + 3.97869χ2ν−1.047181χ2−14.823391χν2 + 6.940856χν

−0.367801χ+ 366.645645ν3−161.732513ν2 + 19.564699ν−2.29578) (D27)

d43
2, f =exp(−0.950676χ3−0.31428χ2 + 39.21796χν2−10.651167χν+ 1.339732χ

+ 730.42296ν3−312.960598ν2 + 37.402567ν−0.061894) (D28)

Appendix E: Robustness of the calibration pipeline

In this appendix we demonstrate that the calibration
pipeline described in Sec. IV is robust with regard to the
number of NR waveforms and the PSD used in the calibra-
tion likelihood.

For the first point, we repeat the procedure for the aligned-
spin calibration parameters θθθS ≡ {dSO,∆t22

ISCO,S}, by using a
representative subset of 119 aligned-spin NR simulations, se-
lected with a greedy algorithm following Ref. [91]. We do not
change the nonspinning fits for θθθnoS ≡ {a6,∆t22

ISCO,noS} (which
already used a subset of 18 simulations out of 39), and the fits
for the merger-ringdown and NQC corrections. This brings
the total number of waveforms used to 137, which is compa-
rable to the 141 used in the calibration of SEOBNRv4. As in
Sec. V, we compute the (2,2)-mode mismatch of this model
against the entire set of 442 cases summarized in Sec. IV.
Figure 26 shows the maximum mismatch across a range of
total masses between [10,300]M� for SEOBNRv5 calibrated
to 442 simulations, SEOBNRv5 calibrated to 137 simulations,
and SEOBNRv4. The median (dashed vertical line) goes only
from 1.99 × 10−4 for SEOBNRv5 calibrated to 442 simula-
tions, to 2.74× 10−4 for SEOBNRv5 calibrated to 137 simu-
lations, which is more than 5 times smaller than SEOBNRv4
(1.44 × 10−3). Moreover for SEOBNRv5 calibrated to 137
simulations there is only a single case with mismatch just
above 0.003 (BFI:q8-7d:0080, with parameters (q,χ1,χ2) =

(8.0,0.0,−0.8)). As already pointed out in Sec. V, even the
default SEOBNRv5 model can have mismatches slightly above
10−3 against similar cases, with high mass ratio, small a+, but
large individual spins, as the calibration term ∝ a+dSO does
not tend to be very effective. This shows that the calibration
pipeline does not rely on using the entire NR dataset described
in Sec. IV. Although we added some critical new NR simula-
tions, especially for high mass ratios, the improvement with
respect to SEOBNRv4 is also largely due to the improved ana-
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Figure 26. Histogram of the maximum (2,2)-mode mismatch over
a range of total masses between 10 and 300 M�, between the 442
NR simulations used in this work and SEOBNRv4 (blue), SEOBNRv5
calibrated to 442 NR simulations (green) and SEOBNRv5 calibrated
to 137 NR simulations (orange). The vertical dashed lines show the
medians.

lytical prescriptions, for the waveform modes, RR force and
Hamiltonian, and the more effective calibration procedure.

The calibration likelihood of Eq. (70) also depends on the
Advanced LIGO [169] PSD. To show that our calibration
pipeline is robust with respect to changes in the shape of the
PSD used, we compute again (2,2)-mode mismatches against
NR simulations (as this is the metric used in the likelihood)
using a white noise curve, the Einsten Telescope [204] and
Cosmic Explorer [16] PSDs. For this purpose we use the orig-
inal fits of {dSO,∆t22

ISCO,S} given in Eqs. (80) and (81). Fig-
ure 27 shows again the maximum mismatch, across a range of
total masses between [10,300]M�, of SEOBNRv5 against the
442 NR simulations used in this work, using a white noise
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Figure 27. Histogram of the maximum (2,2)-mode mismatch over
a range of total masses between 10 and 300 M�, between the 442
NR simulations used in this work and SEOBNRv5, using a white noise
curve and the PSDs of Advanced LIGO, Einstein Telescope and Cos-
mic Explorer. The vertical dashed lines show the medians. The (2,2)-
mode of SEOBNRv5 is calibrated using the Advanced LIGO PSD, but
performs as well using different noise curves.

curve and the PSDs of Advanced LIGO, Einstein Telescope
and Cosmic Explorer. We see that the result is very similar for
all the cases and, despite SEOBNRv5 being calibrated using the
Advanced LIGO PSD, it performs equally well using different
noise curves.

Appendix F: Impact of NQC corrections in the
radiation-reaction force

In Sec. III A we pointed out that we do not include the NQC
corrections in the SEOBNRv5 RR force. Recently, Refs. [105,
184] implemented a fast prescription in TEOBResumS to in-
clude fits of NQC corrections in both the waveform and RR
force, without requiring an iterative procedure. A similar pre-
scription could also be used in SEOBNRv5HM. Reference [116]
tested it in the nonspinning limit, finding that the inclusion of
NQCs corrections has a smaller effect than the calibration to
2GSF data in bringing the angular-momentum flux closer to
the NR’s one, except in the last fraction of a GW cycle be-
fore merger. Moreover, Ref. [116] found that the inclusion of
the nonspinning NQC corrections has a negligible effect on
the waveform after recalibrating the conservative dynamics to
NR, as the degeneracy between changes in the flux and in the
Hamiltonian reabsorbs any imperfection in the flux with the
calibration. The nonspinning limit of the model is however
already very close to the NR error, and the effect on more
challenging aligned-spin cases could be larger.

While for the current work we did not do a systematic study
in the entire aligned-spin parameter space to include the NQC
corrections in the RR force, in this Appendix we try to under-
stand the potential improvement for one binary configuration
and compare the results with SXS:BBH:1432, having param-
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Figure 28. (2,2)-mode mode mismatch against the NR simulation
SXS:BBH:1432 for the maximum likelihood points of the SEOBNRv5
calibration posteriors, with and without NQCs in the RR force. The
unfaithfulness is very similar, as the calibration of the Hamiltonian
reabsorbs any difference in the dissipative dynamics. We also show
an estimate of the NR error obtained by comparing simulations of
different resolutions.
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Figure 29. Comparison of the Newtonian normalized angular-
momentum flux between SEOBNRv5 with and without NQCs in the
radiation-reaction, and the NR simulation SXS:BBH:1432. The tri-
angle, square and diamond correspond respectively to 3, 1 and 0 cy-
cles before merger, which for each model is taken as the peak of the
(2,2)-mode amplitude. SEOBNRv5 with NQCs matches NR at merger
at expected, but does not agree with NR as well as SEOBNRv5without
NQCs at low frequencies.

eters (q,χ1,χ2) = (5.839,0.658,0.793). Thus, we iteratively
include the NQCs in the RR force and repeat the nested sam-
pling procedure detailed in Sec.IV B to find new values for
the aligned-spin calibration parameters {∆t22

ISCO,S,dSO}, which
are going to slightly change compared to the default ones,
given the different dissipative dynamics. To do a compari-
son without performing fits of the NQCs and of the calibra-
tion parameters across parameter space, we directly compare
the maximum likelihood points of the calibration posteriors,
corresponding to the values of the parameters giving the best
unfaithfulness and time to merger.

Figure 28 shows the (2,2)-mode mismatch against NR for
the maximum likelihood points of the SEOBNRv5 calibration
posteriors with and without NQCs in the RR force, together
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with an estimate of the NR error obtained by comparing dif-
ferent resolutions. The unfaithfulness is very similar, as the
calibration of the Hamiltonian reabsorbs any difference in the
dissipative dynamics. Moreover, in Fig. 29 we compare to
NR the Newtonian normalized angular-momentum flux be-
tween SEOBNRv5with and without NQCs in the RR force. The
triangle, square and diamond correspond respectively to 3, 1
and 0 cycles before merger, which for each model is taken as
the peak of the (2,2)-mode amplitude. SEOBNRv5 with NQCs
matches NR at merger at expected, but does not agree with
NR as well as SEOBNRv5 without NQCs at low frequencies,
showing that the addition of the NQCs does not necessarily
improve the flux.

This behavior could be potentially improved by doing more
iterations, finding new values for the NQCs given the cor-
rected calibration parameters, and repeating the calibration,
but would be time-consuming and not necessarily bring a sig-
nificant improvement in the waveforms. Nonetheless, a con-
sistent treatment of the NQCs both in the waveform and the
RR force would most likely provide more faithful represen-
tations of the angular-momentum and energy fluxes, and a
more systematic study across parameter space will be done
in a future update of the model, together with a recalibra-
tion of the conservative dynamics. Alternative ways to im-
prove the waveform close to merger, and reduce the impact
of the NQC corrections, should be also investigated, espe-
cially in light of the upcoming eccentric generalization of
this model SEOBNRv5EHM, as past experience in developing
SEOBNRv4EHM have demonstarted [89].

Appendix G: Comparison against time-domain nonprecessing
phenomenological models

In this appendix we compare the performance of
SEOBNRv5HM and the Fourier domain IMRPhenomXHM [42]
against the time-domain nonprecessing phenomenological
model IMRPhenomTHM [45, 46], which includes the (`, |m|) =

(2,2), (3,3), (2,1), (4,4), (5,5) modes. In particular, we repeat
the mismatch calculation against the NR catalog detailed in

Sec. V, both for the dominant mode only (Fig. 30 and Fig. 31)
and for the full polarizations, at inclination ι = π/3 (Fig. 32
and Fig. 33).

Considering the dominant mode mismatches, we see that
IMRPhenomT performs slightly worse than SEOBNRv5, consid-
ering both the median mismatch and the fraction of cases be-
low 10−4, while IMRPhenomXAS achieves on average slightly
lower values of the maximum unfaithfulness, as already noted
in Sec. V. More quantitatively, IMRPhenomT features 91% of
cases with maximum unfaithfulness below 10−3, 5% of cases
below 10−4, and a median of 2.31×10−4 (see also Table I).

Considering the mismatches of the full polarizations at
inclination ι = π/3 we note instead that IMRPhenomTHM is
slightly more accurate than SEOBNRv5HM, and both models
are appreciably more accurate than IMRPhenomXHM. More
specifically, IMRPhenomTHM shows maximum unfaithfulness
below 10−2 for 99% of cases, below 10−3 for 57% of
cases, and a median of 7.49 × 10−4 (see also Table II).
The NR simulation BFI:ExtremeAligned:0003, with q =

10.0, χ1 = 0.8, χ2 = 0.5, is the only outlier reaching
3% mismatch at high total mass, for both IMRPhenomTHM
and SEOBNRv5HM, while being at the level of 0.1% when
considering only the (2,2) mode. This suggests com-
mon limitations in the modeling of the higher modes for
such extreme configurations. In Fig. 34 we show the
unfaithfulness between SEOBNRv5HM, IMRPhenomTHM and
BFI:ExtremeAligned:0003, using multipoles up to `max =

5 and `max = 4, in both the models and the NR waveform. We
note that the mismatch for high total masses reduces signifi-
cantly for both models when removing ` = 5 multipoles, indi-
cating that part of the disagreement is due to mismodelling of
the (5,5) mode, as well as missing contributions in the mod-
els from the (` = 5,m , 5) multipoles, which can have a non-
negligible impact in the ringdown of such high mass-ratio bi-
naries. From the behavior of the unfaithfulness as a function
of the total mass in Fig. 32 we appreciate that SEOBNRv5HM
is overall closer to IMRPhenomTHM than to IMRPhenomXHM, as
expected given the similar merger-ringdown model, and the
comparable NR calibration coverage.
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the 442 NR simulations used in this work. The colored lines highlight cases with the worst maximum mismatch for each model.
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Figure 32. The sky-and-polarization averaged, SNR-weighted mismatch, for inclination ι = π/3, over a range of total masses between 20 and
300 M� between SEOBNRv5HM, IMRPhenomXHM, IMRPhenomTHM and the 441 SXSNR simulations used in this work. The colored lines highlight
cases with the worst maximum mismatch for each model. This comparison highlights the similarity in performance of the time-domain models
SEOBNRv5HM and IMRPhenomTHM.
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