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Spin precession is one of the key physical effects that could unveil the origin of the compact binaries detected
by ground- and space-based gravitational-wave (GW) detectors, and shed light on their possible formation
channels. Efficiently and accurately modeling the GW signals emitted by these systems is crucial to extract their
properties. Here, we present SEOBNRv5PHM, a multipolar precessing-spin waveform model within the effective-
one-body (EOB) formalism for the full signal (i.e. inspiral, merger and ringdown) of binary black holes (BBHs).
In the non-precessing limit, the model reduces to SEOBNRv5HM, which is calibrated to 442 numerical-relativity
(NR) simulations, 13 waveforms from BH perturbation theory, and non-spinning energy flux from second-order
gravitational self-force theory. We remark that SEOBNRv5PHM is not calibrated to precessing-spin NR waveforms
from the Simulating eXtreme Spacetimes Collaboration. We validate SEOBNRv5PHM by computing the unfaith-
fulness against 1543 precessing-spin NR waveforms, and find that for 99.8% (84.4%) of the cases, the maximum
value, in the total mass range 20− 300M�, is below 3% (1%). These numbers reduce to 95.3% (60.8%) when
using the previous version of the SEOBNR family, SEOBNRv4PHM, and to 78.2% (38.3%) when using the state-of-
the-art frequency-domain multipolar precessing-spin phenomenological IMRPhenomXPHM model. Due to much
better computational efficiency of SEOBNRv5PHM compared to SEOBNRv4PHM, we are also able to perform ex-
tensive Bayesian parameter estimation on synthetic signals and GW events observed by LIGO-Virgo detectors.
We show that SEOBNRv5PHM can be used as a standard tool for inference analyses to extract astrophysical and
cosmological information of large catalogues of BBHs.

I. INTRODUCTION

Since the first detection of a gravitational-wave (GW) sig-
nal in 2015 [1], GW astronomy has quickly transitioned from
a dozen of events observed in the first and second observing
runs [2, 3] of the LIGO and Virgo GW ground-based detec-
tors [4, 5] to more than a hundred of events in the latest ob-
serving run of the LIGO, Virgo and KAGRA detectors [6–12].
With the upcoming upgrades of the existing ground-based de-
tectors, as well as the planned next-generation GW detectors,
such as the ground-based Einstein Telescope [13] and Cos-
mic Explorer [14, 15], or the space-based Laser Interferom-
eter Space Antenna (LISA) [16], it is expected an increasing
rate of detected mergers of compact binaries. In order to max-
imize the science output of such experiments, it is essential to
accurately model the GWs emitted from binary systems.

One of the most active research areas in the field of GW
source modeling concerns with the accurate description of the
two-body motion when spins are misaligned with respect to
the orbital angular momentum of the system. In this situa-
tion, both the spins and the orbital angular momentum precess
around the direction of the total angular momentum [17]. In
addition to spin precession, asymmetries in the masses of the
binary components excite multipoles beyond the quadrupolar
order [18] which induce a rich structure in the GW signal, and
complicate substantially its modeling. Measurements of spin
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precession and higher multipoles can provide key information
about the formation channels of the observed systems [19–24]
and break degeneracies among parameters [25–33], allowing
high precision GW astronomy and accurate measurements of
cosmological parameters [34–36], as well as unique tests of
General Relativity (GR) [37–39].

Accurate models for precessing-spin binary black holes
have been developed within different modeling frameworks:
the phenomenological approach, the numerical relativity (NR)
surrogate models and the effective-one-body (EOB) formal-
ism.

Phenomenological models [40–57] are built upon ansätze
based on post-Newtonian (PN) and EOB theory during the
inspiral, and functional forms of the waveform in the in-
termediate and merger-ringdown parts, which are calibrated
to EOB and NR waveforms. Recently, there has been ef-
forts to include calibration to precessing-spin NR wave-
forms [57], and there is ongoing work to include these im-
provements in the latest frequency-domain precessing-spin
IMRPhenomXPHM [52] model, which we use throughout this
paper. Within the IMRPhenom family we also employ the
time-domain IMRPhenomTPHMmodel [54–56], which includes
an improved description of the spin precession with respect to
the IMRPhenomXPHM model.

The surrogate models [58–66] interpolate NR waveforms,
and they have been proven the most accurate method to pro-
duce models for higher multipoles [61] and spin-precession
[60, 62]. However, these models are limited to the region
in parameter space where NR simulations are available, and
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are restricted to the length of NR waveforms, unless they
are hybridized with EOB waveforms [61, 67]. In this paper,
we consider the state-of-the-art surrogate waveform model,
NRSur7dq4 [62], which includes spin-precession, all the mul-
tipoles in the co-precessing frame up to l = 4, mass ratios
q ∈ [1 − 4], dimensionless spins up to 0.8 and binary total
masses & 60M�.

The EOB formalism [68–72] combines information from
several analytical methods, such as post-Newtonian (PN) and
small mass-ratio approximations, with results from NR sim-
ulations. The EOB waveform models consist of three main
building blocks: 1) the Hamiltonian, which describes the
conservative dynamics, 2) the radiation-reaction (RR) force,
which accounts for the energy and angular momentum losses
due to GW emission, and 3) the inspiral-merger-ringdown
waveform modes, built upon improved PN resummations for
the inspiral part, and functional forms calibrated to NR wave-
forms in the merger-ringdown. EOB waveform models have
been constructed for quasi-circular non-spinning [69, 70, 73–
81] and spinning [71, 72, 82–102] binaries. Furthermore, or-
bital eccentricity [103–109] and matter [110–116] effects, as
well as information from post-Minkowskian [117–122] and
small mass-ratio approximations [123–129] have been also
incorporated in EOB models. To increase the computational
efficiency of the EOB waveforms, reduced-order frequency-
domain or surrogate models have been developed [130–139].

In the EOB formalism two main waveform families ex-
ist: SEOBNR [94, 95, 98] and TEOBResumS [100, 102, 140].
Within the SEOBNR family, here we present a new multipolar
precessing-spin waveform model, SEOBNRv5PHM1, for quasi-
circular binary black holes (BBHs). Precessing-spin wave-
forms can be constructed from an aligned-spin waveform in
the co-precessing frame, in which the BBH is viewed from
the maximum radiation axis and the GW signal resembles
a non-precessing one, by applying a time-dependent rota-
tion to the inertial frame [17, 141–145]. The precessing-
spin SEOBNRv3 [96, 97] and SEOBNRv4PHM [98] models em-
ploy a full EOB precessing-spin Hamiltonian [86, 87] to
evolve the dynamics in the co-precessing frame. To im-
prove the computational efficiency, the time-domain phe-
nomenological IMRPhenomTPHM [54, 56] model builds the
precessing waveform employing a purely aligned-spin dy-
namics. Similarly, the precessing-spin TEOBResumS model,
TEOBResumS-GIOTTO [101, 102] builds computational ef-
ficient precessing-spin waveforms evolving an aligned-spin
EOB Hamiltonian in the co-precessing frame.

To increase computational efficiency, SEOBNRv5PHM fol-
lows a similar approach as in Refs. [54, 101, 102], and de-
couples the evolution of the spins from the orbital dynam-
ics by using orbit-averaged, PN-expanded spin-precession
equations [55, 101, 102, 146]. The latter, in SEOBNRv5PHM,
includes higher PN orders and is derived from the full-

1 SEOBNRv5PHM is publicly available through the python package pySEOBNR
git.ligo.org/waveforms/software/pyseobnr. Stable versions of
pySEOBNR are published through the Python Package Index (PyPI), and
can be installed via pip install pyseobnr.

precessing spin SEOBNRv5 Hamiltonian [90, 91, 147]. The
SEOBNRv5PHM model is built in the co-precessing frame
upon the accurate multipolar aligned-spin SEOBNRv5HMmodel
[148], which is calibrated to 442 NR simulations [149, 150],
13 waveforms from BH perturbation theory [151, 152],
and nonspinning energy flux from second-order gravita-
tional self-force theory [153–155]. The model includes the
(l,m) = {(2,±2), (2,±1), (3,±3), (3,±2), (4,±4), (4,±3), (5,±5)}
multipoles. We remark that the SEOBNRv5PHM model is not
calibrated to precessing-spin NR simulations.

The standard way of validating waveform models is by
comparing them with numerical solutions of the Einstein
equations, i.e., NR waveforms. However, the high compu-
tational cost of producing NR simulations poses a challenge
to finely populate the large dimensionality of the parameter
space of quasi-circular precessing-spin BBHs (mass ratio and
the six spin degrees of freedom). As a consequence, NR simu-
lations of BBHs have been largely limited to mass ratios q ≤ 4
and dimensionless spins up to 0.8, and length of 15-20 or-
bital cycles before merger [98, 149, 150, 156–164]. Here, we
validate the new EOB precessing-spin waveform model, by
comparing it to 1425 simulations from the public Simulating
eXtreme Spacetimes (SXS) catalogue [150], as well as 118
NR simulations presented in Ref. [98]. When compared to
NR simulations we find that SEOBNRv5PHM provides 99.8%
of cases with a maximum unfaithfulness, in total mass range
[20−300]M�, below 3%, while this number reduces to 95.3%
for the previous generation of precessing-spin SEOBNR mod-
els, the SEOBNRv4PHM model [98].

For the inspiral orbital dynamics SEOBNRv5PHM uses the
post-adiabatic (PA) approximation [102, 165–167]. This
strategy for the evolution equations, combined with a new
high-performance Python infrastructure pySEOBNR [168],
improves significantly the computational efficiency of the
SEOBNRv5PHMmodel, and makes it comparable to the state-of-
the-art time-domain precessing-spin waveform models. The
model is generally ∼ 8− 20 times faster than SEOBNRv4PHM,
which has been proven to accurately describe quasi-circular
precessing-spin binaries, and it has been extensively em-
ployed to extract source properties of detected GW signals
[7, 8]. However, its high computational cost requires the use
of non-standard stochastic sampling techniques for Bayesian
inference studies, such as RIFT [169, 170], or machine learn-
ing techniques such as DINGO [171–173]. Here, we show
that the SEOBNRv5PHM model can be employed with standard
stochastic sampling techniques due to its high computational
efficiency. We perform Bayesian inference studies with the
SEOBNRv5PHM model by injecting synthetic NR signals into
detector noise, and by reanalysing GW events from previous
observing runs. We find that the SEOBNRv5PHM model re-
covers accurately the injected synthetic NR signals, as well
a providing more constrained posterior distributions in the an-
alyzed GW events than the SEOBNRv4PHM model.

This work is part of a series of articles [147, 148, 153, 168]
describing the SEOBNRv5 family of models, and it is or-
ganized as follows. In Secs. II and III we develop the
multipolar EOB waveform model for precessing-spin BBHs,
SEOBNRv5PHM, and highlight improvements and differences

https://git.ligo.org/waveforms/software/pyseobnr
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with respect to the previous generation of precessing-spin
SEOBNR models. In Sec. IV we validate the accuracy of
the SEOBNRv5PHM by comparing it to NR waveforms. We
also compare the performance of SEOBNRv5PHM against other
state-of-the-art quasi-circular precessing-spin waveform mod-
els, notably IMRPhenomXPHM and TEOBResumS-GIOTTO, and
investigate in which region of parameter space these mod-
els differ more from NR waveforms and from each other.
In Sec. V, we study the accuracy of the precessing model
using Bayesian inference analysis by injecting synthetic NR
waveforms in zero detector noise, and also by analysing GW
events detected in the latest observing runs of the LVK Col-
laboration. In Sec. VI, we summarize our main conclu-
sions and discuss future work. Finally, in Appendix A we
provide the explicit expression of the Hamiltonian used in
the SEOBNRv5PHM model [147], and in Appendix B we spec-
ify the equations used to apply the PA approximation in
the SEOBNRv5PHM model. In Appendix C we compare the
model with the state-of-the-art time-domain phenomenolog-
ical model IMRPhenomTPHM.

NOTATION

In this paper, we use geometric units, setting G = c = 1 un-
less otherwise specified.

We consider a binary with masses m1 and m2, with m1 ≥m2,
and spins SSS 1 and SSS 2. We define the following combinations
of the masses:

M ≡ m1 + m2, µ ≡
m1m2

M
, ν ≡

µ

M
,

δ ≡
m1−m2

M
, q ≡

m1

m2
,

(1)

where i = 1,2. A relevant combination of masses for GW data
analysis is the chirp mass defined as [174]

M = ν3/5M. (2)

We define the dimensionless spin vectors

χχχi ≡
aaai

mi
=

SSS i

m2
i

, (3)

along with the intermediate definition for aaai. We also define
the following combinations of the spins:

aaa± ≡ aaa1±aaa2. (4)

The relative position and momentum vectors, in the binary’s
center-of-mass, are denoted rrr and ppp, with

ppp2 = p2
r +

L2

r2 , pr = nnn · ppp, LLL = rrr× ppp, (5)

where nnn = rrr/r and LLL is the orbital angular momentum with
magnitude L. The direction of LLL is denoted as lll. The to-
tal angular momentum is given by JJJ = LLL + SSS 1 + SSS 2. We
express the precessing binary dynamics in an orthonormal

frame {lllN ,nnn,λλλN}, where lllN is the direction of LLLN ≡ µrrr × ṙrr,
and λλλN ≡ lllN × nnn. It is convenient to define the effective spin
parameter χeff [43, 71, 175],

χeff = (aaa1 + aaa2) · lllN , (6)

and the effective precessing-spin parameter χp [176],

χp =
1

B1m2
1

max
(
B1m2

1χ1,⊥,B2m2
2χ2,⊥)

)
, (7)

where B1 = 2 + 3m2/m1, B2 = 2 + 3m1/m2 and χi,⊥ indicates
the magnitude of the projection of the dimensionless spin vec-
tors on the orbital plane.

II. EFFECTIVE-ONE-BODY DYNAMICS OF
PRECESSING-SPIN BINARY BLACK HOLES

For the two-body conservative dynamics, the EOB formal-
ism relies on a Hamiltonian HEOB, constructed through an
effective Hamiltonian Heff of a test mass µ moving in a de-
formed Kerr spacetime of mass M (the deformation parameter
being ν), and the following energy map connecting Heff and
HEOB

HEOB = M

√
1 + 2ν

(
Heff

µ
−1

)
. (8)

The deformation of the Kerr Hamiltonian is obtained by im-
posing that at each PN order, the PN-expanded EOB Hamilto-
nian agrees with a PN Hamiltonian through a canonical trans-
formation. In Ref. [147], an EOB Hamiltonian that includes
all generic-spin information up to 4PN has been derived, while
the non-spinning dynamics is incorporated up to 4PN with
partial 5PN results. The dynamical variables of the generic
EOB Hamiltonian are the orbital separation rrr, the correspond-
ing canonically conjugate momentum ppp, and the spins SSS 1,2.

For arbitrary orientations of the spins, both the orbital plane
and the spins precess around the total angular momentum of
the system JJJ = LLL+SSS 1 +SSS 2, where the orbital angular momen-
tum LLL = rrr× ppp. The equations of motion are as follows [72]

ṙrr =
∂Hprec

EOB

∂ppp
, ṗpp = −

∂Hprec
EOB

∂rrr
+F ,

ṠSS 1,2 =
∂Hprec

EOB

∂SSS 1,2
×SSS 1,2,

(9)

where for SEOBNRv5PHM the full precessing-spin Hamilto-
nian, Hprec

EOB, is given in Sec. II. D of Ref. [147], and it reduces
as ν→ 0 to the Kerr Hamiltonian for a test mass in a generic
orbit. Within the EOB formalism, the dissipative effects enter
the dynamics through the RR force F , which is expressed in
terms of the waveform modes [76, 177].

It was shown in Refs. [141–145] that precessing-spin wave-
forms can be built starting from aligned-spin waveforms in
the so-called co-precessing frame, in which the z-axis remains
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perpendicular to the instantaneous orbital plane, and then ap-
plying a suitable rotation to the inertial frame. The precessing-
spin SEOBNRv3 and SEOBNRv4models employed the full EOB
precessing-spin Hamiltonian [86, 87] to evolve the dynamics
in the co-precessing frame. However, solving the EOB dy-
namics for generic spin configurations can be computationally
expensive, as the EOB evolution equations (9) lead to lengthy
expressions [178]. To build the precessing-spin TEOBResumS
model and speed-up the computational time, Refs. [101, 102]
used an aligned-spin EOB Hamiltonian when evolving the
equations in the co-precessing frame. Also, the IMRPhenomT
model [55] was built using a purely aligned-spin dynamics in
the co-precessing frame.

To build the computationally efficient precessing-spin dy-
namics of SEOBNRv5PHM, Ref. [147] has leveraged the re-
cent studies of Ref. [55, 101, 102], making some important
modifications and improvements. In particular, to enhance
the accuracy in describing precessional effects, Ref. [147] has
found it important to incorporate at least partial precessing-
spin information in the Hamiltonian used in the co-precessing
frame. To achieve that, it has first obtained a precessing-
spin Hamiltonian simpler than the full one, such that it re-
duces to the aligned-spin Hamiltonian in absence of spin pre-
cession, but only includes the in-plane spin components for
circular orbits (pr = 0). Then, it has orbit averaged the in-
plane spin components in the Hamiltonian, and used them
when evolving the equations of motion involving the dynam-
ical variables r, pr,φ and pφ in the co-precessing frame. Fur-
thermore, the evolution equations for the spin and angular
momentum vectors are computed in a PN-expanded, orbit-
averaged form for quasi-circular orbits, similarly to what was
done in Refs. [55, 101, 102, 146], but, as we discuss below,
Ref. [147], has included higher PN orders in the spin-spin
sector, and has derived them from the SEOBNRv5 EOB Hamil-
tonian, employing a different gauge and spin-supplementary
condition with respect to Refs. [55, 101, 102].

Thus, in the SEOBNRv5PHM model, the equations of motion
in the co-precessing frame read:

ṙ = ξ(r)
∂Hpprec

EOB

∂pr∗
, φ̇ =

∂Hpprec
EOB

∂pφ
,

ṗr∗ = −ξ(r)
∂Hpprec

EOB

∂r
+Fr, ṗφ = Fφ,

(10)

where, as said, the Hamiltonian Hpprec
EOB reduces in the aligned-

spin limit to the Hamiltonian used in SEOBNRv5HM [148],
while also including partial precessional (pprec) effects. No-
tably, the Hamiltonian incorporates orbit-averaged in-plane
spin terms for circular orbits (pr = 0), while neglecting fourth
order spin contributions (see Appendix A for the explicit ex-
pression of Hpprec

EOB and other details).
As in previous EOB models [93, 95, 96, 98], the evolu-

tion of the radial momentum is performed using the tortoise-
coordinate pr∗ = prξ(r), where ξ(r) = dr/dr∗. The RR force is
computed using [72]

Fφ = −
ΦE

Ω
, Fr = Fφ

pr

pφ
, (11)

where Ω≡ φ̇ is the orbital frequency, and ΦE is the energy flux
for quasi-circular orbits, which can be written as [76, 177].

ΦE =
Ω2

16π

8∑
l=2

l∑
m=−l

m2|dLhlm|
2, (12)

where dL is the luminosity distance from the binary to the ob-
server, and hlm are the waveform modes.

In addition to the equations of motion (10), the PN-
expanded evolution equations for the spins and angular mo-
mentum, read:

ṠSS i = ΩΩΩS i ×SSS i, (13a)
LLL = LLL(lllN , v,SSS i), (13b)

l̇llN = l̇llN(lllN , v,SSS i), (13c)

where ΩΩΩS i is the spin-precession frequency, v ≡ (MΩPN)1/3

with ΩPN being the PN-expanded orbital frequency (see be-
low), and lllN is the unit vector in the direction of LLLN . As
said, these PN-expanded equations have been obtained in
Ref. [147] (consistently, from the SEOBNRv5 Hamiltonian and
equations of motion) for precessing spins through an orbit-
average procedure up to 4PN order, including spin-orbit (SO)
contributions to next-to-next-to-leading order (NNLO), and
spin-spin (SS) contributions to NNLO. The spin-precession
frequency is given by Eq. (66) of Ref. [147], while LLL and l̇llN
are given there in Eqs. (65) and (71).

We note that the SO and LO SS parts of the spin-precession
frequency ΩΩΩS i agree with the orbit-averaged results given by
Eqs. (1)-(5) of Refs. [101, 146], but the NLO and NNLO
SS terms do not agree with Refs. [146, 179] because of the
different gauge used for the SEOBNRv5 Hamiltonian. Further-
more, our expressions for LLL(lllN ,ΩPN,SSS i), and hence for l̇llN ,
differ at SO level from Ref. [101] because of the different spin-
supplementary condition used.

In practice, to solve the equations of motion, we first per-
form the PN-expanded evolution of the spin and angular mo-
mentum vectors using Eqs. (13), then we apply a subse-
quent EOB evolution using Eqs. (10), where the projec-
tions of the spins SSS 1,2 onto lllN and LLL(lllN) are updated at ev-
ery timestep [102]. The solution of the PN-expanded equa-
tions (13) requires a prescription for the evolution of the or-
bital frequency, which we compute as follows

v̇ =

[
Ė(v)

dE(v)/dv

]
PN−expanded

, (14)

where E(v) is the binding energy of the binary, and Ė(v) the
circular-orbit PN-expanded energy flux.

The expression for v̇ is given by Eq. (69) of Ref. [147],
which used the results of Ref. [180] to obtain the NNLO
SS contribution to the orbit-averaged energy flux. Our re-
sult for v̇ agrees at the NNLO SO and LO SS with Eq. (A1)
of Ref. [181], but differs from it by including the NLO and
NNLO SS contributions. Also, our PN-expanded equations
are fully expanded in v.

The SEOBNRv5PHM model employs the partial precessional
Hamiltonian, Hpprec

EOB , which reduces to the non-precessing
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SEOBNRv5HM Hamiltonian in the aligned-spin limit. This
Hamiltonian contains parameters which feature higher (yet
unknown) PN orders and are calibrated to aligned-spin NR
waveforms. These calibration parameters are denoted by a6(ν)
and dSO(ν,a±) in Ref. [148]. From these two parameters only
dSO contains a spin dependence, and thus, it is the only cal-
ibration parameter affected by the variation of the spins with
time. In the SEOBNRv5PHMwe employ the projections of spins
onto lllN to evaluate dSO(ν,aaa± · lllN) at every timestep of the evo-
lution. The other calibration parameter inherited from the
underlying SEOBNRv5HM model is ∆t22

ISCO(ν,a±), which is a
parameter determining the time shift between the innermost
stable circular orbit (ISCO) of the remnant Kerr BH, and the
time of the peak of the (2,2)-mode amplitude (see Sec. IV of
Ref. [148] for details). Here, we employ the projections of the
spins onto the Newtonian angular momentum evaluated at the
time the orbital separation r crosses the ISCO2 to evaluate the
NR calibrated time shift, i.e., ∆t22

ISCO(ν,aaa± · lllN)|tISCO .
Equations (10) have the same form of the evolution equa-

tions in the aligned-spin SEOBNRv5HM model. This fact per-
mits the use of the PA approximation [165, 167] in the
precessing-spin SEOBNRv5PHM model, as done in the underly-
ing aligned-spin SEOBNRv5HM model [148]. The use of the PA
approximation to evolve the EOB inspiral implies an increase
in speed and efficiency of the model as discussed in Sec. IV E,
while the specific details of its implementation are described
in Appendix B. Furthermore, the orbital frequency as com-
puted in Eq. (14) allows an adiabatic evolution, which permits
to disentangle the starting frequency of the EOB evolution
with the reference frequency at which the spins are specified,
which introduces a novel feature in the SEOBNR models3 and
highly benefits Bayesian inference studies as shown in Sec. V.

In summary, our strategy to produce precessing-spin EOB
waveforms shares common aspects with the work developed
in Refs. [54, 101, 102], but it goes beyond them in several
aspects which we highlight again in the following. First, the
precessing-spin evolution equations, Eqs. (13), which are im-
plemented in SEOBNRv5PHM and derived in Ref. [147], in-
clude higher PN orders and are consistently derived from the
generic SEOBNRv5 Hamiltonian. Then, the EOB dynamics is
also improved by including in the SEOBNRv5HM Hamiltonian
of Ref. [147, 148] terms describing in-plane spin effects and
vanishing in the non-precessing limit. Moreover, all the spin
components entering into the Hamiltonian are used in the or-
bital evolution (see Appendix A for more details), instead of
just the projection onto lllN as in Refs. [101, 102].

2 More specifically, the ISCO time is computed from the ISCO orbital sepa-
ration rISCO(ν,a±), which in the precessing-spin case depends on the values
of the spins projected onto lllN at a particular instant of time, which we de-
cide to be r = 10M, rISCO(ν,aaa± · lllN )|r=10M , for the reasons discussed in
Sec. III.

3 In the previous SEOBNRv4PHM model, where Eqs. (9) are solved, the start-
ing frequency and the reference frequency correspond to the same fre-
quency. The specification of a reference frequency distinct from the start-
ing frequency implies a backwards in time integration, which due to the
RR force in the EOB dynamics would cause an increase of eccentricity
in SEOBNRv4PHM, and thus it breaks the assumption of modeling quasi-
circular binaries.

III. EFFECTIVE-ONE-BODY MULTIPOLAR
WAVEFORMS FOR PRECESSING-SPIN BINARY BLACK

HOLES

In this section we describe the main building blocks
to generate precessing-spin multipolar waveforms in the
SEOBNRv5PHM model.

A. Inspiral-plunge waveforms

The construction of the inspiral-plunge waveforms follows
a similar approach to Ref. [98], with the usage of the fac-
torized, resummed version [177, 182] of the frequency do-
main PN formulas of the modes [183, 184]. The factorized
resummation has been developed for non-precessing BBHs
[76, 95, 147, 182] and it has been proven to improve the accu-
racy of the PN expressions in the test-particle limit [151, 185–
187].

The components of the RR force, Fr,φ, in Eq. (11) de-
pend on the amplitude of the individual GW modes |hlm|. In
SEOBNRv5PHM, the spins entering the GW modes (and energy
flux) are projected onto the Newtonian orbital angular mo-
mentum, aaa± · lllN , since lllN represents the direction perpendic-
ular to the orbital plane (see Fig. 1) and is provided by the
PN-expanded EOB precessing-spin evolution equations4.

The GW polarizations in the inertial frame of the observer
are required for data-analysis studies. As in Ref. [98], the
SEOBNRv5PHM model also defines three reference frames: 1)
the inertial frame of the observer (source frame) (whose quan-
tities are indicated with a superscript I), 2) an inertial frame
where the z-axis is aligned with the final angular momentum
of the system5 (JJJf-frame), which helps with the construction
of the merger ringdown, (whose quantities are denoted with
the superscript J), and finally 3) a non-inertial frame which
tracks the instantaneous motion of the orbital plane, the co-
precessing frame (whose quantities are denoted by the super-
script P). The frames are depicted in Fig. 1 and described be-
low.

The source frame is defined at a given reference frequency
fref (corresponding to a reference time tref) by the triad {êeeI

i }

(i = 1,2,3), where êeeI
1 = n̂nn(tref), êeeI

3 = lllN(tref), êeeI
2 = êeeI

3 × êeeI
1.

Meanwhile, the ĴJJf-frame is constructed as êeeJ
3 = ĴJJf , êeeJ

1 =

N[êeeI
1− (êeeI

1 · êee
J
3)êeeJ

3], êeeJ
2 = êeeJ

3× êeeJ
1 where the N[] denotes normal-

ization. The two frames are connected by a constant rotation
given by:

RI→J =


êeeJ

1 · êee
I
1 êeeJ

2 · êee
I
1 êeeJ

3 · êee
I
1

êeeJ
1 · êee

I
2 êeeJ

2 · êee
I
2 êeeJ

3 · êee
I
2

êeeJ
1 · êee

I
3 êeeJ

2 · êee
I
3 êeeJ

3 · êee
I
2

 . (15)

4 We note that in the SEOBNRv4PHM model the spins were projected using lll.
5 This is computed as the value of the solution of Eqs. (13) at the attachment

point of the merger-ringdown model.
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1

̂eP
3(t) = lN(t)

̂eP
2(t)

̂eP
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̂eJ
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̂eI
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1

̂eI
3 = lN(tref)

̂eI
1 = n̂(tref)

Figure 1. Frames used in the construction of the
SEOBNRv5PHM model. The co-precessing frame (red) is constructed
such that its z-axis is instantaneously aligned with the Newtonian
angular momentum lllN (t) and can be described by the Euler angles
(α,β,γ) with respect to JJJf-frame (blue), while the source frame (pur-
ple) corresponds to the inertial frame defined by the initial Newtonian
angular momentum lllN (tref) and unit separation vector n̂nn(tref). For the
SEOBNRv5PHM model we adopt the convention that at tref , the source
and co-precessing frames coincide.

The rotation operation in Eq. (15) can be also expressed as a
unit quaternion qI→J

6.
Finally, to construct the inertial GW modes hI

lm during the
inspiral-plunge, we introduce the co-precessing frame, which
is defined by the triad {êeeP

i } (i = 1,2,3). At every instant
the z-axis of the co-precessing frame is aligned with lllN (i.e.,
êeeP

3 (t) = lllN(t)) 7. In this frame, the GW radiation resembles the
radiation from an aligned-spin binary [141–145]. The other
two axes lie in the orbital plane and are defined such that they
minimize precessional effects in the modes hP

lm. This is done
by enforcing the minimal rotation condition that relates the
rotation from the JJJf-frame to the co-precessing frame [143].
This transformation is best parametrized by a unit quaternion
that aligns the z-axis of the JJJf-frame with lllN

qJ→P(t) =

√
−lllN(t)êeeJ

3 , (16)

and the minimal rotation condition is then simply (q̇êeeJ
3 q̄)0 =

0, where (q)0 denotes taking the scalar part of the quater-
nion [143], and q̄ denotes the conjugate of the quaternion
(which is also its inverse). The minimal rotation condition
has a residual freedom which corresponds to the integration

6 To perform such a conversion, as well as subsequent manipulations of
quaternions (e.g., the enforcement of the minimal rotation condition), we
work with the quaternion Python package [188].

7 Note that in Ref. [98], the z-axis is aligned with lll instead of lllN .

constant [143]. We fix this freedom by demanding that at the
reference time, the co-precessing frame and source frame co-
incide.

We calculate the co-precessing frame inspiral-plunge
GW waveform modes by evaluating the factorized, re-
summed non-precessing modes along the EOB dynam-
ics described in Eqs. (10), with time-dependent pro-
jections of the spins

{
aaa± · lllN ,aaa± · lll,aaa+ ·aaa−,aaa2

±

}
. Follow-

ing Ref. [148], in which an EOB non-precessing mul-
tipolar waveform (SEOBNRv5HM) calibrated to NR non-
precessing simulations was developed, we include in
the co-precessing frame of the SEOBNRv5PHM model the
{(2,±2), (2,±1), (3,±3), (3,±2), (4,±4), (4,±3), (5,±5)} modes,
and make the assumption hP

l,−m = (−1)lhP∗
l,m. As discussed in

Sec. IIIB of Ref. [98], the inaccuracies due to neglecting mode
asymmetries should remain modest, and are expected to be at
most comparable to other modeling errors.

To assemble the inertial-frame modes, we first rotate hP
`m to

the JJJf-frame using q̄J→P, and then from the JJJf-frame to the
source frame using q̄I→J

8. To make contact with literature, it
is useful to express these rotations in terms of Euler angles.
Using the active ZYZ convention (see Fig. 1), the J→ P rota-
tion is given by

qJ→P = eαẑzz/2eβŷyy/2eγẑzz/2. (17)

In this formulation, the minimal rotation condition is given by
γ̇ = −α̇cosβ [143].

B. Merger-ringdown waveforms

After the coalescence, the description of a BBH system of
two individual objects is no longer valid, and the EOB model
builds the ringdown stage via a phenomenological model of
the quasinormal modes (QNMs) of the remnant BHs, formed
after the merger of the progenitors. The QNMs frequencies
are tabulated functions of the final mass, M f , and angular mo-
mentum SSS f = M2

fχχχ f of the remnant BH [192]. The QNMs are
defined with respect to the direction of the final spin, and thus,
the description of the ringdown signal as a linear combination
of QNMs, is formally valid only in an inertial frame with the
z-axis parallel to χχχ f .

Following Ref. [98], in SEOBNRv5PHM the attachment of the
merger-rindown waveform is performed in the co-precessing
frame. Therefore, we employ the merger-ringdown multipolar
model developed for non-precessing BBHs (SEOBNRv5HM) in
Ref. [148].

The calculation of the waveform in the inertial observer’s
frame requires a description of the co-precessing frame Euler
angles {α(t),β(t),γ(t)} which extends beyond merger. Here,
we take advantage of a phenomenological prescription based
on insights from NR simulations [193]. More specifically, it
was shown that the co-precessing frame continues to precess

8 We perform these rotations using the scri[189–191] Python package.
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roughly around the direction of the final angular momentum
with a precession frequency, ωprec, proportional to the differ-
ence between the lowest overtone of the (2,2) and (2,1) QNM
frequencies, while the opening angle of the precessing cone,
β, tends to decrease at merger. This phenomenology translates
into the following expressions for the merger-ringdown angles
in SEOBNRv5PHM,

αmerger−RD = α(tmatch) +ωprec(t− tmatch), (18)

βmerger−RD = β(tmatch), (19)

γmerger−RD = γ(tmatch)−ωprec(t− tmatch)cosβ(tmatch), (20)

where tmatch is the time of attachment of the merger-ringdown
model. We have also investigated non-constant post-merger
extensions of the β angle, such as the small opening angle
approximation (see Eq. (24b) of Ref. [56]), but we find that
such an approximation may degrade the faithfulness of the
model to NR for certain configurations.

The behavior noticed in Ref. [193], describes prograde con-
figurations, were the remnant spin is positively aligned with
the orbital angular momentum at merger. However, to keep
the model generic and accurate in a wide parameter space of
mass ratios and spins, we extend the prescription to the retro-
grade case (negative alignment of the final spin with respect to
the angular momentum at merger), which is typical for high
mass-ratio binaries, when the total angular momentum JJJ is
dominated by the primary spin SSS 1 instead of LLL. While we
keep imposing simple precession around the final spin at a
rate ωprec ≥ 0 in our model, we distinguish two cases depend-
ing on the direction of the total angular momentum at merger
χχχ f ∼ JJJf with respect to the final orbital angular momentum
LLL f ,

ωprec =

ω
QNM
22 (χ f )−ωQNM

21 (χ f ) if χχχ f ·LLL f > 0

ωQNM
2−1 (χ f )−ωQNM

2−2 (χ f ) if χχχ f ·LLL f < 0
, (21)

where χ f = |χχχ f |, and the QNM frequencies for negative m are
taken from the continous extension of the m > 0, ωQNM

lm > 0
branch [192]. We stress that this prescription of the post-
merger extension of the Euler angles for the retrograde case is
much less tested than the prograde case due to the lack of NR
simulations covering this region of parameter space, which
also includes particular systems with transitional precession
[17].

Following recent insights from NR of Ref. [194], where
a correct prescription of the shift of the co-precessing
QNM frequencies was developed, we compute in the
SEOBNRv5PHM model the co-precessing frame QNM frequen-
cies from the QNM frequencies in the JJJf-frame as,

ωQNM,P
lm = ωQNM,J

lm −m(1− |cosβ(tmatch)|)ωprec. (22)

Another essential aspect in the construction of the merger-
rindown waveforms is the mapping from binary component
masses and spins to the final mass and spin, required to eval-
uate the QNM frequencies of the remnant. Several groups
have developed fitting formulas based on large sets of NR

simulations (see Ref. [195] for a brief overview of the liter-
ature). To ensure agreement in the non-precessing limit with
SEOBNRv5HM [148], we employ the fits for the final mass from
Ref. [196], and the fits from Ref. [197] for the final spin.

The application of the fitting formulae for the final mass
and spin requires choosing a time during the inspiral at
which to evaluate the spins, as for precessing binaries the
individual components of the spins vary with time. In the
SEOBNRv5PHM model, we choose to evaluate the spins at a
time corresponding to an orbital separation r = 10M. Simi-
larly as in Ref. [98], this choice is based on good agreement
with NR configurations, and by the restriction that the small-
est initial orbital separation must be r > 10.5M to ensure small
initial eccentricities [97]. Additionally, this choice guaran-
tees that a given physical configuration always produces the
same waveform regardless of the initial starting frequency,
as all configurations will pass through an orbital separation
r = 10M.

Finally, the inspiral-merger-ringdown GW modes in the in-
ertial frame hI

lm are obtained by rotating the inspiral-merger-
ringdown modes hP

lm from the co-precessing frame to the in-
ertial observer’s frame using the expressions for the rotations
in Appendix A of Ref. [97]. The inertial frame GW polariza-
tions at a time t, and location in the sky of the observer (ϕ0, ι)
can be expressed in terms of the −2-spin-weighted spherical
harmonics, as follows

hI
+(t;λλλ,ϕ0, ι)− ihI

×(t;λλλ,ϕ0, ι) =
∑
`,m
−2Y`m(ϕ0, ι)hI

`m(t;λλλ) , (23)

where λλλ represents the set of intrinsic parameters (masses and
spins), and {ϕ0, ι} the coalescence phase and the inclination
angle of the signal.

C. Efficient calculation of the GW polarizations

For applications in which only the GW polarizations are re-
quired, as for most of the current parameter-estimation codes,
we introduce an alternative and computationally more ef-
ficient method to obtain the polarizations directly in terms
of the co-precessing −2-spin-weighted spherical harmonic
modes. This involves rotating the spin-weighted spherical
harmonic basis, instead of computing the full set of spin-
weighted spherical harmonic modes in the inertial frame.

The inertial-frame (I-frame) modes are related to the co-
precessing-frame (P-frame) modes by a time-dependent ro-
tation from the co-precessing frame to the frame where the
z-axis is aligned with the final angular momentum of the sys-
tem (JJJf-frame 9), and a time-independent rotation from the
JJJf-frame to the final inertial frame

hI
`m(t) =

∑
m′,m′′

(
RJ→I

)
m,m′

(
RP→J

)
m′,m′′

hP
`m′′ (t), (24)

9 The JJJf -frame is the frame where the approximation of the Euler angles in
Eqs. (18), (19) and (20) is applied.
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where RX→Y indicates the rotation operator from the frame
X to the frame Y , and the indices m′,m′′ denote summation
indices over the modes available in the co-precessing frame.

Factoring out the source orientation information from the
spin-weighted spherical harmonic basis as a rotation of the
basis

−2Y`m(ϕ0, ι) =
∑
m′

(
Rϕ0,ι

)
m,m′−2Y`m(0,0), (25)

the complete rotation of the basis functions from the co-
precessing frame to the final inertial frame can be constructed
composing the individual rotations as

RP→I = Rϕ0,ιRJ→IRP→J, (26)

with associated Euler angles {αP→I,βP→I,γP→I}. Applying this
rotation operator, the spin-weighted spherical harmonic basis
can be written as∑

m′

(
RP→I

)
m,m′−2Y`m(0,0) = e2iαP→I

−2Y`m(γP→I,βP→I), (27)

and the GW polarizations in the inertial frame can therefore
be expressed as

hI
+(ϕ0, ι; t)− ihI

×(ϕ0, ι; t) = e2iαP→I
∑
`,m
−2Y`m(γP→I,βP→I)hP

`m(t).

(28)
Eq. (28) is only summed over the set of 7 co-precessing
modes10, and the computation of the complete rotation and
its application to the basis functions11 is more efficient than
the corresponding (double) rotation of the GW modes, which
requires the rotation of 33 GW modes.

IV. PERFORMANCE OF THE MULTIPOLAR
PRECESSING-SPIN EFFECTIVE-ONE-BODY WAVEFORM

MODEL

In this section we assess the accuracy of the multipo-
lar precessing-spin SEOBNRv5PHM model by comparing it, as
well as other models, to NR simulations of quasi-circular
precessing-spin BBHs. Particularly, we consider state-
of-the-art precessing-spin models within the EOB frame-
work, such as SEOBNRv4PHM [98] and the public version of
TEOBResumS-GIOTTO12 [102], and within the phenomenolog-
ical approach, the frequency-domain IMRPhenomXPHM [52]
(and in Appendix C the time-domain IMRPhenomTPHM [56]
model). All the previous models, including SEOBNRv5PHM,

10 The negative m-modes in the co-precessing frame are obtained by the sym-
metry relation hP

l,−m = (−1)lhP∗
l,m.

11 In this method we have 14 basis functions corresponding to the positive
and negative m-modes.

12 In this paper we employ the TEOBResumS-GIOTTO model from the public
bitbucket repository https://bitbucket.org/eob_ihes/teobresums
with the git hash fc4595df72b2eff4b36e563f607eab5374e695fe,
which is the latest release at the time of this publication.

are not calibrated to precessing-spin NR waveforms. We
also investigate the validity and systematics of models
by comparing them against the surrogate NRSur7dq4 [62]
model. Finally, we assess the computational efficiency of the
SEOBNRv5PHM model to be used for data analysis.

A. Brief overview of the faithfulness function

The GW signal emitted by a quasi-circular precessing-
spin BBH system depends on 15 parameters: the component
masses, m1,2 (or equivalently mass ratio q and total mass M),
the dimensionless spin vectors χχχ1,2(t), the direction of the ob-
server from the source can be described by the angles (ϕ0, ι),
the luminosity distance dL, polarization angle ψ, the location
in the sky of the detector (θ,φ), and the time of arrival tc.
The strain in the detector caused by a passing GW can be ex-
pressed as

h(t) ≡F+(θ,φ,ψ) h+(t; ι,ϕ0,dL,λλλ, tc)
+ F×(θ,φ,ψ) h×(t; ι,ϕ0,dL,λλλ, tc) , (29)

where λλλ= {q,M,χχχ1,2(t)} is introduced to simplify the notation,
and F+,× are the antenna pattern functions [198, 199]. The
strain in Eq. (29) can be expressed in terms of an effective
polarization angle κ(θ,φ,ψ) as

h(t) =A(θ,φ)(h+ cosκ+ h× sinκ), (30)

where the dependences of κ, h+ and h× have been removed to
ease notation, and the definition of the coefficientA(θ,φ) can
be found in Refs. [95, 98]. As discussed, the GW polarizations
can be decomposed in the basis of −2-spin weighted spherical
harmonics as

h+− ih× =

∞∑
l=2

m=+l∑
m=−l

−2Ylm(ϕ0, ι)hlm(t;λλλ), (31)

where hlm(t;λλλ) are the GW multipolar modes.
We introduce the inner product between two waveforms, h1

and h2 [198, 199]

(h1,h2) ≡ 4 Re
∫ fmax

fin
d f

h̃1( f ) h̃∗2( f )
S n( f )

, (32)

where a tilde indicates Fourier transform, a star complex con-
jugation and S n( f ) the power spectral density (PSD) of the de-
tector noise. In this work, we employ for the PSD the LIGO’s
“zero-detuned high-power” design sensitivity curve [200].
When both waveforms are in band we use fin = 10Hz and
fmax = 2048Hz. For cases where this is not the case (e.g., the
NR waveforms are used), we employ fin = 1.35 fpeak, where
fpeak corresponds to the peak amplitude of the frequency-
domain strain of the signal, and the factor 1.35 accounts for
possible artifacts coming from the Fourier transform of the
time domain waveforms.

To assess the agreement between two waveforms — for in-
stance, the signal, hs, and the template, ht, observed by a de-

https://bitbucket.org/eob_ihes/teobresums
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tector, we define the faithfulness function [95, 98],

F (Ms, ιs,ϕ0s, κs) = max
tc,ϕ0t ,κt

 〈hs|ht〉
√
〈hs|hs〉〈ht |ht〉

∣∣∣∣∣∣ ιs=ιt
λλλs(ts=t0s )=λλλt(tt=t0t )

 .
(33)

When comparing waveforms with higher-order multipoles
[53, 95, 98] a typical choice in Eq. (33) is to set the inclina-
tion angle of the template and the signal to be the same, while
the coalescence time, azimuthal and effective polarization an-
gles of the template, (t0t ,ϕ0t , κt), are adjusted to maximize the
faithfulness of the template. The maximizations over the coa-
lescence time tc and coalescence phase ϕ0t are performed nu-
merically, while the optimization over the effective polariza-
tion angle κt is done analytically as described in Ref. [201].

In Eq. (33) the condition λλλs(ts = t0s ) = λλλt(tt = t0t ) enforces
that the intrinsic properties (mass ratio q, total mass M, and
spins χχχ1,2) of the template waveform at t = t0 (typically the
start of the waveform) are the same as at its t0. However, such
identification of the same t0 is not trivially satisfied between
different waveforms, including NR and waveform models. As
a consequence, several approaches can be applied to mitigate
such a choice. For instance, in Ref. [98] t0t is chosen such
that the time elapsed from t0s and t0t to the peak of the frame-

invariant amplitude
∑

l,m |hlm|
2 occurs at the same time for NR

and SEOBNRv4PHM, while in Refs. [49, 98] numerical opti-
mizations over the reference frequency of the waveform were
performed for waveforms of the IMRPhenom family. Here, we
instead optimize numerically over a rigid rotation δ ∈ [0,2π] of
the in-plane spin components of the template {χt

i,x,χ
t
i,y} with

i = 1,2, at the reference frequency [52, 202], such that

χt
i,x = χs

i,x cos(δ)−χs
i,y sin(δ),

χt
i,y = χs

i,x sin(δ) +χs
i,y cos(δ), i = 1,2,

(34)

where {χs
i,x,χ

s
i,y} denote the in-plane spin components of the

signal. This method, contrary to the procedure of optimizing
over the reference frequency of the template, has unambigu-
ous bounds for the parameters involved.

It is convenient to introduce the sky-and-polarization aver-
aged faithfulness to reduce the dimensionality of the faithful-
ness function and express it in a more compact form [95, 98],

F (Ms) =
1

8π2

∫ 1

−1
d(cos ιs)

∫ 2π

0
dϕ0s

∫ 2π

0
dκsF (Ms, ιs,ϕ0s, κs).

(35)
Another useful metric to assess the closeness between wave-
forms is the signal-to-noise (SNR)-weighted faithfulness [98]

F SNR(Ms) =
3

√√√√∫ 1
−1 d(cos ιs)

∫ 2π
0 dκs

∫ 2π
0 dϕ0s F

3(Ms, ιs,ϕ0s, κs) SNR3(ιs,ϕ0s, κs)∫ 1
−1 d(cos ιs)

∫ 2π
0 dκs

∫ 2π
0 dϕ0s SNR3(ιs,ϕ0s, κs)

, (36)

where the SNR is defined as

SNR(ιs,ϕ0s, θs,φs, κs,dLs,λλλs, tcs) ≡
√

(hs,hs). (37)

In Eq. (36) the weighting by the SNR takes into account the
dependence on the phase and effective polarization of the sig-
nal at a fixed distance. Finally, we introduce the unfaithfulness
or mismatch as

MSNR = 1−F SNR. (38)

B. Assessment in modeling spin effects in EOB Hamiltonian

In Secs. II and III we have described the construc-
tion of the SEOBNRv5PHM model, here we assess the im-
pact of several approximations in the description of the
precessing-spin dynamics as well as in the waveform mul-
tipoles. Differently from the SEOBNRv4PHM model, in
SEOBNRv5PHM the full precessing-spin Hamiltonian and
spin equations are not evolved. By contrast, we build
on recent waveform models, IMRPhenomTPHM [56] and
TEOBResumS-GIOTTO [102], which couple a purely aligned-
spin dynamics (only aaa± · lllN) with PN-expanded equations for
the spins, angular-momentum and frequency. However, in

the new SEOBNRv5PHM model there are significant differences
with respect to previous approaches:
• The spin, velocity and angular momentum equations

in SEOBNRv5PHM are fully PN-expanded in the velocity
parameter v, and include SO and SS couplings through
NNLO, thus differ from the ones employed in Refs.
[56, 102, 146].
• The SO contributions to the angular momentum equa-

tions in SEOBNRv5PHM are consistent with the fully
generic canonical Hamiltonian Hprec

EOB [147] (i.e., they
use the same spin-supplementary condition, and thus
differ from the ones in Refs. [56, 102, 146]).
• In SEOBNRv5PHM, the orbital equations of motion are

evolved using a partial precessing-spin EOB Hamilto-
nian, Hpprec

EOB (lll2,aaa± · lllN ,aaa± · lll,aaa+ ·aaa−), which has all spin
components (also orbit-averaged in-plane spin compo-
nents instead of only aaa± · lllN).

In Figure 2 we assess the impact of these improvements in
the treatment of the precessing-spin dynamics by computing
the unfaithfulness of SEOBNRv5PHM with different prescrip-
tions for the conservative dynamics against the set of 118
highly precessing BBH simulations from Ref. [98].

The different prescriptions for SEOBNRv5PHM corre-
spond to 1) using the aligned-spin Hamiltonian Halign

EOB of
SEOBNRv5HM [147, 148] with the spins only projected onto
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Figure 2. Left panel: Sky-and-polarization averaged, SNR-weighted unfaithfulness in the total mass range between [20− 300]M� for an
inclination ι = π/3, of SEOBNRv5PHM with different prescriptions for the dynamics against the 118 highly precessing-spin NR simulations from
Ref. [98]. The different prescriptions for the dynamics correspond to using the SEOBNRv5HM Hamiltonian, Halign

EOB , with the spins projected

onto lllN (purple), using Halign
EOB with the spins projected onto lllN and lll (yellow), and using the partially precessing Hamiltonian Hpprec

EOB of
SEOBNRv5PHM (green), with the spins projected onto lllN and lll, see the main text for details. The dashed horizontal vertical lines correspond to
the 10−3, 0.01 and 0.03 unfaithfulness values. Right panel: Distribution of the maximum unfaithfulness over the total mass range for each NR
simulation considered in the left plot. The vertical dashed lines indicate the median values of the distribution.

(aaa± · lllN), such that the spin variables are computed like
a2
± = (aaa± · lllN)2 (i.e., a purely aligned-spin dynamics as in the
TEOBResumS-GIOTTO [102] and IMRPhenomTPHM [56] mod-
els), 2) employing Halign

EOB with a spin treatment consisting in
using the full spin components for the scalar products (i.e.
a2
± = (aaa± · aaa±)2), as well as the spins projected onto lll in the

spin-orbit sector, and onto lllN in the rest of the spin sector,
and 3) using the partially precessing Hamiltonian Hpprec

EOB of
SEOBNRv5PHM with the latter treatment of the spins projec-
tions (see Appendix A). In the left panel of Fig. 2 we show
the unfaithfulness as a function of the total mass of the binary,
while in the right panel the distributions of the maximum un-
faithfulness in the total-mass range are displayed. The results
show that using the aligned-spin Hamiltonian with the pro-
jections of the spins onto lllN (i.e., a purely aligned-spin dy-
namics as in TEOBResumS and IMRPhenomT), leads to 95.8%
(75.4%) of cases with a maximum unfaithfulness over the total
mass range considered of [20,300]M�, lower than 3% (1%),
while considering projections onto lllN , lll and the full spin-
components entering the aligned-spin Hamiltonian improves
the previous numbers to 99.2% (80.5%), and it reduces sig-
nificantly the tail of cases with unfaithfulness larger than 3%.
Finally, keeping the latter treatment of the spin projections and
using the partially precessing Hamiltonian, Hpprec

EOB , which in-
cludes in-plane spin effects in an orbit-average approximation
for quasi-circular orbits (see Appendix A for details), leads
to a further increase in accuracy with 100% (86.4%) of cases
with a maximum unfaithfulness below 3% (1%). As a conse-
quence, the latter Hamiltonian and treatment of spin effects is
the one that we adopt in the SEOBNRv5PHM model.

C. Comparison against numerical-relativity waveforms

The accuracy of the SEOBNRv5PHM model is assessed
by comparing it to the publicly available simulations of
the SXS catalogue [150], as well as the 118 highly
precessing-spin simulations produced in Ref. [98]. We
also perform such a comparison for other state-of-the-art
precessing-spin EOB waveform models, SEOBNRv4PHM and
TEOBResumS-GIOTTO, as well as the phenomenologi-
cal frequency-domain IMRPhenomXPHM model. (To ease
the comparisons we compare against phenomenological
IMRPhenomTPHM model in Appendix C). In Fig. 3 we pro-
vide an overview of the NR simulations employed to assess
the accuracy of the different models. The precessing-spin
simulations considered here13 were produced with the SpEC
code [203], and they correspond to the 118 SXS runs from
Ref. [98], and 1425 simulations available in the public SXS
catalog [150].

We start by comparing the unfaithfulness14 of the
precessing-spin models against the set of 118 highly
precessing-spin simulations including all the modes up
to l = 5 in the NR waveforms. The waveform modes
included in the co-precessing frame for the different
models is done consistently with Ref. [148] for the
non-spinning approximants, and they are specifically
(`, |m|) = {(2,2), (2,1), (3,3), (4,4), (5,5)} for SEOBNRv4PHM,
(`, |m|) = {(2,2), (2,1), (3,3), (3,2), (4,4), (4,3), (5,5)} for
SEOBNRv5PHM, (`, |m|) = {(2,2), (2,1), (3,3), (3,2), (4,4)}

13 In the extra material, we provide the SXS IDs of the precessing-spin NR
simulations employed in this section.

14 We always refer to the sky-and-polarization averaged, SNR-weighted un-
faithfulness,MSNR, as unfaithfulness to ease the notation.
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NR waveforms is built upon simulations from the public SXS cata-
log [150], as well as the 118 simulations from Ref. [98], which are
highlighted with red diamonds to ease their visualization.

for IMRPhenomXPHM and (`, |m|) = {(2,2), (2,1)(3,3)
(3,2), (3,1),(4,4), (4,3), (4,2)} for TEOBResumS-GIOTTO15.

In the left panel of Fig. 4 the unfaithfulness is shown as
a function of total mass, [20− 300]M�, for each NR simula-
tion, while in the right panel the distribution of the maximum
unfaithfulness over the total mass range is displayed. The
two panels of Fig. 4 show that the phenomenological model,
IMRPhenomXPHM, and the EOB model TEOBResumS-GIOTTO,
have a tail of large unfaithfulness reaching ∼ 7%. Precisely,
they have 78.3% (38.3%) and 83.3% (44.9%) of cases with a
maximum unfaithfulness, in the total mass range considered,
below 3% (1%), respectively. This tail of large unfaithfulness
is not present in the SEOBNRv4PHM and SEOBNRv5PHM mod-
els, and it is consistent with the fact that both models include
effects due to the evolution of the in-plane spin components
in the co-precessing frame dynamics. More specifically, the
SEOBNRv4PHM model has 96.6% (57.6%) of cases with max-
imum unfaithfulness, in the total mass range considered, be-
low 3% (1%), while these numbers increase to 100% (85.6%)
for the SEOBNRv5PHM model, which has lower unfaithful-
ness (higher accuracy) than SEOBNRv4PHM. We suspect this
is due to the more accurate underlying aligned-spin model,

15 We note that TEOBResumS-GIOTTO [102] models contains also the (5,5)-
mode in the co-precessing frame, but in order to be consistent with
Ref. [148] (see the reasons for its exclusion in Sec. V therein) we do not in-
clude such multipole. Additionally, we have tested that the unfaithfulness
results for TEOBResumS-GIOTTO against NR when including and exclud-
ing the (5,5)-mode are very similar.

SEOBNRv5HM [148], as well as the new improvements included
in SEOBNRv5PHM, such as the shift in the co-precessing QNM
frequencies, described in Secs. II and III.

In Fig. 5 we show the polarizations of SEOBNRv5PHM and
SEOBNRv4PHM for the precessing NR simulation
PrecBBH000001 with mass ratio 1.25, spin magnitudes
χi ≡ |χχχi| = 0.8, total mass 60M� and all the modes l ≤ 5.
Specifically, we plot the plus polarization, h+, leaving out the
overall constant amplitude. We note that SEOBNRv5PHM re-
produces more accurately the features of the NR waveform
at merger and ringdown, which translates into an unfaith-
fulness of 0.69% against the NR waveform, while for
SEOBNRv4PHM the unfaithfulness is 1.1%.

We now turn to exploring the broader parameter space by
computing the unfaithfulness against a set of 1543 precessing-
spin NR waveforms (1425 public + 118 highly precessing
configurations above). In Fig. 6 we show the unfaithfulness
as a function of the total mass of the system for each model
against all the simulations. Additionally, we highlight the
simulations with the largest unfaithfulness for each waveform
model in each panel. The simulations with larger unfaithful-
ness differ depending on the waveform approximant consid-
ered. For the EOB models they correspond to high mass ratios
q = 4 and high in-plane spin components where the modeling
approximations are expected to perform worse, while the phe-
nomenological model presents the largest unfaithfulness for
an equal-mass simulation with high-in plane component.

The results from Fig. 6 indicate that the
SEOBNRv5PHM model has lower values of unfaithfulness
with respect to the rest of the models. The information in
Fig. 6 is more quantitatively represented in Fig. 7 as a
violin plot of the distribution of unfaithfulness of the different
models against NR for each total mass considered between
[20− 300]M�. We note that the trend in the unfaithfulness
is similar to the one for the 118 highly precessing-spin
simulations. The IMRPhenomXPHM model has the largest
tails of unfaithfulness reaching 10%, followed by the
TEOBResumS-GIOTTO model, which generally has lower
unfaithfulness than IMRPhenomXPHM as shown in Ref. [102].
The SEOBNRv4PHM model gives an even lower unfaithfulness,
while the distributions of the SEOBNRv5PHM model have less
support at high unfaithfulness than the rest of the models and
lower median values for all the total masses considered with
respect to the next more accurate model, SEOBNRv4PHM. A
more quantitative analysis of the unfaithfulness against NR
can be found in Table I, which reveals that SEOBNRv5PHM has
99.8% (84.4%) cases with a maximum unfaithulness, in the
total mass range considered, below 3% (1%). These numbers
reduce to 95.3% (60.8%) for SEOBNRv4PHM, to 83.3%
(44.9%) for TEOBResumS-GIOTTO and to 78.3% (38.3%) for
IMRPhenomXPHM.

Finally, we provide a more complete picture of the accu-
racy of the different models against NR in the quasi-circular
limit by incorporating to our precessing results the unfaith-
fulness corresponding to 441 non-precessing SXS NR wave-
forms computed in Ref. [148]. Fig. 8 shows violin plots of the
maximum, median and minimum unfaithfulness distributions
of the different waveform models considered in the aligned-
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Figure 4. Left panel: Sky-and-polarization averaged, SNR-weighted unfaithfulness in the total mass range between [20− 300]M� for an
inclination ι = π/3, between SEOBNRv4PHM (blue), IMRPhenomXPHM (orange), TEOBResumS-GIOTTO (pink) and SEOBNRv5PHM (green) against
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Figure 5. Time-domain comparison of the SEOBNRv5PHM and SEOBNRv4PHM models to the NR waveform PrecBBH000001 from Ref. [98]
with mass ratio 1.25, black-hole spin magnitudes 0.8 and total mass M = 60M�. The source parameters are ιs = π/3, φs = π, κs = 0. The
NR waveform includes all the multipoles with l ≤ 5. Both waveform models resemble accurately the features of the NR waveform at the
inspiral, merger and ringdown, with a more faithful agreement of SEOBNRv5PHM which translates into an unfaithfulness of 0.69%, while for
SEOBNRv4PHM it increases to 1.1%.

Approximant SEOBNRv4PHM SEOBNRv5PHM IMRPhenomXPHM TEOBResumS-GIOTTO

median maxMMSNR 7.49 ·10−3 4.75 ·10−3 14.35 ·10−3 11.47 ·10−3

% cases with maxMMSNR < 1% 60.8% 84.4% 38.3% 44.9%

% cases with maxMMSNR < 3% 95.3% 99.8% 78.3% 83.3%

Table I. Summary of the sky-and-polarization averaged, SNR-weighted unfaithfulness in the total mass range between [20− 300]M� for an
inclination ι = π/3, between different precessing-spin approximants and the 1543 SXS NR simulations from Refs. [98, 150]. The table shows
the median of the maximum unfaithfulness across total mass, and the percentage of cases with mismatches below 1% and 3%.

spin, precessing-spin case and with the combined distribu-
tions. A thorough discussion of the accuracy of the differ-
ent models in the non-precessing case can be found in [148],
but we remark that the new aligned-spin SEOBNRv5HM model
presents the lowest unfaithfulness distribution when compared
to the other models. As discussed above, in the precessing
case the SEOBNRv5PHM model leads to the lowest unfaith-

fulness values followed closely by the SEOBNRv4PHM model.
We also observe that the lack of calibration to precessing-
spin NR waveforms causes a shift in the unfaithfulness of
the precessing-spin models (with respect to the nonprecessing
models) towards larger values. This points out that in order to
increase further the accuracy of the models in the precessing-
spin case, calibration to NR precessing waveforms is required,
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which we leave to the future.

D. Comparison against other precessing-spin waveform
models

We now study the performance of the SEOBNRv5PHMmodel
in a larger parameter space. First we compute the unfaith-
fulness of SEOBNRv5PHM against the NR surrogate model
NRSur7dq4 [62], which includes all l ≤ 4 waveform multi-
poles, in the region in which it was built, that is mass ratios q ∈
[1,4], spin magnitudes up to 0.8 and total masses larger than
60M�. Specifically, we generate a set of 5000 cases uniformly
distributed in mass ratios q ∈ [1,4] and effective precessing-
spin parameter16 χp [176], with spin magnitudes up to 0.8
and initial geometric frequency of Mω = 0.023, large enough
such that all the configurations have a length compatible with
the one of the surrogate waveforms. We also compute the
unfaithfulness of the state-of-the-art precessing-spin models,
SEOBNRv4PHM, IMRPhenomXPHM and TEOBResumS-GIOTTO,
against the NRSur7dq4 model.

The results of such study are summarized in Fig. 9,
where in the left panel the median and the 95th percentile
of the unfaithfulness, as a function of the total mass of
the binary are shown, while in the right plot the distribu-
tions of the maximum unfaithfulness, over the total mass
range [20 − 300]M�, are displayed. We find that the be-
havior of the unfaithfulness resembles those of the compar-
isons against the NR waveforms in Figs. 4 and 7. All
the models have median unfaithfulness below 1% with the
SEOBNRv5PHM model showing the lowest median 17 of 0.39%
unfaithfulness values. We note that the median of unfaith-
fulness of SEOBNRv5PHM is followed very closely by the
other models, with the SEOBNRv4PHM model being the clos-
est one. The difference between the SEOBNR models and the
IMRPhenomXPHM and TEOBResumS-GIOTTO models is likely
a consequence of neglecting the in-plane spin effects in the
orbital dynamics in the co-precessing frame. As described in
Sec. II, these effects are introduced in SEOBNRv5PHM through
the partially precessing Hamiltonian, Hpprec

EOB . Furthermore,
the increase in accuracy of SEOBNRv5PHM with respect to
SEOBNRv4PHM can be understood due to the more accurate
underlying co-precessing waveform model (SEOBNRv5HM), as
well as the improvements discussed in Sec. III. More quantita-
tively, we find that for SEOBNRv5PHM 100% (90.1%) of cases
have a maximum unfaithfulness, in the total mass range con-
sidered, against the NRSur7dq4 model below 3% (1%), while
these numbers reduce to 98.7% (79.5%) for SEOBNRv4PHM,
89.4% (62.8%) for IMRPhenomXPHM and 96.1% (66%) for
TEOBResumS-GIOTTO. For all the models the cases with high
unfaithfulness correspond to configurations with mass ratios

16 We do not sample uniformly in spin magnitudes and orientations to avoid
having most of the cases clustering at low values of χp, where precession
effects are less significant.

17 The median unfaithfulness for the SEOBNRv4PHM model is 0.46%, 0.62%
for IMRPhenomXPHM and 0.69% for TEOBResumS-GIOTTO.

q ∼ 4 and χp ∼ 0.8, which is the boundary region of calibra-
tion of the NRSur7dq4 model, and where the effects of spin
precession are stronger in the waveform, as already seen in
previous comparisons to the NR surrogate in Refs. [98, 102].

Finally, we also examine the behavior of the precessing
models in a wider parameter space outside the region of cal-
ibration of the underlying aligned-spin models, and where
there are no precessing-spin NR simulations available. For
this purpose we consider 5000 configurations randomly dis-
tributed in mass ratios q ∈ [1,20] and uniformly distributed
in the effective precessing-spin χp parameter up to 0.99,
for inclination ιs = π/3, with an initial starting geometric
frequency of Mω = 0.022, and compute the unfaithfulness,
MSNR, using the IMRPhenomXPHM18 as a signal, and the
SEOBNRv5PHM model as the template waveform. Figure 10
shows the unfaithfulness as a function of mass ratio (q), effec-
tive spin parameter (χeff), and effective precessing-spin pa-
rameter (χp). We find that for mass ratios q < 5, 96.84%
(41.3%) of cases have a maximum unfaithfulness, in the to-
tal mass range [20,300]M�, below 10% (1%). The unfaithful-
ness increases significantly with mass ratio and spins, with the
highest unfaithfulness values at the largest mass ratios q ∼ 20,
and effective spin precessing parameter χp ∼ 0.99. In partic-
ular, when considering q ≤ 20 we find that 59.19% (13.45%)
cases with maximum unfaithfulness, in the total mass range
considered, below 10% (1%). These unfaithfulness compar-
isons and the large differences between models point out the
necessity to populate this challenging region of high mass ra-
tio and high spins with NR simulations, which can be used to
validate distinct waveform models, as well as to improve their
accuracy by incorporating this NR information into them.

E. Computational performance

In previous sections we have demonstrated the accuracy of
the SEOBNRv5PHM model with respect to NR waveforms and
predictions of other state-of-the-art waveforms models. An-
other key aspect to test is the computational efficiency of the
model, as parameter-estimation runs with standard stochastic
samplers require of the order of 107 − 108 or more waveform
evaluations (see e.g. Refs. [204–206]). Therefore, computa-
tional efficiency is a key feature for the model to be useful for
the analysis of GW signals or Bayesian inference studies.

The SEOBNRv5PHM model is part of the fifth generation of
SEOBNR models implemented in a high-performance Python
package pySEOBNR [168]. As described in Ref. [168], the
pySEOBNR infrastructure offers a simple and modular proce-
dure to develop highly accurate and computationally efficient
waveform models. This new Python infrastructure moves the

18 We do not include the TEOBResumS-GIOTTO model in these comparisons
as we have found some unphysical growth of the amplitude at merger
of the l = 2 inertial frame modes for large spins and mass ratios, which
is likely due to the behavior of the NQC coefficients of the (2,1)-mode
as already described in Ref. [102]. We show the comparison against the
IMRPhenomTPHM model in Appendix C.



15

SEOBNRv4 IMRPhenomX TEOBResumS−GIOTTO SEOBNRv5

Aligned Precessing Combined Aligned Precessing Combined Aligned Precessing Combined Aligned Precessing Combined

10−4

10−3

10−2

10−1

M
S
N

R

max(MSNR)

median(MSNR)

min(MSNR)

Figure 8. Distribution of maximum (blue), median (orange) and minimum (green) sky-and-polarization averaged, SNR-weighted unfaithful-
ness over the binary’s total mass range [20−300]M� for inclination ι= π/3, between the different waveform families (SEOBNRv4, IMRPhenomX,
TEOBResumS-GIOTTO and SEOBNRv5) against NR for aligned spins (Aligned), precessing spins (Precessing) and combining the two previous
distributions (Combined). The non-precessing NR simulations correspond to the 441 cases presented in Ref. [148], while the precessing NR
simulations correspond to the 1543 cases used in Fig. 6. In the violin plots the median values of the distributions are highlighted with thicker
lines.

50 100 150 200 250 300

M/M¯

10−3

10−2

M
S
N

R

SEOBNRv4PHM

IMRPhenomXPHM

TEOBResumS-GIOTTO

SEOBNRv5PHM

10−3 10−2 10−1

max
M
MSNR

0

200

400

600

800

1000
N

u
m

b
er

 o
f 
ca

se
s

SEOBNRv4PHM

IMRPhenomXPHM

TEOBResumS-GIOTTO

SEOBNRv5PHM

Figure 9. Sky-and-polarization-averaged, SNR-weighted unfaithfulness as a function of the total mass of the binary for inclination
ιs = π/3, among the NRSur7dq4 model and the SEOBNRv4PHM (blue), IMRPhenomXPHM (orange), TEOBResumS-GIOTTO (pink) and
SEOBNRv5PHM (green) models for 5000 randomly distributed precessing-spin configurations. Left: The solid (dashed) lines show the me-
dian (95th percentile) as a function of the total mass. Right: Distribution of maximum unfaithfulness over all the total masses considered. The
vertical dashed lines indicated the median values of the distributions.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

q

−1.0

−0.5

0.0

0.5

1.0

χ
ef

f

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

q

0.0

0.2

0.4

0.6

0.8

1.0

χ
p

10−2 10−1

maxMSNR (SEOBNRv5PHM vs IMRPhenomXPHM)

Figure 10. Maximum sky-and-polarization-averaged unfaithfulness weighted by the SNR over the total mass range [20− 300]M� between
SEOBNRv5PHM and IMRPhenomXPHM for 5000 random configurations with inclination ιs = π/3. The unfaithfulness grows with increasing mass
ratio and spin magnitude values, and it can reach very large values for mass ratios q ∼ 20 and χp ∼ 1.



16

development of the SEOBNR family from the highly efficient,
but more rigid C-99 LALSuite [207] libraries to a more flex-
ible and modular Python framework.

In this section we asses the computational efficiency
of the SEOBNRv5PHM model implemented in pySEOBNR,
by timing the waveform generation and comparing it to
other state-of-the-art time-domain multipolar precessing-
spin models (SEOBNRv4PHM, IMRPhenomTPHM and
TEOBResumS-GIOTTO). We consider binary’s config-
urations with mass ratios q = 1,3,10, dimensionless
spins χχχ1 = [0.5,0,0.8], χχχ2 = [0,0.5,0.3], total mass range
M ∈ [10,100]M� at a starting frequency fstart = 10Hz. The re-
sults of the walltimes to generate the waveforms are shown in
Fig. 11, where we are including all the modes up to l = 4, and
a maximum frequency consistent with the Nyquist criterion
satisfied for all the multipoles considered 19. The outcome of
the benchmark demonstrates the significant increase in speed
of the SEOBNRv5PHM model with respect to the previous
generation SEOBNRv4PHM. For the arbitrary configurations
considered for the benchmarks, we observe more than an
order of magnitude improvement in speed. The substantial
increase in speed for SEOBNRv5PHM is a consequence, not
only of the fast and efficient implementation in the pySEOBNR
infrastructure, but also to the use of the PN-expanded spin
and angular-momentum evolution equations, Eqs. (13),
which allow the use of the PA approximation [165, 167] in
the SEOBNRv5PHM model. The PA approximation reduces
the computational cost of evaluating the inspiral waveform
as it replaces solving numerically the ordinary differential
equations at every timestep of the EOB inspiral by an iterative
procedure over a coarser radial grid (see Appendix B for
details of the implementation in SEOBNRv5PHM). Besides the
PA approximation, the SEOBNRv5PHM model also implements
an efficient calculation of the polarizations as described in
Se. III C, which translates into a further increase in speed
at lower total masses, where the computational cost of
generating the waveform comes from the interpolation of the
waveform multipoles into a constant time grid 20. This can be
seen in Fig. 11, where the SEOBNRv5PHM model outperforms
the TEOBResumS-GIOTTO and IMRPhenomTPHM models
at low total masses, while at high total masses where the
interpolation of the modes is a subdominant operation in
terms of computational cost, the TEOBResumS-GIOTTO and
IMRPhenomTPHM perform faster. IMRPhenomTPHM is sub-
stantially faster at high total masses than the rest of the
models, due to the fact that it is only integrating the evo-
lution equations for the spins (i.e., no integration of the
orbital dynamics as in the SEOBNRv4PHM, SEOBNRv5PHM and
TEOBResumS-GIOTTO models), and the waveform is evalu-

19 The benchmarks of the waveform generation timing were performed on
a computing node (dual-socket, 32-cores per socket, SMT-enabled AMD
EPYC (Milan) 7513 (2.60 GHz), with 8 GB RAM per core) of the Hypatia
cluster at the Max Planck Institute for Gravitational Physics in Potsdam.
We keep all default settings for every model

20 The interpolation of the waveform modes onto a time grid with constant
timestep is needed to perform an efficient Fourier transform of the wave-
form for data-analysis studies.
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Figure 11. Walltimes of the SEOBNRv4PHM, IMRPhenomTPHM,
TEOBResumS-GIOTTO and SEOBNRv5PHMmodels for a configuration
with dimensionless spins χχχ1 = [0.5,0,0.8], χχχ2 = [0,0.5,0.3], total
mass range M ∈ [10,100]M�, starting frequency fstart = 10Hz and
three different mass ratios 1 (top panel), 3 (mid panel) and 10 (bot-
tom panel).

ated using analytical closed expressions. In summary, the
SEOBNRv5PHM model has a comparable speed to current
state-of-the-art precessing-spin models, and it is in general
between 8 − 20 times faster than the SEOBNRv4PHM model,
and thus it can be used as a standard tool for data analysis as
demonstrated in Sec. V.

V. BAYESIAN ANALYSIS WITH MULTIPOLAR
PRECESSING WAVEFORM MODELS

The main application of the SEOBNRv5PHM waveform
model is the Bayesian inference of source parameters of GWs
emitted by BBHs. Thus, we now assess how the accuracy
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of SEOBNRv5PHM quantified in Sec. IV through the unfaith-
fulness metric affects parameter-estimation studies. We per-
form first a synthetic NR signal injection into detector noise,
in particular in zero-noise, which is equivalent to averaging
over many noise realizations, to assess possible biases com-
ing from waveform inaccuracies and avoid any biases intro-
duced by a random noise realization. Then, we perform a
re-analysis of 6 real GW events detected by the LVK collab-
oration: GW150914, GW190412, GW190521, GW190814,
GW191109 and GW200129, and we compare with results
from the literature.

A. NR-injection recovery

In this section we assess the accuracy of the
SEOBNRv5PHM model in parameter estimation by in-
jecting a synthetic NR signal corresponding to the NR
waveform SXS:BBH:0165 from the public SXS catalog,
with mass ratio q = 6, source-frame total mass M = 95M�
and BH’s dimensionless spin vectors defined at 20Hz of
χχχ1 = [−0.06,0.78.− 0.4] and χχχ2 = [0.08,−0.17,−0.23]. This
BBH system is strongly precessing, and it is one of the worst
cases in terms of unfaithfulness for SEOBNRv5PHM, reaching
2% for the injected total mass.

For this injection we choose the inclination with respect to
the line of sight of the BBH to be ι = 0.69 rad, to emphasize
the effect of higher order modes. The injected coalescence
and polarization phases are φ = 0.6 rad and ψ = 0.33 rad, re-
spectively. The sky-position is defined by its right ascension
of 3.81 rad and declination of 0.63 rad at a geocentric time of
1126259600 s. The luminosity distance to the source is cho-
sen to be 650 Mpc, which produces a three-detector (LIGO
Hanford, LIGO Livingston and Virgo) network-SNR of 19.4
when using the LIGO and Virgo PSD at design sensitivity
[200].

For the parameter estimation study we employ parallel
Bilby [208], a highly parallelized version of the Bayesian
inference Python package Bilby [209, 210], using the rec-
ommended LVK’s setting for the number of auto-correlation
times nact = 50, number of live points nact = 2048, and set-
ting the remaining sampling parameters to their default values.
We choose a uniform prior in inverse mass ratio and chirp
mass, with ranges 1/q ∈ [0.05,1] and M ∈ [15,45]M�. The
priors on the dimensionless spin vectors are uniform in mag-
nitude ai ∈ [0,0.99], and isotropically distributed in the unit
sphere for the spin directions. The luminosity distance prior
is uniform in distance ∝ dL as we are interested in the intrin-
sic ability of the models in recovering the parameters, since
a prior uniform in the comoving-frame of the source ∝ d2

L
requires selecting a specific cosmology to compute the red-
shift [211], which may introduce an effect on the estimated
posterior. The rest of the priors are set according to Ap-
pendix C of Ref. [2]. We perform the injection-recovery with
SEOBNRv5PHM and IMRPhenomXPHM in order to compare the
performance of both models with a highly precessing signal.
We note that IMRPhenomXPHM has an unfaithfulness of ∼ 12%
against the SXS NR-injected waveform, thus we expect some

biases in the recovered parameters.
In Fig. 12 we summarize the parameter-estimation re-

sults of the injection. We report the marginalized 1D and
2D posteriors for the detector-frame component masses m1
and m2, and the effective spin parameters, χeff and χp. In
Table II we provide the values of the injected parameters
and the median of the inferred posterior distribution with
the 90% confidence intervals for both models. The re-
sults show that SEOBNRv5PHM is able to recover the com-
ponent masses within the 90% confidence intervals, while
IMRPhenomXPHM presents a significant bias in the primary
mass, and the injected values are at the boundary of the 2D
95% credible interval. For the effective spin parameters, both
models present a biased result for the effective spin param-
eter χeff , but the precessing effective spin parameter χp is
highly biased in IMRPhenomXPHM towards lower values, while
SEOBNRv5PHM recovers an almost unbiased result. Moreover,
the injected point is inside the 2D 95% credible interval for
SEOBNRv5PHM, while IMRPhenomXPHM predicts a region with
lower precessing spins and highly anti-aligned spins. From
Table II we observe that the spin tilt angles, θ1,2, are recovered
within the 90% confidence interval by SEOBNRv5PHM, but the
phenomenological model IMRPhenomXPHM presents biases for
both parameters. In terms of recovered matched filter SNR,
SEOBNRv5PHM recovers higher values in the three detectors
with respect to IMRPhenomXPHM, which is consistent with the
higher Bayes factor obtained by SEOBNRv5PHM. This example
shows the ability of SEOBNRv5PHM to model more accurately
precessing signals in comparison to IMRPhenomXPHM, likely
due to the inclusion of in-plane spin information in the con-
servative dynamics of the model. It should be noted that there
are some parameters for which SEOBNRv5PHM presents small
biases, such as the effective-spin parameter χeff and the tilt an-
gle of the orbital plane θJN, which might be expected since this
simulation provides one of the highest unfaithfulness for the
model of ∼ 2%, while for the IMRPhenomXPHM model the un-
faithfulness increases to ∼ 12%, which explains the larger bi-
ases in more parameters than SEOBNRv5PHM. However, more
studies will be needed in a larger region of the binary’s pa-
rameter space to assess the efficiency of SEOBNRv5PHM in
capturing spin precession.

B. Real events

In this section we re-analyze 6 GW events recorded by the
LIGO and Virgo detectors [2, 7, 8]: GW150914, GW190412,
GW190521, GW190814, GW191109 and GW200129. We
employ strain data from the Gravitational Wave Open Source
Catalog (GWOSC) [212] and the released PSD and calibration
envelopes included in the Gravitational Wave Transient Cat-
alogs GWTC-2.1 [7] and GWTC-3 [8], and their respective
parameter-estimation samples releases.

We perform the analysis using the parameter-estimation
code Bilby21 [209], and the nested sampler dynesty [213]

21 In this paper we employ the Bilby code from the public repos-
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Figure 12. 2D and 1D posterior distributions for some relevant parameters measured from the synthetic BBH signal with mass ratio q = 6,
total source-frame mass of 95M�, dimensionless spins of the BHs χχχ1 = [−0.06,0.78.−0.4] and χχχ2 = [0.08,−0.17,−0.23] defined at 20Hz. The
inclination with respect to the line of sight of the binary is ι = 0.69 rad. The other parameters are specified in the text and in Table II. The signal
waveform is a NR waveform from the public SXS catalog SXS:BBH:0165. In the 2D posteriors the solid contours represent the 95% credible
intervals and black dots show the values of the parameters of the injected signal. In the 1D posteriors they are represented by dashed and
solid vertical lines, respectively. The parameter estimation is performed with the SEOBNRv5PHMmodel (green) and the IMRPhenomXPHMmodel
(orange). Left: Component masses in the detector frame. Right: Effective spin parameters, χeff and χp.

using the acceptance-walk method, which is well-suited
for executing on a multicore single-computing node22, and we
perform the run for GW190521 with the parameter-estimation
code parallel Bilby23 [208] as the nested sampler settings
for this event are more expensive and the parallelization of
this code ensures results in a short timescale. The list of
parameter-estimation runs and the main settings are specified
in Table III, together with the runtime and the number of cores
employed. We find that results can be obtained using Bilby
on just one computing node within days.

In Figure 13 we summarize the results for the source
component masses for the 6 re-analyzed events with
SEOBNRv5PHM and we compare with results from the
IMRPhenomXPHM model released in GWTC-2.1 and the previ-
ous generation SEOBNRmodel SEOBNRv4PHM (when available)
also from GWTC-2.1 (obtained with the parameter-estimation
code RIFT [169, 170]), except for the event GW190412 in
which we show the SEOBNRv4PHM results from the discovery

itory https://git.ligo.org/lscsoft/bilby with the git hash
507d93c8950e7f62cd5ff5792aab6cdf2d76d21f, which correspond to
the version 2.0.1.

22 See https://lscsoft.docs.ligo.org/bilby/dynesty-guide.

html for details on the acceptance-walk method.
23 In this paper we employ the parallel Bilby code from the public repos-

itory https://git.ligo.org/lscsoft/parallel_bilby with the git
hash 97df49f75ef5f240164e5fc44b6074c33e694a35, which corre-
spond to the version 1.1.0.

paper [214] (obtained with parallel Bilby) due to a bet-
ter convergence of the posteriors than in the GWTC-2.1 cata-
log [7]. Similarly, in Figure 14 we summarize the results for
the effective spin parameters χeff and χp. In general, we ob-
serve broad consistency between our results and the GWTC
results, but differences are stronger in some of the events, with
IMRPhenomXPHM being, in general, more in tension with our
results than SEOBNRv4PHM.

For GW150914 we observe good consistency between the
SEOBNRv5PHM and SEOBNRv4PHMmodels, however the source
mass posteriors are less constrained for IMRPhenomXPHM.

For GW190412, the first confident mass-asymmetric event
reported by the LIGO-Virgo collaboration [214], we ob-
serve a better agreement between the time-domain models
SEOBNRv5PHM and SEOBNRv4PHM, which also are consistent
with results from the phenomenological time-domain model
IMRPhenomTPHM from Ref. [215]. For this event, the higher-
mode content is important, and the more accurate precessing
dynamics provides a more reliable multipolar structure of the
waveforms, therefore the tension with IMRPhenomXPHM can
be explained by the fact that the precessing description con-
tains more approximations in this model.

The GW190521 signal is particularly interesting, with only
4 cycles in band in the detectors, thus being consistent with
a merger-ringdown dominated signal. It has been attributed
to a variety of physical systems, from eccentric binaries
[216, 217], non-spinning hyperbolic capture [202] and head-
on collision of exotic compact objects [218]. Under the con-

https://git.ligo.org/lscsoft/bilby
https://lscsoft.docs.ligo.org/bilby/dynesty-guide.html
https://lscsoft.docs.ligo.org/bilby/dynesty-guide.html
https://git.ligo.org/lscsoft/parallel_bilby
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Parameter
Injected

value IMRPhenomXPHM SEOBNRv5PHM

M/M� 95.02 82.51+9.6
−5.27 101.59+12.96

−9.56

M/M� 21.85 27.76+3.34
−1.88 29.3+3.74

−3.14

q 0.167 0.27+0.12
−0.1 0.17+0.05

−0.04

χeff −0.437 −0.6+0.16
−0.17 −0.26+0.18

−0.17

χp 0.779 0.19+0.17
−0.08 0.74+0.16

−0.19

θ1 2.11 3.01+0.09
−0.21 1.97+0.25

−0.25

θ2 2.46 1.5+0.57
−0.56 1.4+1.11

−0.93

θJN 1.28 0.81+0.43
−0.28 0.46+0.21

−0.22

dL 1200 1444+223
−237 1374+325

−248

φref 1.2 3.66+1.19
−1.13 3.01+2.86

−2.61

ψ 0.7 2.4+0.52
−1.79 0.89+0.84

−0.57

ρH1
mf 13.92 13.55+0.1

−0.19 13.68+0.09
−0.16

ρL1
mf 16.03 15.61+0.11

−0.2 15.75+0.1
−0.17

ρV1
mf 6.66 6.47+0.09

−0.28 6.52+0.06
−0.23

logBF 194.33±0.19 205.65±0.18

Table II. Injected and median values of the posterior distributions
for the synthetic NR injection, corresponding to the NR simula-
tion SXS:BBH:0165 of the public SXS catalog, recovered with
IMRPhenomXPHM and SEOBNRv5PHM. The binary parameters corre-
spond to the total mass M, chirp mass M, mass ratio q, effective
spin parameter χeff, effective precessing-spin parameter χp, tilt an-
gles θ1,2, angle between the total angular momentum and the line
of sight θJN, luminosity distance dL, coalescence phase φref, polar-
ization angle ψ, matched-filtered SNR for LIGO-Hanford/Livingston
and Virgo detectors ρH1,L1,V1

mf , and signal-versus-noise log Bayes fac-
tor logBF .

servative assumption of a quasi-circular binary system, we
observe differences with respect to the IMRPhenomXPHM re-
sults from GWTC-2.1. We have compared our results with
the re-analysis of Ref. [219] in which the phenomenologi-
cal time-domain model IMRPhenomTPHM was employed using
LALInference MCMC [220], and in Fig. 15 we present the
2D distribution of mass-ratio and effective spin χeff. We ob-
serve a better consistency in the results with IMRPhenomTPHM,
in particular the mass asymmetric support for the posterior
is correlated with positive effective spin, instead of negative
effective spin as the results from IMRPhenomXPHM suggest.
The reason for the tension with IMRPhenomXPHM can be ex-
plained by the fact that this Fourier-domain model lacks a de-
scription of the effective precessing motion of the ringdown
signal, which is present (although in an approximate way) in
SEOBNRv5PHM and IMRPhenomTPHM.

The next event we re-analyze is GW190814, a computa-
tionally challenging signal due to its low chirp mass and high-

GW event
sampler

Data
settings

Sampler
settings

Computing
resources Runtime

srate
(Hz)

seglen
(s)

naccept/
nact nlive cores×nodes

GW150914
Bilby

2048 8 60 1000 64×1 1d 17h

GW190412
Bilby

4096 8 60 1000 64×1 4d 3h

GW190521
Bilby

2048 8 60 1000 64×1 1d 17h

GW190521
parallel Bilby

2048 8 30 8192 64×8 3d 4h

GW190814
Bilby

4096 32 60 1000 64×1 5d 23h

GW191109
Bilby

1024 8 60 1000 64×1 2d 1h

GW200129
Bilby

2048 8 60 1000 64×1 2d 21h

Table III. Settings and evaluation time for the different parameter
estimation runs on real GW events with the SEOBNRv5PHM model.
Sampling rate (srate) and data segment duration (seglen) are spec-
ified in the data settings, while the number of accepted MCMC-
chains naccept for bi and number of live points nlive are specified
in the sampler settings (for the GW190521 parallel Bilby run,
the number quoted is the number of auto-correlation times). The
time reported is walltime, while the total computational cost in CPU
hours can be obtained multiplying this time by the reported number
of CPU cores employed.

mass asymmetry, compatible with a heavy neutron star black-
hole system. For this event we find very good agreement be-
tween the IMRPhenomXPHM results from GWTC-2.1 and our
results, in essentially all the parameters. The good agreement
can be explained by the fact that this signal is consistent with
a non-spinning configuration, and in the small spin-magnitude
region the systematics between models is less severe, due to
the underlying calibration of the non-precessing baselines.
It is worth noting that the result for this event can be ob-
tained within days with SEOBNRv5PHM employing parallel
Bilby.

We also re-analyze GW191109, an interesting signal with
support for negative effective spin and non-negligible in-plane
spin. For this event, we observe a slightly better consistency
for the source component masses between SEOBNRv4PHM and
IMRPhenomXPHM, although the spin distribution is more con-
sistent between SEOBNRv4PHM and SEOBNRv5PHM. Note that
that the IMRPhenomXPHM results present multimodality in
some parameters, like the effective spin parameter χeff , while
this feature is not present both in the SEOBNRv4PHM and
SEOBNRv5PHM results, therefore the more accurate modeling
of the precessing dynamics could help in solving this degener-
acy. Another interesting feature is that SEOBNRv5PHM seems
to produce more constrained parameters than the other two
models.

The last event we re-analyze is GW200129, which has
been-claimed to be the first confident precessing-spin de-
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tection [221] (although there are some concerns with data
quality issues and glitch substraction that were discussed in
Ref. [222]). Our results do not recover a high support for
high precessing spin values, although the support is greater in
SEOBNRv5PHM than in SEOBNRv4PHM results.

Finally, in Fig. 16, we present the posterior distribution
of the network matched-filter SNR ρN

mf for some of the
events, computed from the results of SEOBNRv5PHM, as well as
IMRPhenomXPHM that we obtain running this model with the
same settings as SEOBNRv5PHM. We can observe that in gen-
eral greater SNR values are recovered with SEOBNRv5PHM, in
particular for the events that show higher support for preces-
sion. This is likely due to the better description of the pre-
cessing dynamics included in SEOBNRv5PHM, as well as the
modeling of the precessing ringdown, which is absent in the
Fourier-domain model IMRPhenomXPHM. This, together with
the differences we have observed in the parameter posteriors,
emphasizes the importance of using several accurate models
such as SEOBNRv5PHM for production analysis of GW events.

VI. CONCLUSIONS

In this paper we have developed and validated the multi-
polar precessing-spin SEOBNRv5PHM model, of the fifth gen-
eration of SEOBNR models. This work is the culmination of
a series of papers developing the SEOBNRv5 models ahead of
the fourth observing of the LVK Collaboration.

The SEOBNRv5 models are built upon the most recent ana-
lytical PN results and improved resummations for the Hamil-
tonian [91, 147, 223], the RR force and waveform modes
[224, 225], including information from second-order gravi-
tational self-force [153, 226] in the modes/RR force. The
new analytical information and improvements in the con-
servative dynamics are derived in Ref. [147], while the in-
clusion of second order self-force results in the RR force
and modes of SEOBNRv5 is obtained in Ref. [153]. All
these new analytical improvements are combined with in-
put from NR waveforms to improve the calibration of the
non-precessing SEOBNRv5HM model in Ref. [148]. The
NR calibration in the aligned-spin sector is extended to
442 NR waveforms, in addition to 13 Teukolsky wave-
forms. The multipolar SEOBNRv5HM model includes the
(2,2), (2,1), (3,3), (4,4), (5,5) plus the (3,2), (4,3) modes for
which the mode-mixing during ringdown is modelled, and
it improves substantially the accuracy of the SEOBNR family
against non-precessing NR waveforms [148].

This modeling effort is developed within a new Python in-
frastructure pySEOBNR [168], which offers more flexibility in
including new analytical information, it is highly modular and
it produces faster and more efficient SEOBNR models than the
current ones in LALSuite [207].

More specifically, regarding the SEOBNRv5PHM model de-
veloped here, following previous precessing SEOBNR mod-
els [93, 98], we have built such a model twisting up the
non-precessing waveforms of SEOBNRv5HM [148] from the
co-precessing frame [141–145] to the inertial frame. With
respect to the previous SEOBNR model, SEOBNRv4PHM [98],

which has been used in LVK data analysis [7, 8], the new
model: 1) does not evolve the EOB equations for the spins,
but building on previous works [54, 101, 102] decouples
the spin evolution equations from the evolution of the or-
bital dynamics allowing for the specification of a reference
frequency distinct from the starting frequency of the evo-
lution, 2) employs PN-expanded EOB spin evolution equa-
tions derived from the generic SEOBNRv5 Hamiltonian in
an orbit-average approximation [147], 3) evolves the con-
servative dynamics using a partially precessing Hamilto-
nian, Hpprec

EOB , which includes in-plane spin terms in an or-
bit average and reduces to the SEOBNRv5HM Hamiltonian in
the aligned-spin limit, 4) employs a more accurate aligned-
spin two-body dynamics, since in the non-precessing limit
it reduces to SEOBNRv5HM, 5) includes in the co-precessing
frame two new modes (3,±2) and (4,±3), instead of only
the (2,±2), (2,±1), (3,±3), (4,±4), (5,±5), 6) applies the PA
scheme [165] to the EOB orbital evolution, which increases
the efficiency of the model, 7) implements an efficient calcu-
lation of the polarizations based on the rotation of the basis
of -2 spin-weighted spherical harmonics, which further accel-
erates the evaluation of the model, and 8) incorporates latest
insights from NR waveforms by properly rotating the quasi-
normal mode frequencies [194].

The improvement in accuracy between SEOBNRv5PHM and
SEOBNRv4PHM is evident from Figure 4, where we
have compared these models, as well as other state-
of-the-art precessing-spin models (IMRPhenomXPHM,
IMRPhenomTPHM and TEOBResumS-GIOTTO) to the pub-
lic SXS catalog of 1425 precessing-spin NR waveforms, and
the 118 SXS NR waveforms from Ref. [98]. When comparing
to the highly precessing 118 simulations from Ref. [98], the
SEOBNRv5PHM provides the highest accuracy with respect to
NR waveforms (see Fig. 6), as it includes effects of in-plane
spin components in its dynamics, unlike IMRPhenomXPHM,
IMRPhenomTPHM and TEOBResumS-GIOTTO, while having
a more accurate description of the co-precessing wave-
forms through the non-precessing SEOBNRv5HM model than
SEOBNRv4PHM. When turning to a broader comparison and
including all the 1543 SXS precessing-spin NR waveforms
available, we have found that for the SEOBNRv5PHM model,
99.8% (84.4%) of cases have a maximum unfaithfulness
value, in the total mass range [20,300]M�, below 3% (1%).
These numbers reduce to 95.3% (60.8%) for SEOBNRv4PHM,
to 83.3% (44.9%) for TEOBResumS-GIOTTO, to 91.6%
(62.4%) for IMRPhenomTPHM and to 78.3% (38.3%) for
IMRPhenomXPHM. We have also investigated the accu-
racy of the previous models, which are not calibrated to
precessing-spin NR waveforms, against the NR surrogate
NRSur7dq4 model by computing the unfaithfulness for 5000
configurations in the parameter space of the calibration
of the surrogate model (q ∈ [1 − 4], and a1,2 ∈ [0,0.8]).
The configurations have been uniformly distributed in the
effective precessing-spin parameter, χp, to increase the
number of configurations with highly precessional effects.
We have found in Fig. 9 that SEOBNRv5PHM provides the
lowest unfaithfulness against the surrogate model, with
100% (90.1%) cases with maximum unfaithfulness, over
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Figure 13. Component masses in the source-frame inferred for the real GW events re-analysed with SEOBNRv5PHM. Comparisons are presented
with SEOBNRv4PHM (when available) and IMRPhenomXPHM from GWTC-2.1 [7] and GWTC-3 [8] catalogs, except for GW190412 for which
we present the SEOBNRv4PHM from the discovery paper [214], since the convergence of the posteriors is larger than in the GWTC-2.1 catalog.

the total mass range considered, below 3% (1%), while
these numbers reduce to 98.7% (79.5%) for SEOBNRv4PHM,
89.4% (81.4%) for IMRPhenomXPHM and 96.1% (66%) for
TEOBResumS-GIOTTO. The largest values of unfaithfulness
against the surrogate model occur at high mass ratios and high
values of the in-plane spin components, where the in-plane
spin effects and mode asymmetries play an important role in
the description of the waveforms. We have also compared
SEOBNRv5PHM against IMRPhenomXPHM in a larger region
of parameter space q ∈ [1,20] and χp ∈ [0,0.99] outside the
region of calibration of the underlying aligned-spin models.
We have found that the largest differences occur at mass ratios
larger than 4 and spin magnitudes larger than 0.8 (see Fig.
10). These results are consistent with the differences found in
the comparisons of non-precessing models in Ref. [148], and
highlight the need to improve the parameter-space coverage
of the NR waveforms combined with improved analytical
information in the spinning sector, such as gravitational
self-force, so that the accuracy of the models can be further
improved in these challenging regions of the parameter space.

The improvement in accuracy of the SEOBNRv5PHM model
is also accompanied by an improvement in the speed of the
model with respect to SEOBNRv4PHM. The acceleration in
waveform evaluation of the model is a consequence of sev-
eral factors: 1) its implementation in the high-performance
pySEOBNR Python package [168], which allows to incor-

porate new analytical information combined with NR cali-
bration in a flexible, modular and efficient way, 2) the PA
routine, which accelerates the evaluation of the two-body
dynamics (see Appendix B), and 3) an efficient procedure
to compute the polarizations as described in Sec. III C.
As a result, we find that SEOBNRv5PHM is overall ∼ 8 − 20
times faster than SEOBNRv4PHM, and comparable in speed
to other state-of-the-art time-domain precessing-spin models
(TEOBResumS-GIOTTO and IMRPhenomTPHM).

Given the high accuracy and computational efficiency of
SEOBNRv5PHM, we have performed a Bayesian inference study
on mock signals and real GW events detected by the LVK Col-
laboration. We have first investigated how the modeling inac-
curacy impacts the inference of parameters by injecting a syn-
thetic NR signal into a network of LIGO-Virgo detectors at de-
sign sensitivity. We have injected in zero noise a precessing-
spin NR waveform (SXS:BBH:0165) with mass ratio 6, to-
tal mass 95 M�, SNR 19.4, inclination 0.69 with respect to
the line of sight, and recovered it with SEOBNRv5PHM and
IMRPhenomXPHM. The unfaithfulness values of these models
against the synthetic signal is 2% for SEOBNRv5PHM and 12%
for IMRPhenomXPHM. The results are summarized in Fig. 12
and Table II. We have found that the recovery of the pa-
rameters with SEOBNRv5PHM does not produce significant bi-
ases, except for the effective spin parameter, for which the
injected value lies at the boundary of the 90% credible inter-
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Figure 14. Effective-spin parameters χeff and χp inferred for the GW events re-analysed with SEOBNRv5PHM. Comparisons are presented with
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present the SEOBNRv4PHM from the discovery paper [214] as in Fig. 13.
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Figure 15. Comparison of mass-ratio and effective spin pa-
rameter inferred for GW190521 between SEOBNRv5PHM and the
phenomenological models IMRPhenomTPHM from Ref. [219] and
IMRPhenomXPHM from GWTC-2.1 [7].

vals, while the rest of the binary parameters are accurately
recovered. While in the case of the IMRPhenomXPHM model
a 12% value of unfaithfulness translates into larger biases in
several parameters, like the component masses or the effective
precessing-spin parameter. A more comprehensive Bayesian
inference study will be needed to quantify the modeling inac-
curacies and systematics, and how they translate into biases
in the inference of binary parameters. Here, new methods
of Bayesian inference through machine learning techniques,
like DINGO [171–173], may offer an alternative and efficient
method to perform large-scale injection campaigns and assess
waveform systematics with a significant reduction of its com-
putational cost. We leave such waveform systematics studies
using Bayesian inference methods for future work.

Besides injection studies, we have demonstrated that
SEOBNRv5PHM can be used as a standard tool in Bayesian
inference studies of real GW events. We have reanalyzed
several GW events (GW150914, GW190412, GW190521,
GW190814, GW191109 and GW200129) detected by the
LVK Collaboration in the first and third observing runs, with
two different standard stochastic samplers serial Bilby
[209] and parallel Bilby [208]. We have found that
the parameters inferred by SEOBNRv5PHM are consistent with
the ones obtained in the literature for most of the events.
For instance, in the case of the massive GW190521, we
find consistency in the recovery of the mass ratio and ef-
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.

fective spin parameter with other time-domain precessing
models in the literature, while for GW200129, consistently
with SEOBNRv4PHM, we do not find support for high preces-
sion as claimed in Ref. [221] using the NRSur7dq4 model.
Furthermore, we find that for all the events considered
in this paper SEOBNRv5PHM recovers systematically more
SNR than the IMRPhenomXPHM model (see Fig. 16). The
SEOBNRv5PHM model results have been obtained in a few
days when using parallel Bilby, and on the order of a
week when using serial Bilby (see Table III). This makes
SEOBNRv5PHM a standard tool that can be used with a vari-
ety of stochastic samplers, and we plan in the future to ex-
tend the Bayesian inference study presented here, including
the machine-learning code DINGO, to all the GW events de-
tected during the third-observing run [227].

Finally, the SEOBNRv5PHM model is not calibrated to
precessing-spin NR waveforms, which limits its accuracy. To
overcome this limitation, calibration to NR waveforms in the
conservative dynamics, as well in the waveform modes with
the inclusion of mode asymmetries24 will be developed in the
future. In this context, the pySEOBNR infrastructure provides
an ideal framework to incorporate such improvements, as well
as other physical effects, such as eccentricity and tidal effects,
which have been already incorporated in SEOBNRv4 models

24 Similarly as done recently in the phenomenological family [57].

[108, 111, 112, 114, 115, 134], and that we are in the pro-
cess of implementing in the SEOBNRv5 models. Further im-
provements for the near future concern with the adoption of
the SEOBNRv5 models to perform theory agnostic tests of GR
[228–230], as well as developing SEOBNR waveforms in spe-
cific beyond-GR theories and calibrating/comparing them to
beyond-GR NR waveforms of BBHs [231–235].
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Appendix A: Precessing-spin effective Hamiltonian

In this Appendix, we provide the partial-precession Hamil-
tonian derived in Ref. [147], which reduces to the Hamiltonian
of SEOBNRv5HM [148] in the aligned-spin limit and includes
orbit-average in-plane spin components for quasi-circular or-
bits. The effective Hamiltonian is given by

Hpprec
eff

=
Mpφlll · (ga+aaa+ +ga−δaaa−) + SOcalib +

〈
Gpprec

a3

〉
r3 + a2

+(r + 2M)

+

[
Apprec

(
µ2 + Bpprec

p

p2
φ

r2 +
(
1 + Bpprec

np

)
(nnn · ppp)2

+ BKerr eq
npa

p2
φ(lll ·aaa+)2

r2 + Qpprec
)]1/2

, (A1)

where the gyro-gravitomagnetic factors are the same as in the
aligned-spin case, which are given by Eq. (28) of Ref. [147],
and the SO calibration term is given by

SOcalib = νdSO
M4

r3 pφlll ·aaa+. (A2)
with the same value of dSO as in the aligned-spin model [148].
The cubic-in-spin term

〈
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〉
reads
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The potential BKerr eq
npa in Eq. (A1) is the same as in the Kerr

Hamiltonian for equatorial orbits, and is given by

BKerr eq
npa = −

1 + 2M/r
r2 + a2

+(1 + 2M/r)
. (A4)

The other potentials Apprec, Bpprec
p , Bpprec

np , and Qpprec include
nonspinning and SS PN terms, and read:
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a2

+/r
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SS +
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(A5)

where the nonspinning contributions AnoS, D̄noS and QnoS are
given by Eqs. (21)–(25) of Ref. [147], while the SS correc-
tionsread
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where
〈
Ãin plane
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〉
and
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only contain in-plane spin

components that have been orbit-averaged using [147]
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Appendix B: Post-adiabatic dynamics

Since the EOB evolution equations in the
SEOBNRv5PHMmodel are of the same form as the aligned-spin
ones in SEOBNRv5HM , we can apply the iterative PA approach
which was pioneered in Ref. [165] and used in subse-
quent TEOBResumS [99–102] 25 and also the SEOBNRv4 PA
model [167].

The crucial difference with the non-precessing case is the
evolution of the spins, which enter the Hamiltonian and the
flux at different points in the radial grid. Following the proce-
dure outlined in Ref. [165], we obtain the following explicit
equations for the corrections to the momenta:
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ξ

2
(
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where we split the effective Hamiltonian from Eq. (A1) into
odd and even-in-spin parts, Hpprec

eff
≡ Hodd + Heven, defined

H̄odd ≡ Hodd/pφ, while the factors K0 and K1 are defined as,
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At each point, the radial Eqs. (B2) are solved analytically for

25 For example, the latest precessing-spin model TEOBResumS-GIOTTO [102]
uses the PA approximation.

pφ and pr. In the SEOBNRv5PHMmodel, we iteratively find the
solution up to 8th post-adiabatic order.
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Appendix C: Comparison against the precessing-spin
time-domain phenomenological model

In this Appendix we contrast the accuracy against NR of
the SEOBNRv5PHM model (and for context also the frequency-
domain IMRPhenomXPHM model [52] shown in Sec. IV C)
with the one of the time-domain IMRPhenomTPHMmodel [54–
56]. We repeat the calculation of the unfaithfulness against the
catalog of NR simulations described in Sec. IV C, both against
the set of 118 highly precessing simulations from Ref. [98]
(Fig. 17), and for the full set (including the 118 highly pre-
cessing simulations) of 1543 precessing-spin SXS NR simu-
lations (Fig. 18).

Considering the unfaithfulness against the 118 highly pre-
cessing NR waveforms from Ref. [98], we find in Fig. 17
a similar trend as in Fig. 4. The IMRPhenomTPHM model
performs better than the IMRPhenomXPHM model, due to an
improved description of the precessing-spin dynamics during
the inspiral and merger-ringdown, however the lack of mod-
eling effects due to the in-plane spin components in the wave-
form causes IMRPhenomTPHM to still have a significant num-
ber of cases with a maximum unfaithfulness above 3% with
respect to the SEOBNRv5PHMmodel. In particular, we find that
the IMRPhenomTPHM model has 89% (58.5%) of cases with a
maximum unfaithfulness below 3% (1%). These numbers re-
duce to 72.9% (24.6%) for the IMRPhenomXPHM model, and
they increase to 100% (85.6%) for the SEOBNRv5PHM model.
Therefore, when considering highly precessing-spin configu-
rations the SEOBNRv5PHM model provides the lowest unfaith-
fulness, followed closely by the time-domain phenomenolog-
ical IMRPhenomTPHM model, which offers an improved de-
scription of spin-precession with respect to the frequency-
domain IMRPhenomXPHM model.

In Fig. 18 we turn to a comparison against a
broader set of 1543 precessing-spin NR simulations. The
IMRPhenomTPHM model reaches lower values of unfaithful-
ness than the SEOBNRv5PHM model for several configura-
tions with low precessing-spin effects, which can be ex-
plained due to a slightly more accurate modeling of the
higher order modes in the merger-ringdown in the aligned-
spin limit (see Appendix G of Ref. [148] for details), but
it also presents a significantly larger number of highly pre-
cessing configurations with unfaithfulness larger than 3%
with respect to the SEOBNRv5PHM model. Overall, the un-
faithfulness of the IMRPhenomTPHM model is lower than
the one of the IMRPhenomXPHM model. More quantita-
tively, we find that for IMRPhenomTPHM, 91.6% (62.4%)
of cases have a maximum unfaithfulness in the total mass
range considered below 3% (1%). These numbers reduce
to 78.3% (38.3%) for IMRPhenomXPHM, and increase to
99.8% (84.4%) for SEOBNRv5PHM. Therefore, we find that
the SEOBNRv5PHM model outperforms in accuracy the phe-
nomenological models for highly precessing-spin configura-
tions, while for low precessing configurations the accuracy of
the models becomes more comparable, as they rely on the ac-
curacy of the underlying non-precessing waveform models,
which are calibrated to a similar set of non-precessing NR
waveforms.

Finally, we repeat the study of Sec. IV D and compute the
unfaithfulness between the SEOBNRv5PHM model as the tem-
plate waveform and IMRPhenomTPHM as the signal, for 5000
configurations uniformly distributed in mass ratio q ∈ [1,20]
and effective spin parameter χp ∈ [0,0.99]. Figure 19 shows
the unfaithfulness as a function of mass ratio q, effective spin
parameter χeff), and effective precessing-spin parameter χp.
We find that for mass ratios q < 5, there are 99.74% (64.5%)
of cases with a maximum unfaithfulness, in total mass range
[20,300]M�, below 10% (1%), while in Sec. IV D we found
that for IMRPhenomXPHM these numbers decrease to 96.84%
(41.3%). The unfaithfulness increases significantly with mass
ratio and spins, with the highest unfaithfulness values at the
largest mass ratios q ∼ 20, and effective spin precessing pa-
rameter χp ∼ 0.99. In particular, when considering q ≤ 20
we find that for IMRPhenomTPHM there are 73.84% (30.02%)
cases with maximum unfaithfulness, in the total mass range
considered, below 10% (1%), while these numbers increase to
59.19% (13.45%) for IMRPhenomXPHM as shown in Sec. IV D.
The results show that the agreement of SEOBNRv5PHM with
the time-domain model IMRPhenomTPHM is better than in
the case of the frequency-domain phenomenological model
IMRPhenomXPHM, due to the fact that the precessing-spin dy-
namics in IMRPhenomTPHM is more accurately described than
in IMRPhenomXPHM. The existing large differences in unfaith-
fulness in some regions of the parameter space remark the ne-
cessity to populate this region with NR waveforms in order to
reduce the systematics between models.
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Figure 17. Left panel: Sky-averaged SNR weighted unfaithfulness as a function of the total mass of the system [20,300]M�, of
IMRPhenomXPHM (orange), IMRPhenomTPHM (brown) and SEOBNRv5PHM (green), against the 118 highly precessing simulations from Ref. [98].
Right panel: Distribution of the maximum unfaithfulness over the total mass range for each NR simulation considered in the left plot. The
vertical dashed lines indicate the median values of the distribution.
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ratio and spin magnitude values, and it can reach very large values for mass ratios q ∼ 20 and χp ∼ 1.
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