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Spin precession is one of the key physical effects that coul unveil the origin of the compact binaries
detected by ground- and space-based gravitational-wave (GW) detectors, and shed light on their possible
formation channels. Efficiently and accurately modeling the GW signals emitted by these systems is crucial
to extract their properties. Here, we present SEOBNRv5PHM, a multipolar precessing-spin waveform model
within the effective-one-body formalism for the full signal (i.e. inspiral, merger and ringdown) of binary
black holes (BBHs). In the nonprecessing limit, the model reduces to SEOBNRv5HM, which is calibrated to
442 numerical-relativity (NR) simulations, 13 waveforms from BH perturbation theory, and nonspinning
energy flux from second-order gravitational self-force theory. We remark that SEOBNRv5PHM is not
calibrated to precessing-spin NR waveforms from the Simulating eXtreme Spacetimes Collaboration. We
validate SEOBNRv5PHM by computing the unfaithfulness against 1543 precessing-spin NR waveforms,
and find that for 99.8% (84.4%) of the cases, the maximum value, in the total mass range 20–300M⊙, is
below 3% (1%). These numbers reduce to 95.3% (60.8%) when using the previous version of the SEOBNR
family, SEOBNRv4PHM, and to 78.2% (38.3%) when using the state-of-the-art frequency-domain
multipolar precessing-spin phenomenological IMRPhenomXPHM model. Due to much better computa-
tional efficiency of SEOBNRv5PHM compared to SEOBNRv4PHM, we are also able to perform extensive
Bayesian parameter estimation on synthetic signals and GWevents observed by LIGO-Virgo detectors. We
show that SEOBNRv5PHM can be used as a standard tool for inference analyses to extract astrophysical and
cosmological information of large catalogs of BBHs.

DOI: 10.1103/PhysRevD.108.124037

I. INTRODUCTION

Since the first detection of a gravitational-wave (GW)
signal in 2015 [1], GW astronomy has quickly transitioned
from a dozen of events observed in the first and second
observing runs [2,3] of the LIGO and Virgo GW ground-
based detectors [4,5] to more than a hundred of GW event
candidates in the latest observing run of the LIGO, Virgo
and KAGRA detectors [6–12]. With the upcoming

upgrades of the existing ground-based detectors, as well
as the planned next-generation GW detectors, such as the
ground-based Einstein Telescope [13] and Cosmic Explorer
[14,15], or the space-based Laser Interferometer Space
Antenna [16], an increasing rate of detected mergers of
compact binaries is expected. In order to maximize the
science output of such experiments, it is essential to
accurately model the GWs emitted from binary systems.
One of the most active research areas in the field of GW

source modeling concerns the accurate description of the
two-body motion when spins are misaligned with respect to
the orbital angular momentum of the system. In this
situation, both the spins and the orbital angular momentum
precess around the direction of the total angular momentum
[17]. In addition to spin precession, asymmetries in the
masses of the binary components excite multipoles beyond
the quadrupolar order [18] which induce a rich structure in
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the GW signal, and complicate substantially its modeling.
Measurements of spin precession and higher multipoles can
provide key information about the formation channels of
the observed systems [19–24] and break degeneracies
among parameters [25–33], allowing high precision GW
astronomy and accurate measurements of cosmological
parameters [34–36], as well as unique tests of general
relativity (GR) [37–39].
Accurate models for precessing-spin binary black holes

have been developed within different modeling frame-
works: the phenomenological approach, the numerical
relativity (NR) surrogate models and the effective-one-
body (EOB) formalism.
Phenomenological models [40–57] are built upon

Ansätze based on post-Newtonian (PN) and EOB theory
during the inspiral, and functional forms of the waveform in
the intermediate and merger-ringdown parts, which are
calibrated to EOB and NR waveforms. Recently, there
has been efforts to include calibration to precessing-spin
NR waveforms [57], and there is ongoing work to include
these improvements in the latest frequency-domain precess-
ing-spin IMRPhenomXPHM [52] model, which we use
throughout this paper. Within the IMRPhenom family we
also employ the time-domain IMRPhenomTPHM model
[54–56], which includes an improved description of the spin
precession with respect to the IMRPhenomXPHM model.
The surrogate models [58–66] interpolate NR wave-

forms, and they have been proven the most accurate method
to produce models for higher multipoles [61] and spin-
precession [60,62]. However, these models are limited to
the region in parameter space where NR simulations are
available, and are restricted to the length of NR waveforms,
unless they are hybridized with EOB waveforms [61,67]. In
this paper, we consider the state-of-the-art surrogate wave-
form model, NRSur7dq4 [62], which includes spin
precession, all the multipoles in the coprecessing frame
up to l ¼ 4, mass ratios q∈ ½1–4�, dimensionless spins up
to 0.8 and binary total masses ≳60M⊙ at a starting
frequency of 20 Hz.
The EOB formalism [68–72] combines information from

several analytical methods, such as PN and small mass-
ratio approximations, with results from NR simulations.
The EOB waveform models consist of three main building
blocks: 1) the Hamiltonian, which describes the
conservative dynamics, 2) the radiation-reaction (RR)
force, which accounts for the energy and angular momen-
tum losses due to GWemission, and 3) the inspiral-merger-
ringdown waveform modes, built upon improved PN
resummations for the inspiral part, and functional forms
calibrated to NR waveforms in the merger-ringdown. EOB
waveform models have been constructed for quasicircular
nonspinning [69,70,73–81] and spinning [71,72,82–102]
binaries. Furthermore, orbital eccentricity [103–109] and
matter [110–116] effects, as well as information from
post-Minkowskian [117–122] and small mass-ratio

approximations [123–129] have been also incorporated
in EOBmodels. To increase the computational efficiency of
the EOB waveforms, reduced-order frequency-domain or
surrogate models have been developed [130–139].
In the EOB formalism two main waveform families

exist: SEOBNR [94,95,98] and TEOBResumS
[100,102,140]. Within the SEOBNR family, here we present
a new multipolar precessing-spin waveform model,
SEOBNRv5PHM,1 for quasicircular binary black holes
(BBHs). Precessing-spin waveforms can be constructed
from an aligned-spin waveform in the coprecessing frame,
in which the BBH is viewed from the maximum radiation
axis and the GW signal resembles a nonprecessing one, by
applying a time-dependent rotation to the inertial frame
[17,142–146]. The precessing-spin SEOBNRv3 [96,97]
and SEOBNRv4PHM [98] models employ a full EOB
precessing-spin Hamiltonian [86,87] to evolve the dynam-
ics in the coprecessing frame. To improve the computa-
tional efficiency, the time-domain phenomenological
IMRPhenomTPHM [54,56] model builds the precessing
waveform employing a purely aligned-spin dynamics.
Similarly, the precessing-spin TEOBResumS model,
TEOBResumS-GIOTTO [101,102] builds computational
efficient precessing-spin waveforms evolving an aligned-
spin EOB Hamiltonian in the coprecessing frame.
To increase computational efficiency, SEOBNRv5PHM

follows a similar approach as in Refs. [54,101,102], and
decouples the evolution of the spins from the orbital
dynamics by using orbit-averaged, PN-expanded spin-
precession equations [55,101,102,147]. The latter, in
SEOBNRv5PHM, includes higher PN orders and is derived
from the full-precessing spin SEOBNRv5 Hamiltonian
[90,91,148]. The SEOBNRv5PHM model is built in the
coprecessing frame upon the accurate multipolar aligned-
spin SEOBNRv5HM model [149], which is calibrated to 442
NR simulations [150,151], 13 waveforms from BH pertur-
bation theory [152,153], and nonspinning energy flux from
second-order gravitational self-force theory [154–156]. The
model includes the ðl; mÞ ¼ fð2;�2Þ; ð2;�1Þ; ð3;�3Þ;
ð3;�2Þ; ð4;�4Þ; ð4;�3Þ; ð5;�5Þg multipoles. We remark
that the SEOBNRv5PHM model is not calibrated to
precessing-spin NR simulations.
The standard way of validating waveform models is by

comparing them with numerical solutions of the Einstein
equations, i.e., NR waveforms. However, the high compu-
tational cost of producing NR simulations poses a chal-
lenge to finely populate the large dimensionality of the
parameter space of quasicircular precessing-spin BBHs
(mass ratio and the six spin degrees of freedom). As a
consequence, NR simulations of BBHs have been largely

1SEOBNRv5PHM is publicly available through the Python
package pySEOBNR [141]. Stable versions of pySEOBNR are
published through the Python Package Index (PyPI), and can
be installed via pip install pyseobnr.
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limited to mass ratios q ≤ 4 and dimensionless spins up to
0.8, and length of 15–20 orbital cycles before merger
[98,150,151,157–165]. Here, we validate the new EOB
precessing-spin waveform model, by comparing it to 1425
simulations from the public Simulating eXtreme
Spacetimes (SXS) catalog [151], as well as 118 NR
simulations presented in Ref. [98]. When compared to
NR simulations we find that SEOBNRv5PHM provides
99.8% of cases with a maximum unfaithfulness, in total
mass range ½20–300�M⊙, below 3%, while this number
reduces to 95.3% for the previous generation of precessing-
spin SEOBNR models, the SEOBNRv4PHM model [98].
For the inspiral orbital dynamics SEOBNRv5PHM uses

the postadiabatic (PA) approximation [102,166–168]. This
strategy for the evolution equations, combined with a new
high-performance Python infrastructure pySEOBNR [169],
improves significantly the computational efficiency of the
SEOBNRv5PHM model, and makes it comparable to the
state-of-the-art time-domain precessing-spin waveform
models. The model is generally ∼8–20 times faster than
SEOBNRv4PHM, which has been proven to accurately
describe quasicircular precessing-spin binaries, and it has
been extensively employed to extract source properties of
detected GW signals [7,8]. However, its high computational
cost requires the use of nonstandard stochastic sampling
techniques for Bayesian inference studies, such as RIFT
[170,171], or machine learning techniques such as DINGO

[172–174]. Here, we show that the SEOBNRv5PHM model
can be employed with standard stochastic sampling tech-
niques due to its high computational efficiency. We perform
Bayesian inference studies with the SEOBNRv5PHMmodel
by injecting synthetic NR signals into detector noise, and by
reanalyzing GW events from previous observing runs. We
find that the SEOBNRv5PHMmodel recovers accurately the
injected synthetic NR signals, as well a providing more
constrained posterior distributions in the analyzed GW
events than the SEOBNRv4PHM model.
This work is part of a series of articles [148,149,154,169]

describing the SEOBNRv5 family of models, and it is
organized as follows. In Secs. III and IV we develop the
multipolar EOB waveform model for precessing-spin
BBHs, SEOBNRv5PHM, and highlight improvements and
differences with respect to the previous generation of
precessing-spin SEOBNR models. In Sec. V we validate
the accuracy of the SEOBNRv5PHM by comparing
it to NR waveforms. We also compare the performance
of SEOBNRv5PHM against other state-of-the-art quasicir-
cular precessing-spin waveform models, notably
IMRPhenomXPHM and TEOBResumS-GIOTTO, and
investigate in which region of parameter space thesemodels
differ more from NR waveforms and from each other. In
Sec. VI, we study the accuracy of the precessing model
usingBayesian inference analysis by injecting syntheticNR
waveforms in zero detector noise, and also by analyzing
GWevents detected in the latest observing runs of the LVK

Collaboration. In Sec. VII, we summarize our main con-
clusions and discuss futurework. Finally, in AppendixAwe
provide the explicit expression of the Hamiltonian used in
the SEOBNRv5PHM model [148], and in Appendix B we
specify the equations used to apply the PA approximation in
the SEOBNRv5PHMmodel. In Appendix C we compare the
model with the state-of-the-art time-domain phenomeno-
logical model IMRPhenomTPHM.

II. NOTATION

In this paper, we use geometric units, setting G ¼ c ¼ 1
unless otherwise specified.
We consider a binary with masses m1 and m2, with

m1 ≥ m2, and spins S1 and S2. We define the following
combinations of the masses:

M ≡m1 þm2; μ≡m1m2

M
; ν≡ μ

M
;

δ≡m1 −m2

M
; q≡m1

m2

; ð1Þ

where i ¼ 1, 2. A relevant combination of masses for GW
data analysis is the chirp mass defined as [175]

M ¼ ν3=5M: ð2Þ

We define the dimensionless spin vectors

χ i ≡ ai
mi

¼ Si
m2

i

; ð3Þ

along with the intermediate definition for ai. We also define
the following combinations of the spins:

a� ≡ a1 � a2: ð4Þ

The relative position and momentum vectors, in the
binary’s center-of-mass, are denoted r and p, with

p2 ¼ p2
r þ

L2

r2
; pr ¼ n · p; L ¼ r × p; ð5Þ

where n ¼ r=r and L is the orbital angular momentum with
magnitude L. The direction of L is denoted as l. The total
angular momentum is given by J ¼ Lþ S1 þ S2. We
express the precessing binary dynamics in an orthonormal
frame flN; n; λNg, where lN is the direction of LN ≡ μr × ṙ,
and λN ≡ lN × n. It is convenient to define the effective
spin parameter χeff [43,71,176],

χeff ¼
1

M
ða1 þ a2Þ · lN; ð6Þ

and the effective precessing-spin parameter χp [177],
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χp ¼ 1

B1m2
1

max ðB1m2
1χ1;⊥; B2m2

2χ2;⊥Þ; ð7Þ

where B1 ¼ 2þ 3m2=ð2m1Þ, B2 ¼ 2þ 3m1=ð2m2Þ and
χi;⊥ indicates the magnitude of the projection of the
dimensionless spin vectors on the orbital plane.

III. EFFECTIVE-ONE-BODY DYNAMICS OF
PRECESSING-SPIN BINARY BLACK HOLES

For the two-body conservative dynamics, the EOB
formalism relies on a Hamiltonian HEOB, constructed
through an effective Hamiltonian Heff of a test mass μ
moving in a deformed Kerr spacetime of mass M (the
deformation parameter being ν), and the following energy
map connecting Heff and HEOB:

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
: ð8Þ

The deformation of the Kerr Hamiltonian is obtained
by imposing that at each PN order, the PN-expanded
EOB Hamiltonian agrees with a PN Hamiltonian
through a canonical transformation. In Ref. [148], an
EOB Hamiltonian that includes all generic-spin informa-
tion up to 4PN has been derived, while the nonspinning
dynamics is incorporated up to 4PN with partial 5PN
results. The dynamical variables of the generic EOB
Hamiltonian are the orbital separation r, the corresponding
canonically conjugate momentum p, and the spins S1;2.
For arbitrary orientations of the spins, both the orbital

plane and the spins precess around the total angular
momentum of the system J. The equations of motion
are as follows [72]:

ṙ ¼ ∂Hprec
EOB

∂p
; ṗ ¼ −

∂Hprec
EOB

∂r
þF ;

Ṡ1;2 ¼
∂Hprec

EOB

∂S1;2
× S1;2; ð9Þ

where for SEOBNRv5PHM the full precessing-spin
Hamiltonian, Hprec

EOB, is given in Sec. II. D of Ref. [148],
and it reduces as ν → 0 to the Kerr Hamiltonian for a test
mass in a generic orbit. Within the EOB formalism,
the dissipative effects enter the dynamics through the
RR force F , which is expressed in terms of the waveform
modes [76,178].
It was shown in Refs. [142–146] that precessing-

spin waveforms can be built starting from aligned-spin
waveforms in the so-called coprecessing frame, in which
the z axis remains perpendicular to the instantaneous orbital
plane, and then applying a suitable rotation to the inertial
frame. The precessing-spin SEOBNRv3 and SEOBNRv4
models employed the full EOB precessing-spin

Hamiltonian [86,87] to evolve the dynamics in the
coprecessing frame. However, solving the EOB dynamics
for generic spin configurations can be computationally
expensive, as the EOB evolution equations (9) lead to
lengthy expressions [179]. To build the precessing-spin
TEOBResumSmodel and speed up the computational time,
Refs. [101,102] used an aligned-spin EOB Hamiltonian
when evolving the equations in the coprecessing frame.
Also, theIMRPhenomTmodel [55]was built using a purely
aligned-spin dynamics in the coprecessing frame.
To build the computationally efficient precessing-spin

dynamics of SEOBNRv5PHM, Ref. [148] has leveraged the
recent studies of Refs. [55,101,102], making some impor-
tant modifications and improvements. In particular, to
enhance the accuracy in describing precessional effects,
Ref. [148] has found it important to incorporate at least
partial precessing-spin information in the Hamiltonian used
in the coprecessing frame. To achieve that, it has first
obtained a precessing-spin Hamiltonian simpler than the
full one, such that it reduces to the aligned-spin
Hamiltonian in the absence of spin precession, but only
includes the in-plane spin components for circular orbits
(pr ¼ 0). Then, it has orbit averaged the in-plane spin
components in the Hamiltonian, and used them when
evolving the equations of motion involving the dynamical
variables r; pr;ϕ and pϕ in the coprecessing frame.
Furthermore, the evolution equations for the spin and
angular momentum vectors are computed in a PN-
expanded, orbit-averaged form for quasicircular orbits,
similarly to what was done in Refs. [55,101,102,147],
but, as we discuss below, Ref. [148], has included higher
PN orders in the spin-spin sector, and has derived them
from the SEOBNRv5 EOB Hamiltonian, employing a
different gauge and spin-supplementary condition with
respect to Refs. [55,101,102].
Thus, in the SEOBNRv5PHM model, the equations of

motion in the coprecessing frame read as

ṙ ¼ ξðrÞ ∂H
pprec
EOB

∂pr�
; ϕ̇ ¼ ∂Hpprec

EOB

∂pϕ
;

ṗr� ¼ −ξðrÞ ∂H
pprec
EOB

∂r
þ F r; ṗϕ ¼ Fϕ; ð10Þ

where, as said, the Hamiltonian Hpprec
EOB reduces in the

aligned-spin limit to the Hamiltonian used in
SEOBNRv5HM [149], while also including partial preces-
sional (pprec) effects. Notably, the Hamiltonian incorpo-
rates orbit-averaged in-plane spin terms for circular orbits
(pr ¼ 0), while neglecting fourth-order spin contributions
(see Appendix A for the explicit expression of Hpprec

EOB and
other details).
As in previous EOB models [93,95,96,98], the evolution

of the radial momentum is performed using the tortoise
coordinate pr� ¼ prξðrÞ, where ξðrÞ ¼ dr=dr�. The RR
force is computed using [72]
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Fϕ ¼ −
ΦE

Ω
; F r ¼ Fϕ

pr

pϕ
; ð11Þ

where Ω≡ ϕ̇ is the orbital frequency, and ΦE is the
energy flux for quasicircular orbits, which can be written
as [76,178]

ΦE ¼ Ω2

16π

X8
l¼2

Xl

m¼−l
m2jdLhlmj2; ð12Þ

where dL is the luminosity distance from the binary to the
observer, and hlm are the waveform modes.
In addition to the equations of motion (10), the PN-

expanded evolution equations for the spins and angular
momentum, read as

Ṡi ¼ ΩSi × Si; ð13aÞ

L ¼ LðlN; v; SiÞ; ð13bÞ

l̇N ¼ l̇NðlN; v; SiÞ; ð13cÞ
whereΩSi is the spin-precession frequency, v≡ ðMΩPNÞ1=3
with ΩPN being the PN-expanded orbital frequency (see
below), and lN is the unit vector in the direction of LN . As
said, these PN-expanded equations have been obtained in
Ref. [148] (consistently, from the SEOBNRv5 Hamiltonian
and equations of motion) for precessing spins through an
orbit-average procedure up to 4PN order, including spin-
orbit (SO) contributions to next-to-next-to-leading order
(NNLO), and spin-spin (SS) contributions to NNLO. The
spin-precession frequency is given by Eq. (66) of Ref. [148],
while L and l̇N are given there in Eqs. (65) and (71).
We note that the SO and leading order (LO) SS parts of

the spin-precession frequency ΩSi agree with the orbit-
averaged results given by Eqs. (1)–(5) of Refs. [101,147],
but the next-to-leading order (NLO) and NNLO SS terms
do not agree with Refs. [147,180] because of the different
gauge used for the SEOBNRv5Hamiltonian. Furthermore,
our expressions for LðlN;ΩPN; SiÞ, and hence for l̇N, differ
at the SO level from Ref. [101] because of the different
spin-supplementary condition used.
In practice, to solve the equations of motion, we first

perform the PN-expanded evolution of the spin and angular
momentum vectors using Eqs. (13), and then we apply a
subsequent EOB evolution using Eqs. (10), where the
projections of the spins S1;2 onto lN and LðlNÞ are updated
at every timestep [102]. The solution of the PN-expanded
equations (13) requires a prescription for the evolution of
the orbital frequency, which we compute as follows:

v̇ ¼
�

ĖðvÞ
dEðvÞ=dv

�
PN-expanded

; ð14Þ

where EðvÞ is the binding energy of the binary, and ĖðvÞ
the circular-orbit PN-expanded energy flux.

The expression for v̇ is given by Eq. (69) of Ref. [148],
which used the results of Ref. [181] to obtain the NNLO SS
contribution to the orbit-averaged energy flux. Our result
for v̇ agrees at the NNLO SO and LO SS with Eq. (A1) of
Ref. [182], but differs from it by including the NLO and
NNLO SS contributions. Also, our PN-expanded equations
are fully expanded in v.
The SEOBNRv5PHM model employs the partial preces-

sional Hamiltonian,Hpprec
EOB , which reduces to the nonprecess-

ing SEOBNRv5HM Hamiltonian in the aligned-spin limit.
This Hamiltonian contains parameters which feature higher
(yet unknown) PN orders and are calibrated to aligned-spin
NR waveforms. These calibration parameters are denoted by
a6ðνÞ and dSOðν; a�Þ in Ref. [149]. From these two param-
eters only dSO contains a spin dependence, and thus, it is
the only calibration parameter affected by the variation of the
spins with time. In the SEOBNRv5PHM we employ the
projections of spins onto lN to evaluate dSOðν; a� · lNÞ at
every timestep of the evolution. The other calibration param-
eter inherited from the underlying SEOBNRv5HM model is
Δt22ISCOðν; a�Þ, which is a parameter determining the time
shift between the innermost stable circular orbit (ISCO) of the
remnant Kerr black hole (BH), and the time of the peak of the
(2,2)-mode amplitude (see Sec. IVof Ref. [149] for details).
Here, we employ the projections of the spins onto the
Newtonian angular momentum evaluated at the time the
orbital separation r crosses the ISCO2 to evaluate the NR
calibrated time shift, i.e., Δt22ISCOðν; a� · lNÞjtISCO .
Equations (10) have the same form of the evolution

equations in the aligned-spin SEOBNRv5HM model. This
fact permits the use of the PA approximation [166,168] in
the precessing-spin SEOBNRv5PHM model, as done in the
underlying aligned-spin SEOBNRv5HM model [149]. The
use of the PA approximation to evolve the EOB inspiral
implies an increase in speed and efficiency of the model as
discussed in Sec. V E, while the specific details of its
implementation are described in Appendix B. Furthermore,
the orbital frequency as computed in Eq. (14) allows an
adiabatic evolution, which permits one to disentangle the
starting frequency of the EOB evolution with the reference
frequency at which the spins are specified, which intro-
duces a novel feature in the SEOBNR models3 and highly
benefits Bayesian inference studies as shown in Sec. VI.

2More specifically, the ISCO time is computed from the ISCO
orbital separation rISCOðν; a�Þ, which in the precessing-spin case
depends on the values of the spins projected onto lN at a particular
instant of time, which we decide to be r ¼ 10M,
rISCOðν; a� · lNÞjr¼10M, for the reasons discussed in Sec. IV.

3In the previous SEOBNRv4PHM model, where Eqs. (9) are
solved, the starting frequency and the reference frequency
correspond to the same frequency. The specification of a
reference frequency distinct from the starting frequency implies
a backward in time integration, which due to the RR force in the
EOB dynamics would cause an increase of eccentricity in
SEOBNRv4PHM, and thus it breaks the assumption of modeling
quasicircular binaries.
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In summary, our strategy to produce precessing-spin
EOB waveforms shares common aspects with the work
developed in Refs. [54,101,102], but it goes beyond
them in several aspects which we highlight again in the
following. First, the precessing-spin evolution equations,
Eqs. (13), which are implemented in SEOBNRv5PHM and
derived in Ref. [148], include higher PN orders and are
consistently derived from the generic SEOBNRv5
Hamiltonian. Then, the EOB dynamics is also improved
by including in the SEOBNRv5HM Hamiltonian of
Ref. [148,149] terms describing in-plane spin effects and
vanishing in the nonprecessing limit. Moreover, all the spin
components entering into the Hamiltonian are used in the
orbital evolution (see Appendix A for more details), instead
of just the projection onto lN as in Refs. [101,102].

IV. EFFECTIVE-ONE-BODY MULTIPOLAR
WAVEFORMS FOR PRECESSING-SPIN BINARY

BLACK HOLES

In this section we describe the main building blocks to
generate precessing-spin multipolar waveforms in the
SEOBNRv5PHM model.

A. Inspiral-plunge waveforms

The construction of the inspiral-plunge waveforms
follows a similar approach to Ref. [98], with the usage
of the factorized, resummed version [178,183] of the
frequency domain PN formulas of the modes [184,185].
The factorized resummation has been developed for non-
precessing BBHs [76,95,148,183] and it has been proven to
improve the accuracy of the PN expressions in the test-
particle limit [152,186–188].
The components of the RR force, F r;ϕ, in Eq. (11)

depend on the amplitude of the individual GWmodes jhlmj.
In SEOBNRv5PHM, the spins entering the GW modes (and
energy flux) are projected onto the Newtonian orbital
angular momentum, a� · lN , since lN represents the direc-
tion perpendicular to the orbital plane (see Fig. 1) and is
provided by the PN-expanded EOB precessing-spin evo-
lution equations.4

The GW polarizations in the inertial frame of the
observer are required for data-analysis studies. As in
Ref. [98], the SEOBNRv5PHM model also defines three
reference frames: 1) the inertial frame of the observer
(source frame) (whose quantities are indicated with a
superscript I), 2) an inertial frame where the z axis is
aligned with the final angular momentum of the system5

(Jf -frame), which helps with the construction of the merger
ringdown, (whose quantities are denoted with the super-
script J), and finally 3) a noninertial frame which tracks the

instantaneous motion of the orbital plane, the coprecessing
frame (whose quantities are denoted by the superscript P).
The frames are depicted in Fig. 1 and described below.6

The source frame is defined at a given reference
frequency fref (corresponding to a reference time tref ) by
the triad fêIig (i ¼ 1, 2, 3), where êI1 ¼ nðtrefÞ,
êI3 ¼ lNðtrefÞ, êI2 ¼ êI3 × êI1. Meanwhile, the Ĵf frame is
constructed as êJ3 ¼ Ĵf , êJ1 ¼ N½êI1 − ðêI1 · êJ3ÞêJ3�, êJ2 ¼ êJ3 ×
êJ1 where the N½� denotes normalization. The two frames are
connected by a constant rotation given by

RI→J ¼

0
BB@

êJ1 · ê
I
1 êJ2 · ê

I
1 êJ3 · ê

I
1

êJ1 · ê
I
2 êJ2 · ê

I
2 êJ3 · ê

I
2

êJ1 · ê
I
3 êJ2 · ê

I
3 êJ3 · ê

I
2

1
CCA: ð15Þ

The rotation operation in Eq. (15) can be also expressed as
a unit quaternion qI→J.

7

FIG. 1. Frames used in the construction of the SEOBNRv5PHM
model. The coprecessing frame (red) is constructed such that its
z axis is instantaneously aligned with the Newtonian angular
momentum lNðtÞ and can be described by the Euler angles
ðα; β; γÞ with respect to Jf frame (blue), while the source frame
(purple) corresponds to the inertial frame defined by the initial
Newtonian angular momentum lNðtrefÞ and unit separation vector
n̂ðtrefÞ. For the SEOBNRv5PHM model we adopt the convention
that at tref , the source and coprecessing frames coincide.

4We note that in the SEOBNRv4PHM model the spins were
projected using l.

5This is computed as the value of the solution of Eqs. (13) at
the attachment point of the merger-ringdown model.

6In Fig. 1 we show the definition of the Euler angles between
the coprecessing frame and the Jf frame as a frame rotation.
For time evolutions of the Euler angles, which qualitatively
resemble the ones in SEOBNRv5PHM, we refer the reader
to Refs. [54,97,101,102,142–144,146].

7To perform such a conversion, as well as subsequent
manipulations of quaternions (e.g., the enforcement of the
minimal rotation condition), we work with the quaternion
Python package [189].
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Finally, to construct the inertial GW modes hIlm during
the inspiral plunge, we introduce the coprecessing frame,
which is defined by the triad fêPi g (i ¼ 1, 2, 3). At every
instant the z axis of the coprecessing frame is aligned with
lN (i.e., êP3 ðtÞ ¼ lNðtÞ).8 In this frame, the GW radiation
resembles the radiation from an aligned-spin binary
[142–146]. The other two axes lie in the orbital plane
and are defined such that they minimize precessional
effects in the modes hPlm. This is done by enforcing the
minimal rotation condition that relates the rotation from the
Jf frame to the coprecessing frame [144]. This trans-
formation is best parametrized by a unit quaternion that
aligns the z axis of the Jf frame with lN ,

qJ→PðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−lNðtÞêJ3

q
; ð16Þ

and the minimal rotation condition is then simply
ðq̇êJ3q̄Þ0 ¼ 0, where ðqÞ0 denotes taking the scalar part
of the quaternion [144], q̇ denotes time derivative, and q̄
denotes the conjugate of the quaternion (which is also its
inverse). The minimal rotation condition has a residual
freedom which corresponds to the integration constant
[144]. We fix this freedom by demanding that at the
reference time, the coprecessing frame and source frame
coincide.
We calculate the coprecessing frame inspiral-plunge

GW waveform modes by evaluating the factorized,
resummed nonprecessing modes along the EOB dynamics
described in Eqs. (10), with time-dependent projections of
the spins fa� · lN;a� · l;aþ ·a−;a2�g. Following Ref. [149],
in which an EOB nonprecessing multipolar waveform
(SEOBNRv5HM) calibrated to NR nonprecessing simula-
tions was developed, we include in the coprecessing frame
of the SEOBNRv5PHM model the fð2;�2Þ; ð2;�1Þ;
ð3;�3Þ; ð3;�2Þ; ð4;�4Þ; ð4;�3Þ; ð5;�5Þg modes, and
make the assumption hPl;−m ¼ ð−1ÞlhP�l;m. As discussed in
Sec. III B of Ref. [98], the inaccuracies due to neglecting
mode asymmetries should remain modest, and are expected
to be at most comparable to other modeling errors.
To assemble the inertial-frame modes, we first rotate

hPlm to the Jf frame using q̄J→P2P, and then from the Jf
frame to the source frame using q̄I→J.

9 To ease comparisons
with the literature, it is useful to express these rotations in
terms of Euler angles. Using the active ZYZ convention
(see Fig. 1), the J → P rotation is given by

qJ→P ¼ eαẑ=2eβŷ=2eγẑ=2: ð17Þ

In this formulation, the minimal rotation condition is given
by γ̇ ¼ −α̇ cos β [144].

B. Merger-ringdown waveforms

After the coalescence, the description of a BBH system
of two individual objects is no longer valid, and the EOB
model builds the ringdown stage via a phenomenological
model of the quasinormal modes (QNMs) of the remnant
BHs, formed after the merger of the progenitors. The QNM
frequencies are tabulated functions of the final mass, Mf,
and angular momentum Sf ¼ M2

fχ f of the remnant BH
[193]. The QNMs are defined with respect to the direction
of the final spin, and thus, the description of the ringdown
signal as a linear combination of QNMs, is formally valid
only in an inertial frame with the z axis parallel to χ f.
Following Ref. [98], in SEOBNRv5PHM the attachment

of the merger-rindown waveform is performed in the
coprecessing frame. Therefore, we employ the merger-
ringdown multipolar model developed for nonprecessing
BBHs (SEOBNRv5HM) in Ref. [149].
The calculation of the waveform in the inertial observer’s

frame requires a description of the coprecessing frame
Euler angles fαðtÞ; βðtÞ; γðtÞg which extends beyond
merger. Here, we take advantage of a phenomenological
prescription based on insights from NR simulations [194].
More specifically, it was shown that the coprecessing frame
continues to precess roughly around the direction of the
final angular momentumwith a precession frequency,ωprec,
proportional to the difference between the lowest overtone
of the (2,2) and (2,1) QNM frequencies, while the opening
angle of the precessing cone, β, tends to decrease at merger.
This phenomenology translates into the following expres-
sions for the merger-ringdown angles in SEOBNRv5PHM:

αmerger-RD ¼ αðtmatchÞ þ ωprecðt − tmatchÞ; ð18Þ

βmerger-RD ¼ βðtmatchÞ; ð19Þ

γmerger-RD ¼ γðtmatchÞ−ωprecðt− tmatchÞcosβðtmatchÞ; ð20Þ

where tmatch is the time of attachment of the merger-
ringdown model. We have also investigated nonconstant
postmerger extensions of the β angle, such as the small
opening angle approximation [see Eq. (24b) of Ref. [56] ],
but we find that such an approximation may degrade the
faithfulness of the model to NR for certain configurations.
The behavior noticed in Ref. [194], describes prograde

configurations, were the remnant spin is positively aligned
with the orbital angular momentum at merger. However, to
keep the model generic and accurate in a wide parameter
space of mass ratios and spins, we extend the prescription
to the retrograde case (negative alignment of the final spin
with respect to the angular momentum at merger), which is
typical for high mass-ratio binaries, when the total angular
momentum J is dominated by the primary spin S1 instead
of L. While we keep imposing simple precession around
the final spin at a rate ωprec ≥ 0 in our model, we

8Note that in Ref. [98], the z axis is aligned with l instead of lN .
9We perform these rotations using the scri [190–192] Python

package.
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distinguish two cases depending on the direction of the total
angular momentum at merger χ f ∼ Jf with respect to the
final orbital angular momentum Lf,

ωprec ¼
8<
:

ωQNM
22 ðχfÞ − ωQNM

21 ðχfÞ if χ f · Lf > 0

ωQNM
2−1 ðχfÞ − ωQNM

2−2 ðχfÞ if χ f · Lf < 0;
ð21Þ

where χf ¼ jχ fj, and the QNM frequencies for negative m
are taken from the continuous extension of the m > 0,
ωQNM
lm > 0 branch [193]. We stress that this prescription of

the postmerger extension of the Euler angles for the
retrograde case is much less tested than the prograde case
due to the lack of NR simulations covering this region of
parameter space, which also includes particular systems
with transitional precession [17].
Following recent insights from NR of Ref. [195],

where a correct prescription of the shift of the coprecessing
QNM frequencies was developed, we compute in the
SEOBNRv5PHM model the coprecessing frame QNM
frequencies from the QNM frequencies in the Jf frame as

ωQNM;P
lm ¼ ωQNM;J

lm −mð1 − j cos βðtmatchÞjÞωprec: ð22Þ

Another essential aspect in the construction of the
merger-rindown waveforms is the mapping from binary
component masses and spins to the final mass and spin,
required to evaluate the QNM frequencies of the remnant.
Several groups have developed fitting formulas based on
large sets of NR simulations (see Ref. [196] for a brief
overview of the literature). To ensure agreement in the
nonprecessing limit with SEOBNRv5HM [149], we employ
the fits for the final mass from Ref. [197], and the fits from
Ref. [198] for the final spin.
The application of the fitting formulas for the final mass

and spin requires choosing a time during the inspiral at
which to evaluate the spins, as for precessing binaries the
individual components of the spins vary with time. In the
SEOBNRv5PHM model, we choose to evaluate the spins at
a time corresponding to an orbital separation r ¼ 10M.
Similarly as in Ref. [98], this choice is based on
good agreement with NR configurations, and by the
restriction that the smallest initial orbital separation must
be r > 10.5M to ensure small initial eccentricities [97].
Additionally, this choice guarantees that a given physical
configuration always produces the same waveform regard-
less of the initial starting frequency, as all configurations
will pass through an orbital separation r ¼ 10M.
Finally, the inspiral-merger-ringdown GW modes in the

inertial frame hIlm are obtained by rotating the inspiral-
merger-ringdown modes hPlm from the coprecessing frame
to the Jf frame, and then from the Jf frame to the inertial
observer’s frame using the expressions for the rotations in
Appendix A of Ref. [97]. The inertial frame GW

polarizations at a time t, and location in the sky of the
observer ðφ0; ιÞ can be expressed in terms of the −2-spin-
weighted spherical harmonics, as follows:

hIþðt; λ;φ0; ιÞ − ihI×ðt; λ;φ0; ιÞ ¼
X
l;m

−2Ylmðφ0; ιÞhIlmðt; λÞ;

ð23Þ

where λ represents the set of intrinsic parameters (masses
and spins), and fφ0; ιg the coalescence phase and the
inclination angle of the signal.

C. Efficient calculation of the GW polarizations

For applications in which only the GW polarizations are
required, as for most of the current parameter-estimation
codes, we introduce an alternative and computationally
more efficient method to obtain the polarizations directly in
terms of the coprecessing −2-spin-weighted spherical
harmonic modes. This involves rotating the spin-weighted
spherical harmonic basis, instead of computing the full set
of spin-weighted spherical harmonic modes in the iner-
tial frame.
The inertial-frame (I-frame) modes are related to the

coprecessing-frame (P-frame) modes by a time-dependent
rotation from the coprecessing frame to the frame where the
z axis is aligned with the final angular momentum of the
system (Jf frame

10), and a time-independent rotation from
the Jf frame to the final inertial frame

hIlmðtÞ ¼
X
m0;m00

ðRJ→IÞm;m0 ðRP→JÞm0;m00hPlm00 ðtÞ; ð24Þ

whereRX→Y indicates the rotation operator from the frame
X to the frame Y, and the indices m0; m00 denote summation
indices over the modes available in the coprecessing frame.
Factoring out the source orientation information from

the spin-weighted spherical harmonic basis as a rotation of
the basis

−2Ylmðφ0; ιÞ ¼
X
m0

ðRφ0;ιÞm;m0−2Ylmð0; 0Þ; ð25Þ

the complete rotation of the basis functions from the
coprecessing frame to the final inertial frame can be
constructed composing the individual rotations as

RP→I ¼ Rφ0;ιRJ→IRP→J; ð26Þ

with associated Euler angles fαP→I; βP→I; γP→Ig. Applying
this rotation operator, the spin-weighted spherical harmonic
basis can be written as

10The Jf frame is the frame where the approximation of the
Euler angles in Eqs. (18), (19) and (20) is applied.
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X
m0

ðRP→IÞm;m0−2Ylmð0; 0Þ ¼ e2iαP→I
−2YlmðγP→I; βP→IÞ;

ð27Þ

and the GW polarizations in the inertial frame can therefore
be expressed as

hIþðφ0; ι; tÞ − ihI×ðφ0; ι; tÞ
¼ e2iαP→I

X
l;m

−2YlmðγP→I; βP→IÞhPlmðtÞ: ð28Þ

Eq. (28) is only summed over the set of seven coprecessing
modes,11 and the computation of the complete rotation and
its application to the basis functions12 is more efficient than
the corresponding (double) rotation of the GW modes,
which requires the rotation of 33 GW modes.

V. PERFORMANCE OF THE MULTIPOLAR
PRECESSING-SPIN EFFECTIVE-ONE-BODY

WAVEFORM MODEL

In this section we assess the accuracy of the multipolar
precessing-spin SEOBNRv5PHM model by comparing
it, as well as other models, to NR simulations of quasicir-
cular precessing-spin BBHs. Particularly, we consider
state-of-the-art precessing-spin models within the EOB
framework, such as SEOBNRv4PHM [98] and the public
version of TEOBResumS-GIOTTO13 [102], and within
the phenomenological approach, the frequency-domain
IMRPhenomXPHM [52] (and in Appendix C the time-
domain IMRPhenomTPHM [56] model). All the previous
models, including SEOBNRv5PHM, are not calibrated to
precessing-spin NR waveforms. We also investigate the
validity and systematics of models by comparing them
against the surrogate NRSur7dq4 [62] model. Finally, we
assess the computational efficiency of the SEOBNRv5PHM
model to be used for data analysis.

A. Brief overview of the faithfulness function

The GW signal emitted by a quasicircular precessing-
spin BBH system depends on 15 parameters: the compo-
nent masses, m1;2 (or equivalently mass ratio q and total
mass M), the dimensionless spin vectors χ 1;2ðtÞ, the
direction of the observer from the source which can be
described by the angles ðφ0; ιÞ, the luminosity distance dL,

polarization angle ψ , the location in the sky of the detector
ðθ;ϕÞ, and the time of arrival tc. The strain in the detector
caused by a passing GW can be expressed as

hðtÞ≡ Fþðθ;ϕ;ψÞhþðt; ι;φ0; dL; λ; tcÞ
þ F×ðθ;ϕ;ψÞh×ðt; ι;φ0; dL; λ; tcÞ; ð29Þ

where λ ¼ fq;M; χ 1;2ðtÞg is introduced to simplify the
notation, and Fþ;× are the antenna pattern functions
[199,200]. The strain in Eq. (29) can be expressed in
terms of an effective polarization angle κðθ;ϕ;ψÞ as

hðtÞ ¼ Aðθ;ϕÞðhþ cos κ þ h× sin κÞ; ð30Þ

where the dependences of κ, hþ and h× have been removed
to ease notation, and the definition of the coefficient
Aðθ;ϕÞ can be found in Refs. [95,98]. As discussed,
the GW polarizations can be decomposed in the basis of
−2-spin weighted spherical harmonics as

hþ − ih× ¼
X∞
l¼2

Xm¼þl

m¼−l
−2Ylmðφ0; ιÞhlmðt; λÞ; ð31Þ

where hlmðt; λÞ are the GW multipolar modes.
We introduce the inner product between two waveforms,

h1 and h2 [199,200],

hh1; h2i≡ 4Re
Z

fmax

fin

df
h̃1ðfÞh̃�2ðfÞ

SnðfÞ
; ð32Þ

where a tilde indicates Fourier transform, a star complex
conjugation and SnðfÞ the power spectral density (PSD) of
the detector noise. In this work, we employ for the PSD the
LIGO’s “zero-detuned high-power” design sensitivity
curve [201].When bothwaveforms are in bandwe use fin ¼
10 Hz and fmax ¼ 2048 Hz. For cases where this is not the
case (e.g., the NR waveforms are used), we employ
fin ¼ 1.35fpeak, where fpeak corresponds to the peak ampli-
tude of the frequency-domain strain of the signal, and the
factor 1.35 accounts for possible artifacts coming from the
Fourier transform of the time domain waveforms.14

To assess the agreement between two waveforms—for
instance, the signal, hs, and the template, ht, observed by a
detector, we define the faithfulness function [95,98],

11The negative m modes in the coprecessing frame are
obtained by the symmetry relation hPl;−m ¼ ð−1ÞlhP�l;m.

12In this method we have 14 basis functions corresponding to
the positive and negative m modes.

13In this paper we employ the TEOBResumS-GIOTTO model
from the public bitbucket repository https://bitbucket.org/
eob_ihes/teobresums with the git hash fc4595df72b2eff4-
b36e563f607eab5374e695fe, which is the latest release at
the time of this publication.

14The factor 1.35 has been chosen after experimenting with
several values, and finding that this value provides more stable
mismatch results and less Fourier transform artifacts. Note that
this choice is the same as in Ref. [202]. We also tested applying
the same procedures to set fin as in Refs. [52,98], and obtained
qualitatively similar results.
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F ðMs; ιs;φ0s;κsÞ¼ max
tc;φ0t;κt

� hhsjhtiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhsjhsihhtjhti
p

����
ιs¼ιt

λsðts¼t0s Þ¼λtðtt¼t0t Þ

�
:

ð33Þ

When comparing waveforms with higher-order multipoles
[53,95,98] a typical choice in Eq. (33) is to set the
inclination angle of the template and the signal to be the
same, while the coalescence time, azimuthal and effective
polarization angles of the template, ðt0t ;φ0t

; κtÞ, are
adjusted to maximize the faithfulness of the template.
The maximizations over the coalescence time tc and
coalescence phase φ0t are performed numerically, while
the optimization over the effective polarization angle κt is
done analytically as described in Ref. [203].
In Eq. (33) the condition λsðts ¼ t0sÞ ¼ λtðtt ¼ t0tÞ

enforces that the intrinsic properties (mass ratio q, total
massM, and spins χ 1;2) of the template waveform at t ¼ t0
(typically the start of the waveform) are the same as those of
the signal waveform at its t0. However, such identification
of the same t0 is not trivially satisfied between different
waveforms, including NR and waveform models. As a
consequence, several approaches can be applied to mitigate
such a choice. For instance, in Ref. [98] t0t is chosen such
that the time elapsed from t0s and t0t to the peak of the
frame-invariant amplitude

P
l;m jhlmj2 occurs at the same

time for NR and SEOBNRv4PHM, while in Refs. [49,98]
numerical optimizations over the reference frequency of the

waveform were performed for waveforms of the
IMRPhenom family. Here, we instead optimize numeri-
cally over a rigid rotation δ∈ ½0; 2π� of the in-plane spin
components of the template fχti;x; χti;yg with i ¼ 1, 2, at the
reference frequency [52,204], such that

χti;x ¼ χsi;x cosðδÞ − χsi;y sinðδÞ;
χti;y ¼ χsi;x sinðδÞ þ χsi;y cosðδÞ; i ¼ 1; 2; ð34Þ

where fχsi;x; χsi;yg denote the in-plane spin components of
the signal. This method, contrary to the procedure of
optimizing over the reference frequency of the template,
has unambiguous bounds for the parameters involved.
It is convenient to introduce the sky-and-polarization

averaged faithfulness to reduce the dimensionality of the
faithfulness function and express it in a more compact
form [95,98],

F̄ ðMsÞ ¼
1

8π2

Z
1

−1
dðcos ιsÞ

Z
2π

0

dφ0s

×
Z

2π

0

dκsF ðMs; ιs;φ0s; κsÞ: ð35Þ

Another useful metric to assess the closeness between
waveforms is the signal-to-noise (SNR)-weighted faithful-
ness [98]

F̄ SNRðMsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
1
−1 dðcos ιsÞ

R
2π
0 dκs

R
2π
0 dφ0sF 3ðMs; ιs;φ0s; κsÞSNR3ðιs;φ0s; κsÞR

1
−1 dðcos ιsÞ

R
2π
0 dκs

R
2π
0 dφ0sSNR3ðιs;φ0s; κsÞ

3

s
; ð36Þ

where the SNR is defined as

SNRðιs;φ0s; θs;ϕs; κs; dLs; λs; tcsÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhs; hsi

p
: ð37Þ

In Eq. (36) the weighting by the SNR takes into account the
dependence on the phase and effective polarization of the
signal at a fixed distance. Finally, we introduce the
unfaithfulness or mismatch as

M̄SNR ¼ 1 − F̄ SNR: ð38Þ

B. Assessment in modeling spin
effects in EOB Hamiltonian

In Secs. III and IV we have described the construction
of the SEOBNRv5PHM model; here we assess the impact
of several approximations in the description of the
precessing-spin dynamics as well as in the waveform
multipoles. Differently from the SEOBNRv4PHM model,

in SEOBNRv5PHM the full precessing-spin Hamiltonian
and spin equations are not evolved. By contrast, we build
on recent waveform models, IMRPhenomTPHM [56] and
TEOBResumS-GIOTTO [102], which couple a purely
aligned-spin dynamics (only a� · lN) with PN-expanded
equations for the spins, angular momentum and frequency.
However, in the new SEOBNRv5PHM model there are
significant differences with respect to previous approaches:
(1) The spin, velocity and angular momentum equations

in SEOBNRv5PHM are fully PN expanded in the
velocity parameter v, and include SO and SS
couplings through NNLO, thus differing from the
ones employed in Refs. [56,102,147].

(2) The SO contributions to the angular momentum
equations in SEOBNRv5PHM are consistent with the
fully generic canonical Hamiltonian Hprec

EOB [148] (i.e.,
they use the same spin-supplementary condition, and
thus differ from the ones in Refs. [56,102,147]).

(3) In SEOBNRv5PHM, the orbital equations of motion
are evolved using a partial precessing-spin EOB
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Hamiltonian, Hpprec
EOB ðl2;a� · lN;a� · l;aþ ·a−Þ, which

has all spin components (also orbit-averaged in-
plane spin components instead of only a� · lN).

In Figure 2we assess the impact of these improvements in
the treatment of the precessing-spin dynamics by computing
the unfaithfulness of SEOBNRv5PHM with different pre-
scriptions for the conservative dynamics against the set of
118 highly precessing15 BBH simulations from Ref. [98].
The different prescriptions for SEOBNRv5PHM

correspond to 1) using the aligned-spin Hamiltonian
Halign

EOB of SEOBNRv5HM [148,149] with the spins only
projected onto ða� · lNÞ, such that the spin variables are
computed like a2� ¼ ða� · lNÞ2 (i.e., a purely aligned-spin
dynamics as in the TEOBResumS-GIOTTO [102] and
IMRPhenomTPHM [56] models), 2) employing Halign

EOB with
a spin treatment consisting of using the full spin compo-
nents for the scalar products (i.e. a2� ¼ ða� · a�Þ2), as well
as the spins projected onto l in the spin-orbit sector, and
onto lN in the rest of the spin sector, and 3) using the
partially precessing Hamiltonian Hpprec

EOB of SEOBNRv5PHM
with the latter treatment of the spin projections (see
Appendix A). In the left panel of Fig. 2 we show the
unfaithfulness as a function of the total mass of the binary,
while in the right panel the distributions of the maximum
unfaithfulness in the total-mass range are displayed. The

results show that using the aligned-spin Hamiltonian
with the projections of the spins onto lN (i.e., a purely
aligned-spin dynamics as in TEOBResumS and
IMRPhenomT), leads to 95.8% (75.4%) of cases with a
maximum unfaithfulness over the total mass range con-
sidered of ½20; 300�M⊙, lower than 3% (1%), while con-
sidering projections onto lN , l and the full spin components

FIG. 2. Left panel: sky-and-polarization averaged, SNR-weighted unfaithfulness in the total mass range between ½20–300�M⊙ for an
inclination ι ¼ π=3, of SEOBNRv5PHM with different prescriptions for the dynamics against the 118 highly precessing-spin NR
simulations from Ref. [98]. The different prescriptions for the dynamics correspond to using the SEOBNRv5HM Hamiltonian, Halign

EOB,

with the spins projected onto lN (purple), using Halign
EOB with the spins projected onto lN and l (yellow), and using the partially precessing

Hamiltonian Hpprec
EOB of SEOBNRv5PHM (green), with the spins projected onto lN and l; see the main text for details. The dashed

horizontal vertical lines correspond to the 10−3, 0.01 and 0.03 unfaithfulness values. Right panel: distribution of the maximum
unfaithfulness over the total mass range for each NR simulation considered in the left plot. The vertical dashed lines indicate the median
values of the distribution.

FIG. 3. Parameter space coverage in q − χeff − χp space for NR
simulations used to build and validate the SEOBNRv5 models.
For the nonprecessing runs used in the construction of the
SEOBNRv5HM model the color is fixed to blue (see Ref. [149]
for details about these simulations). The precessing-spin runs
follow a color map depending on the value of the effective spin
parameter χp at the reference time of the simulation. The set of
precessingNRwaveforms is built upon simulations from the public
SXS catalog [151], as well as the 118 simulations from Ref. [98],
which are highlightedwith red diamonds to ease their visualization.

15Note that highly precessing configurations typically are
quoted in the literature as binaries with high mass ratios and/
or high values of the in-plane spin components. Here, we refer to
these simulations as highly precessing in comparison to the ones
available in the SXS catalog, as the set of 118 simulations are
longer, more accurate and have larger in-plane spin than most of
the simulations in the catalog.
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entering the aligned-spin Hamiltonian improves the pre-
vious numbers to 99.2% (80.5%), and it reduces signifi-
cantly the tail of cases with unfaithfulness larger than 3%.
Finally, keeping the latter treatment of the spin projections
and using the partially precessing Hamiltonian, Hpprec

EOB ,
which includes in-plane spin effects in an orbit-average
approximation for quasicircular orbits (see Appendix A
for details), leads to a further increase in accuracy with
100% (86.4%) of cases with a maximum unfaithfulness
below 3% (1%). As a consequence, the latter Hamiltonian
and treatment of spin effects is the one that we adopt in the
SEOBNRv5PHM model.

C. Comparison against numerical-relativity waveforms

The accuracy of the SEOBNRv5PHM model is assessed
by comparing it to the publicly available simulations of
the SXS catalog [151], as well as the 118 highly
precessing-spin simulations produced in Ref. [98]. We also
perform such a comparison for other state-of-the-art pre-
cessing-spin EOB waveform models, SEOBNRv4PHM and
TEOBResumS-GIOTTO, as well as the phenomenological
frequency-domain IMRPhenomXPHM model. (To ease the
comparisons we compare against phenomenological
IMRPhenomTPHM model in Appendix C). In Fig. 3 we
provide an overview of the NR simulations employed to
assess the accuracy of the different models. The precessing-
spin simulations considered here16 were produced with the
SpEC code [205], and they correspond to the 118 SXS runs
from Ref. [98], and 1425 simulations available in the public
SXS catalog [151].

We start by comparing the unfaithfulness17 of the
precessing-spin models against the set of 118 highly
precessing-spin simulations including all the modes up
to l ¼ 5 in the NR waveforms. The waveform modes
included in the coprecessing frame for the different
models is done consistently with Ref. [149] for the non-
spinning approximants, and they are specifically ðl; jmjÞ ¼
fð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þg for SEOBNRv4PHM,
ðl;jmjÞ¼fð2;2Þ;ð2;1Þ;ð3;3Þ;ð3;2Þ;ð4;4Þ;ð4;3Þ;ð5;5Þg for
SEOBNRv5PHM, ðl;jmjÞ¼fð2;2Þ;ð2;1Þ;ð3;3Þ;ð3;2Þ;ð4;4Þg
for IMRPhenomXPHM and ðl; jmjÞ ¼ fð2; 2Þ; ð2; 1Þð3; 3Þ
(3,2),(3,1), ð4; 4Þ; ð4; 3Þ; ð4; 2Þg for TEOBResumS-
GIOTTO.18

In the left panel of Fig. 4 the unfaithfulness is shown
as a function of total mass, ½20–300�M⊙, for each NR
simulation, while in the right panel the distribution of the
maximum unfaithfulness over the total mass range is dis-
played. The two panels of Fig. 4 show that the phenomeno-
logical model, IMRPhenomXPHM, and the EOB model
TEOBResumS-GIOTTO, have a tail of large unfaithfulness
reaching ∼7%. Precisely, they have 78.3% (38.3%) and
83.3% (44.9%) of cases with a maximum unfaithfulness, in
the total mass range considered, below 3% (1%), respectively.
This tail of large unfaithfulness is not present in the
SEOBNRv4PHM and SEOBNRv5PHM models, and it is

FIG. 4. Left panel: sky-and-polarization averaged, SNR-weighted unfaithfulness in the total mass range between ½20–300�M⊙ for an
inclination ι ¼ π=3, betweenSEOBNRv4PHM (blue),IMRPhenomXPHM (orange),TEOBResumS-GIOTTO (pink) andSEOBNRv5PHM
(green) against NR for the 118 highly precessing-spin BBH simulations fromRef. [98]. The dashed horizontal vertical lines correspond to
the 10−3, 0.01 and 0.03 unfaithfulness values. Right panel: distribution of the maximum unfaithfulness over the total mass range for each
NR simulation considered in the left plot. The vertical dashed lines indicate the median values of the distribution.

16In the extra material, we provide the SXS IDs of the
precessing-spin NR simulations employed in this section.

17We always refer to the sky-and-polarization averaged, SNR-
weighted unfaithfulness, M̄SNR, as unfaithfulness to ease the
notation.

18We note that TEOBResumS-GIOTTO [102] models contain
also the (5,5) mode in the coprecessing frame, but in order to be
consistent with Ref. [149] (see the reasons for its exclusion in
Sec. V therein) we do not include such multipole. Additionally,
we have tested that the unfaithfulness results for TEOBResumS-
GIOTTO against NR when including and excluding the (5,5)
mode are very similar.
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consistent with the fact that both models include effects
due to the evolution of the in-plane spin components in
the coprecessing frame dynamics. More specifically, the
SEOBNRv4PHM model has 96.6% (57.6%) of cases with
maximum unfaithfulness, in the total mass range considered,
below 3% (1%), while these numbers increase to 100%
(85.6%) for the SEOBNRv5PHM model, which has lower
unfaithfulness (higher accuracy) than SEOBNRv4PHM. We

suspect this is due to the more accurate underlying aligned-
spinmodel,SEOBNRv5HM [149], aswell as the new improve-
ments included in SEOBNRv5PHM, such as the shift in the
coprecessing QNM frequencies, described in Secs. III and IV.
In Fig. 5 we show the polarizations of SEOBNRv5PHM

and SEOBNRv4PHM for the precessing NR simulation
PrecBBH000001 with mass ratio 1.25, spin magnitudes
χi ≡ jχ ij ¼ 0.8, total mass 60M⊙ and all the modes l ≤ 5.

FIG. 6. Sky-averaged SNR weighted unfaithfulness as a function of the total mass of the system ½20; 300�M⊙, of the SEOBNRv4PHM
model (top left panel), the SEOBNRv5PHM model (top right panel), the IMRPhenomXPHM model (left bottom panel) and
TEOBResumS-GIOTTO (right bottom panel), against 1543 precessing-spin SXS simulations. The simulations with the highest
unfaithfulness for each model are highlighted in each panel. For SEOBNRv5PHM and SEOBNRv4PHM the case with highest
unfaithfulness coincides, and thus the highlighted curves overlap.

FIG. 5. Time-domain comparison of the SEOBNRv5PHM and SEOBNRv4PHM models to the NR waveform PrecBBH000001 from
Ref. [98] with mass ratio 1.25, black-hole spin magnitudes 0.8 and total massM ¼ 60M⊙. The source parameters are ιs ¼ π=3, ϕs ¼ π,
κs ¼ 0. The NR waveform includes all the multipoles with l ≤ 5. Both waveform models resemble accurately the features of the NR
waveform at the inspiral, merger and ringdown, with a more faithful agreement of SEOBNRv5PHM which translates into an
unfaithfulness of 0.69%, while for SEOBNRv4PHM it increases to 1.1%.
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Specifically, we plot the plus polarization,hþ, leaving out the
overall constant amplitude. We note that SEOBNRv5PHM
reproducesmore accurately the features of the NRwaveform
at merger and ringdown, which translates into an unfaithful-
ness of 0.69% against the NR waveform, while for
SEOBNRv4PHM the unfaithfulness is 1.1%.
We now turn to exploring the broader parameter space

by computing the unfaithfulness against a set of 1543
precessing-spin NR waveforms (1425 public þ118 highly
precessing configurations above). In Fig. 6 we show the
unfaithfulness as a function of the total mass of the system
for each model against all the simulations. Additionally, we
highlight the simulations with the largest unfaithfulness
for each waveform model in each panel. The simulations
with larger unfaithfulness differ depending on the wave-
form approximant considered. For the EOB models they
correspond to high mass ratios q ¼ 4 and high in-plane
spin components where the modeling approximations are
expected to perform worse, while the phenomenological
model presents the largest unfaithfulness for an equal-mass
simulation with high-in-plane component.
The results from Fig. 6 indicate that the SEOBNRv5PHM

model has lower values of unfaithfulness with respect to the
rest of the models. The information in Fig. 6 is more

quantitatively represented in Fig. 7 as a violin plot of the
distribution of unfaithfulness of the different models against
NR for each total mass considered between ½20–30�M⊙. We
note that the trend in the unfaithfulness is similar to the one
for the 118 highly precessing-spin simulations. The
IMRPhenomXPHMmodel has the largest tails of unfaithful-
ness reaching 10%, followed by the TEOBResumS-
GIOTTO model, which generally has lower unfaithfulness
than IMRPhenomXPHM as shown in Ref. [102]. The
SEOBNRv4PHM model gives an even lower unfaithfulness,
while the distributions of the SEOBNRv5PHM model
have less support at high unfaithfulness than the rest of
the models and lower median values for all the total masses
considered with respect to the next more accurate model,
SEOBNRv4PHM. A more quantitative analysis of the
unfaithfulness against NR can be found in Table I, which
reveals thatSEOBNRv5PHM has 99.8% (84.4%) caseswith a
maximum unfaithulness, in the total mass range considered,
below 3% (1%). These numbers reduce to 95.3% (60.8%)
for SEOBNRv4PHM, to 83.3% (44.9%) for TEOBResumS-
GIOTTO and to 78.3% (38.3%) for IMRPhenomXPHM.
Regarding the improvements ofSEOBNRv5PHM at high total
masseswith respect toSEOBNRv4PHM, this is a combination
of all the new additions in the merger and ringdown part

FIG. 7. Distribution of the sky-and-polarization averaged, SNR-weighted unfaithfulness as a function of the binary’s total mass for
inclination ι ¼ π=3, between SEOBNRv4PHM (blue), SEOBNRv5PHM (green), IMRPhenomXPHM (orange) and TEOBResumS-
GIOTTO (pink) against NR for 1543 quasicircular precessing-spin BBH simulations. For each total mass considered the distributions of
SEOBNRv4PHM and SEOBNRv5PHM, and IMRPhenomXPHM and TEOBResumS-GIOTTO have been shifted in the x axis by 4M⊙
from the total mass value used to compute the unfaithfulness to ease the visualization of the results. The bracket indicates the total mass
value used for the unfaithfulness calculation. In each distribution the median value is highlighted with thicker lines.

TABLE I. Summary of the sky-and-polarization averaged, SNR-weighted unfaithfulness in the totalmass range between ½20–30�M⊙ for
an inclination ι ¼ π=3, between different precessing-spin approximants and the 1543 SXSNR simulations from Refs. [98,151]. The table
shows the median of the maximum unfaithfulness across total mass, and the percentage of cases with mismatches below 1% and 3%.

Approximant SEOBNRv4PHM SEOBNRv5PHM IMRPhenomXPHM TEOBResumS-GIOTTO

Median maxM M̄SNR 7.49 × 10−3 4.75 × 10−3 14.35 × 10−3 11.47 × 10−3

% cases with maxMM̄SNR < 1% 60.8% 84.4% 38.3% 44.9%
% cases with maxMM̄SNR < 3% 95.3% 99.8% 78.3% 83.3%
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explained in Sec. IV B. For instance, the coprecessing frame
modes based on SEOBNRv5HM produce an overall more
accurate merger and ringdown, but the application of a
consistent calculation of the quasinormal modes in the Jf
frame from Ref. [195] also reduces the number of cases with
mismatch larger than 3%. A detailed study of the approx-
imations at merger and ringdown, their limitations and
possible improvements by including NR information is
ongoing, and we leave for future work their application to
the next generation of precessing-spin SEOBNR models.
Finally, we provide a more complete picture of the

accuracy of the different models against NR in the quasi-
circular limit by incorporating to our precessing results the
unfaithfulness corresponding to 441 nonprecessing SXS
NR waveforms computed in Ref. [149]. Figure 8 shows
violin plots of the maximum, median and minimum
unfaithfulness distributions of the different waveform mod-
els considered in the aligned-spin, precessing-spin case and
with the combined distributions. A thorough discussion of
the accuracy of the different models in the nonprecessing
case can be found in [149], but we remark that the new
aligned-spin SEOBNRv5HM model presents the lowest
unfaithfulness distribution when compared to the other
models. As discussed above, in the precessing case the
SEOBNRv5PHM model leads to the lowest unfaithfulness
values followed closely by the SEOBNRv4PHM model. We
also observe that the lack of calibration to precessing-spin
NR waveforms causes a shift in the unfaithfulness of the
precessing-spin models (with respect to the nonprecessing
models) toward larger values. This points out that in order to
increase further the accuracy of the models in the precess-
ing-spin case, calibration to NR precessing waveforms is
required, which we leave to the future.

D. Comparison against other precessing-spin
waveform models

We now study the performance of the SEOBNRv5PHM
model in a larger parameter space. First we compute the
unfaithfulness of SEOBNRv5PHM against the NR surro-
gate model NRSur7dq4 [62], which includes all l ≤ 4
waveform multipoles, in the region in which it was built,
that is mass ratios q∈ ½1; 4�, spin magnitudes up to 0.8 and
total masses larger than 60M⊙. Specifically, we generate a
set of 5000 cases uniformly distributed in mass ratios
q∈ ½1; 4� and effective precessing-spin parameter19 χp
[177], with spin magnitudes up to 0.8 and initial
geometric frequency of Mω ¼ 0.023, large enough such
that all the configurations have a length compatible
with the one of the surrogate waveforms. We also
compute the unfaithfulness of the state-of-the-art precess-
ing-spin models, SEOBNRv4PHM, IMRPhenomXPHM,
and TEOBResumS-GIOTTO, against the NRSur7dq4
model.
The results of such study are summarized in Fig. 9,

where in the left panel the median and the 95th percentile of
the unfaithfulness, as a function of the total mass of the
binary are shown, while in the right plot the distributions of
the maximum unfaithfulness, over the total mass range
½20–30�M⊙, are displayed. We find that the behavior of the
unfaithfulness resembles those of the comparisons against
the NR waveforms in Figs. 4 and 7. All the models have
median unfaithfulness below 1% with the SEOBNRv5PHM

FIG. 8. Distribution of maximum (blue), median (orange) and minimum (green) sky-and-polarization averaged, SNR-weighted
unfaithfulness over the binary’s total mass range ½20–30�M⊙ for inclination ι ¼ π=3, between the different waveform families
(SEOBNRv4, IMRPhenomX, TEOBResumS-GIOTTO and SEOBNRv5) against NR for aligned spins (Aligned), precessing spins
(Precessing) and combining the two previous distributions (Combined). The nonprecessing NR simulations correspond to the 441 cases
presented in Ref. [149], while the precessing NR simulations correspond to the 1543 cases used in Fig. 6. In the violin plots the median
values of the distributions are highlighted with thicker lines.

19We do not sample uniformly in spin magnitudes and
orientations to avoid having most of the cases clustering at
low values of χp, where precession effects are less significant.
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model showing the lowestmedian20 of 0.39%unfaithfulness
values. We note that the median of unfaithfulness of
SEOBNRv5PHM is followed very closely by the other
models, with the SEOBNRv4PHM model being the closest
one. The difference between the SEOBNR models and the
IMRPhenomXPHM and TEOBResumS-GIOTTO models
is likely a consequence of neglecting the in-plane spin
effects in the orbital dynamics in the coprecessing frame.
As described in Sec. III, these effects are introduced in
SEOBNRv5PHM through the partially precessing
Hamiltonian, Hpprec

EOB . Furthermore, the increase in accuracy
of SEOBNRv5PHM with respect to SEOBNRv4PHM can be
understood due to the more accurate underlying coprecess-
ing waveform model (SEOBNRv5HM), as well as the
improvements discussed in Sec. IV. More quantitatively,
we find that for SEOBNRv5PHM 100% (90.1%) of cases

have a maximum unfaithfulness, in the total mass range
considered, against theNRSur7dq4model below3%(1%),
while these numbers reduce to 98.7% (79.5%) for
SEOBNRv4PHM, 89.4% (62.8%) for IMRPhenomXPHM
and 96.1% (66%) for TEOBResumS-GIOTTO. For all the
models the cases with high unfaithfulness correspond to
configurations with mass ratios q ∼ 4 and χp ∼ 0.8, which is
the boundary region of calibration of the NRSur7dq4
model, and where the effects of spin precession are stronger
in thewaveform, as already seen in previous comparisons to
the NR surrogate in Refs. [98,102].
Finally, we also examine the behavior of the precessing

models in a wider parameter space outside the region of
calibration of the underlying aligned-spinmodels, andwhere
there are no precessing-spin NR simulations available. For
this purpose we consider 5000 configurations randomly
distributed in mass ratios q∈ ½1; 20� and uniformly distrib-
uted in the effective precessing-spin χp parameter up to 0.99,
for inclination ιs ¼ π=3, with an initial starting geometric
frequency ofMω ¼ 0.022, and compute the unfaithfulness,

FIG. 10. Maximum sky-and-polarization-averaged unfaithfulness weighted by the SNR over the total mass range ½20–30�M⊙ between
SEOBNRv5PHM and IMRPhenomXPHM for 5000 random configurations with inclination ιs ¼ π=3. The unfaithfulness grows with
increasing mass ratio and spin magnitude values, and it can reach very large values for mass ratios q ∼ 20 and χp ∼ 1.

FIG. 9. Sky-and-polarization-averaged, SNR-weighted unfaithfulness as a function of the total mass of the binary for inclination
ιs ¼ π=3, among the NRSur7dq4 model and the SEOBNRv4PHM (blue), IMRPhenomXPHM (orange), TEOBResumS-GIOTTO
(pink) and SEOBNRv5PHM (green) models for 5000 randomly distributed precessing-spin configurations. Left: the solid (dashed) lines
show the median (95th percentile) as a function of the total mass. Right: distribution of maximum unfaithfulness over all the total masses
considered. The vertical dashed lines indicated the median values of the distributions.

20The median unfaithfulness for the SEOBNRv4PHM model
is 0.46%, 0.62% for IMRPhenomXPHM and 0.69% for
TEOBResumS-GIOTTO.
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M̄SNR, using the IMRPhenomXPHM21 as a signal, and the
SEOBNRv5PHMmodel as the templatewaveform. Figure 10
shows the unfaithfulness as a function of mass ratio (q),
effective spin parameter (χeff ), and effective precessing-spin
parameter (χp). We find that for mass ratios q < 5, 96.84%
(41.3%) of cases have a maximum unfaithfulness, in the
total mass range ½20; 300�M⊙, below 10% (1%). The
unfaithfulness increases significantly with mass ratio and
spins, with the highest unfaithfulness values at the largest
mass ratios q ∼ 20, and effective spin precessing parameter
χp ∼ 0.99. In particular, when considering q ≤ 20 we
find 59.19% (13.45%) cases with maximum unfaithfulness,
in the total mass range considered, below 10% (1%). These
unfaithfulness comparisons and the large differences
between models point out the necessity to populate this
challenging region of highmass ratio and high spinswithNR
simulations, which can be used to validate distinct waveform
models, aswell as to improve their accuracy by incorporating
this NR information into them.

E. Computational performance

In previous sections we have demonstrated the accuracy
of theSEOBNRv5PHMmodelwith respect toNRwaveforms
and predictions of other state-of-the-art waveforms models.
Another key aspect to test is the computational efficiency of
the model, as parameter-estimation runs with standard
stochastic samplers require on the order of 107–108 or more
waveform evaluations (see e.g. Refs. [206–208]). Therefore,
computational efficiency is a key feature for the model to be
useful for the analysis of GW signals or Bayesian inference
studies.
The SEOBNRv5PHMmodel is part of the fifth generation

of SEOBNR models implemented in a high-performance
Python package pySEOBNR [169]. As described inRef. [169],
the pySEOBNR infrastructure offers a simple and modular
procedure to develop highly accurate and computationally
efficient waveform models. This new Python infrastructure
moves the development of the SEOBNR family from the
highly efficient, but more rigid C-99 LALSuite [209] libraries
to a more flexible and modular Python framework.
In this section we assess the computational efficiency of

the SEOBNRv5PHM model implemented in pySEOBNR,
by timing the waveform generation and comparing it to
other state-of-the-art time-domain multipolar precessing-
spin models (SEOBNRv4PHM, IMRPhenomTPHM
and TEOBResumS-GIOTTO). We consider binary’s

configurations with mass ratios q ¼ 1, 3, 10, dimensionless
spins χ 1 ¼ ½0.5; 0; 0.8�, χ 2 ¼ ½0; 0.5; 0.3�, total mass range
M∈ ½10; 100�M⊙ at a starting frequency fstart ¼ 10 Hz. The
results of thewall times to generate thewaveforms are shown
in Fig. 11, where we are including all the modes up to l ¼ 4,
and a maximum frequency consistent with the Nyquist
criterion satisfied for all the multipoles considered.22

The outcome of the benchmark demonstrates the significant
increase in speed of the SEOBNRv5PHM model with
respect to the previous generation SEOBNRv4PHM.
For the arbitrary configurations considered for the bench-
marks, we observe more than an order of magnitude

FIG. 11. Wall times of the SEOBNRv4PHM, IMRPhe-
nomTPHM, TEOBResumS-GIOTTO, and SEOBNRv5PHM mod-
els for a configuration with dimensionless spins χ 1 ¼ ½0.5; 0; 0.8�,
χ 2 ¼ ½0; 0.5; 0.3�, total mass range M∈ ½10; 100�M⊙, starting
frequency fstart ¼ 10 Hz and three different mass ratios: 1 (top
panel), 3 (mid panel) and 10 (bottom panel).

21We do not include the TEOBResumS-GIOTTO model in
these comparisons as we have found some unphysical growth of
the amplitude at the merger of the l ¼ 2 inertial frame modes
for large spins and mass ratios, which is likely due to the
behavior of the non-quasicircular correction (NQC) coefficients
of the (2,1)-mode as already described in Ref. [102]. We show the
comparison against the IMRPhenomTPHM model in Appen-
dix C.

22The benchmarks of the waveform generation timing were
performed on a computing node (dual socket, 32 cores per socket,
SMT-enabled AMD EPYC (Milan) 7513 (2.60 GHz), with 8 GB
RAM per core) of the Hypatia cluster at the Max Planck
Institute for Gravitational Physics in Potsdam.We keep all default
settings for every model.

NEXT GENERATION OF ACCURATE AND EFFICIENT … PHYS. REV. D 108, 124037 (2023)

124037-17



improvement in speed. The substantial increase in speed for
SEOBNRv5PHM is a consequence, not only of the
fast and efficient implementation in the pySEOBNR infra-
structure, but also the use of the PN-expanded spin and
angular-momentum evolution equations, Eqs. (13), which
allow the use of the PA approximation [166,168] in the
SEOBNRv5PHMmodel. The PA approximation reduces the
computational cost of evaluating the inspiral waveform as it
replaces solving numerically the ordinary differential equa-
tions at every timestep of the EOB inspiral by an iterative
procedure over a coarser radial grid (see Appendix B for
details of the implementation in SEOBNRv5PHM). Besides
the PA approximation, the SEOBNRv5PHM model also
implements an efficient calculation of the polarizations as
described in Sec. IV C, which translates into a further
increase in speed at lower total masses, where the computa-
tional cost of generating the waveform comes from the
interpolation of the waveform multipoles into a constant
time grid.23 This can be seen in Fig. 11, where the
SEOBNRv5PHM model outperforms the TEOBResumS-
GIOTTO and IMRPhenomTPHM models at low total
masses, while at high total masses where the interpolation
of the modes is a subdominant operation in terms of
computational cost, the TEOBResumS-GIOTTO and
IMRPhenomTPHM perform faster. IMRPhenomTPHM is
substantially faster at high total masses than the rest of the
models, due to the fact that it is only integrating the evolution
equations for the spins (i.e., no integration of the orbital
dynamics as in the SEOBNRv4PHM, SEOBNRv5PHM and
TEOBResumS-GIOTTO models), and the waveform is
evaluated using analytical closed expressions. In summary,
the SEOBNRv5PHM model has a comparable speed to the
current state-of-the-art precessing-spin time-domain mod-
els, and it is in general between 8 and 20 times faster than the
SEOBNRv4PHMmodel, and thus it can be used as a standard
tool for data analysis as demonstrated in Sec. VI.

VI. BAYESIAN ANALYSIS WITH MULTIPOLAR
PRECESSING WAVEFORM MODELS

The main application of the SEOBNRv5PHM waveform
model is the Bayesian inference of source parameters of
GWs emitted by BBHs. Thus, we now assess how the
accuracy of SEOBNRv5PHM quantified in Sec. V through
the unfaithfulness metric affects parameter-estimation
studies. We perform first a synthetic NR signal injection
into detector noise, in particular in zero noise, which is
equivalent to averaging over many noise realizations, to
assess possible biases coming from waveform inaccura-
cies and avoid any biases introduced by a random noise
realization. Then, we perform a reanalysis of six real GW
events detected by the LVK Collaboration, GW150914,

GW190412, GW190521, GW190814, GW191109 and
GW200129, and we compare with results from the
literature.

A. NR-injection recovery

In this section we assess the accuracy of the
SEOBNRv5PHM model in parameter estimation by inject-
ing a synthetic NR signal corresponding to the NR wave-
form SXS:BBH:0165 from the public SXS catalog, with
mass ratio q ¼ 6, source-frame total mass M ¼ 95M⊙ and
BH’s dimensionless spin vectors defined at 20 Hz of χ 1 ¼
½−0.06; 0.78: − 0.4� and χ 2 ¼ ½0.08;−0.17;−0.23�. This
BBH system is strongly precessing, and it is one of the
worst cases in terms of unfaithfulness for SEOBNRv5PHM,
reaching 2% for the injected total mass.
For this injection we choose the inclination with respect

to the line of sight of the BBH to be ι ¼ 0.69 rad, to
emphasize the effect of higher-order modes. The injected
coalescence and polarization phases are ϕ ¼ 0.6 rad and
ψ ¼ 0.33 rad, respectively. The sky position is defined by
its right ascension of 3.81 rad and declination of 0.63 rad
at a geocentric time of 1126259600 s. The luminosity
distance to the source is chosen to be 650 Mpc, which
produces a three-detector (LIGO Hanford, LIGO
Livingston and Virgo) network SNR of 19.4 when using
the LIGO and Virgo PSD at design sensitivity [201].
For the parameter estimation study we employ Parallel

Bilby [210], a highly parallelized version of the Bayesian
inference Python package Bilby [211,212], using the rec-
ommended LVK’s settings for the number of autocorrela-
tion times nact ¼ 50, number of live points nact ¼ 2048,
and setting the remaining sampling parameters to their
default values. We choose a uniform prior in inverse mass
ratio and chirp mass, with ranges 1=q∈ ½0.05; 1� and
M∈ ½15; 45�M⊙. The priors on the dimensionless spin
vectors are uniform inmagnitudeai ∈ ½0; 0.99�, and isotropi-
cally distributed in the unit sphere for the spin directions.
The luminosity distance prior is uniform in distance∝ dL as
we are interested in the intrinsic ability of the models in
recovering the parameters, since a prior uniform in the
comoving frame of the source ∝ d2L requires selecting a
specific cosmology to compute the redshift [213], which
may introduce an effect on the estimated posterior. The rest
of the priors are set according to Appendix C of Ref. [2]. We
perform the injection recovery with SEOBNRv5PHM and
IMRPhenomXPHM in order to compare the performance of
both models with a highly precessing signal. We note that
IMRPhenomXPHM has an unfaithfulness of ∼12% against
the SXSNR-injectedwaveform; thuswe expect some biases
in the recovered parameters.
In Fig. 12 we summarize the parameter-estimation

results of the injection. We report the marginalized 1D
and 2D posteriors for the detector-frame component masses
m1 andm2, and the effective spin parameters, χeff and χp. In
Table II we provide the values of the injected parameters

23The interpolation of the waveform modes onto a time grid
with constant timestep is needed to perform an efficient Fourier
transform of the waveform for data-analysis studies.
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and the median of the inferred posterior distribution with
the 90% confidence intervals for both models. The results
show that SEOBNRv5PHM is able to recover the component
masses within the 90% confidence intervals, while
IMRPhenomXPHM presents a significant bias in the primary
mass, and the injected values are at the boundary of the 2D
95% credible interval. For the effective spin parameters,
both models present a biased result for the effective spin
parameter χeff, but the precessing effective spin parameter χp
is highly biased in IMRPhenomXPHM toward lower values,
while SEOBNRv5PHM recovers an almost unbiased result.
Moreover, the injected point is inside the 2D 95% credible
interval for SEOBNRv5PHM, while IMRPhenomXPHM
predicts a region with lower precessing spins and highly
antialigned spins. From Table II we observe that the spin tilt
angles, θ1;2, are recovered within the 90% confidence
interval by SEOBNRv5PHM, but the phenomenological
model IMRPhenomXPHM presents biases for both param-
eters. In terms of recovered matched filter SNR,
SEOBNRv5PHM recovers higher values in the three detec-
tors with respect to IMRPhenomXPHM, which is consistent
with the higher Bayes factor obtained by SEOBNRv5PHM.
This example shows the ability of SEOBNRv5PHM to model
more accurately precessing signals in comparison to
IMRPhenomXPHM, likely due to the inclusion of in-plane
spin information in the conservative dynamics of the model.
It should be noted that there are some parameters for which

SEOBNRv5PHM presents small biases, such as the effective-
spin parameter χeff and the tilt angle of the orbital plane θJN,
which might be expected since this simulation provides one
of the highest mismatches for the model of ∼2%, while for
the IMRPhenomXPHM model the unfaithfulness increases
to ∼12%, which explains the larger biases in more param-
eters than SEOBNRv5PHM. However, more studies will be
needed in a larger region of the binary’s parameter space to
assess the efficiency of SEOBNRv5PHM in capturing spin
precession.

B. Real events

In this section we reanalyze six GWevents recorded by the
LIGO and Virgo detectors [2,7,8]: GW150914, GW190412,
GW190521, GW190814, GW191109, and GW200129. We
employ strain data from the Gravitational Wave Open Source
Catalog [214] and the released PSD and calibration envelopes
included in the Gravitational Wave Transient Catalogs
GWTC-2.1 [7] and GWTC-3 [8], and their respective
parameter-estimation sample releases.
We perform the analysis using the parameter-estimation

code Bilby
24 [211], and the nested sampler dynesty [215]

FIG. 12. 2D and 1D posterior distributions for some relevant parameters measured from the synthetic BBH signal with mass ratio
q ¼ 6, total source-frame mass of 95M⊙, dimensionless spins of the BHs χ 1 ¼ ½−0.06; 0.78: − 0.4� and χ 2 ¼ ½0.08;−0.17;−0.23�
defined at 20 Hz. The inclination with respect to the line of sight of the binary is ι ¼ 0.69 rad. The other parameters are specified in the
text and in Table II. The signal waveform is a NR waveform from the public SXS catalog SXS:BBH:0165. In the 2D posteriors the
solid contours represent the 95% credible intervals, and black dots show the values of the parameters of the injected signal. In the 1D
posteriors they are represented by dashed and solid vertical lines, respectively. The parameter estimation is performed with the
SEOBNRv5PHM model (green) and the IMRPhenomXPHM model (orange). Left: component masses in the detector frame. Right:
effective spin parameters, χeff and χp.

24In this paper we employ the Bilby code from the public
repository https://git.ligo.org/lscsoft/bilby with the git hash
507d93c8950e7f62cd5ff5792aab6cdf2d76d21f,
which correspond to version 2.0.1.
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using the acceptance-walk method, which is well-
suited for executing on a multicore single-computing
node,25 and we perform the run for GW190521 with the
parameter-estimation code Parallel Bilby

26 [210] as the nested
sampler settings for this event are more expensive and the
parallelization of this code ensures results in a short
timescale. Both Bilby and Parallel Bilby employ the nested
sampler DYNESTY [215]. The list of parameter-estimation
runs and the main settings are specified in Table III,
together with the runtime and the number of cores
employed. We find that results can be obtained using
Bilby on just one computing node within days.
In Figure 13 we summarize the results for the source

component masses for the six reanalyzed events with
SEOBNRv5PHM, and we compare with results from the
IMRPhenomXPHM model released in GWTC-2.1 and the

previous generationSEOBNRmodelSEOBNRv4PHM (when
available) also from GWTC-2.1 (obtained with the param-
eter-estimation code RIFT [170,171]), except for the event
GW190412 in which we show the SEOBNRv4PHM results
from the discovery paper [216] (obtained with Parallel Bilby)
due to a better convergence of the posteriors than in the
GWTC-2.1 catalog [7]. Similarly, in Fig. 14 we summarize
the results for the effective spin parameters χeff and χp. In
general, we observe broad consistency between our results
and the GWTC results, but differences are stronger in some
of the events, with IMRPhenomXPHM being, in general,
more in tension with our results than SEOBNRv4PHM.
For GW150914 we observe good consistency between

the SEOBNRv5PHM and SEOBNRv4PHM models; however
the source mass posteriors are less constrained for
IMRPhenomXPHM.
For GW190412, the first confident mass-asymmetric

event reported by the LIGO-Virgo Collaboration [216], we
observe a better agreement between the time-domain
models SEOBNRv5PHM and SEOBNRv4PHM, which also
are consistent with results from the phenomenological
time-domain model IMRPhenomTPHM from Ref. [219].
For this event, the higher-mode content is important, and
the more accurate precessing dynamics provides a more
reliable multipolar structure of the waveforms; therefore the
tension with IMRPhenomXPHM in the recovery of χp (see
Fig. 14) can be explained by the fact that the precessing
description contains more approximations in this model.
TheGW190521 signal is particularly interesting, with only

four cycles in band in the detectors, thus being consistent
with a merger-ringdown dominated signal. It has been
attributed to a variety of physical systems, from eccentric
binaries [220,221], nonspinninghyperbolic capture [204] and
head-on collision of exotic compact objects [222]. Under the
conservative assumption of a quasicircular binary system, we
observe differences with respect to the IMRPhenomXPHM
results from GWTC-2.1. We have compared our results with
the reanalysis of Ref. [223] in which the phenomenological
time-domainmodel IMRPhenomTPHMwas employed using
LALInference MCMC [224], and in Fig. 15 we present
the 2D distribution of mass-ratio and effective spin χeff . We
also include the posterior distribution for the NRSur7dq4
model from [217]. We observe a better agreement of the
SEOBNRv5PHM distributions with the time-domain models
NRSur7dq4 and IMRPhenomTPHM; in particular the mass
asymmetric support for the posterior is correlated with
positive effective spin, instead of negative effective spin as
the results from IMRPhenomXPHM suggest. The reason for
the tension with IMRPhenomXPHM can be explained by the
fact that this Fourier-domain model lacks a description of the
effective precessing motion of the ringdown signal, which is
present in theNRSur7dq4model and in an approximateway
in SEOBNRv5PHM and IMRPhenomTPHM. We also note
that the measurement of the effective precessing-spin param-
eter χp by SEOBNRv5PHM is more consistent with the result

TABLE II. Injected and median values of the posterior dis-
tributions for the synthetic NR injection, corresponding to the NR
simulation SXS:BBH:0165 of the public SXS catalog, recov-
ered with IMRPhenomXPHM and SEOBNRv5PHM. The binary
parameters correspond to the total mass M, chirp mass M, mass
ratio q, effective spin parameter χeff, effective precessing-spin
parameter χp, tilt angles θ1;2, angle between the total angular
momentum and the line of sight θJN, luminosity distance dL,
coalescence phase ϕref , polarization angle ψ , matched-filtered
SNR for LIGO-Hanford/Livingston and Virgo detectors ρH1;L1;V1mf ,
and signal-versus-noise log Bayes factor logBF .

Parameter
Injected
value IMRPhenomXPHM SEOBNRv5PHM

M=M⊙ 95.02 82.51þ9.6
−5.27 101.59þ12.96

−9.56

M=M⊙ 21.85 27.76þ3.34
−1.88 29.3þ3.74

−3.14
1=q 0.167 0.27þ0.12

−0.1 0.17þ0.05
−0.04

χeff −0.437 −0.6þ0.16
−0.17 −0.26þ0.18

−0.17

χp 0.779 0.19þ0.17
−0.08 0.74þ0.16

−0.19

θ1 2.11 3.01þ0.09
−0.21 1.97þ0.25

−0.25
θ2 2.46 1.5þ0.57

−0.56 1.4þ1.11
−0.93

θJN 1.28 0.81þ0.43
−0.28 0.46þ0.21

−0.22
dL 1200 1444þ223

−237 1374þ325
−248

ϕref 1.2 3.66þ1.19
−1.13 3.01þ2.86

−2.61
ψ 0.7 2.4þ0.52

−1.79 0.89þ0.84
−0.57

ρH1mf 13.92 13.55þ0.1
−0.19 13.68þ0.09

−0.16

ρL1mf 16.03 15.61þ0.11
−0.2 15.75þ0.1

−0.17

ρV1mf 6.66 6.47þ0.09
−0.28 6.52þ0.06

−0.23
logBF 194.33� 0.19 205.65� 0.18

25See https://lscsoft.docs.ligo.org/bilby/dynesty-guide.html
for details on the acceptance-walk method.

26In this paper we employ the Parallel Bilby code from the
public repository https://git.ligo.org/lscsoft/parallel_bilby with
the git hash 97df49f75ef5f240164e5fc44b6074-
c33e694a35, which correspond to version 1.1.0.
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obtained by the NRSur7dq4 model, which is calibrated to
precessing-spinNRsimulations,while the lackof a secondary
in the inverse mass ratio posterior in the NRSur7dq4model
can be explained by themass ratio prior used,1=q∈ ½0.17; 1�,
which is restricted to the region where the NRSur7dq4
model can be generated, while for SEOBNRv5PHM a wider
prior 1=q∈ ½0.05; 1� is used consistent with other analyses in
the literature [223].

The next event we reanalyze is GW190814, a computa-
tionally challenging signal due to its low chirp mass and
high-mass asymmetry, compatible with a heavy neutron
star black-hole system. For this event we find very good
agreement between the IMRPhenomXPHM results from
GWTC-2.1 and our results, in essentially all the parameters.
The good agreement can be explained by the fact that this
signal is consistent with a nonspinning configuration, and in

FIG. 13. Component masses in the source frame inferred for the real GW events reanalyzed with SEOBNRv5PHM. Comparisons are
presented with SEOBNRv4PHM (when available) and IMRPhenomXPHM from GWTC-2.1 [7] and GWTC-3 [8] catalogs, except for
GW190412 for which we present the SEOBNRv4PHM from the discovery paper [216], since the convergence of the posteriors is larger
than in the GWTC-2.1 catalog. For GW190521 and GW200129 we include the posterior samples of the NRSur7dq4model from [217]
and [218], respectively.

TABLE III. Settings and evaluation time for the different parameter estimation runs on real GW events with the SEOBNRv5PHM
model. Sampling rate (srate) and data segment duration (seglen) are specified in the data settings, while the number of accepted MCMC
chains naccept for bi and number of live points nlive are specified in the sampler settings (for the GW190521 Parallel Bilby run, the
number quoted is the number of autocorrelation times). The time reported is wall time, while the total computational cost in CPU hours
can be obtained multiplying this time by the reported number of CPU cores employed.

GW event sampler Data settings Sampler settings Computing resources Runtime

srate (Hz) seglen(s) naccept/nact nlive cores × nodes
GW150914 Bilby 2048 8 60 1000 64 × 1 1d 17h
GW190412 Bilby 4096 8 60 1000 64 × 1 4d 3h
GW190521 Bilby 2048 8 60 1000 64 × 1 1d 17h
GW190521 Parallel Bilby 2048 8 30 8192 64 × 8 3d 4h
GW190814 Bilby 4096 32 60 1000 64 × 1 5d 23h
GW191109 Bilby 1024 8 60 1000 64 × 1 2d 1h
GW200129 Bilby 2048 8 60 1000 64 × 1 2d 21h
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the small spin-magnitude region the systematics between
models is less severe, due to the underlying calibration of the
nonprecessing baselines. It is worth noting that the result for
this event can be obtained within days with SEOBNRv5PHM
employing Bilby (see Table III for details).
We also reanalyze GW191109, an interesting signal with

support for negative effective spin and non-negligible in-
plane spin. For this event, we observe a slightly better
consistency for the source component masses between
SEOBNRv4PHM and IMRPhenomXPHM, although the spin
distribution ismore consistent betweenSEOBNRv4PHM and
SEOBNRv5PHM. Note that the IMRPhenomXPHM results
present multimodality in some parameters, like the effective
spin parameter χeff, while this feature is not present both in
the SEOBNRv4PHM and SEOBNRv5PHM results; therefore
the more accurate modeling of the precessing dynamics
could help in solving this degeneracy. Another interesting
feature is that SEOBNRv5PHM seems to produce more
constrained parameters than the other two models.
The last event we reanalyze is GW200129, which has

been claimed to be the first confident precessing-spin
detection [218] (although there are some concerns with
data quality issues and glitch substraction that were
discussed in Ref. [225]). Our results do not recover a high
support for high precessing spin values as the NRSur7dq4

results from [218] show (see Fig. 14), although the support
is greater in SEOBNRv5PHM than in SEOBNRv4PHM
results. Also the SEOBNRv5PHM results for the source
masses in Fig. 13 prefer a region of low probability of

FIG. 14. Effective-spin parameters χeff and χp inferred for the GW events reanalyzed with SEOBNRv5PHM. Comparisons are
presented with SEOBNRv4PHM (when available) and IMRPhenomXPHM from GWTC-2.1 [7] and GWTC-3 [8] catalogs, except for
GW190412 for which we present the SEOBNRv4PHM from the discovery paper [216] as in Fig. 13. For GW190521 and GW200129 we
include the posterior samples of the NRSur7dq4 model from [217] and [218], respectively.

FIG. 15. Comparison of mass-ratio and effective spin parameter
inferred for GW190521 between SEOBNRv5PHM, the phenom-
enological models IMRPhenomTPHM from Ref. [223] and
IMRPhenomXPHM from GWTC-2.1 [7] and the samples of
the NRSur7dq4 model from [217].

ANTONI RAMOS-BUADES et al. PHYS. REV. D 108, 124037 (2023)

124037-22



the NRSur7dq4 posteriors, while the IMRPhenomXPHM
results show a bimodality in the posteriors. These
differences in the posteriors can be explained by possible
waveform systematics between the different state-of-the-art
precessing-spin models for this particular event, as well as
possible systematics in the glitch subtraction methods,
which may impact differently the measurement of the
binary parameters depending on the waveform model
employed as pointed out in Ref. [225].
Finally, in Fig. 16, we present the posterior distribution

of the network matched-filter SNR ρNmf for some of the
events, computed from the results of SEOBNRv5PHM, as
well as IMRPhenomXPHM that we obtain running this
model with the same settings as SEOBNRv5PHM. We can
observe that in general greater SNR values are recovered
with SEOBNRv5PHM, in particular for the events that show
higher support for precession. This is likely due to the
better description of the precessing dynamics included in
SEOBNRv5PHM, as well as the modeling of the precessing
ringdown, which is absent in the Fourier-domain model
IMRPhenomXPHM. This, together with the differences we
have observed in the parameter posteriors, emphasizes the
importance of using several accurate models such as
SEOBNRv5PHM for production analysis of GW events.

VII. CONCLUSIONS

In this paper we have developed and validated the
multipolar precessing-spin SEOBNRv5PHM model, of the
fifth generation of SEOBNR models. This work is the

culmination of a series of papers developing the SEOBNRv5
models ahead of the fourth observing of the LVK
Collaboration.
The SEOBNRv5 models are built upon the most recent

analytical PN results and improved resummations for the
Hamiltonian [91,148,226], the RR force and waveform
modes [227,228], including information from second-order
gravitational self-force [154,229] in the modes/RR force.
The new analytical information and improvements in the
conservative dynamics are derived in Ref. [148], while the
inclusion of second-order self-force results in the RR force
and modes of SEOBNRv5 is obtained in Ref. [154]. All
these new analytical improvements are combined with
input from NR waveforms to improve the calibration of
the nonprecessing SEOBNRv5HM model in Ref. [149]. The
NR calibration in the aligned-spin sector is extended to 442
NR waveforms, in addition to 13 Teukolsky waveforms.
The multipolar SEOBNRv5HM model includes the (2,2),
(2,1),(3,3),(4,4),(5,5) plus the (3,2),(4,3) modes for which
the mode mixing during ringdown is modeled, and it
improves substantially the accuracy of the SEOBNR family
against nonprecessing NR waveforms [149].
This modeling effort is developed within a new Python

infrastructure pySEOBNR [169], which offers more flexibil-
ity in including new analytical information; it is highly
modular, and it produces faster and more efficient SEOBNR
models than the current ones in LALSuite [209].
More specifically, regarding the SEOBNRv5PHM model

developed here, following previous precessing SEOBNR

FIG. 16. Distribution of network matched-filter SNR inferred for some of the GW events reanalyzed with SEOBNRv5PHM.
Comparisons are presented with IMRPhenomXPHM results obtained with the same settings and data as the SEOBNRv5PHM results.
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models [93,98], we have built such a model twisting up the
nonprecessing waveforms of SEOBNRv5HM [149] from the
coprecessing frame [142–146] to the inertial frame. With
respect to the previous SEOBNR model, SEOBNRv4PHM
[98], which has been used in LVK data analysis [7,8],
the new model 1) does not evolve the EOB equations for
the spins, but building on previous works [54,101,102]
decouples the spin evolution equations from the evolution
of the orbital dynamics allowing for the specification of a
reference frequency distinct from the starting frequency of
the evolution; 2) employs PN-expanded EOB spin evolu-
tion equations derived from the generic SEOBNRv5
Hamiltonian in an orbit-average approximation [148]; 3)
evolves the conservative dynamics using a partially pre-
cessing Hamiltonian, Hpprec

EOB , which includes in-plane spin
terms in an orbit average and reduces to the SEOBNRv5HM
Hamiltonian in the aligned-spin limit; 4) employs a more
accurate aligned-spin two-body dynamics, since in the
nonprecessing limit it reduces to SEOBNRv5HM; 5)
includes in the coprecessing frame two new modes
ð3;�2Þ and ð4;�3Þ, instead of only the ð2;�2Þ; ð2;�1Þ;
ð3;�3Þ; ð4;�4Þ; ð5;�5Þ; 6) applies the PA scheme [166]
to the EOB orbital evolution, which increases the efficiency
of the model; 7) implements an efficient calculation of the
polarizations based on the rotation of the basis of −2 spin-
weighted spherical harmonics, which further accelerates
the evaluation of the model; and 8) incorporates the latest
insights from NR waveforms by properly rotating the
quasinormal mode frequencies [195].
The improvement in accuracy between SEOBNRv5PHM

and SEOBNRv4PHM is evident from Fig. 4, where we
have compared these models, as well as other state-
of-the-art precessing-spin models (IMRPhenomXPHM,
IMRPhenomTPHM and TEOBResumS-GIOTTO) to the
public SXS catalog of 1425 precessing-spin NR wave-
forms, and the 118 SXS NR waveforms from Ref. [98].
When comparing to the highly precessing 118 simulations
from Ref. [98], the SEOBNRv5PHM provides the highest
accuracy with respect to NR waveforms (see Fig. 6),
as it includes effects of in-plane spin components in its
dynamics, unlike IMRPhenomXPHM, IMRPhenomTPHM
and TEOBResumS-GIOTTO, while having a more
accurate description of the coprecessing waveforms
through the nonprecessing SEOBNRv5HM model than
SEOBNRv4PHM. When turning to a broader comparison
and including all the 1543 SXS precessing-spin NR
waveforms available, we have found that for the
SEOBNRv5PHM model, 99.8% (84.4%) of cases have a
maximum unfaithfulness value, in the total mass
range ½20; 300�M⊙, below 3% (1%). These numbers
reduce to 95.3% (60.8%) for SEOBNRv4PHM, to 83.3%
(44.9%) for TEOBResumS-GIOTTO, to 91.6% (62.4%)
for IMRPhenomTPHM and to 78.3% (38.3%) for
IMRPhenomXPHM. We have also investigated the accuracy
of the previous models, which are not calibrated to

precessing-spin NR waveforms, against the NR surrogate
NRSur7dq4 model by computing the unfaithfulness for
5000 configurations in the parameter space of the calibra-
tion of the surrogate model (q∈ ½1 − 4�, and a1;2 ∈ ½0; 0.8�).
The configurations have been uniformly distributed in the
effective precessing-spin parameter, χp, to increase the
number of configurations with highly precessional
effects. We have found in Fig. 9 that SEOBNRv5PHM
provides the lowest unfaithfulness against the surrogate
model, with 100% (90.1%) of cases with maximum
unfaithfulness, over the total mass range considered, below
3% (1%), while these numbers reduce to 98.7% (79.5%) for
SEOBNRv4PHM, 89.4% (81.4%) for IMRPhenomXPHM
and 96.1% (66%) for TEOBResumS-GIOTTO. The largest
values of unfaithfulness against the surrogate model occur
at high mass ratios and high values of the in-plane spin
components, where the in-plane spin effects and mode
asymmetries play an important role in the description of the
waveforms. We have also compared SEOBNRv5PHM
against IMRPhenomXPHM in a larger region of parameter
space q∈ ½1; 20� and χp ∈ ½0; 0.99� outside the region of
calibration of the underlying aligned-spin models. We have
found that the largest differences occur at mass ratios larger
than 4 and spin magnitudes larger than 0.8 (see Fig. 10).
These results are consistent with the differences found in
the comparisons of nonprecessing models in Ref. [149],
and highlight the need to improve the parameter-space
coverage of the NR waveforms combined with improved
analytical information in the spinning sector, such as
gravitational self-force, so that the accuracy of the models
can be further improved in these challenging regions of the
parameter space.
The improvement in accuracy of the SEOBNRv5PHM

model is also accompanied by an improvement in the speed
of the model with respect to SEOBNRv4PHM. The accel-
eration in waveform evaluation of the model is a conse-
quence of several factors: 1) its implementation in the high-
performance pySEOBNR Python package [169], which
allows one to incorporate new analytical information
combined with NR calibration in a flexible, modular and
efficient way; 2) the PA routine, which accelerates the
evaluation of the two-body dynamics (see Appendix B);
and 3) an efficient procedure to compute the polariza-
tions as described in Sec. IV C. As a result, we find
that SEOBNRv5PHM is overall ∼8–20 times faster than
SEOBNRv4PHM, and comparable in speed to other
state-of-the-art time-domain precessing-spin models
(TEOBResumS-GIOTTO and IMRPhenomTPHM).
Given the high accuracy and computational efficiency of

SEOBNRv5PHM, we have performed a Bayesian inference
study on mock signals and real GW events detected by the
LVK Collaboration. We have first investigated how the
modeling inaccuracy impacts the inference of parameters
by injecting a synthetic NR signal into a network of LIGO-
Virgo detectors at design sensitivity. We have injected in
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zero noise a precessing-spin NR waveform (SXS:
BBH:0165) with mass ratio 6, total mass 95M⊙, SNR
19.4, inclination 0.69 with respect to the line of sight, and
recovered it with SEOBNRv5PHM and IMRPhenomXPHM.
The unfaithfulness values of these models against the
synthetic signal is 2% for SEOBNRv5PHM and 12% for
IMRPhenomXPHM. The results are summarized in Fig. 12
and Table II. We have found that the recovery of the
parameters with SEOBNRv5PHM does not produce signifi-
cant biases, except for the effective spin parameter, for
which the injected value lies at the boundary of the 90%
credible intervals, while the rest of the binary parameters
are accurately recovered. While in the case of the
IMRPhenomXPHM model a 12% value of unfaithfulness
translates into larger biases in several parameters, like the
component masses or the effective precessing-spin param-
eter. Amore comprehensiveBayesian inference studywill be
needed to quantify the modeling inaccuracies and system-
atics, and how they translate into biases in the inference of
binary parameters. Here, newmethods of Bayesian inference
throughmachine learning techniques, like DINGO [172–174],
may offer an alternative and efficient method to perform
large-scale injection campaigns and assess waveform sys-
tematics with a significant reduction of its computational
cost. We leave such waveform systematics studies using
Bayesian inference methods for future work.
Besides injection studies, we have demonstrated that

SEOBNRv5PHM can be used as a standard tool in Bayesian
inference studies of real GW events. We have reanalyzed
several GW events (GW150914, GW190412, GW190521,
GW190814, GW191109, and GW200129) detected by the
LVK Collaboration in the first and third observing runs,
with two different parameter estimation codes Serial Bilby

[211] and Parallel Bilby [210]. We have found that the
parameters inferred by SEOBNRv5PHM are consistent with
the ones obtained in the literature for most of the events.
For instance, in the case of the massive GW190521, we find
consistency in the recovery of the mass ratio and effective
spin parameter with other time-domain precessing models
in the literature, while for GW200129, consistently with
SEOBNRv4PHM, we do not find support for high preces-
sion as claimed in Ref. [218] using the NRSur7dq4
model. Furthermore, we find that for all the events
considered in this paper SEOBNRv5PHM recovers system-
atically more SNR than the IMRPhenomXPHM model (see
Fig. 16). The SEOBNRv5PHM model results have been
obtained in a few days when using Parallel Bilby, and on the
order of a week when using Serial Bilby (see Table III). This
makes SEOBNRv5PHM a standard tool that can be used
with a variety of stochastic samplers, and we plan in the
future to extend the Bayesian inference study presented
here, including the machine-learning code DINGO, to all the
GW events detected during the third-observing run [230].
Finally, the SEOBNRv5PHM model is not calibrated

to precessing-spin NR waveforms, which limits its

accuracy. To overcome this limitation, calibration to
NR waveforms in the conservative dynamics, as well in
the waveform modes with the inclusion of mode asym-
metries27 will be developed in the future. In this context,
the pySEOBNR infrastructure provides an ideal framework
to incorporate such improvements, as well as other
physical effects, such as eccentricity and tidal effects,
which have been already incorporated in SEOBNRv4
models [108,111,112,114,115,134], and that we are in
the process of implementing in the SEOBNRv5 models.
Further improvements for the near future concern the
adoption of the SEOBNRv5 models to perform theory
agnostic tests of GR [231–233], as well as developing
SEOBNR waveforms in specific beyond-GR theories and
calibrating/comparing them to beyond-GR NR waveforms
of BBHs [234–238].
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APPENDIX A: PRECESSING-SPIN EFFECTIVE
HAMILTONIAN

In this Appendix, we provide the partial-precession
Hamiltonian derived in Ref. [148], which reduces to the
Hamiltonian of SEOBNRv5HM [149] in the aligned-spin
limit and includes orbit-average in-plane spin components

for quasicircular orbits. The effective Hamiltonian is
given by

Hpprec
eff ¼ Mpϕl · ðgaþaþ þ ga−δa−Þ þ SOcalib þ hGpprec

a3
i

r3 þ a2þðrþ 2MÞ

þ
�
Apprec

�
μ2 þ Bpprec

p
p2
ϕ

r2
þ ð1þ Bpprec

np Þðn · pÞ2

þ BKerr eq
npa

p2
ϕðl · aþÞ2

r2
þQpprec

��
1=2

; ðA1Þ

where the gyrogravitomagnetic factors are the same as in
the aligned-spin case, which are given by Eq. (28) of
Ref. [148], and the SO calibration term is given by

SOcalib ¼ νdSO
M4

r3
pϕl · aþ; ðA2Þ

with the same value of dSO as in the aligned-spin
model [149]. The cubic-in-spin term hGpprec

a3 i reads as

hGpprec
a3

i ¼ pϕδðl · a−Þ
�
M
r2

�
a2þ
4

−
5

24
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�
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p2
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8μ2r3
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þ 3
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8
ðaþ · a−Þ þ δ

5

6
ðlN · aþÞðlN · a−Þ

�	
: ðA3Þ

The potential BKerr eq
npa in Eq. (A1) is the same as in the Kerr Hamiltonian for equatorial orbits, and is given by

BKerr eq
npa ¼ −

1þ 2M=r
r2 þ a2þð1þ 2M=rÞ : ðA4Þ

The other potentials Apprec, Bpprec
p , Bpprec

np , and Qpprec include nonspinning and SS PN terms, and read as

Apprec ¼ a2þ=r2 þ AnoS þ Aprec
SS þ hÃin plane

SS i
1þ ð1þ 2M=rÞa2þ=r2

;

Bpprec
p ¼ 1þ hB̃in plane

p;SS i;
Bpprec
np ¼ −1þ a2þ=r2 þ AnoSD̄noS þ Bprec

np;SS;

Qpprec ¼ QnoS þQprec
SS ; ðA5Þ

where the nonspinning contributions AnoS, D̄noS and QnoS are given by Eqs. (21)–(25) of Ref. [148], while the SS
corrections read as

Aprec
SS ¼M2

r4

�
9a2þ
8

−
5

4
δa− ·aþþa2−

�
ν
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þ1
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��
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Bprec
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where hÃin plane
SS i and hB̃in plane

p;SS i only contain in-plane spin components that have been orbit-averaged using [148]

hðn · a�Þ2i ¼
1

2
½a2� − ðlN · a�Þ2�;

hðn · aþÞðn · a−Þi ¼
1

2
½aþ · a− − ðlN · aþÞðlN · a−Þ�: ðA7Þ

APPENDIX B: POSTADIABATIC DYNAMICS

Since the EOB evolution equations in the
SEOBNRv5PHMmodel are of the same form as the aligned-
spin ones in SEOBNRv5HM, we can apply the iterative
PA approach which was pioneered in Ref. [166] and
used in subsequent TEOBResumS [99–102]28 and also
the SEOBNRv4_PA model [168].
The crucial difference with the nonprecessing case is

the evolution of the spins, which enter the Hamiltonian and
the flux at different points in the radial grid. Following the
procedure outlined in Ref. [166], we obtain the following
explicit equations for the corrections to the momenta:

pr� ¼
ξ

2ð1þBpprec
np Þ

�
Fϕ

�
dpϕ

dr

�
−1 2HEOBHeven

MApprec −ξ
∂Qpprec

∂pr�

�
;

ðB1Þ

K0p2
ϕ þ 2Heven

∂H̄odd

∂r
pϕ þ K1

þ 2HevenHEOB

Mξ

�
dpr�
dr

dr
dt

−
pr�
pϕ

Fϕ

�
¼ 0; ðB2Þ

where we split the effective Hamiltonian from Eq. (A1) into
odd and even-in-spin parts, Hpprec

eff ≡Hodd þHeven, defined
H̄odd ≡Hodd=pϕ, while the factorsK0 andK1 are defined as

28For example, the latest precessing-spinmodelTEOBResumS-
GIOTTO [102] uses the PA approximation.
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K0 ≡ dA
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where the different potentials are defined in Sec. A. At each
point, the radial Eqs. (B2) are solved analytically for pϕ

andpr. In theSEOBNRv5PHMmodel, we iteratively find the
solution up to the eighth postadiabatic order.

APPENDIX C: COMPARISON AGAINST THE
PRECESSING-SPIN TIME-DOMAIN
PHENOMENOLOGICAL MODEL

In this Appendix we contrast the accuracy against
NR of the SEOBNRv5PHM model (and for context also
the frequency-domain IMRPhenomXPHM model [52]
shown in Sec. V C) with the one of the time-domain
IMRPhenomTPHM model [54–56]. We repeat the calcu-
lation of the unfaithfulness against the catalog of NR
simulations described in Sec. V C, both against the set
of 118 highly precessing simulations from Ref. [98]
(Fig. 17), and for the full set (including the 118 highly
precessing simulations) of 1543 precessing-spin SXS NR
simulations (Fig. 18).

FIG. 17. Left panel: sky-averaged SNR weighted unfaithfulness as a function of the total mass of the system ½20; 300�M⊙, of
IMRPhenomXPHM (orange), IMRPhenomTPHM (brown) and SEOBNRv5PHM (green), against the 118 highly precessing simulations
from Ref. [98]. Right panel: distribution of the maximum unfaithfulness over the total mass range for each NR simulation considered in
the left plot. The vertical dashed lines indicate the median values of the distribution.

FIG. 18. Sky-averaged SNR-weighted unfaithfulness as a function of the total mass of the system ½20; 300�M⊙, of the SEOBNRv5PHM
model (left panel), and the state-of-the-art phenomenological models, IMRPhenomXPHM (midpanel) and IMRPhenomTPHM (right
panel), against 1543 precessing-spin SXS NR waveforms.
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Considering the unfaithfulness against the 118 highly
precessing NRwaveforms fromRef. [98], we find in Fig. 17
a similar trend as in Fig. 4. The IMRPhenomTPHM model
performs better than the IMRPhenomXPHM model, due to
an improved description of the precessing-spin dynamics
during the inspiral and merger-ringdown; however the lack
of modeling effects due to the in-plane spin components in
the waveform causes IMRPhenomTPHM to still have a
significant number of cases with a maximum unfaithfulness
above 3% with respect to the SEOBNRv5PHM model. In
particular, we find that the IMRPhenomTPHM model has
89% (58.5%)of caseswith amaximumunfaithfulness below
3% (1%). These numbers reduce to 72.9% (24.6%) for the
IMRPhenomXPHM model, and they increase to 100%
(85.6%) for the SEOBNRv5PHM model. Therefore, when
considering highly precessing-spin configurations the
SEOBNRv5PHM model provides the lowest unfaithfulness,
followed closely by the time-domain phenomenological
IMRPhenomTPHM model, which offers an improved
description of spin-precession with respect to the fre-
quency-domain IMRPhenomXPHM model.
In Fig. 18 we turn to a comparison against a

broader set of 1543 precessing-spin NR simulations. The
IMRPhenomTPHM model reaches lower values of unfaith-
fulness than the SEOBNRv5PHM model for several
configurations with low precessing-spin effects, which
can be explained due to a slightly more accurate modeling
of the higher-order modes in the merger ringdown in the
aligned-spin limit (see Appendix G of Ref. [149] for
details), but it also presents a significantly larger number
of highly precessing configurations with unfaithfulness
larger than 3% with respect to the SEOBNRv5PHM model.
Overall, the unfaithfulness of the IMRPhenomTPHM
model is lower than the one of the IMRPhenomXPHM
model. More quantitatively, we find that for
IMRPhenomTPHM, 91.6% (62.4%) of cases have a maxi-
mum unfaithfulness in the total mass range considered
below 3% (1%). These numbers reduce to 78.3% (38.3%)
for IMRPhenomXPHM, and increase to 99.8% (84.4%) for

SEOBNRv5PHM. Therefore, we find that the
SEOBNRv5PHM model outperforms in accuracy the phe-
nomenological models for highly precessing-spin configu-
rations, while for low precessing configurations the
accuracy of the models becomes more comparable, as
they rely on the accuracy of the underlying nonprecessing
waveform models, which are calibrated to a similar set of
nonprecessing NR waveforms.
Finally, we repeat the study of Sec. V D and compute the

unfaithfulness between the SEOBNRv5PHM model as the
templatewaveformandIMRPhenomTPHM as the signal, for
5000 configurations uniformly distributed in mass ratio
q∈ ½1; 20� and effective spin parameter χp ∈ ½0; 0.99�.
Figure 19 shows the unfaithfulness as a function of mass
ratio q, effective spin parameter χeff, and effective precess-
ing-spin parameter χp. We find that for mass ratios q < 5,
there are 99.74% (64.5%) of cases with a maximum
unfaithfulness, in total mass range ½20; 300�M⊙, below
10% (1%), while in Sec. V D we found that for
IMRPhenomXPHM these numbers decrease to 96.84%
(41.3%). The unfaithfulness increases significantly with
mass ratio and spins, with the highest unfaithfulness
values at the largest mass ratios q ∼ 20, and effective spin
precessing parameter χp ∼ 0.99. In particular, when consid-
ering q ≤ 20 we find that for IMRPhenomTPHM there
are 73.84% (30.02%) cases with maximum unfaithfulness,
in the total mass range considered, below 10% (1%),
while these numbers decrease to 59.19% (13.45%) for
IMRPhenomXPHM as shown in Sec. V D. The results
show that the agreement of SEOBNRv5PHM with the
time-domain model IMRPhenomTPHM is better than in
the case of the frequency-domain phenomenological model
IMRPhenomXPHM, due to the fact that the precessing-spin
dynamics in IMRPhenomTPHM is more accurately
described than in IMRPhenomXPHM. The existing large
differences in unfaithfulness in some regions of the param-
eter space remark the necessity to populate this region with
NR waveforms in order to reduce the systematics between
models.

FIG. 19. Maximum sky-and-polarization-averaged unfaithfulness weighted by the SNR over the total mass range ½20–30�M⊙ between
SEOBNRv5PHM and IMRPhenomTPHM for 5000 random configurations with inclination ιs ¼ π=3. The unfaithfulness grows with
increasing mass ratio and spin magnitude values, and it can reach very large values for mass ratios q ∼ 20 and χp ∼ 1.
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