
pySEOBNR: a software package for the next generation
of effective-one-body multipolar waveform models

Deyan P. Mihaylov,1, ∗ Serguei Ossokine,1, † Alessandra Buonanno,1, 2

Hector Estelles,1 Lorenzo Pompili,1 Michael Pürrer,3, 4, 1 and Antoni Ramos-Buades1

1Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Am Mühlenberg 1, Potsdam 14476, Germany

2Department of Physics, University of Maryland, College Park, MD 20742, USA
3Department of Physics, East Hall, University of Rhode Island, Kingston, RI 02881, USA

4Center for Computational Research, Tyler Hall, University of Rhode Island, Kingston, RI 02881, USA
(Dated: April 3, 2023)

We present pySEOBNR, a Python package for gravitational-wave (GW) modeling developed within
the effective-one-body (EOB) formalism. The package contains an extensive framework to generate
state-of-the-art inspiral-merger-ringdown waveform models for compact-object binaries composed
of black holes and neutron stars. We document and demonstrate how to use the built-in quasi-
circular precessing-spin model SEOBNRv5PHM, whose aligned-spin limit (SEOBNRv5HM) has been
calibrated to numerical-relativity simulations and the nonspinning sector to gravitational self-force
data using pySEOBNR. Furthermore, pySEOBNR contains the infrastructure necessary to construct,
calibrate, test, and profile new waveform models in the EOB approach. The efficiency and flexibility
of pySEOBNR will be crucial to overcome the data-analysis challenges posed by upcoming and next-
generation GW detectors on the ground and in space, which will afford the possibility to observe all
compact-object binaries in our Universe.

METADATA

Current code version 0.1

Permanent link to code / repository git.ligo.org/waveforms/software/pyseobnr

Legal Code License GNU General Public License

Code versioning system used git

Software languages, tools,
Python, Mathematica

and services used

Compilation requirements
wheel, setuptools, numpy

and dependencies

Link to developer
waveforms.docs.ligo.org/software/pyseobnr

documentation / manual

Support email for questions pyseobnr@aei.mpg.de

Table I. Code metadata

∗ deyan@aei.mpg.de
† serguei.ossokine@aei.mpg.de

ar
X

iv
:2

30
3.

18
20

3v
1

 [
gr

-q
c]

 3
1

M
ar

 2
02

3

https://git.ligo.org/waveforms/software/pyseobnr
https://waveforms.docs.ligo.org/software/pyseobnr
mailto:pyseobnr@aei.mpg.de
mailto:deyan@aei.mpg.de
mailto:serguei.ossokine@aei.mpg.de

2

I. MOTIVATION FOR DEVELOPING PYSEOBNR

The field of gravitational-wave (gw) astronomy has made significant progress since the first detection of
GWs from the merger of a binary black hole in 2015 [1]. The first and second observing runs of the LIGO
and Virgo ground-based detectors [2, 3] resulted in only a handful of detections [4, 5], whereas during the
third-observing run, over a hundred events were detected [6–10] including GWs from a wider variety of
compact-object binaries. The upcoming fourth-observing run, which will also include the KAGRA detec-
tor [11, 12], planned upgrades to the existing detectors [13–15] and next-generation GW detectors on the
ground (for example the Einstein Telescope [16] and Cosmic Explorer [17, 18]), as well as the space-based
detector LISA [19], will result in an even greater detection rate. In order to take full advantage of these
important developments, we need accurate models of the GW signals emitted by compact-binary coales-
cences [20] to infer unique information about gravity, astrophysics, cosmology and fundamental physics.

The golden standard of waveform modeling is performing full numerical-relativity (NR) simula-
tions [21–23]. Over the past decade, a number of NR waveform catalogues have been built, using several
different software packages [24–29]. However, their computational cost makes them prohibitively expen-
sive to carry out across the entire binary’s parameter space and also limits their duration. For this reason,
semi-analytical waveform models which combine analytical predictions for the two-body dynamics and
GW radiation with NR data were developed. Presently, there are a number of waveform models available
that are built using one of several approaches outlined below.

NR surrogate models are constructed by interpolating a sufficient number of NR waveforms across the
desired parameter space [30–39]. This approach has been successful in accurately modeling systems where
higher multipoles are important [33], for precessing-spin binaries [32, 34] and for eccentric systems [37].
However, NR surrogate waveforms are limited in their length (unless hybridized to analytical waveforms),
and are restricted to those regions of parameter space where enough NR waveforms are available.

The other two dominant approaches to waveform modeling are the phenomenological and effective-
one-body (EOB) frameworks. The phenomenological waveform models (IMRPhenom) [40–57] combine
post-Newtonian (PN) and EOB analytic expressions for the inspiral with NR information for the lead-up
to merger and merger-ringdown portions of the waveform. Their computational efficiency has made them
a standard choice for data analysis in GW astronomy. The other waveform family routinely used in GW
observations is the EOB one, which combines an analytical description of the two-body dynamics based on
PN and small-mass ratio perturbation theory with NR data for the strong-field regime [58–62]. EOB models
have been developed for a broad range of systems: non-spinning, aligned-spin, precessing-spin, and eccen-
tric binaries. The two most notable EOB families are SEOBNR [63–68] and TEOBResumS [69–74]. In this
work we will focus on the SEOBNR family, which has been employed by the LIGO-Virgo-KAGRA (LVK)
Collaboration to analyse GW signals of compact-binary coalescences, infer their astrophysical properties,
and test the theory of General Relativity (GR).

While waveforms from the SEOBNR family have been widely used for GW analyses due to their high
accuracy, they are often computationally expensive with nested sampling and MCMC methods [75–77].
This issue has been tackled in several ways. One possible approach is to construct surrogate models [30–34,
66, 78–87]. Another possibility is to use alternative samplers for parameter estimation, such as RIFT [88],
parallel Bilby [89], VItamin C [90], VARAHA [91] or others, which have been developed with the
goal of decreasing the walltime of analyses. Notably, DINGO [92–94], a software package based on machine
learning, has also been used for inference studies with SEOBNR. However, some events are still extremely
challenging to analyse and those approaches alone do not readily scale to a large number of events. The
construction of reduced-order or surrogate models to accelerate EOB waveform generation [66, 80–83, 86,
87, 95–97] can be challenging and time-consuming, thus limiting the pace with which new advances can be
incorporated into the SEOBNR models. All these factors underscore the need to build a new framework for
rapid development and generation of new models.

The need to build more accurate waveform models is also driven by the increasing sensitivity of GW

3

detectors. Upcoming observations of the LVK Collaboration, as well as future detectors like LISA, Einstein
Telescope and Cosmic Explorer, will provide the opportunity for pioneering discoveries about the nature
and origins of compact objects and gravity, fundamental physics and cosmology, provided we are equipped
with high-precision and efficient gravitational waveforms, which include all physical effects and can be
used in such studies. For example, using accurate and computationally efficient waveform models for
binary neutron stars (BNSs) and neutron-star–black-hole (NSBH) binaries, we would be able to probe the
internal structure and equation of state of neutron stars, as well as characterize their population and origin,
including details about the low-end mass gap of compact objects.

The higher sensitivity of future detectors poses another challenge. In particular, most of these detectors
will observe in a lower/wider frequency band, resulting in much longer signals. This necessitates signifi-
cantly more computationally efficient waveform models. Thus, a combination of Fourier-domain and time-
domain modeling should be explored, as well as the use of novel hardware architectures, e.g. GPUs and
parallel computing. This in turn requires a new infrastructure and framework for waveform development.

In order to meet the need for faster, more accurate and more physically complete GW models, we
have developed a completely new code base, pySEOBNR, which implements all tools necessary for the
development of the next generation of SEOBNR waveform models in a modern and easily maintainable
environment. On one hand, the software package provides access to the aligned-spin SEOBNRv5HM [98]
and precessing-spin SEOBNRv5PHM models [99] for use in scientific applications. For example, several
different parameter estimation codes are being adapted to use these models, such as bilby [77, 100],
DINGO and RIFT. On the other hand, pySEOBNR provides a suite of tools for the user to develop new
models.

Technical information about pySEOBNR can be found in Table I. We choose python [101–103] to
build the framework, due to its rich scientific ecosystem, maintainability and wide adoption in the GW
community [77, 100, 104–106]. In addition, certain parts of the code are built with cython [107], a
compiled extension to python, in order to achieve better efficiency where necessary, while retaining a
lot of flexibility. Theoretical results, which are the foundation of the SEOBNR family of models, can be
provided via Mathematica [108] notebooks, which are then parsed and used by pySEOBNR. The package
is published under the GNU General Public License [109]. Version control is provided through git [110,
111], which also offers a platform for streamlined management of code development, issue tracking, and
publishing updated releases of the package. The most recent version of pySEOBNR is available through
the linked git repository. Stable versions of pySEOBNR are published through the Python Package
Index (PyPI) [112] repository (a user may install the latest stable version via pip install pyseobnr).
In order to facilitate the broader adoption of this new software package, the authors welcome questions,
suggestions, and bug reports at the provided electronic mail address.

In this article we review the current state-of-the-art of the pySEOBNR package. In Section II we demon-
strate its functionality, we describe the necessary inputs and possible options, and we explain how the
submodules interact with each other. In Section III we provide code samples that showcase the main use
cases of pySEOBNR. Finally, in Section IV, we conclude by providing a roadmap for future developments.
This article does not represent a complete record of the various functionalities of pySEOBNR. For further
information about the package, please refer to the full documentation, linked in Table I. The theoretical
results on which the waveform models are based can be found in Ref. [113]. For details on the specifics
of the models please consult Refs. [98, 114] (aligned-spin model SEOBNRv5HM and calibration pipelines),
Ref. [99] (precessing-spin model SEOBNRv5PHM) and references therein.

II. DESCRIPTION OF THE SOFTWARE PACKAGE

The user interface of pySEOBNR is implemented in python [103] (more precisely, the package is compat-
ible with Python v3.8 and above) in order to facilitate ease of use and quick adoption by the GW community.

4

The package depends on a number of established, well-known, and regularly maintained packages under
open-software licenses: numpy [115], scipy [116], cython [107], GSL [117, 118] , pygsl [119] as
well as lal and lalsimulation [120, 121] and others are used in the extensions for waveform gen-
eration. In addition, wolframclient [122] and bilby [123] are used for the extensions that allow
the development and calibration of new waveform models. Table I contains the pySEOBNR metadata for
reference. In this section we present in detail the architecture and submodules of pySEOBNR.

pySEOBNR has been developed with two main objectives. The first and foremost is to provide an in-
terface for generating state-of-the-art multipolar waveform models to be used in scientific analyses. This
functionality can be readily employed for a number of studies and projects related to analysis of GW data.
The second objective is to create a new framework to rapidly develop new EOB waveform models. For
instance, pySEOBNR provides tools such as automatic code generation from Mathematica [108] files to
incorporate the latest theoretical results, a pipeline to calibrate EOB models against NR simulations as well
as many others. Future SEOBNR models will be developed within this framework; moreover newly devel-
oped theoretical results could easily be accompanied by corresponding releases of the pySEOBNR package
for timely updates to existing models.

pySEOBNR has been designed in a modular fashion in order to make sure that it can be easily extended,
developed, and maintained in the future. The codebase has been separated into a number of submodules,
each with a clear designation (see Section II B for further information on the submodules). Detailed and
informative documentation accompanies all parts of the code. Pre-commit hooks and continuous integration
testing are used for code styling, unit and regression tests.

Fig. 1 depicts the overall structure of the pySEOBNR package. The bottom-most panels show the pri-
mary steps involved in generating aligned- and precessing-spin models, while the panels above them provide
details on these operations. The top-most panels showcase the development functionality, including a code
parser for analytical information from Mathematica and a calibration pipeline to Numerical Relativity
and Gravitational Self-Force data. The remaining parts of the diagram show the important steps in construc-
tion of EOB models: the parts of the diagram connected by dashed arrows are carried out off-line, during the
development process, while the solid lines show the process of generating a waveform model. In physical
terms, the dynamics of the binary is computed by numerically integrating the EOB Hamiltonian system with
a dissipative radiation-reaction (RR) force that represents the energy loss through radiation of GWs. Sub-
sequently, spherical harmonic modes of the emitted waveform are computed in an inertial reference frame,
while taking into account how the free parameters of the EOB model have been calibrated against numerical
relativity simulations. Finally, the two GW polarizations are computed from the waveform modes.

A. Software architecture

The principal functionality of pySEOBNR is structured around a single class object GenerateWaveform
and a small number of functions used to generate multipolar gravitational waveforms. The user is able to
specify input parameters through options for initialising the class object and can then obtain output through
instance methods. In this section we acquaint the reader with the specifics of this class; the variety of options
are explained below. For examples of their usage, please refer to Section III.

1. The GenerateWaveform class

One of the two primary ways to generate a waveform using pySEOBNR is to make use of the
GenerateWaveform class and its instance methods. The inputs are provided in a form of a Python
dictionary to ensure they can be easily extended. There are 27 possible input parameters, only 2 of them are
required (the masses m1,m2 of the primary and secondary binary components), while the remaining ones are

5

Hamiltonian
Mathematica file

Flux
Mathematica file

Mathematica
EOB expression

parser

Hamiltonian

Radiation–
reaction force

Numerical Relativity
simulations

Gravitational
Self-Force data

Calibration
pipelines

Calibration
parameters

Initial
conditions

Evolution of
the dynamics

SEOBNR
dynamics

Inspiral
waveform modes

Merger/Ringdown
waveform modes

Binary
parameters

SEOBNR
waveform modes

Rotation from
co–precessing to
inertial frame

Output

Figure 1. Diagram of how the separate pySEOBNR submodules work and interact with each other. The boxes on
the bottom row denote the main sequence of operations executed when generating a (time-domain) waveform. The
solid arrows describe how submodules interact to build parts of the waveform, and the dashed lines denote operations
which are executed off-line during development and calibration of a new waveform model from scratch.

optional and have default values that are appropriate for most uses, see Table II for details. Of the optional
parameters:

• The luminosity distance to the GW source dL is expressed in units of Mpc, with a default value
of 100 (the choice of units is owing to the fact that we dealing with extra-galactic sources).

• The inclination angle ι is the angle between the line-of-sight and the orbital angular momentum
in radians. By default, the binary is viewed head-on.

• The reference frequency f ref is significant for the precessing model, where other quantities (e.g.
the spins, or the orbital phase) could be defined at a frequency different from the starting frequency.
By default it is equal to f22 start.

• The orbital phase (at the reference frequency) phi ref is measured in radians and is 0 by default.
• The time spacing deltaT of the waveform is measured in seconds, with a default value of 1/2048

(used for time-domain outputs and for checking consistency with the Nyquist criterion).
• The maximum frequency f max of the waveform is 1024 Hz by default. If not provided explicitly,

its value is computed from deltaT as the Nyquist frequency.
• The frequency spacing deltaF of the waveform is measured in Hz, with a default value of 0.125

(used for Fourier-domain outputs).

6

• The mode array parameter specifies which modes would be computed and returned as output, in
the coprecessing frame. Only positive−m modes need to be specified, e.g. [(3, 2)] includes both
the (3,2) and the (3,−2) modes. By default all modes with ` ≤ 4 are selected; at present this includes
(`,m) = {(2,2), (3,3), (3,2), (4,4), (4,3)}. In addition, for the models described in this publication, the
(`,m) = (5,5) mode is available for generation, but is not selected by default.

• approximant directs which model is used to construct the waveform. At present, pySEOBNR in-
cludes the SEOBNRv5HM and SEOBNRv5PHM models, while in the future this list will be extended
with newly added approximants.

• The conditioning parameter controls the tapering method which would be applied to the wave-
form before it is returned. Value 1 will taper the beginning of the waveform, as it was done for
the SEOBNRv4PHM model in SimInspiralFD(). Value 2 (default) will trigger the standard
SimInspiralFD() procedure of adding extra time at the beginning for the purposes of tapering.

• The polarizations from coprec option triggers a more efficient computation of the wave-
form polarizations for the precessing-spin model SEOBNRv5PHM (see Section III C of Ref. [99] for
details on this feature).

• The initial conditions parameter controls whether the model would use "adiabatic"
(default) or "postadiabatic" initial conditions (described in further detail in Section II B 3). If
"postadiabatic" is selected, the option initial conditions postadiabatic type
controls whether the "analytic" (default) or "numeric" post-adiabatic regime is applied for
computing the initial conditions.

• Similarly, postadiabatic controls whether the post-adiabatic approximation is used for the so-
lution of the binary inspiral. By default, it is True. See Section II B 3 for details.

In addition, automatic validation of the input parameters is performed at initialization. These include checks
that the required parameters (i.e. the component masses) are correctly provided and that the values of the
optional parameters are not outside of their allowed values (e.g. the aligned-spin waveform approximant
cannot be executed with non-aligned spins).

Once the GenerateWaveform class has been initialised, the user can execute the waveform gen-
erator and obtain output through some of the built-in instance methods. Here, it is important to
note that the GenerateWaveform class has been designed to be compatible with the standard data
analysis package, the LSC’s Algorithm Library Suite (LALSuite) [120]. Therefore, within it we
reuse standard LALSuite data types and mimic inputs and outputs of main API functions such as
SimInspiralChooseTDWaveform() and its Fourier-domain counterpart, which are provided through
the lalsimulation sub-package. The available outputs of the waveform generator routine are listed in
Table III:

• time-domain modes: obtained using the generate td modes() method, it produces an array
(containing the time domain), and a dictionary containing each of the requested waveform modes
(provided through the mode array input parameter)

• time-domain polarizations: obtained using the generate td polarizations() method, it
will produce two REAL8TimeSeries containing the plus and cross polarization modes of the
waveform

• Fourier-domain polarizations: obtained using the generate fd polarizations() method,
it will produce the Fourier transforms of the plus and cross polarization modes as
COMPLEX16FrequencySeries.

The output of these class methods are all in SI units: the time domain is provided in seconds, the frequency
in Hertz, and the amplitudes of the modes are measured in meters. In Section III we provide code examples
for using this functionality.

7
N

am
e

D
es

cr
ip

tio
n

D
ef

au
lt

va
lu

e
m
a
s
s
1

M
as

s
of

co
m

pa
ni

on
1,

in
so

la
rm

as
se

s*
N

/A

m
a
s
s
2

M
as

s
of

co
m

pa
ni

on
2,

in
so

la
rm

as
se

s*
N

/A

s
p
i
n
1
x

x-
co

m
po

ne
nt

of
di

m
en

si
on

le
ss

sp
in

of
co

m
pa

ni
on

1
0

s
p
i
n
1
y

y-
co

m
po

ne
nt

of
di

m
en

si
on

le
ss

sp
in

of
co

m
pa

ni
on

1
0

s
p
i
n
1
z

z-
co

m
po

ne
nt

of
di

m
en

si
on

le
ss

sp
in

of
co

m
pa

ni
on

1
0

s
p
i
n
2
x

x-
co

m
po

ne
nt

of
di

m
en

si
on

le
ss

sp
in

of
co

m
pa

ni
on

2
0

s
p
i
n
2
y

y-
co

m
po

ne
nt

of
di

m
en

si
on

le
ss

sp
in

of
co

m
pa

ni
on

2
0

s
p
i
n
2
z

z-
co

m
po

ne
nt

of
di

m
en

si
on

le
ss

sp
in

of
co

m
pa

ni
on

2
0

d
i
s
t
a
n
c
e

D
is

ta
nc

e
to

th
e

so
ur

ce
,i

n
M

pc
10

0

i
n
c
l
i
n
a
t
i
o
n

In
cl

in
at

io
n

of
th

e
so

ur
ce

,i
n

ra
di

an
s

0

f
2
2
s
t
a
r
t

St
ar

tin
g

w
av

ef
or

m
ge

ne
ra

tio
n

fr
eq

ue
nc

y,
in

H
z

20

f
r
e
f

T
he

re
fe

re
nc

e
fr

eq
ue

nc
y,

in
H

z
f
2
2
s
t
a
r
t

p
h
i
r
e
f

O
rb

ita
lp

ha
se

at
th

e
re

fe
re

nc
e

fr
eq

ue
nc

y,
in

ra
di

an
s

0

d
e
l
t
a
T

Ti
m

e
sp

ac
in

g,
in

se
co

nd
s

1/
20

48

f
m
a
x

M
ax

im
um

fr
eq

ue
nc

y,
in

H
z

10
24

H
z

d
e
l
t
a
F

Fr
eq

ue
nc

y
sp

ac
in

g,
in

H
z

0.
12

5

m
o
d
e
a
r
r
a
y

M
od

e
co

nt
en

t†
N
o
n
e

(i
.e

.a
ll

m
od

es
w

ith
`
≤

4)

a
p
p
r
o
x
i
m
a
n
t

N
am

e
of

th
e

w
av

ef
or

m
ap

pr
ox

im
an

tt
o

be
us

ed
"
S
E
O
B
N
R
v
5
H
M
"

c
o
n
d
i
t
i
o
n
i
n
g

C
on

di
tio

ni
ng

pr
oc

ed
ur

e
fo

rt
he

w
av

ef
or

m
2

p
o
l
a
r
i
z
a
t
i
o
n
s
f
r
o
m
c
o
p
r
e
c

W
he

th
er

to
ge

ne
ra

te
th

e
po

la
ri

za
tio

ns
fr

om
th

e
co

-p
re

ce
ss

in
g

fr
am

e
m

od
es

T
r
u
e

i
n
i
t
i
a
l
c
o
n
d
i
t
i
o
n
s

M
od

e
of

in
iti

al
co

nd
iti

on
s

to
be

us
ed

(a
di

ab
at

ic
or

po
st

-a
di

ab
at

ic
)

"
a
d
i
a
b
a
t
i
c
"

i
n
i
t
i
a
l
c
o
n
d
i
t
i
o
n
s
p
o
s
t
a
d
i
a
b
a
t
i
c
t
y
p
e

Ty
pe

of
po

st
-a

di
ab

at
ic

in
iti

al
co

nd
iti

on
s

"
a
n
a
l
y
t
i
c
"

p
o
s
t
a
d
i
a
b
a
t
i
c

W
he

th
er

to
us

e
th

e
po

st
-a

di
ab

at
ic

ap
pr

ox
im

at
io

n
fo

rt
he

in
sp

ir
al

T
r
u
e

p
o
s
t
a
d
i
a
b
a
t
i
c
t
y
p
e

Ty
pe

of
po

st
-a

di
ab

at
ic

in
sp

ir
al

"
a
n
a
l
y
t
i
c
"

Ta
bl

e
II

.I
np

ut
pa

ra
m

et
er

s
of

th
e
G
e
n
e
r
a
t
e
W
a
v
e
f
o
r
m

cl
as

s.
T

he
m

as
se

s
of

th
e

pr
im

ar
y

an
d

se
co

nd
ar

y
co

m
po

ne
nt

s
(m

ar
ke

d
w

ith
*)

ar
e

al
w

ay
s

re
qu

ir
ed

.
W

he
n

sp
ec

if
yi

ng
th

e
m

od
e

co
nt

en
to

f
th

e
ou

tp
ut

(m
ar

ke
d

w
ith
†
),

on
ly

th
e

po
si

tiv
e

m
od

es
ne

ed
to

be
sp

ec
ifi

ed
,e

.g
[
(
2
,
2
)
,
(
2
,
1
)
]

.
In

th
e

fu
tu

re
,a

dd
iti

on
al

w
av

ef
or

m
ap

pr
ox

im
an

tn
am

es
w

ill
be

ad
de

d
to

th
is

in
te

rf
ac

e
as

th
ey

be
co

m
e

pa
rt

of
th

e
p
y
S
E
O
B
N
R

pa
ck

ag
e.

8

2. Advanced interface: Generating modes and polarizations directly

Expert users who seek to perform waveform validation have access to a set of specialized functions which
can be used to generate the waveform modes or the waveform polarizations.

The function generate modes opt() may be used for both aligned- and precessing-spin wave-
forms. For this function, both inputs and outputs are in geometric units. In Section III we provide an
example of how to use this endpoint, together with an explanation of its inputs and outputs.

In addition, for precessing waveform models, we provide the function generate prec hpc opt()
that directly generates the two GW polarizations from the waveform modes in the co-precessing frame,
which tracks the motion of the orbital plane in a precessing binary. This function bypasses the construction
of the inertial frame modes. This makes the waveform generation significantly faster, especially in the case
of low total mass binaries. The user must provide values for the inclination and phase parameters. Since this
is significantly faster than the canonical way of generating precessing-spin waveforms, it is also the default
approach used for parameter estimation analyses.

B. Primary submodules

In this section we describe the primary submodules responsible for generating waveforms. In particular, we
consider modules which contain theoretical EOB expressions that form building blocks of the SEOBNRv5
models, as well as the infrastructure which allows us to compute the binary inspiral from the Hamiltonian
and the RR force, compute the waveform modes, and finally attach the merger-ringdown modes to form the
complete IMR waveform.

1. Hamiltonian

Consider a binary with masses m1 and m2 (m1 ≥ m2) and spins S1 and S2. The EOB formalism relies on
an effective Hamiltonian (Heff) of a test mass µ = m1m2/(m1 + m2) moving in the Kerr space-time of a body
with mass M = m1 + m2, with deformation parameter ν = µ/M. The conservative two-body dynamics is
obtained from the EOB Hamiltonian:

HEOB = M

√
1 + 2ν

(
Heff

µ
−1

)
. (1)

The dynamical variables on which the value of the Hamiltonian depends are the orbital separation r, the
conjugate momentum p, and the spins S1,2. In addition, its value depends on a set of calibration parameters
θ, that correspond to yet unknown higher-order PN coefficients. In this section we describe how the EOB
Hamiltonian is implemented on pySEOBNR.

The hamiltonian submodule contains the entire infrastructure for using EOB Hamiltonians. Ana-
lytical expressions are converted from Mathematica files into cython source files which subclass the
Hamiltonian C abstract class (or Hamiltonian v5PHM C for the SEOBNRv5PHM precessing-spin
model). These files provide the infrastructure to evaluate the EOB Hamiltonian, as well as its Jacobian
and Hessian (the derivatives are computed automatically during the conversion from Mathematica to
cython using wolframclient as these are more computationally efficient compared to either finite-
difference derivatives or automatic derivatives using the jax [124] package). In addition, further quantities
derived from the EOB Hamiltonian are provided through methods of this class: xi computes the tortoise
coordinate conversion factor ξ(r) = pr∗/pr = dr/dr∗; auxderivs provides access to some of the potentials
computed as part of computing the value of HEOB, which are necessary for optimising the computational
efficiency of the post-adiabatic approximation by using analytic derivatives (see Section II B 3 for details).

9

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

10−22

10−21

10−20

m1 = 50M⊙,m2 = 20M⊙
χ1z = 0.8, χ2z = 0.3, dL = 100Mpc, ι = π/3
fmin = 20Hz, fmax = 512Hz, fs = 1024Hz

t [s]

m
o
d
e
a
m
p
l
it
u
d
e
s

(ℓ,m) = (2,2) (2,1) (3,3) (4,4)

Figure 2. Plot of the waveform modes produced with the generate td modes() method for an aligned-spin
black-hole binary. The parameters used for waveform generation are stated in the figure, with the sampling rate
fs = 1/deltaT.

The infrastructure provided in pySEOBNRwill allow for an easy extension of the current Hamiltonians to
include more analytical information. In future releases of pySEOBNR, the hamiltonian submodule will
be extended in order to include additional physical effects in the Hamiltonian, for instance tidal corrections,
needed for generating waveforms describing binary neutron-star coalescences.

2. Waveform and radiation-reaction force

Like the Hamiltonian, RR force is also a fundamental building block of the SEOBNR dynamics. In
pySEOBNR, the RR force is computed as an iterative sum over factorized/resummed PN expressions for
the waveform modes [125, 126]:

F =
MΩ

16π
p
L

Lmax∑
`=2

∑̀
m=−`

m2|dLh`m|2, (2)

where Ω is the angular orbital frequency, L is the magnitude of the orbital angular momentum, p is the
canonical momentum, dL is the luminosity distance and h`m are the gravitational modes far from the source.
Due to the large number of terms (in SEOBNRv5HM and SEOBNRv5PHM, Lmax = 8 is used), the current
implementation of the RR force is one area where significant improvements in efficiency could be achieved,
which in turn will have an effect on the overall speed of the model.

3. Dynamics

For a binary system with aligned or anti-aligned spins, the dynamics is obtained by solving the Hamilton
equations:

ṙ =
∂HEOB

∂p
(3a)

ṗ = −
∂HEOB

∂r
+F (3b)

10

For a generic-spin system, there are further 6 equations of motion governing the spin evolution:

Ṡ1,2 =
∂HEOB

∂S1,2
×S1,2. (4)

Interestingly, the dynamics may be approximated by a post-adiabatic approach which allows us to com-
pute the evolution of the orbital parameters on a sparse grid in radial domain [68, 72, 127, 128]. The
approximation is achieved iteratively and is valid until a short time before merger. The approach requires us
to find the solutions of (non-linear) algebraic equations in order to approximate the conjugate momentum
to the tortoise radial coordinate pr∗ and the orbital angular momentum pϕ:

dpϕ
dr

∂HEOB

∂pr∗
−Fϕ = 0 (5a)

∂HEOB

∂pr∗
+
∂HEOB

∂r
dr

dpr∗
−

pr∗

pϕ
Fϕ = 0 (5b)

The dynamics module provides the functionality for computing the binary dynamics of the EOB models.
In order to compute the inspiral dynamics up to merger, the code starts by computing the initial condi-
tions for the binary from the user input parameters. The dynamics computation can be performed either by
integrating the Hamilton equations numerically, using standard ODE integrators, or alternatively by com-
puting the post-adiabatic approximation to the dynamics, which is more efficient and is therefore the default
method in the precessing model SEOBNRv5PHM. It should be noted that the post-adiabatic approximation
cannot be extended to the entire waveform and therefore the final few orbits need to be computed using the
ODE integrator, with the results from both computations merged to provide the full dynamics.

4. Fits

In the previous section we have outlined that in order to achieve the desired accuracy of the models, data
from NR simulations as well as data from gravitational self-force computations is used to calibrate the
model. While the details of the calibration process are presented in Section II C 2, here we discuss how the
output of this calibration process is stored and utilised in waveform generation. The calibration pipelines
find values of the free parameters of the model [98] which provide the best match between the SEOBNR
models and the NR simulations. The values of these free parameters are computed, however, at discrete
values of the binary parameters (since NR simulations are not available everywhere in parameter space).
In order to provide coverage for the entire parameter range of the SEOBNR models, the values of these
free parameters are fitted using a least-squares method, and the coefficients of these interpolation fits are
stored as part of the Fits submodule. In addition, this submodule provides an interface which is used by
the dynamics module in order to compute the values of the coefficients when the dynamics is generated.
Currently, the fits are implemented as polynomial or radical functions of the physical variables (for details
please refer to Appendices A, B, C, and D of Ref. [98]).

In the future, more sophisticated methods will be implemented for utilising the NR and GSF data. In
particular, infrastructure and methods for dealing with the uncertainties in the computed values of the free
parameters will provide better agreement with NR simulations, and could allow us to translate uncertainties
in the provided data into uncertainties of the waveform model itself.

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

−4

−2

0

2

4
×10−21 m1 = 50M⊙,m2 = 20M⊙, χ1z = 0.8, χ2z = 0.3, fs = 1024Hz

fmin = 20Hz, fmax = 512Hz, dL = 100Mpc, ι = π/3

t [s]

p
o
l
a
r
iz
a
t
io
n
s

h+ h×

Figure 3. Plot of the waveform polarizations in time domain produced with the generate td polarizations()
method. The parameters used for waveform generation are stated in the figure, with the sampling rate fs = 1/deltaT.

C. Auxiliary submodules

In addition to the main submodules needed to generate the waveform, a development-oriented extension to
pySEOBNR also provides a set of tools whose purpose is to help with the development of new waveform
models. While these are aimed at advanced users of the package who would like to either build new
models or provide improvements to current ones, we give an outline of them here. The most important
development tools are the Mathematica expression parser which translates analytical EOB expressions into
usable python/cython code, and the calibration pipelines which allow us to constrain free parameters
in the model to achieve better agreement with NR waveforms. Please note that unlike the much more
commonly used waveform generation tools, these modules have not passed a software review process.

1. Automatic code generation

pySEOBNR contains a parser which can be used to translate Mathematica code into python and perfor-
mant cython code leveraging the capabilities of the sympy package [129], which can then be used as
part of the Hamiltonian and RR force modules. Mathematica files containing analytical EOB Hamiltonian
expressions can be parsed using the following command

Method LALSuite counterpart Output

generate td modes() SimInspiralChooseTDModes()
times,

hlm dict

generate td polarizations() SimInspiralChooseTDWaveform()
hp,
hc

generate fd polarizations() SimInspiralChooseFDWaveform()
hptilde,
hctilde

Table III. Output of the three separate instance methods of the GenerateWaveform class for producing the gravi-
tational waveform modes or polarizations. Data types REAL8TimeSeries and COMPLEX16FrequencySeries
follow LALSuite conventions [120].

12

2 4 8 16 32 64 128 256 512
−3

−2

−1

0

1

2

3 ×10−22 m1 = 50M⊙,m2 = 20M⊙, χ1z = 0.8, χ2z = 0.3, fs = 1024Hz
fmin = 20Hz, fmax = 512Hz, dL = 100Mpc, ι = π/3

f [Hz]

p
o
l
a
r
iz
a
t
io
n
s

ℜ
[
h̃+

]

ℜ
[
h̃×

]

Figure 4. Plot of the waveform polarizations in Fourier domain produced using the
generate fd polarizations() method. The parameters used for waveform generation are stated in
the figure, with the sampling rate fs = 1/deltaT.

python generate Hamiltonian.py --ham file [path to Hamiltonian file]
--name [name for this Hamiltonian]

The variables of the analytical expressions will be automatically parsed; the variables, constants, and
calibration parameters will be identified and translated in the correct fashion to cython. The output file is
ready to be directly used by the dynamics module without any further preparation. The code generation can
be fine-tuned by supplying additional options via toml [130, 131] files. In the future, the options provided
in this parser will need to be extended in order to cover additional parameters in the analytical Hamiltonians
which will be used in future SEOBNR waveform models.

2. Calibration pipelines

In order to constrain the free coefficients in SEOBNR waveform models, we first need to establish a metric
for comparison between two waveforms. This is provided through the metrics class. Several different
metrics are provided, for example: the mismatch between NR and SEOBNRwaveforms [132], the difference
in time to merger between the two waveforms.

The parameter search and estimation is done using Bayesian stochastic sampling, performed via the
functionality in the bilby package, which is commonly used for data analysis in the GW community.
In particular, we use the machine-learning enhanced nessai sampler [133], which provides very quick
convergence for our class of problems. In order to submit a calibration run, a user may use the commands
below:

python batch calibration setup.py --cases-file [path to NR catalogue]
--prior 4D tight a6.prior --sampler nessai --scheduler slurm --queue
hypatia --singularity --singularity-image [path to .sing file]
--calibration-settings calibration settings.toml bash ./submit all.sh

The output of this process, once completed, will be a set of posterior JSON files which can then be
used to assign values for each free parameter at each binary parameter point. The interpolations of these
parameters are then used by the Fits package in order to provide values for the free parameters of the model
during execution.

13

III. USE CASES

In the previous section, we described in detail the structure of the pySEOBNR package. Here, we show how
to use the SEOBNRv5HM and SEOBNRv5PHM models to generate waveforms in several common cases.

A. Generating an aligned-spin gravitational waveform

For the case of a binary with aligned (or anti-aligned) spins, we will demonstrate the use of two differ-
ent mechanisms. First we consider the most likely use case, such as the one that occurs during GW pa-
rameter estimation - the input and output are in physical (SI) units. As shown in listing 1 we use the
GenerateWaveform class, which we presented in detail in Section II A 1. We select a binary of total
mass M = 80M�, with a starting frequency of 20 Hz and an appropriate sampling rate of 1024 Hz. The
dimensionless spins of the primary and the secondary binary components are 0.8 and 0.3, respectively. The
binary is at a distance of 100 megaparsecs and is inclined at an angle of π/3.

After the instance has been initialised, we invoke the methods generate td modes() and
generate td polarizations() (see Section II A 1 and Table III) in order to obtain the time-domain
modes and polarizations, respectively. For the binary configuration in question, it takes 106 ms to generate
the waveform modes, and 113 ms to generate the polarizations. Readers who would like to learn more about
the efficiency of the aligned-spin model can refer to [98].

14

Listing 1. Generating aligned-spin waveform modes and polarizations in physical units with LAL conventions.

1 import numpy as np
2 from pyseobnr.generate_waveform import GenerateWaveform
3

4 m1, m2 = 50., 20.
5 s1x, s1y, s1z = 0., 0., 0.8
6 s2x, s2y, s2z = 0., 0., 0.3
7

8 deltaT = 1./1024.
9 f_min = 20.

10 f_max = 512.
11

12 distance = 100.
13 inclination = np.pi / 3.
14 phi_ref = 0.
15 approximant = "SEOBNRv5HM"
16

17 params_dict = {
18 "mass1": m1, "mass2": m2,
19 "spin1x": s1x, "spin1y": s1y, "spin1z": s1z,
20 "spin2x": s2x, "spin2y": s2y, "spin2z": s2z,
21 "deltaT": deltaT,
22 "f22_start": f_min,
23 "phi_ref": phi_ref,
24 "distance": distance,
25 "inclination": inclination,
26 "f_max": f_max,
27 "approximant": approximant,
28 }
29

30 waveform_gen = GenerateWaveform(params_dict)
31 t, hlm = waveform_gen.generate_td_modes()
32 hp, hc = waveform_gen.generate_td_polarizations()

For waveform development and validation it is frequently helpful to instead work in geometric units,
e.g. to ease the comparison with NR results. For this we use the function generate modes opt(), as
shown in listing 2.

Listing 2. Using the internal SEOBNRv5HM aligned-spin model generator to obtain the waveform modes and
time domain in geometric units.

1 from pyseobnr.generate_waveform import generate_modes_opt
2

3 q = 5.3 # mass ratio
4 chi_1 = 0.9 # spin of the primary
5 chi_2 = 0.3 # spin of the secondary
6 omega0 = 0.0137 # orbital frequency in geometric units with M = 1
7

8 t, modes = generate_modes_opt(q, chi_1, chi_2, omega0)

15

Listing 3. Generating precessing-spin waveform modes and polarizations in physical units with LAL conventions.

1 import numpy as np
2 from pyseobnr.generate_waveform import GenerateWaveform
3

4 m1, m2 = 50., 20.
5 s1x, s1y, s1z = 0.5, 0., 0.5
6 s2x, s2y, s2z = 0., 0.5, 0.5
7

8 deltaT = 1./1024.
9 f_min = 20.

10 f_max = 512.
11

12 distance = 1000.
13 inclination = np.pi / 3.
14 phi_ref = 0.
15 approximant = "SEOBNRv5PHM"
16

17 params_dict = {
18 "mass1": m1, "mass2": m2,
19 "spin1x": s1x, "spin1y": s1y, "spin1z": s1z,
20 "spin2x": s2x, "spin2y": s2y, "spin2z": s2z,
21 "deltaT": deltaT,
22 "f22_start": f_min,
23 "phi_ref": phi_ref,
24 "distance": distance,
25 "inclination": inclination,
26 "f_max": f_max,
27 "approximant": approximant,
28 }
29

30 waveform_gen = GenerateWaveform(params_dict)
31 t, hlm = waveform_gen.generate_td_modes()
32 hp, hc = waveform_gen.generate_td_polarizations()

B. Generating a precessing-spin gravitational waveform

We can also use the GenerateWaveform class to produce waveforms from a binary with precessing
spins with minimal changes. Apart from specifying non-zero x- and y-components of the spins, the user
needs to specify the precessing-spin SEOBNRv5PHM approximant. Readers can use the code in Listing 3
to generate a precessing-spin waveform. For this precessing binary, pySEOBNR takes 395 ms to generate
the waveform modes, and only 387 ms to generate the polarizations. Readers who would like to learn more
about the efficiency of the precessing-spin model are encouraged to refer to [99].

The polarizations in this case can be obtained by using the function generate prec hpc opt(), an
example of which is shown in listing 4.

16

Listing 4. Using the generate prec hpc opt endpoint to generate the polarizations from the co-precessing frame
modes.

1 from pyseobnr.generate_waveform import generate_prec_hpc_opt
2

3 q = 2.0 # mass ratio
4 chi_1 = np.array([0.5, 0.0, 0.5]) # spin of the primary
5 chi_2 = np.array([0.0, 0.5, 0.5]) # spin of the secondary
6 omega0 = 0.01 # orbital frequency in geometric units with M=1
7

8 _, _, model = generate_prec_hpc_opt(
9 q,

10 chi_1, chi_2,
11 omega0,
12 debug=True,
13 settings={
14 "phi_ref": np.pi / 2,
15 "inclination": np.pi / 3,
16 },
17)

IV. CONCLUSIONS AND FUTURE DEVELOPMENTS

The pySEOBNR package provides a flexible and modern infrastructure for developing waveform models
in the SEOBNR framework. This Python-based code has allowed us to significantly cut down research and
development time and has reduced the amount of boiler-plate code required to build, tune, and implement a
working EOB model as compared to the legacy development environment which heavily relied on C/C++

[134, 135] and where models where implemented in C99 [136] in LALSuite [120]. For the sake of compat-
ibility we have retained some of the necessary data types and main interfaces provided by LALSuite. In this
publication we have discussed the main capabilities and features of the package, and showcased waveform
models for binary black holes with aligned or precessing spins on quasi-circular orbits.

We are planning to significantly enhance the capabilities of pySEOBNR in the future. In addition to
the quasi-circular aligned- and precessing-spin model, waveforms for eccentric binaries will be provided in
order to aid the community-wide effort to survey eccentricity and unveil the origin of the observed compact-
binary populations. Moreover, waveforms will be extended for use in tests of General Relativity, which
would enable these analyses to be performed using pySEOBNR. Additionally, including tidal corrections
will allow us to perform inference runs for binary neutron stars and neutron-star–black-hole binaries, which
would need to be particularly efficient in the low-mass or large mass-ratio regimes.

Finally, we would like to emphasize that building pySEOBNR is a step towards ensuring that the de-
velopment of new waveform models for LVK and future detectors can proceed using the most modern and
sophisticated computing tools and methods. We anticipate that the addition of GPU support and the use
of neural networks will make future SEOBNR waveform models even more efficient, in turn enabling us to
pursue outstanding new science in gravity, fundamental physics, cosmology and astrophysics.

ACKNOWLEDGEMENTS

The authors thank sincerely the LVK team responsible for the review of pySEOBNR and the SEOBNRv5
models: Geraint Pratten, Stanislav Babak, Alice Bonino, Eleanor Hamilton, N. V. Krishnendu, Piero Ret-
tegno, Riccardo Sturani, and Jooheon Yoo. The development work for this software package was carried

17

out on the Hypatia computing cluster at the Max Planck Institute for Gravitational Physics in Potsdam,
Germany.

This research has made use of data or software obtained from the Gravitational Wave Open Science
Center (gwosc.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration, the Virgo Collabora-
tion, and KAGRA. LIGO Laboratory and Advanced LIGO are funded by the United States National Science
Foundation (NSF) as well as the Science and Technology Facilities Council (STFC) of the United Kingdom,
the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of
Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced
LIGO was provided by the Australian Research Council. Virgo is funded, through the European Gravita-
tional Observatory (EGO), by the French Centre National de Recherche Scientifique (CNRS), the Italian
Istituto Nazionale di Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by institutions from
Belgium, Germany, Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal, Spain. KAGRA is sup-
ported by Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan Society for the
Promotion of Science (JSPS) in Japan; National Research Foundation (NRF) and Ministry of Science and
ICT (MSIT) in Korea; Academia Sinica (AS) and National Science and Technology Council (NSTC) in
Taiwan.

A. CODE FOR GENERATING THE PLOTS OF THE WAVEFORM

In order to aid users in getting started and actively using pySEOBNR, in Listing 5 we provide the code for
generating the figures of the waveform mode amplitudes (Fig. 2), the time-domain polarizations (Fig. 3),
and the Fourier-domain polarizations (Fig. 4).

Listing 5. Generating the plots appearing in Figs. 2, 3, and 4.

1 import matplotlib.pyplot as plt
2

3 plt.figure()
4

5 # Create the plot in Figure 2
6 for mode in [(2, 2), (2, 1), (3, 3), (4, 4)]:
7 plt.plot(t, np.abs(hlm[mode]))
8

9 plt.yscale(’log’)
10 plt.ylim(1e-24, 1e-19)
11 plt.savefig("figure2.png")
12

13 # Create the plot in Figure 3
14 plt.figure()
15

16 plt.plot(t, hp.data.data)
17 plt.plot(t, hc.data.data)
18

19 plt.savefig("figure3.png")
20

21 # Create the plot in Figure 4
22 plt.figure()
23

24 plt.plot(f, np.real(hp_f.data.data))
25 plt.plot(f, np.real(hc_f.data.data))
26

27 plt.savefig("figure4.png")

18

[1] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc].
[2] J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc].
[3] F. Acernese et al. (VIRGO), Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc].
[4] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE].
[5] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M. Zaldarriaga, Phys. Rev. D 101, 083030 (2020),

arXiv:1904.07214 [astro-ph.HE].
[6] R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 11, 021053 (2021), arXiv:2010.14527 [gr-qc].
[7] R. Abbott et al. (LIGO Scientific, VIRGO), (2021), arXiv:2108.01045 [gr-qc].
[8] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), (2021), arXiv:2111.03606 [gr-qc].
[9] A. H. Nitz, C. D. Capano, S. Kumar, Y.-F. Wang, S. Kastha, M. Schäfer, R. Dhurkunde, and M. Cabero,

Astrophys. J. 922, 76 (2021), arXiv:2105.09151 [astro-ph.HE].
[10] S. Olsen, T. Venumadhav, J. Mushkin, J. Roulet, B. Zackay, and M. Zaldarriaga, Phys. Rev. D 106, 043009

(2022), arXiv:2201.02252 [astro-ph.HE].
[11] T. Akutsu et al. (KAGRA), Nature Astron. 3, 35 (2019), arXiv:1811.08079 [gr-qc].
[12] T. Akutsu et al. (KAGRA), PTEP 2021, 05A101 (2021), arXiv:2005.05574 [physics.ins-det].
[13] B. P. Abbott et al. (KAGRA, LIGO Scientific, Virgo, VIRGO), Living Rev. Rel. 21, 3 (2018), arXiv:1304.0670

[gr-qc].
[14] B. P. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 882, L24 (2019), arXiv:1811.12940 [astro-

ph.HE].
[15] R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 913, L7 (2021), arXiv:2010.14533 [astro-ph.HE].
[16] M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010).
[17] D. Reitze et al., Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM].
[18] M. Evans et al., (2021), arXiv:2109.09882 [astro-ph.IM].
[19] P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E. Barausse, P. Bender, E. Berti, P. Binetruy, M. Born,

D. Bortoluzzi, et al., arXiv preprint arXiv:1702.00786 (2017).
[20] M. Pürrer and C.-J. Haster, Phys. Rev. Res. 2, 023151 (2020), arXiv:1912.10055 [gr-qc].
[21] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005), arXiv:gr-qc/0507014.
[22] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Phys. Rev. Lett. 96, 111101 (2006), arXiv:gr-

qc/0511048.
[23] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter, Phys. Rev. Lett. 96, 111102 (2006), arXiv:gr-

qc/0511103.
[24] K. Jani, J. Healy, J. A. Clark, L. London, P. Laguna, and D. Shoemaker, Class. Quant. Grav. 33, 204001 (2016),

arXiv:1605.03204 [gr-qc].
[25] J. Healy, C. O. Lousto, Y. Zlochower, and M. Campanelli, Class. Quant. Grav. 34, 224001 (2017),

arXiv:1703.03423 [gr-qc].
[26] J. Healy, C. O. Lousto, J. Lange, R. O’Shaughnessy, Y. Zlochower, and M. Campanelli, Phys. Rev. D 100,

024021 (2019), arXiv:1901.02553 [gr-qc].
[27] M. Boyle et al., Class. Quant. Grav. 36, 195006 (2019), arXiv:1904.04831 [gr-qc].
[28] J. Healy and C. O. Lousto, Phys. Rev. D 105, 124010 (2022), arXiv:2202.00018 [gr-qc].
[29] E. Hamilton et al., (2023), arXiv:2303.05419 [gr-qc].
[30] J. Blackman, S. E. Field, C. R. Galley, B. Szilágyi, M. A. Scheel, M. Tiglio, and D. A. Hemberger, Phys. Rev.

Lett. 115, 121102 (2015), arXiv:1502.07758 [gr-qc].
[31] J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, D. A. Hemberger, P. Schmidt, and R. Smith, Phys. Rev.

D 95, 104023 (2017), arXiv:1701.00550 [gr-qc].
[32] J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, C. D. Ott, M. Boyle, L. E. Kidder, H. P. Pfeiffer, and

B. Szilágyi, Phys. Rev. D 96, 024058 (2017), arXiv:1705.07089 [gr-qc].
[33] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, L. E. Kidder, and H. P. Pfeiffer, Phys. Rev. D 99, 064045

(2019), arXiv:1812.07865 [gr-qc].
[34] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D. Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer, Phys.

Rev. Research. 1, 033015 (2019), arXiv:1905.09300 [gr-qc].

https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.1088/0264-9381/32/7/074001
https://arxiv.org/abs/1411.4547
https://doi.org/10.1088/0264-9381/32/2/024001
https://arxiv.org/abs/1408.3978
https://doi.org/10.1103/PhysRevX.9.031040
https://arxiv.org/abs/1811.12907
https://doi.org/10.1103/PhysRevD.101.083030
https://arxiv.org/abs/1904.07214
https://doi.org/10.1103/PhysRevX.11.021053
https://arxiv.org/abs/2010.14527
https://arxiv.org/abs/2108.01045
https://arxiv.org/abs/2111.03606
https://doi.org/10.3847/1538-4357/ac1c03
https://arxiv.org/abs/2105.09151
https://doi.org/10.1103/PhysRevD.106.043009
https://doi.org/10.1103/PhysRevD.106.043009
https://arxiv.org/abs/2201.02252
https://doi.org/10.1038/s41550-018-0658-y
https://arxiv.org/abs/1811.08079
https://doi.org/10.1093/ptep/ptaa125
https://arxiv.org/abs/2005.05574
https://doi.org/10.1007/s41114-020-00026-9
https://arxiv.org/abs/1304.0670
https://arxiv.org/abs/1304.0670
https://doi.org/10.3847/2041-8213/ab3800
https://arxiv.org/abs/1811.12940
https://arxiv.org/abs/1811.12940
https://doi.org/10.3847/2041-8213/abe949
https://arxiv.org/abs/2010.14533
https://doi.org/10.1088/0264-9381/27/19/194002
https://arxiv.org/abs/1907.04833
https://arxiv.org/abs/2109.09882
https://doi.org/10.1103/PhysRevResearch.2.023151
https://arxiv.org/abs/1912.10055
https://doi.org/10.1103/PhysRevLett.95.121101
https://arxiv.org/abs/gr-qc/0507014
https://doi.org/10.1103/PhysRevLett.96.111101
https://arxiv.org/abs/gr-qc/0511048
https://arxiv.org/abs/gr-qc/0511048
https://doi.org/10.1103/PhysRevLett.96.111102
https://arxiv.org/abs/gr-qc/0511103
https://arxiv.org/abs/gr-qc/0511103
https://doi.org/10.1088/0264-9381/33/20/204001
https://arxiv.org/abs/1605.03204
https://doi.org/10.1088/1361-6382/aa91b1
https://arxiv.org/abs/1703.03423
https://doi.org/10.1103/PhysRevD.100.024021
https://doi.org/10.1103/PhysRevD.100.024021
https://arxiv.org/abs/1901.02553
https://doi.org/10.1088/1361-6382/ab34e2
https://arxiv.org/abs/1904.04831
https://doi.org/10.1103/PhysRevD.105.124010
https://arxiv.org/abs/2202.00018
https://arxiv.org/abs/2303.05419
https://doi.org/10.1103/PhysRevLett.115.121102
https://doi.org/10.1103/PhysRevLett.115.121102
https://arxiv.org/abs/1502.07758
https://doi.org/10.1103/PhysRevD.95.104023
https://doi.org/10.1103/PhysRevD.95.104023
https://arxiv.org/abs/1701.00550
https://doi.org/10.1103/PhysRevD.96.024058
https://arxiv.org/abs/1705.07089
https://doi.org/10.1103/PhysRevD.99.064045
https://doi.org/10.1103/PhysRevD.99.064045
https://arxiv.org/abs/1812.07865
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevResearch.1.033015
https://arxiv.org/abs/1905.09300

19

[35] D. Williams, I. S. Heng, J. Gair, J. A. Clark, and B. Khamesra, Phys. Rev. D 101, 063011 (2020),
arXiv:1903.09204 [gr-qc].

[36] N. E. M. Rifat, S. E. Field, G. Khanna, and V. Varma, Phys. Rev. D 101, 081502 (2020), arXiv:1910.10473
[gr-qc].

[37] T. Islam, V. Varma, J. Lodman, S. E. Field, G. Khanna, M. A. Scheel, H. P. Pfeiffer, D. Gerosa, and L. E.
Kidder, Phys. Rev. D 103, 064022 (2021), arXiv:2101.11798 [gr-qc].

[38] T. Islam, S. E. Field, S. A. Hughes, G. Khanna, V. Varma, M. Giesler, M. A. Scheel, L. E. Kidder, and H. P.
Pfeiffer, Phys. Rev. D 106, 104025 (2022), arXiv:2204.01972 [gr-qc].

[39] J. Yoo, V. Varma, M. Giesler, M. A. Scheel, C.-J. Haster, H. P. Pfeiffer, L. E. Kidder, and M. Boyle, Phys. Rev.
D 106, 044001 (2022), arXiv:2203.10109 [gr-qc].

[40] Y. Pan, A. Buonanno, J. G. Baker, J. Centrella, B. J. Kelly, S. T. McWilliams, F. Pretorius, and J. R. van Meter,
Phys. Rev. D 77, 024014 (2008), arXiv:0704.1964 [gr-qc].

[41] P. Ajith et al., Class. Quant. Grav. 24, S689 (2007), arXiv:0704.3764 [gr-qc].
[42] P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011), arXiv:0909.2867 [gr-qc].
[43] L. Santamaria et al., Phys. Rev. D 82, 064016 (2010), arXiv:1005.3306 [gr-qc].
[44] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and M. Pürrer, Phys. Rev. Lett.

113, 151101 (2014), arXiv:1308.3271 [gr-qc].
[45] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. Jiménez Forteza, and A. Bohé, Phys. Rev. D 93, 044006

(2016), arXiv:1508.07250 [gr-qc].
[46] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. Jiménez Forteza, and A. Bohé, Phys. Rev. D 93, 044007

(2016), arXiv:1508.07253 [gr-qc].
[47] L. London, S. Khan, E. Fauchon-Jones, C. Garcı́a, M. Hannam, S. Husa, X. Jiménez-Forteza, C. Kalaghatgi,

F. Ohme, and F. Pannarale, Phys. Rev. Lett. 120, 161102 (2018), arXiv:1708.00404 [gr-qc].
[48] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme, Phys. Rev. D 100, 024059 (2019), arXiv:1809.10113

[gr-qc].
[49] S. Khan, F. Ohme, K. Chatziioannou, and M. Hannam, Phys. Rev. D 101, 024056 (2020), arXiv:1911.06050

[gr-qc].
[50] T. Dietrich, A. Samajdar, S. Khan, N. K. Johnson-McDaniel, R. Dudi, and W. Tichy, Phys. Rev. D 100, 044003

(2019), arXiv:1905.06011 [gr-qc].
[51] G. Pratten, S. Husa, C. Garcia-Quiros, M. Colleoni, A. Ramos-Buades, H. Estelles, and R. Jaume, Phys. Rev.

D 102, 064001 (2020), arXiv:2001.11412 [gr-qc].
[52] G. Pratten et al., Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc].
[53] C. Garcı́a-Quirós, M. Colleoni, S. Husa, H. Estellés, G. Pratten, A. Ramos-Buades, M. Mateu-Lucena, and

R. Jaume, Phys. Rev. D 102, 064002 (2020), arXiv:2001.10914 [gr-qc].
[54] H. Estellés, A. Ramos-Buades, S. Husa, C. Garcı́a-Quirós, M. Colleoni, L. Haegel, and R. Jaume, Phys. Rev.

D 103, 124060 (2021), arXiv:2004.08302 [gr-qc].
[55] H. Estellés, S. Husa, M. Colleoni, D. Keitel, M. Mateu-Lucena, C. Garcı́a-Quirós, A. Ramos-Buades, and

A. Borchers, Phys. Rev. D 105, 084039 (2022), arXiv:2012.11923 [gr-qc].
[56] H. Estellés, M. Colleoni, C. Garcı́a-Quirós, S. Husa, D. Keitel, M. Mateu-Lucena, M. d. L. Planas, and

A. Ramos-Buades, Phys. Rev. D 105, 084040 (2022), arXiv:2105.05872 [gr-qc].
[57] E. Hamilton, L. London, J. E. Thompson, E. Fauchon-Jones, M. Hannam, C. Kalaghatgi, S. Khan, F. Pannarale,

and A. Vano-Vinuales, Phys. Rev. D 104, 124027 (2021), arXiv:2107.08876 [gr-qc].
[58] A. Buonanno and T. Damour, Phys. Rev. D 59, 084006 (1999), arXiv:gr-qc/9811091.
[59] A. Buonanno and T. Damour, Phys. Rev. D 62, 064015 (2000), arXiv:gr-qc/0001013.
[60] T. Damour, P. Jaranowski, and G. Schaefer, Phys. Rev. D 62, 084011 (2000), arXiv:gr-qc/0005034.
[61] T. Damour, Phys. Rev. D 64, 124013 (2001), arXiv:gr-qc/0103018.
[62] A. Buonanno, Y. Chen, and T. Damour, Phys. Rev. D 74, 104005 (2006), arXiv:gr-qc/0508067.
[63] A. Bohé et al., Phys. Rev. D 95, 044028 (2017), arXiv:1611.03703 [gr-qc].
[64] R. Cotesta, A. Buonanno, A. Bohé, A. Taracchini, I. Hinder, and S. Ossokine, Phys. Rev. D 98, 084028 (2018),

arXiv:1803.10701 [gr-qc].
[65] S. Ossokine et al., Phys. Rev. D 102, 044055 (2020), arXiv:2004.09442 [gr-qc].
[66] R. Cotesta, S. Marsat, and M. Pürrer, Phys. Rev. D 101, 124040 (2020), arXiv:2003.12079 [gr-qc].
[67] A. Ramos-Buades, A. Buonanno, M. Khalil, and S. Ossokine, Phys. Rev. D 105, 044035 (2022),

arXiv:2112.06952 [gr-qc].
[68] D. P. Mihaylov, S. Ossokine, A. Buonanno, and A. Ghosh, Phys. Rev. D 104, 124087 (2021), arXiv:2105.06983

https://doi.org/10.1103/PhysRevD.101.063011
https://arxiv.org/abs/1903.09204
https://doi.org/10.1103/PhysRevD.101.081502
https://arxiv.org/abs/1910.10473
https://arxiv.org/abs/1910.10473
https://doi.org/10.1103/PhysRevD.103.064022
https://arxiv.org/abs/2101.11798
https://doi.org/10.1103/PhysRevD.106.104025
https://arxiv.org/abs/2204.01972
https://doi.org/10.1103/PhysRevD.106.044001
https://doi.org/10.1103/PhysRevD.106.044001
https://arxiv.org/abs/2203.10109
https://doi.org/10.1103/PhysRevD.77.024014
https://arxiv.org/abs/0704.1964
https://doi.org/10.1088/0264-9381/24/19/S31
https://arxiv.org/abs/0704.3764
https://doi.org/10.1103/PhysRevLett.106.241101
https://arxiv.org/abs/0909.2867
https://doi.org/10.1103/PhysRevD.82.064016
https://arxiv.org/abs/1005.3306
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.113.151101
https://arxiv.org/abs/1308.3271
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044006
https://arxiv.org/abs/1508.07250
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.93.044007
https://arxiv.org/abs/1508.07253
https://doi.org/10.1103/PhysRevLett.120.161102
https://arxiv.org/abs/1708.00404
https://doi.org/10.1103/PhysRevD.100.024059
https://arxiv.org/abs/1809.10113
https://arxiv.org/abs/1809.10113
https://doi.org/10.1103/PhysRevD.101.024056
https://arxiv.org/abs/1911.06050
https://arxiv.org/abs/1911.06050
https://doi.org/10.1103/PhysRevD.100.044003
https://doi.org/10.1103/PhysRevD.100.044003
https://arxiv.org/abs/1905.06011
https://doi.org/10.1103/PhysRevD.102.064001
https://doi.org/10.1103/PhysRevD.102.064001
https://arxiv.org/abs/2001.11412
https://doi.org/10.1103/PhysRevD.103.104056
https://arxiv.org/abs/2004.06503
https://doi.org/10.1103/PhysRevD.102.064002
https://arxiv.org/abs/2001.10914
https://doi.org/10.1103/PhysRevD.103.124060
https://doi.org/10.1103/PhysRevD.103.124060
https://arxiv.org/abs/2004.08302
https://doi.org/10.1103/PhysRevD.105.084039
https://arxiv.org/abs/2012.11923
https://doi.org/10.1103/PhysRevD.105.084040
https://arxiv.org/abs/2105.05872
https://doi.org/10.1103/PhysRevD.104.124027
https://arxiv.org/abs/2107.08876
https://doi.org/10.1103/PhysRevD.59.084006
https://arxiv.org/abs/gr-qc/9811091
https://doi.org/10.1103/PhysRevD.62.064015
https://arxiv.org/abs/gr-qc/0001013
https://doi.org/10.1103/PhysRevD.62.084011
https://arxiv.org/abs/gr-qc/0005034
https://doi.org/10.1103/PhysRevD.64.124013
https://arxiv.org/abs/gr-qc/0103018
https://doi.org/10.1103/PhysRevD.74.104005
https://arxiv.org/abs/gr-qc/0508067
https://doi.org/10.1103/PhysRevD.95.044028
https://arxiv.org/abs/1611.03703
https://doi.org/10.1103/PhysRevD.98.084028
https://arxiv.org/abs/1803.10701
https://doi.org/10.1103/PhysRevD.102.044055
https://arxiv.org/abs/2004.09442
https://doi.org/10.1103/PhysRevD.101.124040
https://arxiv.org/abs/2003.12079
https://doi.org/10.1103/PhysRevD.105.044035
https://arxiv.org/abs/2112.06952
https://doi.org/10.1103/PhysRevD.104.124087
https://arxiv.org/abs/2105.06983

20

[gr-qc].
[69] A. Nagar et al., Phys. Rev. D 98, 104052 (2018), arXiv:1806.01772 [gr-qc].
[70] A. Nagar, G. Pratten, G. Riemenschneider, and R. Gamba, Phys. Rev. D 101, 024041 (2020), arXiv:1904.09550

[gr-qc].
[71] A. Nagar, G. Riemenschneider, G. Pratten, P. Rettegno, and F. Messina, Phys. Rev. D 102, 024077 (2020),

arXiv:2001.09082 [gr-qc].
[72] R. Gamba, S. Akçay, S. Bernuzzi, and J. Williams, Phys. Rev. D 106, 024020 (2022), arXiv:2111.03675 [gr-

qc].
[73] G. Riemenschneider, P. Rettegno, M. Breschi, A. Albertini, R. Gamba, S. Bernuzzi, and A. Nagar, Phys. Rev.

D 104, 104045 (2021), arXiv:2104.07533 [gr-qc].
[74] D. Chiaramello and A. Nagar, Phys. Rev. D 101, 101501 (2020), arXiv:2001.11736 [gr-qc].
[75] J. Skilling, Bayesian Analysis 1, 833 (2006).
[76] J. Veitch et al., Phys. Rev. D 91, 042003 (2015), arXiv:1409.7215 [gr-qc].
[77] G. Ashton et al., Astrophys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM].
[78] S. Khan and R. Green, Phys. Rev. D 103, 064015 (2021).
[79] L. M. Thomas, G. Pratten, and P. Schmidt, Phys. Rev. D 106, 104029 (2022).
[80] S. E. Field, C. R. Galley, J. S. Hesthaven, J. Kaye, and M. Tiglio, Phys. Rev. X 4, 031006 (2014),

arXiv:1308.3565 [gr-qc].
[81] M. Pürrer, Class. Quant. Grav. 31, 195010 (2014), arXiv:1402.4146 [gr-qc].
[82] M. Pürrer, Phys. Rev. D 93, 064041 (2016), arXiv:1512.02248 [gr-qc].
[83] B. D. Lackey, M. Pürrer, A. Taracchini, and S. Marsat, Phys. Rev. D 100, 024002 (2019), arXiv:1812.08643

[gr-qc].
[84] Z. Doctor, B. Farr, D. E. Holz, and M. Pürrer, Phys. Rev. D96, 123011 (2017), arXiv:1706.05408 [astro-ph.HE].
[85] Y. E. Setyawati, M. Pürrer, and F. Ohme, Classical and Quantum Gravity (2020).
[86] B. Gadre, M. Pürrer, S. E. Field, S. Ossokine, and V. Varma, (2022), arXiv:2203.00381 [gr-qc].
[87] L. M. Thomas, G. Pratten, and P. Schmidt, Phys. Rev. D 106, 104029 (2022), arXiv:2205.14066 [gr-qc].
[88] J. Lange, R. O’Shaughnessy, and M. Rizzo, (2018), arXiv:1805.10457 [gr-qc].
[89] R. J. E. Smith, G. Ashton, A. Vajpeyi, and C. Talbot, Mon. Not. Roy. Astron. Soc. 498, 4492 (2020),

arXiv:1909.11873 [gr-qc].
[90] H. Gabbard, C. Messenger, I. S. Heng, F. Tonolini, and R. Murray-Smith, Nature Phys. 18, 112 (2022),

arXiv:1909.06296 [astro-ph.IM].
[91] V. Tiwari, C. Hoy, S. Fairhurst, and D. MacLeod, (2023), arXiv:2303.01463 [astro-ph.HE].
[92] S. R. Green and J. Gair, Mach. Learn. Sci. Tech. 2, 03LT01 (2021), arXiv:2008.03312 [astro-ph.IM].
[93] M. Dax, S. R. Green, J. Gair, J. H. Macke, A. Buonanno, and B. Schölkopf, Phys. Rev. Lett. 127, 241103

(2021), arXiv:2106.12594 [gr-qc].
[94] M. Dax, S. R. Green, J. Gair, M. Pürrer, J. Wildberger, J. H. Macke, A. Buonanno, and B. Schölkopf, (2022),

arXiv:2210.05686 [gr-qc].
[95] B. D. Lackey, S. Bernuzzi, C. R. Galley, J. Meidam, and C. Van Den Broeck, Phys. Rev. D 95, 104036 (2017),

arXiv:1610.04742 [gr-qc].
[96] J. Tissino, G. Carullo, M. Breschi, R. Gamba, S. Schmidt, and S. Bernuzzi, (2022), arXiv:2210.15684 [gr-qc].
[97] S. Khan and R. Green, Phys. Rev. D 103, 064015 (2021), arXiv:2008.12932 [gr-qc].
[98] L. Pompili, A. Buonanno, H. Estellés, M. Khalil, M. van de Meent, D. Mihaylov, S. Ossokine, M. Pürrer,

A. Ramos-Buades, A. Kumar Mehta, R. Cotesta, S. Marsat, M. Boyle, L. E. Kidder, H. P. Pfeiffer, M. A.
Scheel, H. R. Rüter, N. Vu, R. Dudi, S. Ma, K. Mitman, D. Melchor, S. Thomas, and J. Sanchez, (2023).

[99] A. Ramos-Buades, A. Buonanno, S. Ossokine, H. Estellés, M. Khalil, L. Pompili, and M. Shiferaw, (2023).
[100] I. M. Romero-Shaw et al., Mon. Not. Roy. Astron. Soc. 499, 3295 (2020), arXiv:2006.00714 [astro-ph.IM].
[101] G. van Rossum and J. de Boer, CWI Quarterly 4, 283 (1991).
[102] G. Van Rossum and F. L. Drake Jr, Python tutorial (Centrum voor Wiskunde en Informatica Amsterdam, The

Netherlands, 1995).
[103] G. Van Rossum and F. L. Drake, Python 3 Reference Manual (CreateSpace, Scotts Valley, CA, 2009).
[104] A. Nitz, I. Harry, D. Brown, C. M. Biwer, J. Willis, T. D. Canton, C. Capano, T. Dent, L. Pekowsky, S. De,

M. Cabero, G. S. C. Davies, A. R. Williamson, D. Macleod, B. Machenschalk, F. Pannarale, P. Kumar, S. Reyes,
dfinstad, S. Kumar, M. Tápai, S. Wu, L. Singer, veronica villa, S. Khan, S. Fairhurst, K. Chandra, A. Nielsen,
S. Singh, and T. Massinger, gwastro/pycbc: v2.1.0 release of pycbc (2023).

[105] https://git.ligo.org/lscsoft/pyring/.

https://arxiv.org/abs/2105.06983
https://arxiv.org/abs/2105.06983
https://doi.org/10.1103/PhysRevD.98.104052
https://arxiv.org/abs/1806.01772
https://doi.org/10.1103/PhysRevD.101.024041
https://arxiv.org/abs/1904.09550
https://arxiv.org/abs/1904.09550
https://doi.org/10.1103/PhysRevD.102.024077
https://arxiv.org/abs/2001.09082
https://doi.org/10.1103/PhysRevD.106.024020
https://arxiv.org/abs/2111.03675
https://arxiv.org/abs/2111.03675
https://doi.org/10.1103/PhysRevD.104.104045
https://doi.org/10.1103/PhysRevD.104.104045
https://arxiv.org/abs/2104.07533
https://doi.org/10.1103/PhysRevD.101.101501
https://arxiv.org/abs/2001.11736
https://doi.org/10.1214/06-BA127
https://doi.org/10.1103/PhysRevD.91.042003
https://arxiv.org/abs/1409.7215
https://doi.org/10.3847/1538-4365/ab06fc
https://arxiv.org/abs/1811.02042
https://doi.org/10.1103/PhysRevD.103.064015
https://doi.org/10.1103/PhysRevD.106.104029
https://doi.org/10.1103/PhysRevX.4.031006
https://arxiv.org/abs/1308.3565
https://doi.org/10.1088/0264-9381/31/19/195010
https://arxiv.org/abs/1402.4146
https://doi.org/10.1103/PhysRevD.93.064041
https://arxiv.org/abs/1512.02248
https://doi.org/10.1103/PhysRevD.100.024002
https://arxiv.org/abs/1812.08643
https://arxiv.org/abs/1812.08643
https://doi.org/10.1103/PhysRevD.96.123011
https://arxiv.org/abs/1706.05408
http://iopscience.iop.org/10.1088/1361-6382/ab693b
https://arxiv.org/abs/2203.00381
https://doi.org/10.1103/PhysRevD.106.104029
https://arxiv.org/abs/2205.14066
https://arxiv.org/abs/1805.10457
https://doi.org/10.1093/mnras/staa2483
https://arxiv.org/abs/1909.11873
https://doi.org/10.1038/s41567-021-01425-7
https://arxiv.org/abs/1909.06296
https://arxiv.org/abs/2303.01463
https://doi.org/10.1088/2632-2153/abfaed
https://arxiv.org/abs/2008.03312
https://doi.org/10.1103/PhysRevLett.127.241103
https://doi.org/10.1103/PhysRevLett.127.241103
https://arxiv.org/abs/2106.12594
https://arxiv.org/abs/2210.05686
https://doi.org/10.1103/PhysRevD.95.104036
https://arxiv.org/abs/1610.04742
https://arxiv.org/abs/2210.15684
https://doi.org/10.1103/PhysRevD.103.064015
https://arxiv.org/abs/2008.12932
https://doi.org/10.1093/mnras/staa2850
https://arxiv.org/abs/2006.00714
https://doi.org/10.5281/zenodo.7692098
https://git.ligo.org/lscsoft/pyring/

21

[106] G. Carullo, W. Del Pozzo, and J. Veitch, Phys. Rev. D 99, 123029 (2019), [Erratum: Phys.Rev.D 100, 089903
(2019)], arXiv:1902.07527 [gr-qc].

[107] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith, Computing in Science & Engineer-
ing 13, 31 (2011).

[108] W. R. Inc., Mathematica, Version 13.2, champaign, IL, 2022.
[109] Gnu general public license, version 3, http://www.gnu.org/licenses/gpl.html (2007), last re-

trieved 2020-01-01.
[110] https://git-scm.com.
[111] S. Chacon and B. Straub, Pro git (Apress, 2014).
[112] Python package index - pypi.
[113] M. Khalil, A. Buonanno, H. Estellés, D. Mihaylov, S. Ossokine, L. Pompili, and A. Ramos-Buades, (2023).
[114] M. van de Meent, A. Buonanno, D. Mihaylov, S. Ossokine, L. Pompili, N. Warburton, A. Pound, B. Wardell,

L. Durkan, and J. Miller, (2023).
[115] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,

S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o,
M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and
T. E. Oliphant, Nature 585, 357 (2020).

[116] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson,
E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van
Mulbregt, and SciPy 1.0 Contributors, Nature Methods 17, 261 (2020).

[117] M. Galassi and et al, Gnu scientific library reference manual (3rd ed.), http://www.gnu.org/
software/gsl/.

[118] B. Gough, GNU scientific library reference manual (Network Theory Ltd., 2009).
[119] https://github.com/pygsl/pygsl.
[120] LIGO Scientific Collaboration, LIGO Algorithm Library - LALSuite, free software (GPL) (2018).
[121] K. Wette, SoftwareX 12, 100634 (2020).
[122] W. Research, wolframclient for python, https://github.com/WolframResearch/

WolframClientForPython (2019).
[123] G. Ashton, M. Hübner, P. D. Lasky, C. Talbot, K. Ackley, S. Biscoveanu, Q. Chu, A. Divakarla, P. J. Easter,

B. Goncharov, F. H. Vivanco, J. Harms, M. E. Lower, G. D. Meadors, D. Melchor, E. Payne, M. D. Pitkin,
J. Powell, N. Sarin, R. J. E. Smith, and E. Thrane, The Astrophysical Journal Supplement Series 241, 27
(2019).

[124] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Van-
derPlas, S. Wanderman-Milne, and Q. Zhang, JAX: composable transformations of Python+NumPy programs
(2018).

[125] T. Damour, B. R. Iyer, and A. Nagar, Phys. Rev. D 79, 064004 (2009), arXiv:0811.2069 [gr-qc].
[126] Y. Pan, A. Buonanno, R. Fujita, E. Racine, and H. Tagoshi, Phys. Rev. D 83, 064003 (2011), [Erratum:

Phys.Rev.D 87, 109901 (2013)], arXiv:1006.0431 [gr-qc].
[127] A. Nagar and P. Rettegno, Phys. Rev. D 99, 021501 (2019), arXiv:1805.03891 [gr-qc].
[128] P. Rettegno, F. Martinetti, A. Nagar, D. Bini, G. Riemenschneider, and T. Damour, Phys. Rev. D 101, 104027

(2020), arXiv:1911.10818 [gr-qc].
[129] A. Meurer, C. P. Smith, M. Paprocki, O. Čertı́k, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore,

S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pe-
dregosa, M. J. Curry, A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz,
PeerJ Computer Science 3, e103 (2017).

[130] T. Preston-Werner, Tom’s obvious, minimal language, https://github.com/toml-lang/toml
(2019).

[131] W. Pearson, toml, https://github.com/uiri/toml (2019).
[132] I. Harry, S. Privitera, A. Bohé, and A. Buonanno, Phys. Rev. D 94, 024012 (2016).
[133] M. J. Williams, J. Veitch, and C. Messenger, Phys. Rev. D 103, 103006 (2021), arXiv:2102.11056 [gr-qc].
[134] B. W. Kernighan and D. M. Ritchie, The C programming language (2006).
[135] ISO, ISO/IEC 14882:1998: Programming languages — C++ (1998).
[136] ISO, ISO C Standard 1999, Tech. Rep. (1999) iSO/IEC 9899:1999 draft.

https://doi.org/10.1103/PhysRevD.99.123029
https://arxiv.org/abs/1902.07527
https://www.wolfram.com/mathematica
http://www.gnu.org/licenses/gpl.html
https://git-scm.com
https://pypi.org/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
https://github.com/pygsl/pygsl
https://doi.org/10.7935/GT1W-FZ16
https://doi.org/10.1016/j.softx.2020.100634
https://github.com/WolframResearch/WolframClientForPython
https://github.com/WolframResearch/WolframClientForPython
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.3847/1538-4365/ab06fc
http://github.com/google/jax
https://doi.org/10.1103/PhysRevD.79.064004
https://arxiv.org/abs/0811.2069
https://doi.org/10.1103/PhysRevD.83.064003
https://arxiv.org/abs/1006.0431
https://doi.org/10.1103/PhysRevD.99.021501
https://arxiv.org/abs/1805.03891
https://doi.org/10.1103/PhysRevD.101.104027
https://doi.org/10.1103/PhysRevD.101.104027
https://arxiv.org/abs/1911.10818
https://doi.org/10.7717/peerj-cs.103
https://github.com/toml-lang/toml
https://github.com/uiri/toml
https://doi.org/10.1103/PhysRevD.94.024012
https://doi.org/10.1103/PhysRevD.103.103006
https://arxiv.org/abs/2102.11056
http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998; http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%3A1998; http://www.iso.ch/cate/d25845.html; https://webstore.ansi.org/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

	pySEOBNR: a software package for the next generationof effective-one-body multipolar waveform models
	Abstract
	 Metadata
	I Motivation for developing pySEOBNR
	II Description of the software package
	A Software architecture
	1 The GenerateWaveform class
	2 Advanced interface: Generating modes and polarizations directly

	B Primary submodules
	1 Hamiltonian
	2 Waveform and radiation-reaction force
	3 Dynamics
	4 Fits

	C Auxiliary submodules
	1 Automatic code generation
	2 Calibration pipelines

	III Use cases
	A Generating an aligned-spin gravitational waveform
	B Generating a precessing-spin gravitational waveform

	IV Conclusions and future developments
	 Acknowledgements
	A Code for generating the plots of the waveform
	 References

