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A SPACE-TIME CALCULUS BASED ON SYMMETRIC 2-SPINORS

STEFFEN AKSTEINER AND THOMAS BÄCKDAHL

Abstract. In this paper we present a space-time calculus for symmetric spinors, including a

product with a number of index contractions followed by symmetrization. As all operations

stay within the class of symmetric spinors, no involved index manipulations are needed. In fact

spinor indices are not needed in the formalism. It is also general because any covariant tensor

expression in a 4-dimensional Lorentzian spacetime can be translated to this formalism. The

computer algebra implementation SymSpin as part of xAct for Mathematica is also presented.

1. Introduction

When working with tensorial expressions, one usually encounters difficulties handling index
manipulations due to complicated symmetries. Techniques including group theoretical calcula-
tions and Young tableaux have been introduced to try to tackle these problems. However, their
complexity grows quickly with the size of the problem. The purpose of this paper is to present
a formalism based on 2-spinors that aims to simplify the situation by utilizing the symmetry
properties of irreducible spinors.

Let (M, gab) be a 4-dimensional manifold with metric gab of Lorentzian signature and admitting
a spin structure with spin metric ǫAB. It is well known that any tensor field onM can be expressed
in terms of 2-spinors, which in turn can be decomposed into irreducible symmetric spinors [9,
Prop 3.3.54]. For instance a valence (3, 0) spinor can be decomposed as

TABC = T(ABC) +
1
3T

D
D(BǫC)A − 1

3ǫA(BT
D

C)D − 1
2TA

D
DǫBC . (1)

Therefore, it is sufficient to work with with symmetric spinors. To fully establish this perspective,
a symmetric product for symmetric spinors with a number of contractions is needed. It is the
intention of this work to introduce the corresponding algebra and to derive its basic properties.
In particular, with these operations we stay within the algebra of symmetric spinors. This offers
great simplifications, and speeds up the calculations. Furtheremore, no relevant information is
left in the indices, and we therefore get an index-free compact formalism.

We have previously described the decomposition of the covariant derivative [4], leading to four
fundamental spinor operators, which can be viewed as a special case. Also, the symmetric product
is a generalization of some special operators, like the Ki operators defined in [1, Definition II.4].
Therefore, all properties of such operators can easily be derived from the corresponding properties
of the symmetric product described in this paper.

The formalism has many potential applications, see [2],[3]. As a simple example, consider a
condition of the form

0 = KAB
FHLF

CϕHC +M(A
CϕB)C , (2)

for symmetric spinorsK,L,M,ϕ. For arbitrary ϕ a systematic computation, using the techniques
of this paper, shows that the conditions on K,L,M are of the form

KG
(ABCL|G|F ) = 0, MAB = 1

2K
CF

ABLCF , (3)

see Section 3.2 for details. The same techniques have been used in [7] to derive conditions on the
spacetime for the existence of second order symmetry operators for the massive Dirac equation.

The formalism is implemented in the SymSpin [5] package for xAct [8] for Mathematica.
In Section 2 we introduce the symmetric product and state basic properties in Theorem 3.

The expansion of a product into symmetric products is discussed in Lemma 6. The irreducible
parts of the Levi-Civita connection, its commutators, curvature and Leibniz rules are discussed
in Section 2.4. A concise form the the dyad components of such symmetric spinors is given
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2 S. AKSTEINER AND T. BÄCKDAHL

in Section 2.5. The computer algebra implementation is discussed in Section 3 and Section 4
contains some conclusions.

2. Symmetric spinor algebra

Let Sk,l be the space of symmetric valence (k, l) spinors. In abstract index notation, elements
are of the form φA1...AkA

′

1...A
′

l
∈ Sk,l. Sometimes it is convenient to suppress the valence and/or

indices and we write e.g. φ ∈ S or φ ∈ Sk,l.

2.1. Symmetric product. Given two symmetric spinors, we introduce a product which involves
a given number of contractions and symmetrization afterwards.

Definition 1. Let k, l, n,m, i, j be integers with i ≤ min(k, n) and j ≤ min(l,m). The symmetric
product is a bilinear form

i,j

⊙ : Sk,l × Sn,m → Sk+n−2i,l+m−2j . (4)

For φ ∈ Sk,l, ψ ∈ Sn,m, it is given by

(φ
i,j

⊙ ψ)
A′

1...A
′

l+m−2j

A1...Ak+n−2i
= φ

(A′

1...A
′

l−j−1|B1...BiB
′

1...B
′

j |

(A1...Ak−i−1
ψ
A′

l−j ...A
′

l+m−2j)

Ak−i...Ak+n−2i)B1...BiB
′

1...B
′

j

(5)

For many commutator relations we will need the following coefficients.

Definition 2. Define the associativity coefficients

F t,m,M
i,r,k =

M
∑

p=0

M−p
∑

q=0

(−1)t−p+q
(

k−m
p

)(

m
M−p−q

)(

k−m−p
q

)(

r−m
t−p

)(

i−t
M−p−q

)(

t−p
q

)

(

i+k−M−p+1
M−p

)(

M−p
q

)(

k−2m+r
t

) . (6)

Observe that the limits can be restricted to max(0,m − r + t) ≤ p ≤ min(k −m,M, t) and
max(0,M −m− p,M − i− p+ t) ≤ q ≤ min(k−m− p,M − p, t− p) because the terms are zero
outside this range.

For multiple products we will use the convention ω
m,n

⊙ ϕ
t,u

⊙ φ = ω
m,n

⊙ (ϕ
t,u

⊙ φ).

Theorem 3. Let φ ∈ Si,j , ω ∈ Sr,s, ϕ ∈ Sk,l. The symmetric product ⊙ of Definition 1 has the
following properties:

(1) It is graded anti-commutative:

φ
m,n

⊙ ω = (−1)m+nω
m,n

⊙ φ (7a)

(2) It is non-associative:

(ω
m,n

⊙ ϕ)
t,u

⊙ φ =

min(i,k)
∑

M=0

min(j,l)
∑

N=0

(−1)t+u+M+NF t,m,M
i,r,k Fu,n,N

j,s,l ω
t+m−M,u+n−N

⊙ ϕ
M,N

⊙ φ. (7b)

(3) It is Hermitian:

φ
m,n

⊙ ω = φ
n,m

⊙ ω (7c)

Combining the first two points, we get the following useful relation.

Corollary 4.

φ
t,u

⊙ ω
m,n

⊙ ϕ =

min(i,k)
∑

M=0

min(j,l)
∑

N=0

F t,m,M
i,r,k Fu,n,N

j,s,l ω
t+m−M,u+n−N

⊙ φ
M,N

⊙ ϕ (8)
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2.2. Irreducible decomposition. A key property of the symmetric product is that the product
of two symmetric spinors can always be decomposed in terms of symmetric products and spin
metrics.

Definition 5. We will use the following notation for for products of spin metrics.

ǫ
B1...Bp

A1...Ap
= ǫA1

B1 . . . ǫAp

Bp , (9a)

ǭ
B′

1...B
′

q

A′

1...A
′

q
= ǭA′

1

B′

1 . . . ǭA′

q

B′

q . (9b)

Lemma 6. For φ ∈ Si,j , ϕ ∈ Sk,l with p unprimed and q primed contractions, we have the
irreducible decomposition

φ
C1...CpC

′

1...C
′

q

A1...Ai−pA
′

1...A
′

j−q

ϕ
B1...Bk−pB

′

1...B
′

l−q

C1...CpC
′

1...C
′

q

= (−1)p+q

min(i,k)
∑

m=p

min(j,l)
∑

n=q

((−1)m+n
(

i−p
m−p

)(

k−p
m−p

)(

j−q
n−q

)(

l−q
n−q

)

(

i+k−m−p+1
m−p

)(

j+l−n−q+1
n−q

)

× ǫ
(B1...Bm−p

(A1...Am−p
(φ

m,n

⊙ ϕ)
Bm−p+1...Bk−p)(B

′

n−q+1...B
′

l−q

Am−p+1...Ai−p)(A′

n−p+1...A
′

j−q

ǭ
B′

1...B
′

n−q)

A′

1...A
′

n−q
)

)

. (10)

Proof. Let φ and ϕ be symmetric of valence (i, 0) and (k, 0) respectively. By [9, Prop 3.3.54] the
irreducible decomposition of the product must have the following form

φA1...Ai
ϕB1...Bk =

min(i,k)
∑

m=0

cmǫ
(B1...Bm

(A1...Am
(φ

m,0
⊙ ϕ)

Bm+1...Bk)
Am+1...Ai)

(11)

Taking a trace of the summand, we find by partial expansions of the symmetrizations that

ǫ
(B1...Bm

(A1...Am
(φ

m,0
⊙ ϕ)

Bm+1...Bk−1Ai)

Am+1...Ai)

= m
i
ǫ
(B1...Bm

Ai(A1...Am−1
(φ

m,0
⊙ ϕ)

Bm+1...Bk−1Ai)
Am...Ai−1)

+ i−m
i
ǫ
(B1...Bm

(A1...Am
(φ

m,0
⊙ ϕ)

Bm+1...Bk−1Ai)
Am+1...Ai−1)Ai

= m
ik
ǫ
Ai(B1...Bm−1

Ai(A1...Am−1
(φ

m,0
⊙ ϕ)

Bm...Bk−1)

Am...Ai−1)
+ m(m−1)

ik
ǫ
(B1|Ai|...Bm−1

Ai(A1...Am−1
(φ

m,0
⊙ ϕ)

Bm...Bk−1)

Am...Ai+1)

+ m(k−m)
ik

ǫ
(B1...Bm

Ai(A1...Am−1
(φ

m,0
⊙ ϕ)

Bm+1...Bk−1)Ai

Am...Ai−1)
+ (i−m)m

ik
ǫ
Ai(B1...Bm−1

(A1...Am
(φ

m,0
⊙ ϕ)

Bm...Bk−1)

Am+1...Ai−1)Ai

= m(i+k−m+1)
ik

ǫ
(B1...Bm−1

(A1...Am−1
(φ

m,0
⊙ ϕ)

Bm...Bk−1)
Am...Ai−1)

. (12)

Recursively for p ≤ min(i, k) traces we get

ǫ
(B1...Bm

(A1...Am
(φ

m,0
⊙ ϕ)

Bm+1...Bk−pAi−p+1...Ai)

Am+1...Ai)

= m(i+k−m+1)
ik

ǫ
(B1...Bm−1

(A1...Am−1
(φ

m,0
⊙ ϕ)

Bm...Bk−pAi−p+1...Ai−1)

Am...Ai−1)

= m(i+k−m+1)
ik

(m−1)(i+k−m)
(i−1)(k−1) ǫ

(B1...Bm−2

(A1...Am−2
(φ

m,0
⊙ ϕ)

Bm−1...Bk−pAi−p+1...Ai−2)

Am−1...Ai−2)

= ǫ
(B1...Bm−p

(A1...Am−p
(φ

m,0
⊙ ϕ)

Bm−p+1...Bk−p)

Am−p+1...Ai−p)

p−1
∏

q=0

(m−q)(i+k−m+1−q)
(i−q)(k−q) .

= ǫ
(B1...Bm−p

(A1...Am−p
(φ

m,0
⊙ ϕ)

Bm−p+1...Bk−p)

Am−p+1...Ai−p)

(

1+i+k−m
p

)(

m
p

)

(

i
p

)(

k
p

) (13)
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Taking p ≤ min(i, k) traces in (11) gives

φ
C1...Cp

A1...Ai−p
ϕ
B1...Bk−p

C1...Cp

= (−1)pφA1...Ai
ϕB1...Bk−pAi−p+1...Ai

= (−1)p
min(i,k)
∑

m=0

cmǫ
(B1...Bm

(A1...Am
(φ

m,0
⊙ ϕ)

Bm+1Bk−pAi−p+1...Ai)

Am+1...Ai)

= (−1)p
min(i,k)
∑

m=p

cm

(

i+k−m+1
p

)(

m
p

)

(

i
p

)(

k
p

) ǫ
(B1...Bm−p

(A1...Am−p
(φ

m,0
⊙ ϕ)

Bm−p+1...Bk−p)

Am−p+1...Ai−p)
. (14)

With m < p, we get at least one contraction of the symmetric spinor (φ
m,0
⊙ ϕ) and the term drops

out. If we symmetrize over all free indices, only the m = p term survives, and we get

cm =
(−1)m

(

i
m

)(

k
m

)

(

i+k−m+1
m

) . (15)

Hence

φ
C1...Cp

A1...Ai−p
ϕ
B1...Bk−p

C1...Cp

= (−1)p
i

∑

m=p

(−1)m
(

i
m

)(

k
m

)

(

i+k−m+1
m

)

(

i+k−m+1
p

)(

m
p

)

(

i
p

)(

k
p

) ǫ
(B1...Bm−p

(A1...Am−p
(φ

m,0
⊙ ϕ)

Bm−p+1...Bk−p)

Am−p+1...Ai−p)

= (−1)p
min(i,k)
∑

m=p

(−1)m
(

i−p
m−p

)(

k−p
m−p

)

(

i+k−m−p+1
m−p

) ǫ
(B1...Bm−p

(A1...Am−p
(φ

m,0
⊙ ϕ)

Bm−p+1...Bk−p)

Am−p+1...Ai−p)
. (16)

By complex conjugation we get the corresponding decomposition for the primed indices. �

2.3. Proof of Theorem 3. To proof the main theorem and in particular (7b), we need the
following intermediate identities. We restrict to unprimed indices, as the effect of primed indices
can be superimposed. We begin with a partial expansion of symmetrization of B indices.

Proposition 7. Let ω ∈ Sr,0, ϕ ∈ Sk,0. We have the partial expansion

(ω
m,0
⊙ ϕ)A1...Ak+r−2m−tB1...Bt

=

t
∑

p=0

(

k−m
p

)(

r−m
t−p

)

(

k−2m+r
t

) ωC1...Cm

Bp+1···Bt(A1...Ar−m−t+p
ϕAr−m−t+p+1...Ak+r−2m−t)B1...BpC1...Cm

. (17)

The sum can be limited to the range max(0, t+m− r) ≤ p ≤ min(t, k −m).

Proof. Partial expansion of the symmetry for the indices Bt, Bt−1, . . . B1 gives

(ω
m,0
⊙ ϕ)A1...Ak+r−2m−tB1...Bt

= r−m
k+r−2mω

C1...Cm

Bt(A1...Ar−m−1
ϕAr−m...Ak+r−2m−tB1...Bt−1)C1...Cm

+ k−m
k+r−2mω

C1...Cm

(A1...Ar−m
ϕAr−m+1...Ak+r−2m−tB1...Bt−1)BtC1...Cm

=

t
∑

p=0

(

(

t

p

)

(r−m)!(k−m)!(k+r−2m−t)!
(r−m−t+p)!(k−m−p)!(k+r−2m)!

× ωC1...Cm

Bp+1···Bt(A1...Ar−m−t+p
ϕAr−m−t+p+1...Ak+r−2m−t)B1...BpC1...Cm

)

, (18)

which can be simplified to (17). �

We aso need to make an irreducible decomposition of a product of two spinors with some
contractions and symmetrizations.
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Proposition 8. Let φ ∈ Si,0, ϕ ∈ Sk,0.

φ
C1...Cp(B1...Bt−p

(A1...Ai−t
ϕ
Bt−p+1...Bt−p+m)

Ai−t+1...Ai+k−t−m−p)C1...Cp

=

min(i,k)−p
∑

M=0

M
∑

q=0

(−1)q+M
(

m
M−q

)(

k−m−p
q

)(

i−t
M−q

)(

t−p
q

)

(

i+k−M−2p+1
M

)(

M
q

) ǫ
(B1...BM

(A1...AM
(φ

M+p,0
⊙ ϕ)

BM+1...Bt−p+m)

AM+1...Ai+k−t−m−p)
(19)

Proof. Let ≏ mean equal after lowering the A indices, raising the B indices and symmetrizing
over the A and B index sets separately. Using Lemma 6, performing a partial expansion of the

symmetries and noticing that ǫ
Aj

Ai
≏ 0 and ǫ

Bj

Bi
≏ 0 if i 6= j, we get

φ
C1...Cp

A1...Ai−tB1...Bt−p
ϕ
Ai−t+1...Ai+k−t−m−pBt−p+1...Bt−p+m

C1...Cp

= (−1)p
min(i,k)−p

∑

M=0

((−1)M+p
(

i−p
M

)(

k−p
M

)

(

i+k−M−2p+1
M

)

× ǫ
(Ai−t+1...Ai−t+M

(A1...AM
(φ

M+p,0
⊙ ϕ)

Ai−t+M+1...Ai+k−t−m−pBt−p+1...Bt−p+m)

AM+1...Ai−tB1...Bt−p)

)

≏

min(i,k)−p
∑

M=0

(−1)M
(

i−p
M

)(

k−p
M

)

(

i+k−M−2p+1
M

)

(

(t−p)(k−m−p)
(i−p)(k−p) ǫ

Ai−t+1(Ai−t+2...Ai−t+M

B1(A1...AM−1
(φ

M+p,0
⊙ ϕ)

Ai−t+M+1...Ai+k−t−m−pBt−p+1...Bt−p+m)

AM ...Ai−tB2...Bt−p)

+ (i−t)m
(i−p)(k−p) ǫ

Bt−p+1(Ai−t+1...Ai−t+M−1

A1(A2...AM
(φ

M+p,0
⊙ ϕ)

Ai−t+M ...Ai+k−t−m−pBt−p+2...Bt−p+m)

AM+1...Ai−tB1...Bt−p)

)

. (20)

Repeatedly expanding, we find

φ
C1...Cp

A1...Ai−tB1...Bt−p
ϕ
Ai−t+1...Ai+k−t−m−pBt−p+1...Bt−p+m

C1...Cp

≏

min(i,k)−p
∑

M=0

(−1)M
(

i−p
M

)(

k−p
M

)

(

i+k−M−2p+1
M

)

(

M
∑

q=0

(

M

q

)

(t−p)!(k−m−p)!(i−t)!m!(i−p−M)!(k−p−M)!
(t−p−q)!(k−m−p−q)!(i−t−M+q)!(m−M+q)!(i−p)!(k−p)!

ǫ
Ai−t+1...Ai−t+qBt−p+1...Bt−p+M−q

B1...BqA1...AM−q
(φ

M+p,0
⊙ ϕ)

Ai−t+q+1...Ai+k−t−m−pBt−p+M−q+1...Bt−p+m

AM−q+1...Ai−tBq+1...Bt−p

)

. (21)

Moving the A indices down and the B indices up and writing out the symmetrizations, we get

φ
C1...Cp(B1...Bt−p

(A1...Ai−t
ϕ
Bt−p+1...Bt−p+m)

Ai−t+1...Ai+k−t−m−p)C1...Cp

=

min(i,k)−p
∑

M=0

(−1)M
(

i−p
M

)(

k−p
M

)

(

i+k−M−2p+1
M

)

(

M
∑

q=0

(−1)q
(

m
M−q

)(

k−m−p
q

)(

i−t
M−q

)(

t−p
q

)

(

M
q

)(

i−p
M

)(

k−p
M

)

ǫ
(B1...BqBt−p+1...Bt−p+M−q

(Ai−t+1...Ai−t+qA1...AM−q
(φ

M+p,0
⊙ ϕ)

Bq+1...Bt−pBt−p+M−q+1...Bt−p+m)

AM−q+1...Ai−tAi−t+q+1...Ai+k−t−m−p)

)

. (22)

After rearranging the indices, and simplifying, we get (19). �

Proof of Theorem 3. Part 1 follows from the zee-zaw rule on the m + n contracted indices and
part 3 follows from complex conjugation of (5). Part 2 follows from the following argument.
Proposition 7, a renaming of the contracted indices and using the zee-zaw rule gives

(φ
t,0
⊙ ω

m,0
⊙ ϕ)A1...Ai+k+r−2m−2t

=
t

∑

p=0

(

k−m
p

)(

r−m
t−p

)

(

k−2m+r
t

)

× ωC1...Cm

Bp+1···Bt(A1...Ar−m−t+p
φB1...Bt

Ak+r−2m−t+1...Ai+k+r−2m−2t
ϕAr−m−t+p+1...Ak+r−2m−t)B1...BpC1...Cm

=

t
∑

p=0

(−1)m

(

k−m
p

)(

r−m
t−p

)

(

k−2m+r
t

)

× ωB1...Bm+t−p(Ai−t+k−m−p+1...Ai+k+r−2m−2t
φ
C1...CpB1Bt−p

A1...Ai−t
ϕ
Bt−p+1...Bt−p+m

Ai−t+1...Ai−t+k−m−p)C1...Cp
. (23)
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Using Proposition 8, contracting the spin metrics, and using the zee-zaw rule, we get

(φ
t,0
⊙ ω

m,0
⊙ ϕ)A1...Ai+k+r−2m−2t

=
t

∑

p=0

min(i,k)−p
∑

M=0

M
∑

q=0

(−1)m

(

k−m
p

)(

r−m
t−p

)

(

k−2m+r
t

)

(−1)q+M
(

m
M−q

)(

k−m−p
q

)(

i−t
M−q

)(

t−p
q

)

(

i+k−M−2p+1
M

)(

M
q

)

× ωB1...Bm+t−p(Ai−t+k−m−p+1...Ai+k+r−2m−2t
ǫB1...BM

A1...AM
(φ

M+p,0
⊙ ϕ)

BM+1...Bt−p+m

AM+1...Ai+k−t−m−p)

=

t
∑

p=0

min(i,k)−p
∑

M=0

M
∑

q=0

(−1)m+q+M

(

k−m
p

)(

r−m
t−p

)(

m
M−q

)(

k−m−p
q

)(

i−t
M−q

)(

t−p
q

)

(

k−2m+r
t

)(

i+k−M−2p+1
M

)(

M
q

)

× ωBM+1...Bm+t−p(A1...Ar+M+p−m−t
(φ

M+p,0
⊙ ϕ)

BM+1...Bt−p+m

Ar+M+p−m−t+1...Ai+k+r−2m−2t)

=

t
∑

p=0

min(i,k)−p
∑

M=0

M
∑

q=0

(−1)q+t−p

(

k−m
p

)(

r−m
t−p

)(

m
M−q

)(

k−m−p
q

)(

i−t
M−q

)(

t−p
q

)

(

k−2m+r
t

)(

i+k−M−2p+1
M

)(

M
q

)

× ω
BM+1...Bm+t−p

(A1...Ar+M+p−m−t
(φ

M+p,0
⊙ ϕ)Ar+M+p−m−t+1...Ai+k+r−2m−2t)BM+1...Bt−p+m

. (24)

Hence

(φ
t,0
⊙ ω

m,0
⊙ ϕ)

=
t

∑

p=0

min(i,k)−p
∑

M=0

M
∑

q=0

(−1)t−p+q
(

k−m
p

)(

r−m
t−p

)(

m
M−q

)(

k−m−p
q

)(

i−t
M−q

)(

t−p
q

)

(

k−2m+r
t

)(

i+k−M−2p+1
M

)(

M
q

) (ω
t+m−p−M,0

⊙ φ
M+p,0
⊙ ϕ)

=

t
∑

p=0

min(i,k)
∑

M=p

M−p
∑

q=0

(−1)t−p+q
(

k−m
p

)(

r−m
t−p

)(

m
M−p−q

)(

k−m−p
q

)(

i−t
M−p−q

)(

t−p
q

)

(

k−2m+r
t

)(

i+k−M−p+1
M−p

)(

M−p
q

) (ω
t+m−M,0

⊙ φ
M,0
⊙ ϕ)

=

min(i,k)
∑

M=0

F t,m,M
i,r,k (ω

t+m−M,0
⊙ φ

M,0
⊙ ϕ), (25)

where we have made the change M → M − p and re-ordered the sums. The limits can be
restricted to max(0,m− r + t) ≤ p ≤ min(k −m,M, t) and max(0,M −m− p,M − i− p+ t) ≤
q ≤ min(k −m − p,M − p, t − p) because the terms are zero outside this range. The treatment
of the primed indices is completely analogous. �

2.4. Derivatives. In [4], the irreducible decomposition of the covariant derivative of a symmetric
spinor was done in terms of fundamental spinor operators. By extending the symmetric product
to the space of linear, symmetric differential operators of valence (k, l), Ok,l, we can express the
fundamental spinor operators in a compact way.

Remark. For ∇ ∈ O1,1 we have the fundamental spinor operators [4, Definition 13]

Dϕ = ∇
1,1
⊙ ϕ, Cϕ = ∇

0,1
⊙ ϕ, C

†ϕ = ∇
1,0
⊙ ϕ, T ϕ = ∇

0,0
⊙ ϕ. (26)

On ϕ ∈ Sk,l we have the irreducible decomposition of the covariant derivative into fundamental
operators [4, Lemma 15],

∇A1

A′

1ϕA2...Ak+1

A′

2...A
′

l+1 = (T ϕ)A1...Ak+1

A′

1...A
′

l+1

− l
l+1 ǭ

A′

1(A
′

2(Cϕ)A1...Ak+1

A′

3...A
′

l+1)

− k
k+1 ǫA1(A2

(C †ϕ)A3...Ak+1)
A′

1...A
′

l+1

+ kl
(k+1)(l+1) ǫA1(A2

ǭA
′

1(A
′

2(Dϕ)A3...Ak+1)
A′

3...A
′

l+1). (27)

Next, we write the commutators in the new notation. Define the operator

� = −(∇
0,1
⊙ ∇) ∈ O2,0, (28)

and its complex conjugate � ∈ O0,2.
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In index notation, it reads �AB = ∇(A|A′|∇B)
A′

. Acting on ϕ ∈ Sk,l it can be expressed in
terms of curvature via

�
0,0
⊙ ϕ = − kΨ

1,0
⊙ ϕ− lΦ

0,1
⊙ ϕ, (29a)

�
1,0
⊙ ϕ = − (k − 1)Ψ

2,0
⊙ ϕ− lΦ

1,1
⊙ ϕ+ (k + 2)Λ

0,0
⊙ ϕ, (29b)

�
2,0
⊙ ϕ = − (k − 2)Ψ

3,0
⊙ ϕ− lΦ

2,1
⊙ ϕ. (29c)

Lemma 9. [4, Lemma 18] Let ϕ ∈ Sk,l. The operators D , C , C † and T satisfy the commutator
relations

DCϕ = k
k+1C Dϕ−�

0,2
⊙ ϕ, k ≥ 0, l ≥ 2, (30a)

DC
†ϕ = l

l+1C
†
Dϕ−�

2,0
⊙ ϕ, k ≥ 2, l ≥ 0, (30b)

C T ϕ = l
l+1T Cϕ−�

0,0
⊙ ϕ, k ≥ 0, l ≥ 0, (30c)

C
†
T ϕ = k

k+1T C
†ϕ−�

0,0
⊙ ϕ, k ≥ 0, l ≥ 0, (30d)

DT ϕ = − ( 1
k+1 + 1

l+1 )C C
†ϕ+ l(l+2)

(l+1)2 T Dϕ− l+2
l+1�

1,0
⊙ ϕ− l

l+1�
0,1
⊙ ϕ, k ≥ 1, l ≥ 0, (30e)

DT ϕ = − ( 1
k+1 + 1

l+1 )C
†
Cϕ+ k(k+2)

(k+1)2 T Dϕ− k
k+1�

1,0
⊙ ϕ− k+2

k+1�
0,1
⊙ ϕ, k ≥ 0, l ≥ 1, (30f)

CC
†ϕ = C

†
Cϕ+ ( 1

k+1 − 1
l+1 )T Dϕ−�

1,0
⊙ ϕ+�

0,1
⊙ ϕ, k ≥ 1, l ≥ 1. (30g)

Lemma 10. For symmetric spinors φ ∈ Si,j , ϕ ∈ Sk,l we have the following Leibniz rules.

T (φ
m,n

⊙ ϕ) = (−1)m+nϕ
m,n

⊙ T φ+ (−1)m+nn

j+1 ϕ
m,n−1
⊙ Cφ+ (−1)m+nm

i+1 ϕ
m−1,n
⊙ C

†φ

+ (−1)m+nmn

(i+1)(j+1) ϕ
m−1,n−1

⊙ Dφ+ φ
m,n

⊙ T ϕ+ n
l+1φ

m,n−1
⊙ Cϕ

+ m
k+1φ

m−1,n
⊙ C

†ϕ+ mn
kl+k+l+1φ

m−1,n−1
⊙ Dϕ, (31a)

C (φ
m,n

⊙ ϕ) = (−1)m+n+1(l−n)
j+l−2n ϕ

m,n+1
⊙ T φ+ (−1)m+n(j−n)(j+l−n+1)

(j+1)(j+l−2n) ϕ
m,n

⊙ Cφ

+ (−1)m+n+1m(l−n)
(i+1)(j+l−2n) ϕ

m−1,n+1
⊙ C

†φ

+ (−1)m+nm(j−n)(j+l−n+1)
(i+1)(j+1)(j+l−2n) ϕ

m−1,n
⊙ Dφ− j−n

j+l−2nφ
m,n+1
⊙ T ϕ

+ (l−n)(j+l−n+1)
(l+1)(j+l−2n) φ

m,n

⊙ Cϕ+ m(−j+n)
(k+1)(j+l−2n)φ

m−1,n+1
⊙ C

†ϕ

+ m(l−n)(j+l−n+1)
(k+1)(l+1)(j+l−2n)φ

m−1,n
⊙ Dϕ, (31b)

C
†(φ

m,n

⊙ ϕ) = (−1)m+n+1(k−m)
i+k−2m ϕ

m+1,n
⊙ T φ+ (−1)m+n+1n(k−m)

(j+1)(i+k−2m) ϕ
m+1,n−1

⊙ Cφ

+ (−1)m+n(i−m)(i+k−m+1)
(i+1)(i+k−2m) ϕ

m,n

⊙ C
†φ

+ (−1)m+nn(i−m)(i+k−m+1)
(i+1)(j+1)(i+k−2m) ϕ

m,n−1
⊙ Dφ− i−m

i+k−2mφ
m+1,n
⊙ T ϕ

+ n(−i+m)
(l+1)(i+k−2m)φ

m+1,n−1
⊙ Cϕ+ (k−m)(i+k−m+1)

(k+1)(i+k−2m) φ
m,n

⊙ C
†ϕ

+ n(k−m)(i+k−m+1)
(k+1)(l+1)(i+k−2m)φ

m,n−1
⊙ Dϕ, (31c)

D(φ
m,n

⊙ ϕ) = (−1)m+n(k−m)(l−n)
(i+k−2m)(j+l−2n) ϕ

m+1,n+1
⊙ T φ

+ (−1)m+n+1(j−n)(k−m)(j+l−n+1)
(j+1)(i+k−2m)(j+l−2n) ϕ

m+1,n
⊙ Cφ

+ (−1)m+n+1(i−m)(l−n)(i+k−m+1)
(i+1)(i+k−2m)(j+l−2n) ϕ

m,n+1
⊙ C

†φ
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+ (−1)m+n(i−m)(j−n)(i+k−m+1)(j+l−n+1)
(i+1)(j+1)(i+k−2m)(j+l−2n) ϕ

m,n

⊙ Dφ

+ (i−m)(j−n)
(i+k−2m)(j+l−2n)φ

m+1,n+1
⊙ T ϕ

+ (−i+m)(l−n)(j+l−n+1)
(l+1)(i+k−2m)(j+l−2n)φ

m+1,n
⊙ Cϕ

+ (j−n)(−k+m)(i+k−m+1)
(k+1)(i+k−2m)(j+l−2n) φ

m,n+1
⊙ C

†ϕ

+ (k−m)(l−n)(i+k−m+1)(j+l−n+1)
(k+1)(l+1)(i+k−2m)(j+l−2n) φ

m,n

⊙ Dϕ. (31d)

Proof. Collectively, the left hand sides can be written as ∇
t,u

⊙ (φ
m,n

⊙ ϕ) where t, u ∈ {0, 1}. Let
∇φ and ∇ϕ be ∇ only differentiating φ respectively ϕ. From the relations (7a) and (8) we get

∇
t,u

⊙ (φ
m,n

⊙ ϕ) = ∇φ

t,u

⊙ (φ
m,n

⊙ ϕ) +∇ϕ

t,u

⊙ (φ
m,n

⊙ ϕ)

= (−1)m+n∇φ

t,u

⊙ (ϕ
m,n

⊙ φ) +∇ϕ

t,u

⊙ (φ
m,n

⊙ ϕ)

= (−1)m+n

1
∑

M=0

1
∑

N=0

F t,m,M
1,k,i Fu,n,N

1,l,j ϕ
t+m−M,u+n−N

⊙ ∇
M,N

⊙ φ

+
1

∑

M=0

1
∑

N=0

F t,m,M
1,i,k Fu,n,N

1,j,l φ
t+m−M,u+n−N

⊙ ∇
M,N

⊙ ϕ. (32)

Explicit calculations of the F t,m,M
1,i,k coefficients gives the relations (31). �

2.5. GHP expansion. In this section we collect equations to efficiently expand symmetric spino-
rial equations into GHP components. Let us first briefly review the formalism, see [6] for details.
Introducing a normalized spinor dyad (oA, ιA), oAι

A = 1, a two dimensional subgroup of the
Lorentz group is given by

oA → λoA, ιA → λ−1ιA, (33)

with non-vanishing, complex scalar field λ. A field φ is said to be of GHP weight {p, q} if it
transforms via

φ→ λpλ̄qφ (34)

under (33) and its complex conjugate. The Levi-Civita connection has a natural lift of the form

ΘAA′ = ∇AA′ − pωAA′ − qω̄AA′ , with ωAA′ = ιB∇AA′oB, (35)

and is of weight zero in the sense that it maps {p, q} weighted fields to {p, q} fields. The GHP
operators are given by the dyad expansion of (35),

ΘAA′ = ιA ῑA′ þ−ιAōA′ ð−oAῑA′ ð
′ +oAōA′ þ

′ . (36)

The connection coefficients are defined as follows,

ΘAA′oB = ΓAA′ιB, where ΓAA′ = −ιAῑA′κ+ ιAōA′σ + oAῑA′ρ− oAōA′τ, (37a)

ΘAA′ιB = Γ′
AA′oB, where Γ′

AA′ = −ιAῑA′τ ′ + ιAōA′ρ′ + oAῑA′σ′ − oAōA′κ′. (37b)

To express the dyad expansion of a general symmetric spinor, it is convenient to define a

symmetric spinor basis Bn,k
m,l of weight {2n− k, 2m− l} by

Bn,k
m,l

A′

1...A
′

l

A1...Ak
= o(A1

. . . oAn
ιAn+1 . . . ιAk)ō

(A′

1 . . . ōA
′

m ῑA
′

m+1 . . . ῑA
′

l). (38)

In particular this allows us to mostly avoid spinor indices for the rest of this section. For a full
contraction of two basis elements we find

Bn,k
m,l

k,l

⊙ Bi,k
j,l = (−1)(n+m)

(

k

n

)−1(
l

m

)−1

δnk−iδ
m
l−j , (39)



A SPACE-TIME CALCULUS BASED ON SYMMETRIC 2-SPINORS 9

where δab = 1 if a = b and zero otherwise. Now any φ ∈ Sk,l can be expanded into

φ =

k
∑

i=0

l
∑

j=0

(−1)k−i+l−j

(

k

i

)(

l

j

)

φij′B
i,k
j,l , (40)

where the scalar components of weight {k − 2i, l− 2j} are defined by

φij′ = Bk−i,k
l−j,l

k,l

⊙ φ. (41)

The following two lemmas yield component expressions for general symmetric products and
derivatives of symmetric spinors. This allows to expand general symmetric spinor differential
equations into dyad components, without expanding the symmetrizations.

Lemma 11. For φ ∈ Si,j , ϕ ∈ Sk,l the symmetric product has components

(φ
m,n

⊙ ϕ)st′ =

k
∑

p=0

l
∑

q=0

Gm,p,s
i,k Gn,q,t

j,l φ(s+m−p)(t+n−q)′ϕpq′ , (42)

with coefficients given by

Gm,p,s
i,k =

m
∑

r=0

(−1)r

(

i
s+m−p

)(

i+p−s−m
r

)(

s+m−p
m−r

)(

k
p

)(

k−p
m−r

)(

p
r

)

(

i
m

)(

k
m

)(

m
r

)(

i+k−2m
s

) . (43)

Proof. For ease of notation we assume φ ∈ Si,0, ϕ ∈ Sk,0. Using the observation that Bp,k
0,0 =

B0,k−p
0,0

0,0
⊙ Bp,p

0,0 , where B
0,k−p
0,0 is a symmetric product of ιA and Bp,p

0,0 is a symmetric product of oA,

we can use (17) to obtain

Bp,k
0,0

B1...Bm

A1...Ak−m
= (B0,k−p

0,0

0,0
⊙ Bp,p

0,0)
B1...Bm

A1...Ak−m

=
m
∑

q=0

(

p
q

)(

k−p
m−q

)

(

k
m

) B0,k−p
0,0

(Bq+1...Bm

(A1...Ak−p−m+q
Bp,p
0,0

B1...Bq)

Ak−p−m+q+1...Ak−m)

=

m
∑

q=0

(

p
q

)(

k−p
m−q

)

(

k
m

) Bp−q,k−m
0,0 A1...Ak−m

Bq,m
0,0

B1...Bm (44)

Using this in the expansion (40), we find

ϕA1...Ak−mB1...Bm
=

k
∑

p=0

m
∑

q=0

(−1)k−p

(

k
p

)(

k−p
m−q

)(

p
q

)

(

k
m

) ϕp0′B
p−q,k−m
0,0 A1...Ak−m

Bq,m
0,0 B1...Bm

, (45a)

φB1...Bm

A1...Ai−m
=

i
∑

r=0

m
∑

q=0

(−1)i−r

(

i
r

)(

i−r
q

)(

r
m−q

)

(

i
m

) φr0′B
r−m+q,i−m
0,0 A1...Ai−m

Bq,m
0,0

B1...Bm . (45b)

Contracting the B indices, symmetrizing and using (39) yield

φB1...Bm

(A1...Ai−m
ϕAi−m+1...Ai+k−2m)B1...Bm

=

i
∑

r=0

k
∑

p=0

m
∑

q=0

(−1)k+i−r−p

(

i
r

)(

i−r
q

)(

r
m−q

)(

k
p

)(

k−p
m−q

)(

p
q

)

(

i
m

)(

k
m

) φr0′ϕp0′B
p+r−m,i+k−2m
0,0 A1...Ai+k−2m

× Bq,m
0,0 B1...Bm

Bq,m
0,0

B1...Bm

=

i
∑

r=0

k
∑

p=0

m
∑

q=0

(−1)k+i−r−p+m−q

(

i
r

)(

i−r
q

)(

r
m−q

)(

k
p

)(

k−p
m−q

)(

p
q

)

(

i
m

)(

k
m

)(

m
q

) φr0′ϕp0′B
p+r−m,i+k−2m
0,0 A1...Ai+k−2m

.

(46)
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The relation (39) then gives

(φ
m,0
⊙ ϕ)s0′ = Bi+k−2m−s,i+k−2m

0,0

i+k−2m,0
⊙ (φ

m,0
⊙ ϕ)

=

i
∑

r=0

k
∑

p=0

m
∑

q=0

(−1)−r−p+m−q−s

(

i
r

)(

i−r
q

)(

r
m−q

)(

k
p

)(

k−p
m−q

)(

p
q

)

(

i
m

)(

k
m

)(

m
q

)(

i+k−2m
i+k−2m−s

) φr0′ϕp0′δ
m+s−p
r

=

k
∑

p=0

m
∑

q=0

(−1)q

(

i
m+s−p

)(

i+p−m−s
q

)(

m+s−p
m−q

)(

k
p

)(

k−p
m−q

)(

p
q

)

(

i
m

)(

k
m

)(

m
q

)(

i+k−2m
i+k−2m−s

) φ(m+s−p)0′ϕp0′

=

k
∑

p=0

Gm,p,s
i,k φ(s+m−p)0′ϕp0′ . (47)

The primed indices gives an analogous expansion and the combination yields (42). �

Lemma 12. The GHP components of fundamental spinor operators (26) on φ ∈ Sk,l take the
form

(Dφ)ij′ = (þ−(k − i)ρ− (l − j)ρ̄)φ(i+1)(j+1)′ + (þ′ −(i+ 1)ρ′ − (j + 1)ρ̄′)φij′

− (ð−(k − i)τ − (j + 1)τ̄ ′)φ(i+1)j′ − (ð′ −(i+ 1)τ ′ − (l − j)τ̄ )φi(j+1)′

+ (k − i− 1)κφ(i+2)(j+1)′ − (k − i− 1)σφ(i+2)j′ − iσ′φ(i−1)(j+1)′

+ iκ′φ(i−1)j′ + (l − j − 1)κ̄φ(i+1)(j+2)′ − (l − j − 1)σ̄φi(j+2)′

− jσ̄′φ(i+1)(j−1)′ + jκ̄′φi(j−1)′ , (48a)

(Cφ)ij′ =
(

−(k − i+ 1)(þ+iρ− (l − j)ρ̄)φi(j+1)′ + i(þ′ +(k − i+ 1)ρ′ − (j + 1)ρ̄′)φ(i−1)j′

+ (k − i+ 1)(ð+iτ − (j + 1)τ̄ ′)φij′ − i(ð′ +(k − i+ 1)τ ′ − (l − j)τ̄ )φ(i−1)(j+1)′

− (k − i+ 1)(k − i)κφ(i+1)(j+1)′ + (k − i+ 1)(k − i)σφ(i+1)j′ − i(i− 1)σ′φ(i−2)(j+1)′

+ i(i− 1)κ′φ(i−2)j′ − (k − i+ 1)(l − j − 1)κ̄φi(j+2)′ − i(l − j − 1)σ̄φ(i−1)(j+2)′

+ (k − i+ 1)jσ̄′φi(j−1)′ + ijκ̄′φ(i−1)(j−1)′
)

/(k + 1), (48b)

(C †φ)ij′ =
(

−(l− j + 1)(þ+jρ̄− (k − i)ρ)φ(i+1)j′ + j(þ′ +(l − j + 1)ρ̄′ − (i + 1)ρ′)φi(j−1)′

+ (l − j + 1)(ð′ +jτ̄ − (i + 1)τ ′)φij′ − j(ð+(l − j + 1)τ̄ ′ − (k − i)τ)φ(i+1)(j−1)′

− (l − j + 1)(l − j)κ̄φ(i+1)(j+1)′ + (l − j + 1)(l − j)σ̄φi(j+1)′ − j(j − 1)σ̄′φ(i+1)(j−2)′

+ j(j − 1)κ̄′φi(j−2)′ − (l − j + 1)(k − i− 1)κφ(i+2)j′ − j(k − i− 1)σφ(i+2)(j−1)′

+ (l − j + 1)iσ′φ(i−1)j′ + ijκ′φ(i−1)(j−1)′
)

/(l + 1), (48c)

(T φ)ij′ =
(

(k + 1− i)(l + 1− j)(þ+iρ+ jρ̄)φij′

+ (k + 1− i)j(ð+iτ + (l − j + 1)τ̄ ′)φi(j−1)′

+ i(l + 1− j)(ð′ +(k − i+ 1)τ ′ + jτ̄ )φ(i−1)j′

+ ij(þ′ +(k − i+ 1)ρ′ + (l − j + 1)ρ̄′)φ(i−1)(j−1)′

+ (k − i+ 1)(k − i)(l + 1− j)κφ(i+1)j′ + (k − i + 1)(k − i)jσφ(i+1)(j−1)′

+ i(i− 1)(l + 1− j)σ′φ(i−2)j′ + i(i− 1)jκ′φ(i−2)(j−1)′

+ (k + 1− i)(l + 1− j)(l − j)κ̄φi(j+1)′ + i(l + 1− j)(l − j)σ̄φ(i−1)(j+1)′

+ (k + 1− i)j(j − 1)σ̄′φi(j−2)′ + ij(j − 1)κ̄′φ(i−1)(j−2)′
)

/
(

(k + 1)(l + 1)
)

(48d)

Proof. To prove (48a), we start by expanding the argument of Dφ using (40) and contract with
a symmetric basis as in (41),

(Dφ)ij′ = Bk−1−i,k−1
l−1−j,l−1

k,l

⊙ (Dφ)

=
k
∑

n=0

l
∑

m=0

(−1)k−n+l−m

(

k

n

)(

l

m

)

Bk−1−i,k−1
l−1−j,l−1

k,l

⊙ (D(φnm′Bn,k
m,l)). (49)
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Next, we use the Leibniz rule (31d), but switch to the GHP connection ΘAA′ (so the fundamental
spinor operators are with respect to ΘAA′ instead of ∇AA′) as the GHP components and the basis
elements are GHP weighted,

D(φnm′

0,0
⊙
k,l

Bn,k
m,l) = Bn,k

m,l

1,1
⊙ T φnm + φnm

0,0
⊙ DBn,k

m,l. (50)

From (36) and (37) we have

T φnm′ = (þφnm′)B0,1
0,1 − (ð φnm′)B0,1

1,1 − (ð′ φnm′)B1,1
0,1 + (þ′ φnm′ )B1,1

1,1, (51)

and

DBn,k
m,l = nΓ

1,1
⊙ Bn−1,k

m,l + (k − n)Γ′
1,1
⊙ Bn+1,k

m,l +mΓ
1,1
⊙ Bn,k

m−1,l + (l −m)Γ′
1,1
⊙ Bn,k

m+1,l. (52)

Inserting (51), (52) back into (50) and expanding Γ,Γ′ into the basis we can use the contraction
rules

Bn,k
m,l

1,1
⊙ B0,1

0,1 =
mn

kl
Bn−1,k−1
m−1,l−1, (53a)

Bn,k
m,l

1,1
⊙ B1,1

0,1 = −
m(k − n)

kl
Bn,k−1
m−1,l−1, (53b)

Bn,k
m,l

1,1
⊙ B0,1

1,1 = −
n(l −m)

kl
Bn−1,k−1
m,l−1 , (53c)

Bn,k
m,l

1,1
⊙ B1,1

1,1 =
(k − n)(l −m)

kl
Bn,k−1
m,l−1, (53d)

which are easily verified by expanding out the symmetries. The result can now be substituted
into (49). Each term has a full contraction of the form (39) which cancels the double sum due
to the δ factors. After some elementary algebra, the end result is given by (48a). The other
expansions can be verified along the same lines, the only minor computation that needs to be
done is the analog of (52) and (53). �

3. SymSpin: A computer algebra implementation in xAct

The xAct [8] suite for Mathematica is an open source project mainly devoted to symbolic com-
putation in differential geometry and tensor algebra. In this section we introduce our contributed
package SymSpin [5] which contains the formalism of Section 2. For syntax and more examples,
see SymSpinDoc.nb on that page.

3.1. Loading the package and defining structures. Load the package, define a four dimen-
sional manifold M4, and Lorentzian metric with

In := <<xAct`SymSpin`

$DefInfoQ=False;

DefManifold[M4,4,{a,b,c,d}]
DefMetric[{1,3,0},g[-a,-b],CD]

(54)

By default the valence numbers are displayed for each operator and complex conjugates are
written with †. To keep the notation the same as in the rest of the paper, we can change the
display form with

In := SetOptions[DefAbstractIndex,PrintAs->PrimeDagger];

SetOptions[DefSpinor, PrintDaggerAs->AddBar];

SetOptions[DefFundSpinOperators,ShowValenceInfo->False];

(55)

Define the spin structure, initialize SymSpin and define the fundamental spinor operators with

In := DefSpinStructure[g,Spin,{A,B,C,F,G,H,P,Q,R},ǫ,σ,CDe,{";","∇"},
SpinorPrefix->SP,SpinorMark->"S"]

InitSymSpin[σ];
DefFundSpinOperators[CDe];

(56)
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3.2. Example: Coefficients. Assume that K, L and M are symmetric spinor fields, and we
want to find under which conditions of K, L and M the equation

0 = KAB
FHLF

CϕHC +M(A
CϕB)C . (57)

holds for all symmetric spinor fields ϕ. The following calculation leads to the conditions

KG
(ABCL|G|F ) = 0, MAB = 1

2K
CF

ABLCF . (58)

We first define the symmetric spinor fields. For clarity we have added the valence numbers to
the names of the spinors, but not the display form.

In := DefSymmetricSpinor[ϕ20,2,0,Spin,"ϕ"]
DefSymmetricSpinor[K40,4,0,Spin,"K"]

DefSymmetricSpinor[L20,2,0,Spin,"L"]

DefSymmetricSpinor[M20,2,0,Spin,"M"]

(59)

One can start with the indexed version of the spinor equation.

In := OriginalEq=0==K40[-A,-B,F,H]L20[-F,C]ϕ20[-H,-C]
+ImposeSym[M20[-A,C]*ϕ20[-B,-C]]

Out= 0 == KAB
FHLF

CϕHC + Sym
(13)

[Mϕ]A
C
BC

(60)

To convert this to the new formalism, we need the irreducible decomposition of the product of
the L and φ spinor.

In := IrrDecomposeSymMult[L20,ϕ20,{0,0}]

Out= LABϕCF == − Sym
(13)(24)

[ǫ(L
1,0
⊙ϕ)]ACBF + (L

0,0
⊙ϕ)ABCF + 1

3 Sym
(13)(24)

[ǫǫ]ACBF (L
2,0
⊙ϕ)

(61)

It is convenient to work with the expanded and canonicalized version

In := L20ϕ20IrrDecEq=ToCanonical@ExpandSym@%

Out= LABϕCF == (L
0,0
⊙ϕ)ABCF − 1

4ǫBF (L
1,0
⊙ϕ)AC − 1

4ǫBC(L
1,0
⊙ϕ)AF − 1

4ǫAF (L
1,0
⊙ϕ)BC

− 1
4ǫAC(L

1,0
⊙ϕ)BF + 1

6ǫAF ǫBC(L
2,0
⊙ϕ) + 1

6ǫACǫBF (L
2,0
⊙ϕ)

(62)

To work efficiently we turn the original equation into an index-free version. One could also use
the index-free version as a starting point.

In := IndexFreeEq=ToIndexFree[ToCanonical@ContractMetric[OriginalEq

/.EqToRule@L20ϕ20IrrDecEq]//.SymHToSymMultRule]
/.MultScalToSymMultRule[Spin]/.SortSymMult[Not@FreeQ[#,ϕ20]&]

Out= 0 == M
1,0
⊙ϕ+K

2,0
⊙L

1,0
⊙ϕ

(63)

We can turn the spinor valued equation into a scalar equation by contracting it with a dummy
spinor T to turn the free indices into contracted dummy indices. This dummy spinor is defined
by

In := DefSymmetricSpinor[T20,2,0,Spin,"T"] (64)

As the field ϕ and the dummy spinor T both should be arbitrary, we see that the irreducible
components of their product can be treated as independent arbitrary fields. For convenience we
make a list of them with

In := IrrDecComps=SymMult[T20,#,0,Spin][ϕ20]&/@Range[0,2]

Out= {(T
0,0
⊙ϕ), (T

1,0
⊙ϕ), (T

2,0
⊙ϕ)}

(65)
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We can now contract our index-free equation with T .

In := SymMult[T20,2,0]/@IndexFreeEq

Out= 0 == T
2,0
⊙M

1,0
⊙ϕ+ T

2,0
⊙K

2,0
⊙L

1,0
⊙ϕ

(66)

Commute T inside, so that T is directly contracted with the field ϕ, so we obtain the independent
spinors in the list IrrDecComps.

In := %//.CommuteSymMultRuleIn[T20]

Out= 0 == −M
2,0
⊙T

1,0
⊙ϕ+K

4,0
⊙L

1,0
⊙T

0,0
⊙ϕ+ 1

2K
4,0
⊙L

0,0
⊙T

1,0
⊙ϕ

(67)

Now, these independent spinors are moved out and to the left.

In := %/.SortSymMultReverse[MemberQ[IrrDecComps,#]&]

//.Flatten[CommuteSymMultRuleOut/@IrrDecComps]

Out= 0 == − (T
1,0
⊙ϕ)

2,0
⊙M + (T

0,0
⊙ϕ)

4,0
⊙K

1,0
⊙L+ 1

2 (T
1,0
⊙ϕ)

2,0
⊙K

2,0
⊙L

(68)

From this one can conclude that the coefficients of (T
1,0
⊙ ϕ) and (T

0,0
⊙ ϕ) both have to be zero.

As a convenience, we have implemented all of the steps from the index-free equation to the
final list of equations in one function.

In := ExtractCoeffsIndexFree[IndexFreeEq,ϕ20]

Out= {0 == (K
1,0
⊙L), 0 == −M + 1

2K
2,0
⊙L}

(69)

This can be translated back to the indexed form with

In := ToIndexed/@%

Out= {0 == Sym
(2346)

[KL]GABCGF, 0 == 1
2K

CF
ABLCF −MAB}

(70)

Performing this kind of calculation in the indexed form would require expansions of symmetries
and several steps of irreducible decompositions of different products. This new method was
heavily used in [7].

3.3. Example: Derivatives. To also demonstrate how to work with derivatives we use the
previously defined field ϕ and define a valence (3, 2) field ψ via

In := DefSymmetricSpinor[ψ32,3,2,Spin,"ψ"] (71)

The covariant derivative

In := CDe[-A,-A†]@ψ32[-B,-C,-F,-B†,-C†]

Out= ∇AA′ψBCFB′C′

(72)

can be decomposed into the fundamental spinor operators with

In := %==ToFundSpinOp[%]

Out= ∇AA′ψBCFB′C′ == − 1
3 ǭA′C′(Cψ)ABCFB′ − 1

3 ǭA′B′(Cψ)ABCFC′ − 1
4ǫAF (C

†ψ)BCA′B′C′

− 1
4ǫAC(C

†ψ)BFA′B′C′ − 1
4ǫAB(C

†ψ)CFA′B′C′ + 1
12ǫAF ǭA′C′(Dψ)BCB′

+ 1
12ǫAF ǭA′B′(Dψ)BCC′ + 1

12ǫAC ǭA′C′(Dψ)BFB′ + 1
12ǫAC ǭA′B′(Dψ)BFC′

+ 1
12ǫAB ǭA′C′(Dψ)CFB′ + 1

12ǫAB ǭA′B′(Dψ)CFC′ + (T ψ)ABCFA′B′C′

(73)

Commutators can be handled like

In := DivCDe@CurlDgCDe@ψ32

Out= (DC †ψ)
(74)
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In := %==(%/.CommuteOp[DivCDe,CurlDgCDe])

Out= (DC †ψ) == 2
3C †Dψ +Ψ

3,0
⊙ψ + 2Φ

2,1
⊙ψ

(75)

Derivatives of products can also be handled efficiently

In := CurlDgCDe@SymMult[ϕ20,1,0]@ψ32

Out= (C †ϕ
1,0
⊙ψ)

(76)

In := %==(%/.SymMultLeibnizRules[CDe])

Out= (C †ϕ
1,0
⊙ψ) == 2

3ψ
2,0
⊙T ϕ− 5

9ψ
1,0
⊙C †ϕ− 1

3ϕ
2,0
⊙T ψ + 5

6ϕ
1,0
⊙C †ψ

(77)

4. Conclusions and discussion

In this work, we introduced an algebra on symmetric 2-spinors and the corresponding SymSpin
package for the Mathematica suite xAct. In various research projects of the authors this algebra
turned out to be a very efficient way to perform calculations. For example in [7] it is used to derive
conditions on the spacetime for the existence of second order symmetry operators for the massive
Dirac equation. This greatly simplified the calculations compared to the earlier approach [4],
where only parts of the formalism were used to investigate symmetry operators for the massless
Dirac and the Maxwell equations.

The formalism is very efficient for cases where each spinor appears only once in each product.
Choosing a preferred ordering of the factors in each product, one can use the relations in Theorem
3 to rewrite them in a canonical form. However, if a spinor appears multiple times in a product the
relations in Theorem 3 can give non-trivial equations where a term of the same form can appear
both in the left and right hand sides as well as in several equations. Solving these equations, it
should be possible to develop a method to write such products in a canonical form. We plan to
continue the development of these tools for such cases in the future.

Acknowledgements. The authors are grateful to Simon Jacobsson for testing of the xAct im-
plementation and to Teake Nutma for LATEX typesetting code of Mathematica expressions.
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