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ABSTRACT

The numerical precision of density-functional-theory (DFT) calculations depends on a variety of computational parameters,
one of the most critical being the basis-set size. The ultimate precision is reached with an infinitely large basis set, i.e.,
in the limit of a complete basis set (CBS). Our aim in this work is to find a machine-learning model that extrapolates finite
basis-size calculations to the CBS limit. We start with a data set of 63 binary solids investigated with two all-electron DFT codes,
exciting and FHI-aims, which employ very different types of basis sets. A quantile-random-forest model is used to estimate
the total-energy correction with respect to a fully converged calculation as a function of the basis-set size. The random-forest
model achieves a symmetric mean absolute percentage error of lower than 25% for both codes and outperforms previous
approaches in the literature. Our approach also provides prediction intervals, which quantify the uncertainty of the models’
predictions.

Introduction
The assessment of the quality of density-functional-theory (DFT) calculations concerns the accuracy of the exchange-correlation
functional and the numerical precision that depends on a variety of computational parameters. This paper deals with the latter,
of which a most critical parameter is the size of the basis set. Only with an in-principle infinitely large basis-set size, the result
of the calculation is as precise as possible for the chosen exchange-correlation functional. This limit is known as the complete
basis-set (CBS) limit1. However, a basis-set size approaching this limit, would take infinite time to compute. Therefore, in
practice, the basis set is truncated at a size that balances precision and computational cost. Extrapolation from low-precision
settings to the CBS limit is commonplace in quantum chemistry2. In materials science, convergence tests with respect to the
basis-set size are typically done, but extrapolation to the CBS limit is not often performed. Our aim in this work, is to find a
model that can extrapolate the result of a DFT calculation to the CBS limit. More specifically, we seek to predict the difference
in the total energy per atom computed with an incomplete basis-set size to a computation performed in the CBS limit. We
exemplify our approach with a data set of binary materials. Note, the extrapolation to the CBS limit depends on the chosen
functional. Here, we only consider the PBE functional of the generalized-grandient approximation (GGA).

Our motivation is two-fold. First, such a model opens up the possibility to perform less precise, and therefore computationally
less demanding ab initio calculations to predict a more precise result. Here, we recall that typical DFT-GGA implementations
scale with order O(N3) where N is the basis-set size. Second, it allows us to assign uncertainty estimates to the huge amounts
of ab initio data contained in open-access databases. For instance, the Novel Materials Discovery (NOMAD) Respository3

currently hosts about 140 million ground-state DFT calculations. These calculations were carried out for a variety of purposes
ranging from molecular-dynamics simulations of complex systems with less precise settings to ultra high-precision calculations
for elemental solids. Uncertainty estimates for the total energies would provide users useful information about the precision of
these calculations and how the data can be re-used/re-purposed. If one can do CBS extrapolation, one could even extrapolate all
these data to the CBS limit, which would be even more useful.

In this work, we train a quantile-random-forest (QRF) model to predict the total-energy difference ∆EAB for binary
materials containing the two elements A and B. We train on a data set consisting of DFT results for 71 elemental and 63 binary
solids, computed by the two full-potential all-electron codes FHI-aims and exciting with varying basis-set size. For details
concerning the data set we refer to Ref. 4. The linearized augmented planewave (LAPW) code exciting employs augmented
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planewaves (APW) plus local orbitals (LO) as its basis, while FHI-aims uses numeric atom-centered orbitals (NAOs). These two
codes are representatives of all-electron, full potential packages. This means that they can simulate the behavior of all electrons
in a material on the same footing and are proven to be among the most precise DFT codes available5. Despite their significantly
different concepts, algorithms, and numerical approaches, both codes are expected to give close-to identical results5. Due to the
very different basis sets and thus numerical implementations, we investigate the behavior of their convergence separately. We
compare our modeling efforts to a stoichiometric model which was introduced in Ref. 4 and find that our models outperform
the latter in terms of several important metrics.

Methods

We formulate our task of extrapolation to the CBS limit as a ∆-learning problem6. We are given the results of a single DFT
calculation at a fixed basis-set size, Nb, which is smaller than that of the converged case, N∞, known as the CBS limit. The data
set in Ref. 4 defines the total-energy convergence criteria with respect to the basis-set size as 10−4 eV/atom. The data is fed
into a statistical learning algorithm to estimate the difference between the imprecise DFT calculation and the CBS limit. Our
task, in other words, is to estimate the total energy per atom of a binary material composed of elements A and B, in the CBS
limit, EAB(N∞), using the results of a DFT calculation with the fixed incomplete basis-set size, Nb. Mathematically, we aim at
finding the change (∆) in total-energy from an incomplete basis-set size, EAB(Nb), to the CBS limit EAB(N∞). As can be seen
in eq. 1, we target ∆EAB(Nb).

EAB(N∞) = EAB(Nb)+∆EAB(Nb) (1)

We employ QRF models for obtaining the total-energy differences ∆EAB per atom. Other DFT settings are kept constant.
Physically, this means we aim to use an imprecise, less computationally intense, calculation that gives us EAB(Nb) in tandem
with a statistically learned model that predicts ∆EAB(Nb). Together with these two sources, the imprecise calculation and model,
we predict the total-energy of the complete basis-set limit.

Stoichiometric Model
Our baseline model, to compare our new approach with, is a stoichiometric model introduced in Ref. 4,

∆EAB(Nb) =CA ∗∆EA(Nb)+CB ∗∆EB(Nb). (2)

Each binary solid, represented as AB, is composed of two chemical elements, labeled A and B. Here, the letter A (B) refers to
the less (more) electronegative element in the binary. ∆EA(Nb) refers to the CBS total-energy correction for the corresponding
lowest-energy elemental solid of element A when using a basis-set size, Nb. CA is the stoichiometric fraction that the element A
appears in the binary.

Basis Set of exciting
The most important parameter determining the quality of augmented plane-wave basis sets is RKmax, which is the product of
the radius of the smallest atomic (muffin-tin) sphere and the plane-wave cutoff. In Ref. 4, a precision factor, (RKmax/RKopt

max)
2

was introduced which captures the precision of the basis set of exciting quite well. The data set we use contains elemental
solids and binaries at the same percentage value of the precision factor. However, RKopt

max may be different for a binary and its
elemental solids. Note, in this data set, the number of APWs is varied but the number of LOs is kept constant. More information
about the basis-set precision parameter for exciting is given in the supplementary information of Ref. 4.

Basis Set of FHI-aims
FHI-aims offers tabulated species-specific suggestions for numerical settings and NAOs, named as “light”, “tight”, or “really
tight” defaults. In general, one does not need to use the tabulated settings. However, in this work we do. On top of the
numerical settings defined in these defaults, we also consider different "basis-set size settings" (minimal, standard, tier1, or
tier2). The combination of both ultimately dictates the number and type (s, p, d, etc.) of basis functions included in a calculation.
"Standard" refers to the default basis-set size suggested in the respective numerical setting. The difference in the number of
NAOs per valence electron from the CBS limit, labeled ∆SBAB

PV E , is used as a basis-set size metric. More information about the
basis-set size in FHI-aims is given in the supplementary information of Ref. 4.

Model Features
We feed the QRF model information about the two elements in terms of elemental solids by providing CA ∗∆EA(Nb) and
CB ∗∆EB(Nb) which are the two terms in the stoichiometric model from eq. 2. Atomic information about the elements in terms
of isolated atoms is also provided. Their use is motivated by other statistical learning models in materials science7. The electron
affinity (EAA, EAB), the ionization energy (EIA, EIB) and the mean radius (rA

s , rB
s ) for the s-like pseudo orbital of element A/B

computed with FHI-aims are fed into the QRF models.
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Quantile Random Forests
We choose to use random-forests (RF) based methods for CBS extrapolation since RFs are known to perform well on a wide
range of tasks and require minimal tuning and no data scaling8. We provide here a brief summary of the quantile random-forest
method introduced by Meinshausen9. Random forests are a collection of decision tree models. A decision tree is a piece-wise
constant model. Decision trees work by partitioning the input feature space into discrete regions. The tree then assigns a
constant estimate for that region depending on the training data points that fall in that region10. The decision tree chooses the
splits (and therefore the discrete regions of the input data space, using a greedy algorithm. This means each new split minimizes
the optimization metric for that split and not for potential subsequent splits. In order to make a prediction on an input data
point, the decision tree looks at the region in which the input data point falls. It then predicts the constant prediction for that
region node.

Random forests are built by sampling the training data with replacement (bootstrapping) and fitting separate decision trees
that are forced to use only a random subset of model features. This randomness forces the many decision trees in the random
forest to have different splits. The random forest model suffers less from overfitting than a single decision tree11. To make an
inference, the random forest looks at what region the input data point fall into for each tree. Each tree therefore has an assigned
constant for the input data point. Since there are several trees in the forest, a data point falls into a leaf node for each tree, and
the random forest predicts the average of the constants from each tree.

QRFs further examine the leaf nodes. When performing predictions, QRFs look at the leaf node into which the input data
point falls, for each tree in the forest. The QRF creates quantiles (e.g., 2.5% and 97.5%) by sorting all of the inferences that
each tree in the forest predicts for that data point. These quantiles are used as statistically meaningful prediction intervals. The
median quantile can be used for inference. In this work, we continue to use the mean of the constant estimates (which is typical
for a RF) for inference and use the QRF for the prediction intervals.

In this work, we apply the QRF method in a regression setting to minimize the root-mean-squared-logarithmic-error
(RMSLE) metric. We derive, in the supplementary information section, how decision-tree parameters are learned when
optimizing for the RMSLE metric. Our data is randomly split into training and test data using an 80/20 split. We perform
ten-fold grid-search cross-validation (CV) to choose the number of decision trees that comprise the random forest, the minimum
number of samples per leaf, and the fraction of features considered at each split. More details on the cross-validation can be
found in the accompanying Jupyter notebook.

Combination Model
We also investigate the performance of a QRF model trained on the residuals (remaining error) of the stoichiometric model. In
mathematical terms, the residual to which we fit is the variable: ∆EAB(Nb)−CA ∗∆EA(Nb)−CB ∗∆EB(Nb). This means our
estimate of the CBS total-energy correction is the sum of the stoichiometric model and a new QRF trained on the stoichiometric
residuals. We call this model the "combination model". The motivation is that subtracting the stoichiometric model from the
target might allow the QRF to focus more on non-linear contributions.

Metrics
Our DFT data used for the training contain CBS energy corrections ranging in magnitude from 10−6 eV/atom to several
eV/atom. The root-mean-squared-error (RMSE) and mean-absolute-error (MAE), which are common loss functions, are known
to give more weight to large targets in a data set that spans several orders of magnitude12. As such, we optimize our QRF
models for the root-mean-squared-logarithmic-error (RMSLE) of the data to best capture logarithmic-scale differences in the
target (DFT calculated CBS energy corrections). The RMSLE is given by several definitions. One of them, given in Ref. 13
and employed in the SciKit-Learn package that is widely used by machine-learning practitioners14, reads:

RMSLE+1 =

√
1
N

N

∑
i=1

(log(yi(~xi)+1)− log(h(~xi)+1))2. (3)

The ~xi are the feature vectors (combinations of feature values such as CA ∗∆EA(Nb)). The yi(~xi) values refer to the DFT
calculated CBS energy corrections which our model tries to predict. Other authors do not employ the addition of one in the
logarithm argument in the root mean squared error (RMSE) and instead add a small, different ε value instead15. The addition of
a small value in the logarithm argument is done to avoid undefined logarithmic arguments of zero. Note that due to the way we
defined ∆EAB(Nb) in eq. 1, the values of ∆EAB(Nb) are always negative by the variational principle, which states that the total
energy must stay the same or decrease when the basis-set size is increased16. To employ the RMSLE as a metric, the targets
(what our model tries to predict) should be positive valued. We satisfy this constraint by setting yi(~xi) equal to −∆EAB(Nb).

This use of ε = 1, however, as in the RMSLE+1, is not ideal for targets much less than one, since in the Taylor expansion
for x << 1 we have log(x+1)≈ x and we arrive back at metric similar to the MAE that gives more weight to larger targets.
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Since our CBS energy convergence criteria is 1E-4 eV/atom we are motivated to use this value as our ε . We term this metric
RMSLE+1E-4.

RMSLE+1E-4 =

√
1
N

N

∑
i=1

(log(yi(~xi)+10−4)− log(h(~xi)+10−4))2. (4)

Recall that QRF model in the combination model is trained on the stoichiometric residuals. The stoichiometric model may
under or overestimate the CBS corrections giving the residual positive and negative signs. As such we cannot use the RMSLE
to optimize the combination model. Instead we turn to a different metric, namely the the symmetric mean absolute percentage
error (sMAPE)12, which is another popular metric for targets that vary orders of magnitude and is defined as:

sMAPE =
N

∑
i=1

|h(~xi)− yi(~xi)|
1
2 |yi(~xi)|+ 1

2 |h(~xi)|
×100. (5)

Note, the closely related mean absolute percentage error (MAPE) is defined with a different denominator containing only the
target as:

MAPE =
N

∑
i=1

|h(~xi)− yi(~xi)|
|h(~xi)|

×100. (6)

Note that the MAPE is unbounded from above while the sMAPE is at most 200% when either the target or prediction is
zero. This fact means the sMAPE metric avoids issues where the target (yi(~xi)) is close to zero and causes the value of the
MAPE metric to explode12. For this reason we optimize our models for the sMAPE rather than the MAPE. The sMAPE is
often employed to optimize machine learning models operating on time series data where the target can grow exponentially17.
We also consider, however, the MAPE as a metric in our results since it is easier to comprehend. We experimented with
training our QRF models by minimizing the sMAPE and saw slightly worse performance on the training data set in terms of the
RMSLE+1E-4 and sMAPE as compared to when minimizing for the RMSLE+1E-4. Besides the RMSLE+1, RMSLE+1E-4,
sMAPE and MAPE, we also include the MAE for completeness and the 95% quantile absolute error (95% quantile metric for
short). This last metric represents the 95% quantile of the absolute errors (AE) for each model.

Results
We analyze the performance of three models on the data, namely the stoichiometric model, the QRF model and the combination
model. Table 1 summarizes the most relevant metrics obtained for the test and training data. Note that the models are trained
separately on FHI-aims and exciting data. Recall also that the stoichiometric model has no free parameters to learn via
training on the data.

exciting FHI-aims
Metric Stoichiometric QRF Combination Stoichiometric QRF Combination
sMAPE (%) 28.7 (29.6) 24.2 (10.6) 26.4 (13.3) 48.9 (53.3) 13.9 (10.6) 14.84 (10.8)
MAPE (%) 27.9 (30.6) 27.3 (11.6) 27.2 (27.8) 58.2 (70.1) 14.9 (29.0) 21.49 (33.6)
RMSLE+1 0.247 (0.016) 0.202 (0.069) 0.187 ( 0.061) 0.203 (0.189) 0.040 (0.015) 0.031 (0.014)
RMSLE+1E-4 0.383 (0.376) 0.318 (0.150) NA 0.663 (0.916) 0.218 (0.213) NA
MAE (eV/atom) 1.556 (1.250) 1.437 (0.313) 1.360 (0.260) 0.257 (0.212) 0.036 (0.013) 0.030 (0.014)
95% Quantile
(eV/atom)

5.900 (8.018) 7.795 (1.584) 8.472 (1.340) 1.520 (1.420) 0.256 (0.072) 0.177 (0.074)

Table 1. Metrics for the QRF and the combination models for exciting and FHI-aims on held-out test data. The
stoichiometric model performance is shown for comparison. The 95% quantile metric refers to the 95% quantile of the absolute
error between the model and the DFT CBS corrections. The corresponding training data metrics are shown in parentheses.
Note that exciting data contains larger calculated DFT ∆EAB targets since the basis-set size was controlled manually whereas
the FHI-aims basis variation stopped at the discrete minimal option given by the code. This results in larger MAE and
maximum error values for the exciting models.

The QRF models perform better than the stoichiometric models for all metrics except the 95% quantile of absolute errors
where it does slightly worse for exciting. In general the CBS energy corrections are larger for exciting than for FHI-aims,
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since the LAPW nature allows for manually reducing the basis-set size to close to zero 4. We see this fact in the standard
deviation of the CBS energy corrections of the test data which is 8.127 and 0.738 eV/atom for exciting and FHI-aims,
respectively. The larger 95% quantile of absolute errors indicates that the stoichiometric model does slightly better than the
QRF when targeting very large CBS energy corrections on the order of several eV/atom.

The QRF models predictions are plotted against the DFT targets in fig. 1. Note that logarithmic scales are used to visually
capture several orders of magnitude in the total-energy corrections. Relevant metrics, the sMAPE and MAE, are shown to help
the reader understand the quality of fit. The RMSLE+1E-4 is also shown (labeled RMSLE) as the metric that is optimized
during training.

Figure 1. Predictions of total-energy differences of the QRF model for FHI-aims (left) and exciting (right) data, plotted
against the respective DFT results. Relevant error metrics are added to help interpret the quality of the fit. Note the logarithmic
axes. The region of DFT calculated ∆EAB values between 1 meV/atom and 1 eV/atom is plotted with a lighter shade since these
data are of particular interest to DFT practitioners. The RMSLE+1E-4 metric is labeled RMSLE.

For the MAPE metric in the FHI-aims case, surprisingly, the QRF model performs slightly better in the test data set than in
the training data set. This may be due to the fact the QRF model is trained to fit the RMSLE+1E-4 metric and not the MAPE
metric. We do not, in contrast, see a larger training error for the other five metrics of table 1.

We observe that the stoichiometric model for FHI-aims does quite poorly (test sMAPE of 48.9%) whereas the stoichiometric
model performs better on the exciting data set with an sMAPE of 28.7%. This is understood as the LAPW basis of exciting
is gradually improved by increasing the basis-set size parameter RKmax. The atomic-centered orbitals used in FHI-aims, on
the other hand, give rise to a discrete basis-set size, specified as tiers (minimal, tier1, tier2) which correspond to more abrupt
changes in basis-set quality. However, our non-linear QRF model provides a pretty good model for the CBS limit of FHI-aims.
The discrete and piece-wise nature of its basis sets may explain why the very non-linear and piece-wise nature of the RF models
succeeds on the FHI-aims data set.

The combination models perform worse than the QRF models in terms of test sMAPE and MAPE for both DFT codes.
(Recall that the combination models are optimized for the sMAPE.) The combination models do, however, perform better in
terms of RMSLE+1 and MAE. As discussed earlier, these metrics (with the 95% quartile AE) generally favor larger targets in
our data set closer to 1 eV/atom. The hypothesis that the combination model will outperform the QRF model appears false over
the wide range of targets but true for very large targets. This may be due to the fact the residuals of the stoichiometric model
are in general quite large, e.g., the training sMAPE is 28.7% and 48.9% for exciting and FHI-aims respectively, which make
training a QRF on these residuals too difficult a task.

The violin plots in fig. 2 display the distributions of symmetric percentage errors (SPE) on the test data for all models.
Violin plots18 combine kernel-density plots with box plots, where the latter shows the model’s SPE quantiles (5%, 25%, 50%,
75%, 95%). Outliers are plotted with dots above the respective 95% level. Note, the 95% quantile of SPE is not the same
as the 95% quantile of AE metric in table 1. The kernel-density plots, underneath the box plots, provide estimates for the
probability-density for the SPE, e.g., they estimate the likelihood of the prediction errors in a given range when using the
model. For FHI-aims, the QRF model concentrates the SPE around 10% while the stoichiometric model shows a corresponding
thin distribution spanning a much larger range of SPE. The FHI-aims combination model appears to share many of the very
large errors of the stoichiometric model. This is expected since the former employs a QRF that is fit on the residuals of the
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Figure 2. Distribution of symmetric percentage errors of the stoichiometric, QRF, and combination model on held-out test
data for FHI-aims (left) and exciting (right) as violin plots. The box plot on top shows the 5%, 25%, 50%, 75% and 95%
quantiles. The white dot shows the mean symmetric percentage error. The black dots indicate values that fall outside of the 5%
and 95% quantiles. We do not see the 5% quantiles in the figure or data points that are smaller than the 5% quantile since the
5% quantiles are close to zero.

latter. When these residuals are sporadically very large, as is the case for both codes containing SPEs from their respective
stoichiometric models of close to 100%, the combination model has a difficult task to fit these residuals.

The exciting QRF model has a smaller median 25% quartile and 95% quantile than the stoichiometric model but the
75% quartile of the QRF model is larger. The larger 95% quantile of the stoichiometric model is likely the reason why the
stoichiometric model returns a significantly worse sMAPE. This means that the QRF model has less very large SPE which is
a desired behavior. The combination model for exciting shows the best 75% and 95% quantile SPE but the worst outlier
behavior with several data points found between 100% and 200%. This is likely a similar effect as seen in the FHI-aims
combination model. No meaningful trends can be identified for the QRF models for the predictions on test data of both codes
that returned SPE above the 95% quantile.

The Gini importance, or mean decrease of impurity (MDI)11, of the features fed into the QRF models for both codes is
displayed in fig. 3. The figure quantifies, for each variable, the QRF’s ability to reduce the optimization metric using splits on
that feature. Both codes’ QRF models strongly depend primarily on either ∆EA(Nb) or ∆EB(Nb), which are the two features of
the stoichiometric model. That these variables are effective in describing the CBS energy correction of the binary compounds
comes as no surprise considering the overall success of the stoichiometric model4. EAB, the electron affinity of the less
electronegative element, B, in the binary, is the second and fourth most important feature for the FHI-aims and exciting QRF
models.

The basis-set size variable, Nb, turns out to be the second and fourth most selected feature for exciting and FHI-aims
respectively. For FHI-aims, the basis-set size variable, ∆SBAB

PV E , is a single scalar. It maps an s-like orbital and a d-like orbital
with the same weight. This loss of information in the mapping may be why we do not see the feature playing an important
role. We experimented with feeding the model additional basis-set size variables, namely, the numerical and basis-set size
settings encoded as integers but saw no improvement in CV performance. The fact that the features ∆EA(Nb) and ∆EB(Nb) are
functions of the basis-set size may explain why the basis-set size variables themselves are not important since it is implicitly
included in these variables.

The improvement of the QRF models over the corresponding stoichiometric models comes from two sources, the ability
to use more variables and the ability to express non-linear functions. Based on the non-negligible feature importance of the
basis-set size variable and atomic chemical data such as the electron affinity, we learn that the added features are important.
However, this is not the only source of improvement. To provide evidence for it, we trained a linear model (`-1 and `-2
regularization) with these additional variables and found no significant improvement over the stoichiometric model. Therefore,
we conclude that the QRF model benefits also from its non-linear nature.

QRF models not only provide predictions but also associated prediction intervals based on the training data. Prediction
intervals provide the user with an estimate for the uncertainty of the QRF prediction19. When introducing quantile random
forests, Meinshausen9 uses 95% prediction intervals which are the difference between the 2.5% quantile and 97.5% quantile.

6/12



Figure 3. Feature (Gini) importances of the QRF models for FHI-aims and exciting. Black lines show the standard
deviation in the feature importance across trees in the forests. The features are ordered in terms of their importance for the
FHI-aims QRF model. CA ∗∆EA and CB ∗∆EB are the first and second terms in the stoichiometric model, respectively. EAB

and EIB, respectively, are the electron affinity and ionization potential of the elemental solid composed of element B, computed
with FHI-aims. rB

s is the mean radius for the s-like pseudo orbital of elemental solid B (computed with FHI-aims). Nb is the
basis-set size for the respective code.

The target CBS energy corrections and their associated 95% prediction intervals are shown in fig. 4. They contain 92.7% of
the held-out test data for FHI-aims and 85.9% for excitingİf the estimated 2.5% and 97.5% quantiles from our model were
correct, we would expect 95% of the data to fall in this range. In other words, on average 2.5% of all unseen data points from
the test data set should be above and below the 95% prediction interval. This implies that our prediction intervals for both best
performing models cover slightly less of the test data than desired. That said, we find the deviation acceptable with only 10
and 11 data points for FHI-aims and exciting, respectively, being outliers. We note in passing that 99% prediction intervals
(or other values) can also be easily created using the accompanying Jupyter Notebook if the user desires more conservative
uncertainty estimates.

We further analyze the 95% prediction intervals by plotting them against the calculated DFT values (the model target) in
fig. 5. In general, we would expect larger calculated ∆EAB values to have larger associated model prediction intervals. This is
indeed what we see. The exciting prediction intervals have a Pearson correlation of 0.73 with the calculated ∆EAB values.
For FHI-aims, the correlation of the prediction intervals is lower although still significantly positive at 0.69.

Discussion

The QRF models allow us to perform CBS extrapolation of the total energy per atom. In this case, EAB(Nb), is known, and the
model estimates the correction, ∆EAB(Nb), the sum of both giving us the CBS estimate, EAB(N∞) (eq. 1). Assessing the overall
performance of our models, for both codes, we find that the QRF models achieve improved results in all metrics except for the
95% quantile AE for which the exciting model performs slightly worse. This indicates that for the largest CBS extrapolation
corrections of the exciting data set, which are around 20-40 eV/atom the stoichiometric model is preferred. This knowledge
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Figure 4. Prediction intervals (95%) for the QRF models for FHI-aims (left) and exciting (right). The blue points indicate
the calculated ∆EAB DFT values. The yellow shaded areas show the prediction intervals for each DFT value target (blue point).
The data (DFT values and associated prediction intervals) are ordered from left to right in terms of increasing DFT values. The
insets zoom into the respective region of smaller values. Note, the x-axes are different for both codes since there is varying
amount of data for each code due to the different basis-set size parameters. As a result, the y-axes are also different. exciting
contains larger calculated DFT ∆EAB values since the basis-set size was controlled manually whereas the FHI-aims code basis
variation stopped at the discrete minimal option given by the code.

gives us a better understanding of the QRF model’s domain of applicability –i.e., the user should not expect more reliable CBS
corrections than this from the stoichiometric model for calculated corrections of over 20 eV/atom. Overall, we understand that
the improvement of the QRF models over the stoichiometric models comes from the addition of new features and the ability to
fit non-linear distributions. We also find the combination models to perform worse than the QRF models in terms of our metrics
that cover a wide range of targets (sMAPE, MAPE) and as such we don’t recommend the use of the combination model.

The QRF models also provide prediction intervals which offer the user a quantitative estimate of how uncertain the model
is in each prediction it makes. The 95% prediction intervals are positively correlated with over 0.69 Pearson correlation for
both codes. We expect the model to have larger prediction intervals for larger targets and we see this with the 95% prediction
intervals which have over 0.69 Pearson correlation for both codes. The 95% prediction intervals contain slightly less than
95% of the held-out calculated CBS energy corrections. In general, however, the correlation of the prediction intervals and the
percent of data they cover indicate the prediction intervals of the QRF models to be well-behaved.

The QRF models offer users of materials databases a quantitative assessment of how far a total-energy result is from the
CBS limit, which helps to evaluate how these results can be reused/repurposed. Looking forward, we believe that this work
will allow such databases to provide estimated CBS corrections for hosted data. We find the overall performance of the QRF
models in terms of sMAPE on the test data set of less than 25% for exciting and less than 15% for FHI-aims acceptable,
especially considering that we provide prediction intervals that indicate the precision of the estimate (and thereby the domain of
applicability of the model). This will help non-experts unlock the large potential these databases have in many fields (e.g.,
medical, transportation, energy). For instance, data that were simulated for a molecular dynamics investigation, likely have
a large CBS correction and might be unsuitable for investigations where high precision is required. On the opposite case,
data performed with very high precision settings, even coming from different sources, will have a low CBS correction and
might be suitable for a wide range of machine-learning tasks. We also believe that this work may have future applications
in recommending a basis-set size for DFT practitioners for achieving a certain degree of precision before a calculation is
performed and thereby saving computational expenses.

We expect highly expressive non-linear models such as neural networks and related methods to offer an opportunity to
improve CBS-limit predictions for DFT data20. However, these models are notoriously data-hungry, and more data are needed
before they can be used effectively. The authors plan high-throughput calculations to obtain more dedicated data for a systematic
analysis. This not only includes total energies but also tackling more involved properties such as electronic or elastic properties,
and more.
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Figure 5. The QRF model’s prediction interval size versus DFT CBS energy correction targets for FHI-aims (left) and
exciting (right) data. Note, the logarithmic axes. This plot shows the effect of the calculated DFT targets on the associated
prediction interval sizes of the QRF model. Larger/smaller ∆EAB targets are generally associated with larger/smaller prediction
intervals. The region of DFT calculated ∆EAB values between 1 meV/atom and 1 eV/atom are plotted with a lighter shade since
these data are of particular interest to DFT practitioners.

Data Records
The raw DFT data, i.e., input and output files for both exciting and FHI-aims are hosted in the NOMAD Repository, under
the following DOIs: exciting: DOI:10.17172/NOMAD/2020.07.15-1, FHI-aims: DOI:10.17172/NOMAD/2020.07.27-1.

Usage Notes
Data are parsed into Pandas Dataframes (add citation).. We then train the Random Forest in python using the SciKit Learn
package (add citation).

Code Availability

The code used to generate all figures and train all models in this paper can be found on the NOMAD AI-Toolkit21.
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Supplementary Information
The stoichiometric models predictions on the test data set are seen in fig. 6.

Decision Tree Optimization of RMSLE
Quantile random forests are built on decision trees which typically are piece-wise constant functions, defined as

h(xi) =
M

∑
m=1

cmI (xi ∈ Rm). (7)

The index i refers to an individual input in the data set identifying the compound, AB and basis-set size, Nb. The indicator
function I is equal to one if the input data point xi belongs to a region of the input data space Rm. The index m refers to the
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Figure 6. Stoichiometric model predictions of ∆EAB for FHI-aims (left) and exciting (right). The regions of particular
interest to DFT practitioners, i.e., calculated values between 1 meV/atom and 1 eV/atom, are highlighted by the white
background. The RMSLE+1E-4 metric is labeled RMSLE.

different regions of input space which the decision tree partitions. These trees estimate a constant cm when the input data point
xm falls into a region Rm, where m runs over the entire data set. Note in general, and in the models used in this paper, the input
features, x, are multidimensional (e.g., more than one one-dimensional feature is used for inference). The constants are chosen
to minimize the metric of choice, in our case the RMSLE, for each region, Rm of input space. We minimize the mean squared
logarithmic error (MSLE) for simplicity since it is equivalent to minimizing the RMSLE since the square root function is
convex. Our loss (cost) function, labeled J, is then defined as in eq. 8.

J =
i=N

∑
i=1

(log(y(xi)+ ε)− log(
M

∑
m=1

cmI (xi ∈ Rm))+ ε)2 (8)

We take the derivative of the cost in this region with respect to the constant, cm′ , and set this derivative equal to zero. The
constant, cm′ for a region Rm′ is determined only by the input data that falls in that region. The model in eq. 7 predicts the
constant cm′ for data that falls in that region Rm′ . We compare that prediction with the true value y(xi). To simplify our analysis,
we focus on a single region Rm′ labeled with integer m′ and set out to find the value of the constant cm′ that minimizes the loss
of that region, J(c′m). The loss function thus becomes

J(cm′) = ∑
xi∈Rm′

(log(y(xi)+ ε)− log(cm′ + ε))2. (9)

In this region, the only data points that affect the loss satisfy the condition x ∈ Rm′ . Moreover, in this region we can replace our
sum of indicator functions (piece-wise constant tree) defined in eq. 7 with a single constant, cm′ for this region. We then arrive
at eq. 10.

dJ(cm′)

dc′m
=−2

1
(cm′ + ε) ∑

xi∈Rm′

(log(y(xi)+ ε)− log(cm′ + ε)) = 0. (10)

We note immediately that cm′ =−1, leaves our loss function gradient with a logarithmic argument of zero and a division by
zero which is undefined and not a solution we desire. If cm′ 6=−1, we arrive at

∑
xi∈Rm′

(log(y(xi)+ ε) = Nm′ log(cm′ + ε)) (11)

where Nm′ is the number of data points in the region (i.e., satisfying xm ∈ Rm′ ). The use of the RMSLE as a metric leads to

cm′ = exp
(
−Nm′ ∑

xi∈Rm′

(log(y(xi)+ ε)
)
− ε (12)
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as the choice of optimal constants for each region in our decision tree. Note, if we had chosen the MSE as a metric for the
above analysis, we would have found the following constants i.e., simply the average of targets in the region.

cm′ =
1
N ∑

xi∈Rm′

y(xi) (13)
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