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ABSTRACT

Characterizing crystal structures and interfaces down to the atomic level is an important step for designing novel materials.
Modern electron microscopy routinely achieves atomic resolution and is capable to resolve complex arrangements of atoms with
picometer precision. Here, we present AI-STEM, an automatic, artificial-intelligence based method, for accurately identifying key
characteristics from atomic-resolution scanning transmission electron microscopy (STEM) images of polycrystalline materials.
The method is based on a Bayesian convolutional neural network (BNN) that is trained only on simulated images. Excellent
performance is achieved for automatically identifying crystal structure, lattice orientation, and location of interface regions
in synthetic and experimental images. The model yields classifications and uncertainty estimates through which both bulk
and interface regions are identified. Notably, no explicit information on structural patterns at the interfaces is provided during
training. This work combines principles from probabilistic modeling, deep learning, and information theory, enabling automatic
analysis of experimental, atomic-resolution images.

Introduction
Distinct crystal structures, surfaces, and interfaces in bulk
as well as nanomaterials play a key role in tailoring desir-
able properties in many applications, e.g., catalysis or energy
conversion and storage1–3. In particular, exposed surface struc-
tures in catalysts determine catalytic performances comprising
activity and selectivity4. Furthermore, interfaces such as grain
boundaries or stacking faults can largely affect the transport
properties in energy storage or conversion devices5–10. For
example, grain boundaries serve as ion migration paths in bat-
teries6, 7, act as scattering sites for phonons in thermoelectric
devices5, 8, and could degrade electronic conductivity in solar
cells9, 10. To engineer novel materials for such applications,
it is necessary to characterize their crystalline structure down
to the atomic level, including defects or interfaces, local lat-
tice orientations, and distortions11–13. Currently, the ultimate
tool to probe hidden imperfections in crystalline materials is
electron microscopy.

To date, electron microscopy techniques with aberration
correction have been developed for investigating microstruc-
tures of materials with atomic spatial resolution. In particular,
scanning transmission electron microscopy (STEM) images
are more readily interpretable than images obtained via high
resolution transmission electron microscopy (HR-TEM), due
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to direct correlation between image contrast and the atomic
number Z of the observed species14. In STEM, a focused,
high-energy electron beam passes through an electron trans-
parent and hence thin sample. The electrons interact with
the atoms in the sample and get both scattered elastically
and inelastically, enabling to image the sample through var-
ious detector geometries (e.g., bright field (BF), dark field
(DF), angular dark field (ADF), as well as high-angle annular
dark field (HAADF)) and probe it through spectroscopic tech-
niques (e.g., electron energy-loss spectroscopy (EELS) and
energy-dispersive X-ray spectroscopy (EDS))15–18. The most
commonly employed technique to image atomic structures
and crystalline defects is HAADF-STEM, where electrons
scattered to large angles are collected by an annular detector
forming an incoherent image. Moreover, a variety of data
channels can be collected simultaneously with high-speed
detectors, but as of today the wealth of information available
in STEM is not fully exploited, due to the lack of versatile,
automatic analysis tools19, 20.

Big-data analytics and artificial-intelligence have great po-
tential for analyzing large electron-microscopy data, with
several applications to various datasets being reported20–26.
Such methods are introduced to uncover overlooked charac-
teristics and this way drive a paradigm shift in image analysis
and design of novel descriptors of atomic-resolution data. To
provide a few examples, space-group classification was pro-
posed based on electron imaging and diffraction datasets21.
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Also, multivariate statistical techniques were employed to
extract structural information such as the crystal structure
and orientation of a small sample region from complex four-
dimensional STEM datasets24. Detection and assignment of
microstructural characteristic that differ from the vast majority
of crystalline regions and phases in STEM datasets has been
performed, e.g., the identification of the local dopant distribu-
tion in graphene22, 25, or monitoring of electron-beam induced
phase transformations23. One can also train AI methods to
assign two-dimensional (2D) Bravais lattices to STEM or
scanning tunneling microscopy (STM) images23, 27. A further
approach is to reconstruct the real-space lattice from atomic-
resolution images25, 28, 29, providing real-space information
that can be analyzed with structure-identification methods
that are based, for instance, on graphs25 or structural descrip-
tors30. Unsupervised learning for defect detection or chemical-
species classification is reported, for instance, in31, 32. The
above approaches rely heavily on recent developments in
deep learning33. Properly trained neural networks (NNs) such
as convolutional neural networks (CNNs) have been shown
to solve image classification problems more accurately than
other machine-learning methods and in particular, more effi-
ciently than humans, especially in high-throughput tasks.

Here, we propose AI-STEM, which stands for Artificial-
Intelligence Scanning Transmission Electron Microscopy. AI-
STEM automatically identifies crystal symmetry and lattice
orientation as well as the location of defects such as grain
boundaries in STEM images. Both synthetic and experimen-
tal images can be processed directly and in automatic fashion,
no reconstruction of real-space lattices is required. We employ
a Fourier-space descriptor, termed FFT-HAADF (FFT: Fast
Fourier Transform), as input for a CNN. The deep-learning
model classifies a given image into a selection of crystalline
regions that differ not only by crystal symmetry but also ori-
entation. This provides additional information compared to,
for instance, the classification of a given image into the five
Bravais lattices that exist in two dimensions. In particular,
we propose an efficient training scheme that enables fast re-
training and extension of the method. The model is trained
on simulated images only, achieving near-perfect accuracy
on both training and test data (in total 31470 data points, see
Methods). The training data contains typical noise sources
that are encountered in experiment. Notably, we adopt the
Bayesian neural-network (BNN) approach, employing the
Monte Carlo dropout framework that was originally devel-
oped by Gal and Ghahramani34. BNNs do not only classify a
given input but also provide uncertainty estimates. We exploit
this additional information that is absent in standard deep-
learning models to locate bulk regions as areas of low and
interfaces as areas of high model uncertainty. This way, AI-
STEM can identify defects without being explicitly informed
about them during training. The identification of bulk and in-
terface regions is related to semantic segmentation, a popular
computer-vision task in which each image pixel is classified
in order to locate individual objects35. Based on AI-STEM’s

bulk-versus-interface segmentation, further analysis can be
conducted where it is meaningful – according to the model:
for instance, we demonstrate how the local lattice rotation can
be calculated in the detected bulk regions. Finally, we em-
ploy unsupervised learning to visualize the high-dimensional
NN representations in an interpretable, two-dimensional map.
This reveals that the model separates not only crystalline
grains with different symmetry but also different types of in-
terfaces – despite never being explicitly instructed to do so.
All code and data is made publicly available.

Results

Development of an automated classification proce-
dure
Our goal is to develop an automatic framework for analyzing
experimental HAADF-STEM images of bulk materials such
as shown in Fig. 1a: in this image, the bulk crystalline regions
are separated by a grain boundary (the interface region). The
final prediction as shown in Fig. 1f should classify the image
into bulk and interface regions, while also obtaining informa-
tion about the bulk symmetry and lattice orientation. Here, the
bulk region should be labeled as “fcc 111”, i.e., face-centered
cubic symmetry in [111] orientation, since both grains are
viewed along their common [111] zone axis corresponding to
the tilt axis of the grain boundary. Finally, AI-STEM’s predic-
tions can be used to automatically identify where to calculate
additional properties that provide further characterization, for
instance, of the bulk regions and their local lattice rotation
(cf. Fig. 1g). In the following, we explain the intermedi-
ate steps that are required to map image input (Fig. 1a) to a
characterization such as shown in Fig. 1f.

Fourier-space representation of atomic-resolution
images
To achieve sensitivity to the substructure in an image such
as shown in Fig. 1a, we divide it into local fragments (cf.
Fig. 1b). Specifically, a sliding window of predefined size is
scanned over the whole image and local patches are extracted
for each stride. This allows to investigate structural transitions,
e.g., between bulk and interface regions, in a smooth fashion.
The selection of stride and window size is discussed in the
Methods section. Each of the local patches is then transformed
into reciprocal space by computing a Fourier-space descriptor
(cf. Fig. 1c). Essentially, the fast Fourier transform (FFT)
is calculated with additional pre- and post-processing steps
(see Methods). We term this descriptor FFT-HAADF and use
it as input for the machine-learning classification model. By
calculating the Fourier transform, information on the lattice
periodicity is enhanced, thus providing a starting point for a
machine-learning model, which can be generalized to imaging
modalities that provide atomic resolution information, such
as HR-TEM or STM. In addition, translational invariance is
introduced, which otherwise would have to be learned from
the data. The descriptor is not rotationally invariant, which is
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Figure 1. Schematic overview of the AI-STEM procedure for analyzing experimental STEM images. The starting
point for AI-STEM (Artificial Intelligence Scanning Transmission Electron Microscopy) is a high-angle annular dark field
(HAADF) STEM image (a) that here contains two different crystalline regions and one grain boundary (interface). A local
window is scanned over the image with a certain stride to fragment the input into local windows (b). Three different local
windows are indicated in the a, corresponding to regions in the bulk (red, blue) and the boundary (yellow). The local windows
are then represented using a fast Fourier transform (FFT) HAADF descriptor (c, normalized between 0 and 1), where typically,
a pronounced central peak can be observed. To enhance the neighboring peaks, the maximum value in the color scale is set to
0.1. This Fourier space descriptor is used as input for a Bayesian convolutional neural network (d) that provides a classification
of crystal structure and lattice plane as well as uncertainty estimates (e). The former can be used to detect the bulk regions and
the latter reveal the interface and in general, regions with crystal defects (f). On top of this segmentation, additional analysis,
e.g. the determination of the local lattice orientation can be performed (g).

why we employ data augmentation, as we will explain in the
section ”Training data generation”.

The Bayesian classification model
To define the classification task, we need to specify the target
labels as well as the model that maps the FFT-HAADF de-
scriptor to the corresponding target labels. As classification
model, we employ a CNN. This machine-learning method
is well-known for its record-breaking performance in image
classification36, 37 and is thus a perfect fit for our problem set-
ting. The model receives the FFT-HAADF image descriptor
as input and assigns the symmetry (e.g., face-centered cubic)
and lattice orientation (e.g., [111], cf. Fig. 1d, e). We select
in total 10 different crystalline surface structures into which
a given image is classified (cf. Fig. 2a). This includes the
most common crystal structures appearing in metals, compris-
ing face-centered cubic (fcc), body-centered cubic (bcc), and
hexagonal close-packed (hcp) structures. We focus on low-
index crystallographic orientations, which can be resolved
at atomic resolution, as the projected interatomic distances
are well within the resolution limit. The selected orientations

are also based on mono-species metal systems for each of
the crystal structures considered here: copper (Cu) for fcc,
iron (Fe) for bcc, and titanium (Ti) for the hcp structure, re-
spectively. The CNN consists of a sequence of convolutional,
pooling, and fully connected layers (cf. Fig. 2b). The last
layer is composed by 10 neurons, each corresponding to one
of the surface classes. In particular, the output neurons are
normalized such that each represents the classification proba-
bility for one of the 10 surface structures. For a given image,
the most likely class corresponds to the predicted label. In the
complete AI-STEM workflow, the CNN is applied to each lo-
cal window, providing a classification for each local segment
(Fig. 1e).

In general, beyond classification, it is desirable to estimate
the model uncertainty. This allows to assess how much one
can trust a specific prediction, especially in situations that are
different to the training set. This can be useful in various sce-
narios, e.g., for autonomous driving38 or medical diagnosis39.
In our case, we train the model only on perfect crystal struc-
tures with periodic arrangements of atomic columns and use
the uncertainty in the classification to identify the presence of
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Figure 2. Image descriptor and convolutional neural network (CNN) model for classification of STEM HAADF
images. (a) Examples of FFT-HAADF images for all 10 crystalline surfaces included in the training set, which include
face-centered cubic (fcc), body-centered cubic (bcc) and hexagonal close-packed (hcp) symmetry. (b) Schematic CNN
architecture. FFT-HAADF images are used as the input, and the assignment to one of the 10 classes is calculated in the final
layer.

structural defects. Given the large number of degrees of free-
dom for any defect, creating a library of potentially interesting
defects for training is challenging – which is why we take a dif-
ferent approach: we use a Bayesian neural network34, 40 which
does not only classify a given (local) HAADF-STEM image,
but also provides uncertainty estimates of the classification. If
the uncertainty is high (low), the image is likely (unlikely) to
deviate from the perfect crystal structure (on which the model
is trained) and could contain a crystal defect, secondary phase
with different crystal symmetry or even amorphous regions.
This way, we can identify the host crystal structure and ori-
entation at the same time and can locate regions in the image
that differ from any of the training classes, where in this work,
we consider grain boundaries as an example. One may be
tempted to interpret the classification probabilities from the
last CNN layer as being informative about model uncertainty.
However, high classification probability does not always cor-
relate with low uncertainty. In particular, standard NNs are
known for overconfident extrapolations – even for points that

are far outside the training set34, 40. Modelling of predictive
uncertainty can be improved by constructing a probabilistic
model that provides a distribution of predictions rather than a
single, deterministic one.

In order to estimate uncertainty in deep learning models,
distributions are placed over the NN weights – resulting in
probabilistic outputs – instead of considering a single set of
NN parameters as done in the standard approach – resulting in
deterministic predictions. More formally, a standard NN is a
non-linear function fω : X → Y , i.e., a mapping from input
to output space that is parametrized by parameters ω (a set of
weights and biases ω := {Wl ,bl}L

l=1, where L is the number
of layers). After training a model on data Dtrain, inference of
a target y (here: a class label) for a new point x (here: the
FFT-HAADF image descriptor) is calculated via

p(y|x,Dtrain) =
∫

p(y|x,ω)p(ω|Dtrain)dω. (1)

In this expression, p(ω|Dtrain) denotes the posterior that in-
dicates how likely a set of parameters is given training data
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Dtrain. Moreover, the likelihood p(y|x,ω) corresponds to the
softmax activation function – a standard approach to normalize
the output layer such that they can be interpreted as classifica-
tion probabilities:

p(y = c|x,ω) =
exp([ fω(x)]c)

∑c′ exp([ fω(x)]c′)
. (2)

where [ fω(x)]c is the output value of the NN for the class
c. We see in Eq. 1 that instead of a single hypothesis, all
parameter settings weighted by their posterior probabilities
are included during inference. The standard approach would
correspond to choosing the posterior as a delta distribution
over a specific parameter setting – resulting in the above-
mentioned overconfident predictions in out-of-distribution sce-
narios. Evaluating integrals over the whole parameter space,
as appearing in Eq. 1, is practically impossible – especially
for large deep learning models. Fortunately, approximating
tools for evaluating Eq. 1 are available.

One way to approximate Bayesian inference in deep learn-
ing models (i.e., Eq. 1) is Monte Carlo (MC) dropout34, 40.
This approach is principled in the sense that the uncertainty
estimates from MC dropout approximate those of a Gaussian
process40. In more detail, dropout41, 42 is employed – a regu-
larization technique that is usually used to avoid overfitting
by dropping individual neurons during training. This way,
the model has to compensate the loss of individual neurons,
avoiding that the neural activation concentrates to local parts
of the network. It has been shown that powerful uncertainty
estimates can be obtained by using dropout not only during
training but also at test time34. Specifically, for a given input,
the output layer is sampled for a certain number of iterations
T , where each sample is calculated from different networks
that are perturbed according to the dropout algorithm. To
obtain a Bayesian CNN, dropout is applied after each convo-
lutional and fully connected layer (see the yellow blocks in
2b). Classification can then be performed by calculating a
simple average, i.e., the probability of class c given input x
and training data Dtrain (whose general expression is shown in
Eq. 1) can be approximated as

p(y = c|x,Dtrain)≈
1
T

T

∑
t=1

p(y = c|x,ω t). (3)

Here, p(y = c|x,ω t) (defined in Eq. 2) denotes the classi-
fication probability of class c given input x and parameter
configuration ωt that is obtained by random removal of neu-
rons (defined according to the dropout algorithm). Modest
number of samples typically suffice40, where in this work, we
employ T = 100 samples. Notably, this process is in principle
trivial to parallelize. We discuss more details on computation
time and choice of T in the Supplementary Information (cf.
Fig. S4). Beyond the simple average in Eq. 1, additional
information about the model confidence is contained in the
collection of samples p(y= c|x,ω t). For this, we invoke infor-
mation theory, specifically mutual information. This (scalar)

quantity provides a means to quantify the uncertainty, which
has been employed in different settings including self-driving
cars43 as well as crystal-structure identification30. The mutual
information is defined between predictive and posterior dis-
tribution and is denoted as I(ω,y|Dtrain,x) (see Methods for
exact definition). Intuitively, it can be understood as the in-
formation gained about the model parameters ω if one would
receive the label y for a new point x. Thus, if the mutual
information is high for a given data point, one would gain
information once the label is specified – corresponding to
high predictive uncertainty. Similar to Eq. 1, integrals over
the whole parameter space appear, which are computation-
ally intractable. However, using MC dropout, one can find a
tractable expression that only involves summations over all
classes and samples34 (Methods).

Training data generation
To train the classification model for crystal-structure identifi-
cation in atomic-resolution images, a suitable training dataset
has to be generated. Notably, we refrain from training on
experimental images which may contain unknown artefacts,
such as noise, distortions or defects. Furthermore, acquiring
and curating an experimental database of images of pristine
crystal structures imaged at different orientations with atomic
resolution is an elaborate task. Instead, we train only on sim-
ulated images, where we have exact control over imaging
conditions and noise sources, allowing us to create a dataset
with known labels. Obtaining such reliable training data is
essential to achieve trustable labeling output of the CNN. One
may criticize simulations for potentially missing crucial fea-
tures that are present in experiment. However, with the advent
of aberration-correction in STEM14, the direct comparison
of experimental and simulated images at atomic resolution
became accessible also on a quantitative basis44. It has even
been shown that it is possible to determine the number of
atoms in an atomic column or to retrieve the 3D atomic struc-
ture of nano-objects by combining experimental and simulated
images45, 46. Recently developed efficient implementations of
the multislice algorithm enable to simulate STEM images sim-
ilar to experimental conditions47, 48. Using high-performance
computing, realistic simulations of images can be conducted,
achieving computation times of a few hours to days for 10-100
images. In this work, we provide additional speed-up by us-
ing a convolution-based approach, reducing the computation
time from days to minutes for an entire training dataset (see
Methods). Using this efficient simulation scheme, we obtain
images for each of the 10 classes for different lattice constants.
Additionally, we include data augmentation steps to consider
a range of lattice rotations and noise sources that are resem-
bling typical experimental conditions (Methods). In this work,
we include lattice shear, blurring, as well as Gaussian and
Poisson noise – resulting in 31470 data points.

Neural-network training procedure
For training, the 31470 data points are split, where 80% is
used for training and 20% for validation. Based on the per-
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formance on the validation set, we optimize hyperparameters
such as the filter size in the convolutional layers and dropout
ratio (the number of neurons dropped). Specifically, we em-
ploy Bayesian optimization, which is a general approach for
global optimization of black-box functions that are compu-
tationally expensive to evaluate49. This makes Bayesian op-
timization a perfect fit for optimizing NNs, where exploring
different architectures and optimization parameters is typi-
cally accompanied with high computational cost. Here, the
black-box function to be optimized is the validation loss, and
the optimization protocol we invoke50 provides us with a list
of candidate models, all with near-perfect accuracy (see Meth-
ods). Their uncertainty estimates, however, are different, as
we will highlight via the following model selection procedure.

To find the model that shows strongest performance in both
classification and detection of out-of-training-distribution re-
gions, we analyze the simulated test image in Fig. 3a. It
contains both crystalline and amorphous regions, providing
a test bed for identifying models with high uncertainty at the
transition between grains and in the amorphous region – both
of which are never shown to the models during training. The
four regions in the image are simulated separately (using full
multi-slice simulations) and then stitched together. Three
of these regions are crystalline, representing one of the in
total three different symmetries in the training set: Fe (bcc,
[100]), Cu (fcc, [100]), and Ti (hcp, [0001]). Here, we ex-
pect low uncertainty and correct assignment of the respective
symmetry. The amorphous region is simulated based on a
three-dimensional structure obtained via realistic molecular-
dynamics simulations of amorphous Silicon51. All models
obtained via Bayesian optimization are applied to this image.
Given their near-perfect accuracy during training, they all
can recognize the crystalline parts of the image, while their
assignments in the amorphous region differ. We can now also
analyze the corresponding uncertainties, which provide an es-
timate of the reliability of the classifications (cf. Fig. 3b). We
select the model with the highest uncertainty, as quantified by
the mutual information (cf. Eq. 6), in the amorphous region.
For this model, the classification results are shown in Fig.
3c, where one can see that the correct crystal symmetries are
assigned in the expected regions, while in the amorphous part,
several different phases are assigned. The mutual information
shown in Fig. 3d increases at the interfaces between the four
different crystalline regions, as well as in the amorphous part.
The detailed architecture is specified in Table 1.

Application to experimental STEM data
Now we turn to applying AI-STEM to experimental data. In
the following, we challenge the model with several HAADF-
STEM images, demonstrating the practical applicability of
AI-STEM. In particular, we show that the model can classify
crystalline regions in experimental images and how the bulk-
versus-interface segmentation can be inferred and employed
for further analysis – here, for determining the local lattice
orientation in the bulk regions.

First, a HAADF image of elemental Cu shown in Fig. 4a
is analyzed. The image contains a horizontally aligned grain
boundary separating two misoriented single crystals with a
[111] orientation in the upper and lower grain, respectively.
As shown in Fig. 4b, the model classifies the grain regions
correctly as fcc [111]. At the interface, the same label is
assigned, but with increased uncertainty (as quantified by
mutual information), allowing to detect the interface region
(cf. Fig 4c).

The segmentation obtained via AI-STEM’s predictions can
now be used to conduct further analysis of the local lattice
structure. Practically, to separate the image into bulk and in-
terface regions, we fix a mutual-information threshold of 0.1,
interpreting all local windows above this value as interface
and the remaining ones as bulk. Depending on the type of re-
gion, i.e., interface or bulk, different quantities are suited. As
an example, we calculate here the local lattice orientation, a
quantity that is only reasonable to compute in the bulk regions.
Specifically, for each local window, we reconstruct52 the real-
space lattice from the atomic columns and determine53, 54 the
angle of misalignment with respect to a reference training
image or rather its reconstructed atomic columns (cf. Sup-
plementary Note 1.1 for more details). Note that this way,
information from the training data is entering this analysis.
Also note that the reference lattice is not required as input but
determined based on the NN assignments – making this proce-
dure fully automatic and extendable (in case of retraining and
new classes being added to the training set). The calculated
angle is termed lattice mismatch and the results for the Cu
grain boundary are shown in Fig. 4d. The reference images
are shown below the heatmaps. For the interface region, de-
picted in gray in Fig. 4d, no calculation is performed. The
expected misorientations are exemplarily indicated in Fig. 4a,
which closely match the calculated values of Fig. 4d.

Next, we consider a HAADF image of Fe55 containing
a grain boundary that is horizontally aligned and separates
two crystalline grains with [100] orientation (cf. Fig. 4e).
Compared to the previous example, this image contains inten-
sity variation of the background but also the atomic columns,
which is more pronounced, for instance, in the upper left part
compared to the lower part of the image. Such variations are
common in experimental images and may stem from surface
damage induced during sample preparation or surface oxide
formation. However, AI-STEM correctly classifies the bulk re-
gions as bcc [100] (cf. Fig. 4f), while the assignment changes
at the grain boundary, but with increased uncertainty (cf. Fig.
4g). In the upper left in more noisy parts of the image, the
uncertainty also increases. The obtained mismatch angles
are shown in Fig. 4h and also here calculated and expected
angles (again indicated in the original image in Fig. 4e) are in
agreement.

Finally, we investigate a low-angle [0001] tilt grain bound-
ary in Ti (cf. 4i), which consists of a periodic array of disloca-
tions with a line direction perpendicular to [0001]. Hence, the
interface structure is qualitatively different compared to the
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Layer type Specifications
Convolutional layer 32 filters, 3×3 kernel size, 1×1 stride, ReLU activation, dropout
Convolutional layer 32 filters, 3×3 kernel size, 1×1 stride, ReLU activation, dropout
Max pooling layer 2×2 pool size, 2×2 stride
Convolutional layer 16 filters, 3×3 kernel size, 1×1 stride, ReLU activation, dropout
Convolutional layer 16 filters, 3×3 kernel size, 1×1 stride, ReLU activation, dropout
Max pooling layer 2×2 pool size, 2×2 stride
Convolutional layer 8 filters, 3×3 kernel size, 1×1 stride, ReLU activation, dropout
Convolutional layer 8 filters, 3×3 kernel size, 1×1 stride, ReLU activation, dropout
Flatten layer 2048 neurons
Fully connected layer 128 neurons, ReLU activation, dropout
Classification layer 10 neurons, softmax activation

Table 1. Convolutional neural network architecture employed in this work. The dropout rate for all layers is 7 %. The
total number of parameters is 281 818. ReLU is short for Rectified Linear Unit.
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Figure 3. Application of AI-STEM to synthetic, polycrystalline data. a The simulated image has 4 crystalline regions
with different structural order, including three crystalline (Cu fcc [100], Fe bcc [100], Ti hcp [0001]) and one amorphous grain.
Each grain is rectangular with an edge length of 40 Å. The sliding window is 1.2×1.2nm (100 pixels) and is visualized in the
top left corner. b The Bayesian CNN employed in the AI-STEM workflow (cf. Fig. 1) provides a distribution and not only
point estimates in the final output layer. The averaged classification probabilities can be used to identify the most likely class
(c). An uncertainty estimate (a scalar value, cf. b and Eq. 6) can be obtained via the via mutual information (d), revealing the
grain boundaries as well as the amorphous region.
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9×9nm), a Σ5 (013) [001] tilt GB in Fe with misorientation angle of ∼ 38◦ (class: bcc 100, 6.4×6.4nm), and a low angle
[0001] tilt GB in Ti with a misorientation angle of ∼ 13◦ (class: hcp 0001, 12.8×12.8nm), which are shown in a, e, and i.
One can see from the classification maps (b, f, j) that the expected bulk symmetries are correctly assigned. In the color scale,
only the most frequent assignments are labeled, the full color scale (indicating the other assignments, e.g., in f at the interface)
is shown in Fig. 3c. The uncertainty, as quantified by the mutual information (c, g, k), indicates the grain-boundary regions.
Combining these two pieces of information allows to identify the bulk and boundary regions. For the bulk regions, one can
conduct further analysis: as an example, in d, h, l, we determine for each local window the local lattice mismatch, which is
defined as the mismatch angle between the real-space lattices reconstructed from local window and reference image (shown
below the heatmaps in d, h, l). This analysis is only conducted where it is meaningful, i.e., in bulk regions, in particular
excluding high-uncertainty regions that are indicated by gray areas in d, h, l.

previously shown high angle grain boundaries for Cu and Fe.
In particular, the smaller misorientation angle between both
grains in the Ti image leads to regions within the interface
where the atomic lattices of the two grains are still connected
with each other. AI-STEM correctly assigns hcp [0001] (cf.
Fig. 4j), with only few outliers in the classification at the grain

boundary, which is again revealed via the mutual information
(cf. Fig. 4k). One can observe that the mutual information
is decreasing in the regions in between the grain boundary
dislocations, where the lattice resembles that of undisturbed
Ti [0001] and is increasing in the locations of the dislocation
cores at the interface. This shows that the uncertainty estimate
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Figure 5. Visualizing neural-network representations of local crystalline and defective atomic structure in
experimental images. For each of the three experimental images in Fig. 4, we apply the fragmentation procedure of AI-STEM
(cf. Fig. 1b), and extract the neural-network representations of these local windows (for the last fully connected layer before the
classification, cf. Fig. 2b). The dimension-reduction (via Uniform Manifold Approximation and Projection, short UMAP) of
these high-dimensional NN representation is shown in Fig. a and b, where in a the color scale corresponds to the AI-STEM
assignments, and in b the color scale corresponds to the mutual information that quantifies model uncertainty. All images are
separated into three connected regions. In each of these, two connected clusters can be seen that correspond to the crystalline
grains, while the connections indicate the grain boundary region. Notably, the boundary regions, which correspond to distinct
interface types and are of critical importance for the material properties, do not intersect and are thus not confused by
AI-STEM.

of the predictions can even be used to locate more confined
lattice defects such as individual dislocations. Similar to the
previous two examples, we obtain the local lattice mismatch
(cf. Fig. 4l) that matches the expectations (cf. Fig. 4i) with a
margin of few degrees.

Analyzing AI-STEM’s internal representations via
unsupervised analysis
So far, we have demonstrated how AI-STEM can be used to
classify lattice symmetry and orientation and is capable of
detecting interfaces and even individual dislocations within an
interface. To understand how the model interprets crystalline
grains and interface regions, we apply unsupervised learning
to the internal NN representations. Specifically, we employ
manifold learning to embed the high-dimensional NN repre-
sentations into two-dimensional, readily interpretable maps.
We employ Uniform Manifold Approximation and Projection
(UMAP)56, which approximates the manifold that underlies
a given dataset, and allows to construct low-dimensional em-
beddings that can capture both global and local relationships
among the original, high-dimensional data points. We con-
sider the experimental images shown in Fig. 4a, e, i, and com-
pute the NN representations for each of the local windows,
as determined within the AI-STEM workflow (cf. Fig. 1b).
Superficially, we inspect the last, fully connected layer before
the output layer, i.e., before the classification is conducted
(cf. Fig. 2b). The two-dimensional UMAP embedding is

shown in Fig. 5a, where the color scale corresponds to the NN
assignments. Despite the high level of compression, from 128
to 2 dimensions, all three images are well separated. For each
image, two sub-clusters can be observed that correspond to the
two bulk grains (cf. Fig. 5a). These are joined by contiguous
strings that correspond to the interface regions, respectively.
This is also visualized by using the mutual information as a
color scale (cf. Fig. 5b), where along the strings, increased
uncertainty can be observed (which indicates the presence of
the defects). Notably, the different grain boundary types (e.g.
high angle vs. low angle) are also mapped to different regions
in the map. This demonstrates the capability of AI-STEM to
not only recognize bulk symmetry and orientation but also to
distinguish different interface types – even though it has never
been provided with explicit examples for such a task during
training.

Discussion
In this work, we propose AI-STEM which automatically char-
acterizes crystal structure and interfaces in simulated and ex-
perimental atomic-resolution STEM datasets. This is enabled
by adapting several techniques: we employ signal-processing
tools to represent imaging data, deep learning to identify
crystal symmetry and orientation, and Bayesian modeling in
combination with information theory to estimate model un-
certainty as well as to optimize NN hyperparameters. At the
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core of AI-STEM is a Bayesian convolutional neural network,
which goes beyond standard NN models, providing classifica-
tions and principled uncertainty estimates. The former allow
identification of lattice symmetry and crystal orientation while
the latter are used to segment an image into bulk and inter-
face regions. Despite being trained only on simulated STEM
images of perfect lattice structures, AI-STEM generalizes to
experimental images, as demonstrated by several challenging
examples. The training data can be obtained by discrete mul-
tislice image simulations considering dynamical scattering
effects, while, in this work, we show that a fast convolution
approach can be employed. In order to verify the applicability
of the labeling procedure, a diverse set of simulated images
of typical monocrystalline structures is generated, serving as
reliable ground truth. Based on the segmentation provided by
AI-STEM’s prediction, one can conduct augmenting analysis
that reveals additional characteristics of the identified regions.
Here, we determine the local lattice rotation in the crystalline
grains. Using unsupervised learning, we demonstrate that
different types of interfaces appear separated in the internal
NN space, despite no explicit information on any interface
pattern is being provided during training. This analysis also
shows how unsupervised learning can be used to explain a
black-box model, in post-hoc fashion57–59.

In the future, it would be interesting to provide not only
a bulk-versus-interface segmentation but also predict addi-
tional details automatically, e.g., how the crystalline grains
differ. Currently, this can only be done by additional analysis,
e.g., based on reconstructing the (projected) real-space lattice.
However, one can see from the latent space visualization in
Fig. 5 that grains with different orientation are separated. In
principle, a clustering algorithm may be employed to sepa-
rate the grains, while this can be challenging to automate as
clustering typically involves several parameter choices that
are not guaranteed to generalize well. Alternatively, one may
consider a multi-label classification problem or construct a
separate machine-learning model to predict the (local) lattice
rotation automatically.

In conclusion, our method shows great potential to automat-
ically analyze and classify crystallographic attributes in STEM
datasets without human intervention. In electron-microscopy
research, the development of a “self-driving” microscope ap-
pears on the horizon due to rapid advances in artificial intel-
ligence60, 61. While we focus on mono-species systems as
a proof of concept, this work paves the way to autonomous
investigations of complex nanostructures at the atomic level.

Methods
AI-STEM parameters Besides the classification model, the
two most important components are the stride and box size.
For the box size, we recommend a value of 12 Å, on which
the model is trained. If significantly larger window sizes are
necessary for a desired application, the practical approach is
to augment the dataset using our efficient training procedure
and retrain the model. Also note that the model is trained

for a specific resolution, in which 1 pixel corresponds to
0.12 Å. For different resolutions, one may simply rescale the
image or, as we proceeded here, adjust the window size. For
instance, the Cu image in Fig. 4a is measured for a resolution
of about 0.0880 Åper pixel, while the other images in Fig.
4 are measured for 0.1245 Å. To match both resolutions to
the training range, we decrease the box size to 136 pixels for
Cu (as it is measured at higher resolution, i.e., we need to
increase the box size to obtain a number of atomic columns
that is comparable to the training set), and 96 for the other
two images (as it is recorded at lower resolution, i.e., we
smaller windows are required to obtain a number of atomic
columns that is comparable to the training set). In principle,
our data-generation method also allows to vary the resolution,
such that retraining with various resolutions could be done
as well. For the stride, we use values on the order of 1 Å, to
demonstrate the high-resolution capabilities of the approach.
Smaller strides can suffice to reveal the main characteristics,
cf. Fig. S3 (in particular, it is possible to separate an image
into bulk and interface regions). For the synthetic image in
Fig. 3, we employ a stride of 12 pixels, corresponding to
∼ 1.4 Å. The same settings were used for the experimental
images of Ti and Cu (Fig. 4a, c). For Fe (Fig. 4b), the stride
was halved as this image is smaller (about half of the size of
Ti, and two third of Cu), enabling comparable number of local
fragments.

FFT-HAADF descriptor We start from the periodic ar-
rangement of atomic columns in HAADF-STEM images.
These are acquired in low-index crystallographic orientations,
which directly represent the underlying projected crystal sym-
metry. In the AI-STEM workflow, an input image corresponds
to a local fragment or window, extracted from a larger image.
The cutting procedure may lead to to boundary effects, e.g.,
truncated atomic columns. This can lead to spurious patterns
in the FFT, which is why we apply a window function to the
STEM HAADF image before calculating the FFT – a stan-
dard practice in signal processing62. Here, we use the Hann
window that provides a smooth decay at the image boundaries.
Then, the FFT is calculated, resulting in spectra which have a
dominant central peak, suppressing possibly valuable infor-
mation at higher frequencies. Thus, we apply a thresholding
scheme: the FFTs are normalized to the range [0, 1] and then
all values above 0.1 are set to 1.0. This provides visible en-
hancement of peak patterns around the central peak, which is
visualized for all classes in this work in Supplementary Figure
S1.

Neural network training The CNN is trained on 31470
64× 64 pixel images (the FFT-HAADF descriptor of the
STEM HAADF images). A split of this dataset into training
and test is performed in stratified fashion (via scikit-learn, us-
ing a random state of 42; see Data availability for the dataset
link). Adam optimization is employed for training63. The
CNN is implemented using Tensorflow64. Hyperparameters
are optimized using Bayesian optimization, specifically the
Tree-structured Parzen estimator (TPE) algorithm as provided

10/19



by the python library hyperopt50. We experimented with min-
imizing either validation loss or accuracy, while no significant
difference could be found, in terms of classification accu-
racy. We chose the validation loss as objective function to be
minimized. We tested different configuration spaces for the
network architecture and optimization parameters, including
number of layers, number of filters, filter size, dropout ratio
as well as batch sizes (example notebooks are provided, cf.
“Data availability”). The models typically converge to near-
perfect accuracy in few epochs and we find that we can restrict
to smaller configuration spaces, reducing the computational
cost. We fix the architecture to 6 layers (number of filters: 32,
32, 16, 16, 8, 8) and focus on the search for the right kernel
size ( 3×3,5×5,7×7) as well as the dropout ratio (values
between 2 and 10 percent, step size 1 percent). In particu-
lar, the choice of dropout ratio is known to be important for
the quality of the uncertainty estimates40. We run the TPE
algorithm for 25 iterations. Each model is optimized for 25
epochs, saving only the model with best validation accuracy.
These models achieve all near-perfect accuracy (99,9 % classi-
fication accuracy on both training and validation set), but their
uncertainty estimates differ. We thus select the model that has
the highest median uncertainty in the amorphous region in the
synthetic polycrystal example (Fig. 3), where we expect a low
degree of crystallinity. The model chosen in this fashion is
reported in Table 1.

Uncertainty quantification Given the test point x, the mu-
tual information between the predictions and the model poste-
rior p(ω|Dtrain) is defined as34, 40, 65

I [y,ω|x,Dtrain] :=H[y|x,Dtrain]−Ep(ω|Dtrain) [H[y|x,ω]] . (4)

The first term on the r.h.s. is termed predictive entropy40.
It quantifies the (average) information in the distribution of
predictions and is defined by

H[y|x,Dtrain] :=−∑
c

p(y= c|x,Dtrain) log p(y = c|x,Dtrain).

(5)

The second term on the r.h.s. of Eq. 4 is defined as

Ep(ω|Dtrain) [H[y|x,ω]] :=

Ep(ω|Dtrain)

[
∑
c

p(y = c|x,ω) log p(y = c|x,ω)

]
.

One may refer to this as expected entropy as it averages the
entropy of the predictions given the parameters ω that are
distributed according to the posterior distribution66. Using
Monte Carlo dropout, one can approximate the mutual infor-
mation as34

I [y,ω|x,Dtrain]≈

−∑
c

(
1
T ∑

t
p(y = c|x,ω t)

)
log
(

1
T ∑

t
p(y = c|x,ω t)

)
+

1
T ∑

c
∑

t
p(y = c|x,ω t) log p(y = c|x,ω t) .

(6)

Details on training data generation For each of the 10
surface classes, we consider a small interval of±0.1Å around
their respective experimental lattice parameters. This is due to
the fact that some of the classes can be similar (a consequence
of the 2D projection provided by STEM images), for instance
fcc100 and bcc100 (cf. Fig. 2a). The lattice parameters are the
following: for all Cu fcc single crystals, the lattice constant a
is 3.63 Å; for all Fe bcc single crystals, the lattice constant a is
2.87 Å; for all Ti hcp single crystals, the lattice constants a and
c are 2.95 Å and 4.68 Å, respectively (c/a∼ 1.587). For each
of these classes, we include a range of rotations (0-90 degrees,
step size 5 degrees, using the Python package scipy67). Then,
different noise sources are applied, as implemented in the
Python package scikit-image68: first, shear is applied to all
images (affine transformation applied to the images, only
using shear but no scaling or translation) for all rotations.
We apply additional noise sources for a subselection of data
points (only every second rotated and sheared image, keeping
the dataset size below 100k), including Gaussian blurring
(scanning a Gaussian filter of certain width over the image),
and finally, addition of random noise sources (Gaussian or
Poisson). Visual examples are provided in Fig. S2.

Simulation of STEM dataset To generate the ground truth
STEM datasets consisting of HAADF images, STEM image
simulations were performed with the abTEM software pack-
age47. The crystal orientations as shown in Fig. 2 for the ten
classes are generated by the atomic simulation environment
(ASE) python module69. The thickness of all simulation cells
was set to 8 nm (z−direction) with a slice thickness of 0.2 nm.
The x- and y−dimensions of the simulation cells was chosen
to be ∼ 8 nm, respectively. An electron energy of 300 kV, a
probe semi-convergence angle of 24 mrad and semi-collection
angles of the HAADF detector ranging from 78 to 200 mrad
were used for the simulations. The pixel size was fixed to
12 pm resulting in images with ∼ 64 × 64 pixels. Thermal
diffuse scattering was considered by using 12 frozen phonon
configurations with a root-mean-squared thermal displace-
ment according to the Debye-Waller factors obtained from
Peng et al.70 for Cu, Fe and Ti at 280 K. The image simula-
tions were performed on a Windows 11 Pro based workstation
with an Intel Xeon CPU with 32 GB of RAM and a NVIDIA
Quadro K1200 GPU. The total simulation times for the Cu-fcc
class was ∼ 11 hours, for the Fe-bcc class ∼ 26 hours and
Ti-hcp class ∼ 13 hours, respectively.

To speed up the training dataset generation, we also em-
ployed a simple convolution approach where the probe wave
function generated in abTEM47 was convolved with the
summed projected potentials for each cell. This reduces the
total calculation time for each class to several minutes. We
employ this approach for training the CNN model, demon-
strating that this computationally efficient approach can yield
strong performance on experimental images (cf. Fig. 4).
Scanning transmission electron microscopy (STEM) ex-
periment All experimental STEM data were acquired using
a probe corrected Titan Themis 60-300 (Thermo Fisher Sci-
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entific). The TEM is equipped with a high brightness field
emission gun and a gun monochromator. The electrons were
accelerated to 300 kV and images were recorded at a probe cur-
rent of 80 pA with a high-angle annular dark field (HAADF)
detector (Fishione Instruments Model 3000). The collection
angles for the HAADF images were set to 73–200 mrad using
a semi-convergence angles of 17 mrad and 23.8 mrad. Image
series with 20–40 images and a dwell time of 1–2 µs were
acquired, registered and averaged in order to minimize the
effect of instrumental instabilities and noise in the images.

Experimental HAADF-STEM images of a Σ19b (178)
[111] tilt grain boundary in Cu with a misorientation angle of
∼ 48◦ , a Σ5 (013) [001] tilt boundary in Fe with a misorienta-
tion angle of ∼ 38◦ and a low angle [0001] tilt GB in Ti with
a misorientation angle of ∼ 13◦ are used to test the ai4stem
approach. Details on the sample fabrication and preparation
for the Cu, Fe and Ti grain boundary images can be found
in13, 55, 71, respectively.

Data availability
All relevant data (training and test set, experimental and syn-
thetic images, as well as neural-network models) are available
at https://doi.org/10.5281/zenodo.7756516.

Code availability
Code and several examples for applying ai4stem and repro-
ducing the results of this article are available at https:
//github.com/AndreasLeitherer/ai4stem.
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1 Supplementary Notes
1.1 Supplementary Note 1
To calculate the mismatch angle, the real-space lattices for
both experimental images and reference image (taken from
the training set) is reconstructed via atomap52. The real-space
lattice for the experimental data is extracted from the whole
image, not for each local segment, which saves computation
time. The local lattices that correspond to the local image
patches from AI-STEM are extracted in a second step. For
each of the local lattices, the rotation angle is determined that
would align local and reference lattices. To determine this
angle, point set registration is used. Specifically, the coherent
point drift algorithm53 as implemented in the python pack-
age pycpd54 is employed, where we use the rigid registration
routine determining the amount of scaling, rotation and trans-
lation that is required to match two lattices. When comparing
the lattices, to reduce the effects of boundary effects intro-
duced by the fragmentation, we only use a small, spherical
local region around the respective center (decreasing the ra-
dius until less than 20 atoms are contained, which corresponds
to only few nearest neighbors, depending on the lattice sym-
metry). Depending on the initial relative lattice orientations,
the algorithm may either perform a clockwise or counter-
clockwise rotation to match the lattices, leading to jumps in
the calculated angles and checkerboard-type heatmaps. To
solve this, we determine the minimal rotation that is required
to match two lattices: the lattice symmetry provides bounds
for the maximum mismatch angle. For instance, hcp has a
60 degrees rotational symmetry and a reference lattice can be
rotated by a maximum of 30 degrees to match the hexagonal
lattice. If the rotation angle determined via point set regis-
tration is larger than 30 degrees, we subtract 30 degrees and
take the absolute value. The angle calculated in this fashion
corresponds to the minimum amount of rotation to match two
lattices. These values are reported in Fig. 4d, h, l. A Jupyter
notebook for running this calculation is provided (cf. section
“Data availability”.

15/19



bcc 100

bcc 110

bcc 111

fcc 100

fcc 110

fcc 111

fcc 211

hcp 0001

hcp 1010

hcp 2110

Real space
structure

STEM HAADF
image

Application
of Hann window

FFT FFT after 
thresholding

Top

Other

a b c d e

Figure S1. FFT-HAADF descriptor calculation for all 10 crystalline surfaces used in this work. Given the real-space,
3D atomic structures (a), STEM HAADF images are simulated (b). Then, a Hann window is applied (to reduce boundary
artifacts, c), after which the FFT is calculated (d). Finally, a thresholding procedure is applied to enhance the peaks surrounding
the dominant central, low-frequency contributions. In the figures of atomic structures (a), orange and green circles indicate
atoms that belong to top and bottom layers, respectively. All HAADF image sizes are 1.2×1.2nm2 (100 pixels). For the lattice
parameters, we employ an interval of size 0.1 Åaround the experimental values, where here, we show the images for the center
of this interval: for all Cu fcc single crystals, the lattice constant a is 3.63 Å; for all Fe bcc single crystals, the lattice constant a
is 2.87 Å; for all Ti hcp single crystals, the lattice constants a and c are 2.95 Å and 4.68 Å, respectively (c/a∼ 1.587).
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Figure S2. Visualization of data augmentation procedure. Considering the example of Fe bcc [100] (lattice parameter
2.87 Å), different augmentation steps are shown: scaling (a), shear (b), rotations (c), blurring (d), random noise (e, Gaussian),
and a combination of all (f).
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Figure S3. Effect of stride on AI-STEM’s resolution. For the synthetic and experimental examples considered in Fig. 4 in
the main text, we increase the stride by a factor of three (from 12 pixels to 36). This reduces the resolution of the interface
regions but still allows to detect the main characteristics (i.e., bulk versus interface regions and correct assignment of lattice
symmetry and orientation).
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Figure S4. Choosing the number of Monte Carlo (MC) samples. When calculating classification probabilities (cf. Eq. 3)
and uncertainty estimates such as the mutual information (cf. Eq. 6), the number of MC samples T needs to be chosen. In
particular, a value has to be identified, for which the above quantities show convergent behavior with respect to T . As test bed,
we employ the amorphous image (cf. Fig. 3a), where we expect that the model is maximally uncertain. This is an ideal scenario
since differences between MC samples are expected to be maximal and thus a large T may be required for convergence. We
investigate for each of the in total 576 local regions a range of Monte Carlo samples (10, 25, 50, 75, 100, 200, 300, 400). For
each of the MC samples, we calculate classification probabilities and mutual information for 5 iterations. We obtain 10
classification probabilities and focus on the maximal probability, which is most important for correct classification. For each
local window, we thus have 5 values for mutual information and (maximal) classification probability. To quantify the spread
over the iterations, we calculate the standard deviation, resulting in 576 values. Then we calculate the mean and standard
deviation of all local-window standard deviations. This way, we obtain for each MC sample two numbers that quantify the
convergence. In a the above-described calculation is shown for the mutual information, where the points correspond to the
mean and the error bars correspond to the standard deviation of the local-window standard deviations. Similarly, the maximal
classification probability is shown in b. We observe onset of convergence (i.e., decreasing mean and standard deviation) around
values of 100, which is the value we employ for the reported results. In particular, for T = 100, the mutual-information mean
and standard deviation is below the threshold of 0.1 that is employed for distinguishing interface and boundary regions (cf. Fig.
4). Increasing this value provides only small improvement while increasing computational cost (that scales linearly with the
number of MC samples T , cf. c). For instance, for T = 100, one calculation (classification probabilities and mutual
information for 576 local windows) takes around ∼ 29.92 seconds and doubling the number of MC samples doubles also the
computation time to 59.52 seconds. Note, however, that computation time is in principle not an issue since the calculation of
predictions is trivial to parallelize. For the calculations we employed 1 GPU (Tesla Volta V100 32GB) on the Talos machine
learning cluster (at MPCDF).
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