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Abstract: The focus of this thesis is the study of smooth 4-dimensional manifolds. We

examine two problems relating to 4-manifolds, the first pertaining to pseudo-isotopies

and diffeomorphisms of 4-manifolds, and the second pertaining to embedded surfaces in

4-manifolds. We summarise our key results below.

A diffeomorphism f of a compact manifold X is pseudo-isotopic to the identity if there

is a diffeomorphism F of X × I which restricts to f on X × 1, and which restricts to

the identity on X × 0 and ∂X × I. We construct examples of diffeomorphisms of 4-

manifolds which are pseudo-isotopic but not isotopic to the identity. To do so, we further

understanding of which elements of the “second pseudo-isotopy obstruction”, defined by

Hatcher and Wagoner, can be realised by pseudo-isotopies of 4-manifolds. We also prove

that all elements of the first and second pseudo-isotopy obstructions can be realised after

connected sums with copies of S2 × S2.

If Σ and Σ′ are homotopic embedded surfaces in a 4-manifold then they may be related

by a regular homotopy (at the expense of introducing double points) or by a sequence of

stabilisations and destabilisations (at the expense of adding genus). This naturally gives

rise to two integer-valued notions of distance between the embeddings: the singularity

distance dsing(Σ,Σ′) and the stabilisation distance dst(Σ,Σ′). We use techniques similar

to those used by Gabai in his proof of the 4-dimensional light-bulb theorem, to prove that

dst(Σ,Σ′) ≤ dsing(Σ,Σ′) + 1.
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Chapter 1

Introduction

We study two topics in low dimensional topology, both relating to 4-dimensional manifolds.

The first pertains to pseudo-isotopies of 4-manifolds, and the second pertains to embedded

surfaces in 4-manifolds. The material here is based on our papers [Sin21] and [Sin20]. In

this chapter we will outline our main results, in Chapter 2 we prove the results relating to

pseudo-isotopies, and in Chapter 3 we prove the results relating to embedded surfaces.

1.1 Pseudo-isotopies and diffeomorphisms of 4-manifolds

Let X be a smooth compact manifold of dimension n. A pseudo-isotopy of X is a dif-

feomorphism F : X × [0, 1] → X × [0, 1] such that F |X×0 and F |∂X×[0,1] are the identity.

We let P = P(X, ∂X) be the space of pseudo-isotopies of X, which is a topological space

when equipped with the C∞ topology. When X is closed we write P(X) = P(X, ∅).

Given diffeomorphisms f, g : X → X we say f and g are pseudo-isotopic if there exists

a pseudo-isotopy of X such that F |X×1 is g−1 ◦ f . Thinking of an isotopy of X as a

map F : X × [0, 1] → X × [0, 1] which is level preserving, that is F (X × t) = X × t for

every t ∈ [0, 1], it is clear that if diffeomorphisms f and g of X are isotopic, then they are

pseudo-isotopic.

The first aim of Chapter 2 is to extend the list of 4-manifolds for which the converse is

known to be false. Denoting the subgroup of diffeomorphisms fixing the boundary which

are pseudo-isotopic to the identity by DiffPI(X, ∂X), we construct non-trivial elements of

π0 DiffPI(X, ∂X) for certain 4-manifolds X.
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Theorem A. Let X be either the 4-manifold S1 × S2 × I or (M1#M2)× I, for M1, M2

closed, orientable, aspherical 3-manifolds. Then there is a subgroup K ⩽ π0 DiffPI(X, ∂X)

and a surjective map

Θ′ : K −→
⊕
i∈N

Z.

Hence there are infinitely many distinct isotopy classes of diffeomorphisms of X fixing the

boundary, which are pseudo-isotopic to the identity.

Igusa points out in [Igu21b] the map π0 DiffPI(Mn−1×I, ∂(Mn−1×I))→ π0 DiffPI(Mn−1×

S1) induced by gluing the top and bottom of M×I together is injective [Igu21b, Lemma 5.1].

This allows us to state the below corollary.

Corollary B. Let X be either the 4-manifold S1 × S2 × S1 or (M1#M2) × S1, for M1,

M2 closed, orientable, aspherical 3-manifolds. Then there is a subgroup K ⩽ π0 DiffPI(X)

and a surjective map Θ′ : K −→⊕
i∈N Z. Hence there are infinitely many distinct isotopy

classes of diffeomorphisms of X which are pseudo-isotopic to the identity.

To prove Theorem A, we utilise the so called “second pseudo-isotopy obstruction” Θ,

taking values in Wh1(π1X;Z2 × π2X), which was defined by Hatcher and Wagoner in

[HW73] and refined by Igusa [Igu84]. In dimensions n ≥ 5, Hatcher [Hat73] uses Θ to

construct non-trivial elements of π0 DiffPI(Mn−1× I, ∂(Mn−1× I)). To extend this result

to 4 dimensions we further understanding of which elements of Wh1(π1X;Z2 × π2X) are

realised by Θ for 4-manifolds. This is the second aim of Chapter 2 .

Our third aim is to show that both Θ and the “first pseudo-isotopy obstruction”

Σ: π0P(X, ∂X)→Wh2(π1X)

are (in some sense) surjective in dimension 4 after taking connect sums of X with copies

of S2 × S2. Both invariants are surjective without any such stabilisation in dimension ≥ 5.

Before we state the rest of our main theorems, we recall some high-dimensional background.

In high dimensions, pseudo-isotopies are classified up to isotopy by Θ and Σ. Building on

work of Hatcher and Wagoner in [HW73] and [Hat73], Igusa shows in [Igu84] that for X a

smooth manifold of dimension at least 6 there is a natural exact sequence

K3Z[π1X] χ−→Wh1(π1X;Z2 × π2X)→ π0P(X, ∂X) Σ−→Wh2(π1X)→ 0.
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Igusa shows that if the first Postnikov invariant k1X vanishes, then χ is 0 and the sequence

splits, with splitting

Θσ : π0P →Wh1(π1X,Z2 × π2X)

dependent on a choice of section σ : X(1) → X(2), where X(i) is the ith stage in a Postnikov

tower for X. The restriction of this map to ker Σ

Θ: π0 ker Σ→Wh1(π1X,Z2 × π2X),

originally defined by Hatcher and Wagoner in [HW73], does not depend on a choice of

section. When k1X ̸= 0 it follows from the constructions in [Igu84] that there is a map

Θ: ker Σ→Wh1(π1X;Z2 × π2X)/χ(K3Z[π1X]).

The maps Σ and Θ (restricted to ker Σ) are also defined in 4 and 5 dimensions. In dimension

n ≥ 5 Hatcher and Wagoner show that Σ and Θ are surjective. However, they are not able

to prove this in dimension 4, where the situation is less clear.

Convention. Throughout, 4-manifolds will be smooth, compact, and connected.

We prove that in dimension 4, the following elements of the second obstruction group are

realised.

Theorem C. For X a compact 4-manifold, let

Ξ =
〈
(s+ σ)γ | wX2 (σ) ̸= 0 or s = 0, s ∈ Z2, σ ∈ π2X, γ ∈ π1X

〉
⊂ (Z2 × π2X)[π1X]/⟨αγ − αττγτ−1, β · 1 | α, β ∈ Z2 × π2X, τ, γ ∈ π1X⟩

= Wh1(π1X;Z2 × π2X).

If k1X = 0 then Ξ ⊂ Θ(ker Σ). Otherwise the same is true passing to the quotient

Wh1(π1X;Z2 × π2X)/χ(K3Z[π1X]).

For the identification of Wh1(π1X;Z2 × π2X) with

(Z2 × π2X)[π1X]/⟨ασ − αττστ−1, β · 1 | α, β ∈ Z2 × π2X, τ, σ ∈ π1X⟩

see Corollary 2.6.4. The proof of Theorem C involves a detailed analysis of the Θ ob-

struction in terms of Whitney discs and framings of these discs in the 4-dimensional
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“middle-middle level” of 1-parameter families of handlebody structures. We believe this to

be of independent interest; see Propositions 2.6.8 and 2.6.10.

Jahren [Jah], in an unpublished work, proves a similar theorem by different methods.

Specifically he proves that all elements of Wh1(π1X,π2X) are realised, and that when X

contains an odd sphere, all elements of Wh1(π1X,Z2) are realised. We obtain both of

these results as a corollary of Theorem C.

Corollary 1.1.1.

1. For any 4-manifold X, Θ surjects onto Wh1(π1X,π2X).

2. If X is a 4-manifold with an odd sphere, that is S ∈ π2X with S · S odd (note that

we do not require S to be embedded), then Θ surjects onto Wh1(π1X;Z2).

Corollary 1.1.1 extends a recent result by Igusa in concurrent work [Igu21a, Theorem A,

Theorem B]. Using different methods, Igusa proves Corollary 1.1.1.(2) with the additional

requirement that S is embedded. Igusa also proves that certain elements of Wh1(π1X,π2X)

are realised, namely ones where the element of π2X can be represented by an embedded

sphere.

We also prove that after stabilisation of X with a single S2×S2 we may realise any element

of Wh1(π1X;Z2 × π2X).

Theorem D. Let X be a compact 4-manifold. Note that Wh1(π1X;Z2×π2X) includes in

Wh1(π1(X#S2 × S2);Z2 × π2(X#S2 × S2)),

and identify x ∈ Wh1(π1X;Z2 × π2X) with its image under this inclusion. There is a

pseudo-isotopy F of X#S2 × S2, which is in ker Σ such that

Θ(F ) = x ∈Wh1(π1(X#S2 × S2);Z2 × π2(X#S2 × S2))/χ(K3Z[π1(X#S2 × S2)]).

We also prove a stable version of Hatcher and Wagoner’s surjectivity result for Σ.

Theorem E. Let X be a compact 4-manifold and x ∈Wh2(π1X). There exists N , and a

pseudo-isotopy F of X#NS2 × S2 such that

Σ(F ) = x ∈Wh2(π1(X#NS2 × S2)) = Wh2(π1X).
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As a consequence of Theorem C we are also able to construct diffeomorphisms of certain

5-manifolds.

Theorem F. Suppose X is a 4-manifold which contains an element σ ∈ π2(X) with

wX2 (σ) ̸= 0, and an element γ ∈ π1X such that γ and γ−1 are not conjugate, and suppose

also that either k1X = 0 or K3Z[π1X] = 0. Then in Diff(X × I, ∂(X × I)) there exist

diffeomorphisms pseudo-isotopic to the identity but not isotopic to it.

This result is analogous to a result by Hatcher [Hat73, Corollary 4.5], which gives diffeo-

morphisms of manifolds of dimension greater than 6.

The other examples of diffeomorphisms of 4-manifolds which are pseudo-isotopic but

not isotopic to the identity that we know of come from Budney-Gabai [BG21], Watanabe

[Wat20], Igusa [Igu21b], and the following examples from gauge theory: Ruberman [Rub98],

[Rub99], Baraglia-Konno [BK20], Kronheimer-Mrowka [KM20], and Lin [Lin20]. Budney

and Gabai construct diffeomorphisms of S1 × B3 and S1 × S3, and by related methods

Watanabe constructs diffeomorphisms of Σ(2, 3, 5) × S1. Budney and Gabai’s examples

are pseudo-isotopic to the identity by Sato [Sat69] and Lashof-Shaneson [LS69], while

Watanabe’s examples are pseudo-isotopic to the identity by [Wat20, Theorem 1.8 and

Theorem 9.3], which Watanabe attributes to Teichner. Igusa in a work concurrent to

ours constructs diffeomorphisms of ((S1 × S2)#M) × S1 for M a non-simply connected

3-manifold. The gauge theoretic examples on the other hand give diffeomorphisms of

simply connected 4-manifolds which are not isotopic to the identity but induce the identity

on homology; by Kreck [Kre79, Theorem 1], these diffeomorphisms are pseudo-isotopic to

the identity.

Other work that has been done on pseudo-isotopies of 4-manifolds includes the work

of Quinn [Qui86] who proves that topological pseudo-isotopies of simply connected 4-

manifolds are topologically isotopic rel boundary to an isotopy. Hence in the topological

setting isotopy and pseudo-isotopy are the same for simply connected 4-manifolds.

Kwasik [Kwa87] shows that the same is not true for non simply connected 4-manifolds,

and asserts that if topological pseudo-isotopies are allowed then Θ is surjective. However,

it is unclear to us how to define Θ and Σ in the topological setting, and unclear how to

show it is well defined, particularly as current definitions are heavily reliant on Cerf theory.
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It appears to us that a topological definition of both Θ and Σ would be of value, and could

facilitate further results in the topological setting.

1.2 Distances between surfaces in 4-manifolds

Let X be a smooth, compact, orientable 4-manifold, possibly with boundary. Let Σ, Σ′

be connected, oriented, compact, smooth, properly embedded surfaces in X. We say

that Σ′ is a stabilisation of Σ if there is an embedded solid tube D1 × D2 ⊂ X such

that Σ∩ (D1 ×D2) = {0, 1} ×D2, and Σ′ is obtained from Σ by removing these two discs

and replacing them with D1 × S1, as in Figure 1.1, and then smoothing corners. In this

situation we say that Σ is a destabilisation of Σ′.

D1 ×D2

Figure 1.1: A stabilisation. Given D1 ×D2 ⊂ X which intersects Σ on S0 ×D2, we
remove the two discs S0 ×D2, add the tube D1 × S1, then smooth corners.

Definition 1.2.1. Given Σ, Σ′ as above, both of genus g, define the stabilisation distance

between Σ and Σ′ to be

dst(Σ,Σ′) = min
S

max{|g(P1)− g|, |g(P2)− g| . . . , |g(Pk)− g|},

where S is the set of sequences P1, . . . , Pk of connected, oriented, embedded surfaces where

Σ = P1, Σ′ = Pk and Pi+1 differs from Pi by one of, i) stabilisation, ii) destabilisation, or

iii) ambient isotopy. If no such sequence exists we declare dst(Σ,Σ′) =∞.

Definition 1.2.2. Given an immersion f : S → X, define sing(f) ⊂ X to be the set of

double points. Define the singularity distance to be

dsing(Σ,Σ′) = 1
2 min

H
max
t∈[0,1]

|sing(Ht)| ,

where the minimum is taken over all generic regular homotopies H from Σ to Σ′. If no

such regular homotopy exists we declare dsing(Σ,Σ′) =∞.
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Remark 1.2.3. It is possible that dst(Σ,Σ′) < ∞ and dsing(Σ,Σ′) = ∞. For example

let U ⊂ S3 be the unknot, let Σ = U × S1 ⊂ S3 × S1, and let Σ′ be a trivially embedded

torus in S3 × {pt} ⊂ S3 × S1. Since Σ and Σ′ are not homotopic dsing(Σ,Σ′) = ∞.

Further Σ and Σ′ are related by a destabilisation then a stabilisation, so dst(Σ,Σ′) = 1.

The main theorem of Chapter 3 is the following:

Theorem G. If Σ,Σ′ ⊂ X are connected, smooth, properly embedded, oriented surfaces

of the same genus then

dst(Σ,Σ′) ≤ dsing(Σ,Σ′) + 1.

The proof is constructive, in that given a regular homotopy with at most 2n double points

at each time, we construct a sequence of stabilisations and destabilisations such that the

maximum genus occurring is at most g + n + 1. Since embedded oriented surfaces are

regularly homotopic if and only if they are homotopic, see Remark 3.0.1, this gives a new

proof of a certain case of Baykur and Sunukjian’s result [BS15, Theorem 1].

Corollary H. If Σ,Σ′ ⊂ X are homotopic, connected, smooth, properly embedded, oriented

surfaces, then they differ by a sequence of stabilisations, destabilisations, and ambient

isotopy.

We do not know whether the +1 in Theorem G is really essential. As we discuss in

Remark 3.5.2(2), it does not seem obvious how to adapt the proof to prove the inequality

without the +1. It would, however, be interesting to find an example where the sequence

of stabilisations constructed in the proof is minimal.

Conjecture 1.2.4. There exists a smooth, compact, orientable 4-manifold X and smooth,

properly embedded, orientable, regularly homotopic surfaces Σ and Σ′ with

dst
(
Σ,Σ′) = dsing

(
Σ,Σ′)+ 1.

Juhász and Zemke define invariants in [JZ18] which bound below the minimum of two

similarly defined distances, µst and µsing using their notation. Their singularity distance

µsing is the same as dsing defined here, however µst ≤ dst, as their definition of stabilisations

and destabilisations additionally allows taking connect sum with a 2-knot (or removing a
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2-knot attached via connect sum). We currently do not know of any invariants that can

bound dst below without also bounding dsing below.

The techniques we use to turn regular homotopies into sequences of stabilisations are in-

spired by those used by Gabai [Gab17] to prove that if two homotopic embedded orientable

surfaces have a common transverse sphere in X, where π1(X) has no 2-torsion, then the

surfaces are ambiently isotopic (and so both the distances defined here are 0). A transverse

sphere for a given embedded sphere S ⊂ X is another embedded sphere P ⊂ X such that

P intersects S transversely at a single point.

Miller [Mil19] also recently proved, under the assumption that one of the surfaces has

a transverse sphere, and that π1(X) has no 2-torsion, that regularly homotopic surfaces

are concordant. There are also modified statements of these theorems when π1(X) has

2-torsion.

Schwartz found infinitely many examples [Sch18] which demonstrate that the assumption on

π1(X) was essential. She produced 4-manifolds X with π1(X) ∼= Z2, and pairs of homotopic

embedded 2-spheres in X which share a transverse sphere but are not concordant. We

would be interested to know the stabilisation and double point distances of these examples.

Schneiderman and Teichner [ST19] recently reproved the 4-dimensional light bulb theorem

and characterised the situation for general π1(X) using an obstruction of Freedman and

Quinn.

1.2.1 The topologically flat case

The condition of smoothness above was required to define regular homotopy. We define

regular homotopy in a topological 4-manifold X by saying two locally flat surfaces Σ,

Σ′ ⊂ X are regularly homotopic if they differ by a sequence of finger moves, Whitney

moves (where the Whitney discs are locally flatly embedded), and ambient isotopy.

We also define stabilisation in the same way, dropping the smoothness condition on the

embedding of D1 × D2. Using the topological definitions, we define dtop
st and dtop

sing ana-

logously. Repeating the proof of Theorem G, without the initial smoothness assumption

yields:
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Theorem I. If Σ and Σ′ are orientable, compact, connected, locally flat, properly embedded

surfaces in X of the same genus, then,

dtop
st (Σ,Σ′) ≤ dtop

sing(Σ,Σ′) + 1.

As a consequence, we prove an analogue of Corollary H for locally flat surfaces.

Corollary J. Let Σ and Σ′ be orientable, compact, connected, locally flat, properly embed-

ded surfaces in X. If Σ and Σ′ are regularly homotopic (topologically), then they differ by

a sequence of topological stabilisations, destabilisations, and ambient isotopy.





Chapter 2

Pseudo-isotopies and

diffeomorphisms of 4-manifolds

In this chapter we address pseudo-isotopies of 4-manifolds and prove the results outlined

in Section 1.1.

2.1 Background

We first recall some general topology background. We will review some standard tools of

Morse theory, we will also review Whitney discs and operations on Whitney discs, as well

as Postnikov towers and k-invariants.

As is standard in Morse theory and Cerf theory, we fix a Riemannian metric µ on X and

take the product metric on X × I.

Remark 2.1.1. The choice of metric is not important, and in fact it is possible to avoid

fixing a metric entirely. Indeed Hatcher and Wagoner consider a space F̂(X, ∂X) which

includes all possible choices of metric, and show that it is homotopy equivalent to the

space F(X, ∂X) which we define in Section 2.2; see [HW73, Chapter 1, §3].

2.1.1 Morse theory and the Morse chain complex

Let f be a Morse function

f : X × I → I
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such that f |∂X×I is the projection to I and that f(X × i) = i for i ∈ {0, 1}. Suppose

also that f has no critical points near X × ∂I or ∂X × I. By choice of Riemannian

metric we have a uniquely defined gradient ∇f . Given s ∈ R we denoted the flow of f by

ϕf,s : X × I → X × I, where ϕf,s(p) is giving by pushing p along ∇f for time s.

Recall that the trajectory of a point p is given by {ϕf,s(p)|s ∈ R}, and that trajectories are

embedded copies of (0, 1), (0, 1], [0, 1) or [0, 1], with any boundary points lying in X × ∂I.

Recall also that the limit point on approaching the open end of a trajectory is always a

critical point. Given a critical point p we denote the stable set by

Wf (p) = {q | lim
s→+∞

ϕf,s(q) = p}

and the unstable set by

W ⋆
f (p) = {q | lim

s→−∞
ϕf,s(q) = p}.

Given two critical points p, q ∈ X × I of index i and j respectively, let

T qp =
{
{ϕf,s(a)}s∈R | a ∈W (p) ∩W ⋆(q)

}
be the set of trajectories from q to p. We refer to these trajectories as j/i trajectories (the

j being on top of the fraction indicates that is also “on top” in the manifold, since a j/i

trajectory goes down from a critical point of index j to one of index i). If p, q are critical

points of index i and i + 1 respectively and f is a Morse function in general position, a

dimension count shows that W (p) ∩W ⋆(q) is a collection of isolated arcs and so there are

finitely many trajectories from q to p.

The Morse chain complex

We can capture the data of the i
i+1 intersections in a chain complex, the Morse chain

complex, defined as follows. Let ψ : X̃ → X be the universal cover of X, and let f be a self

indexing Morse function on X, i.e. there exists r0 = 0 < r1 < · · · < rn+1 = 1 ∈ [0, 1] with all

critical points of index i having critical values between ri and ri+1. Let Vi = f−1([ri, ri+1]),

and let Ṽi = ψ−1(Vi). Define the chain complex by

Ci(X) = Hi(Ṽi, Ṽi−1)
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which is a finitely generated free module over Z[π1(X)] with a generator for each critical

point of index i.

Fix a base point p ∈ X and a lift of the base point p̃ ∈ X̃, and for each critical point c of

f pick a path γc from p to c. This gives a basis for Ci as a finitely generated free Z[π1(X)]

module. We can describe the differential as follows. Let Si be the collection of index i

critical points, recall that T ab is the set of trajectories from a to b. Using the basis above,

this determines a matrix
(
∂fi : Ci → Ci−1

)
given by

∂fi (c) =
∑

b∈Si−1

∑
ψ∈T c

b

[γc · ψ · γ−1
b ]b.

2.1.2 Homotopies of surfaces in 4-manifolds and Whitney discs

We will wish to study deformations of immersed surfaces in 4-manifolds, and so recall some

standard techniques for doing so; for full details see [FQ90].

Let X be a smooth 4-manifold. Given a compact immersed surface S ⊂ X (with possibly

many components), recall that a regular homotopy of this surface in X is a homotopy

through immersions; i.e. a smooth map H : Σ× I → X such that H(−, 0) maps Σ to the

surface S, and H(−, t) is an immersion for all t. We frequently omit the map and discuss

only the immersed surface, which we denote St = H(Σ, t).

Given an immersed surface, by standard general position arguments we can perturb it so

that it has only finitely many isolated self-intersections, and that these self-intersections

are transverse double points; that is the immersion is 2 to 1 at these points (as opposed

to n to 1 for n > 2).

By general position we may perturb a regular homotopy so that for each t, St has only

transverse double-points, except at finitely many values of t. At these values of t we see a

non-transverse point; near these values, the homotopy can always be described as one of

the following local moves; see [FQ90] for further details.

Definition 2.1.2. Let S ⊂ X be an immersed oriented surface, and let γ be an arc such

that the endpoints are in S, but the interior is disjoint from S. Then we may perform a

finger move, pushing one sheet of the surface along this arc into the other to introduce

two points of transverse intersection; see the first image in Figure 2.1.
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Convention. Throughout this chapter it will be useful to us to insist that the finger move

arc γ in Definition 2.1.2 be an oriented arc (one may freely pick the orientation, we just

require that it is kept track of).

α

β
z+ z−W

γ Fingermove

Whitneymove

Figure 2.1: The time slice where the finger moves and Whitney moves occur. Note
that the horizontal line continues into the past and future, and is unchanged by the
homotopies.

Remark 2.1.3. Let S be a collection of spheres embedded in X, and suppose for each

sphere we have an arc to a basepoint ∗ ∈ X. Then we can associate an element of π1(X) to

any finger move arc by going along a basepoint arc, along some arc in S to the base of the

finger move arc, along the finger move arc, along another arc in S to the basepoint arc, then

backwards along another basepoint arc (possibly the same basepoint arc if the endpoints

of the finger move arc lie on the same component of S). We call this the element of π1(X)

associated to the finger move. If additionally S is π1-negligible (that is π1(X) = π1(X \S))

then the finger move is uniquely determined by its associated element of π1(X); indeed for

any γ ∈ π1(X) there always exists some choice of finger move arc with associated element

γ and any two choices can easily be shown to be homotopic in X, and hence in X \S since

S is π1-negligible.

Remark 2.1.4. Note that reversing the orientation of γ results in an isotopic finger move,

and inverts the associated element of π1X. Later, the surfaces between which we perform

finger moves will have a natural order, so it will be useful to consider a finger move “from”

one surface “to” another.

Remark 2.1.5. Given an oriented immersed surface S ⊂ X we wish to assign a sign to

the double points of S. When X is oriented this is easy, however when X is non-orientable
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we must work a little harder. In this case, we restrict to the case that S is π1-trivial; that

is π1S includes as 0 in π1X. Let S = ∪iSi, where Si are the connected components. We

pick a basepoint ∗ ∈ X and arcs from ∗ to each component Si. We pick a local orientation

at ∗ then transport the orientation at ∗ along the arcs to give an orientation of the total

space of ν(Si, X) for each i. This allows us to define signs of intersection as for an oriented

manifold. Note that the signs of the intersections depend on our choices of arcs, but that

for any two points p, q ∈ Si ∩Sj the dichotomy of these having the same sign or a different

sign does not depend on our choices.

We now recall the definition of a Whitney disc, and a Whitney move.

Definition 2.1.6. Let S ⊂ X be an oriented immersed surface (and that S is π1-trivial if

X is non-orientable). Suppose z+, z− are double points of S with sign + and − respectively.

Suppose α, β ⊂ S are embedded arcs, both of which have endpoints z+ and z−, and which

are disjoint except at these endpoints. Suppose also that α and β do not intersect any

intersection points of S except at their endpoints. We also require that the endpoints of α

live in different sheets of S to the endpoints of β of S; that is, letting S be the image of

some immersion f : Σ → X we require that f−1(α) and f−1(β) are disjoint including at

the endpoints.

If W ⊂ X is an immersed disc with boundary α∪β we call W a Whitney disc. We require

that W meets S transversely on ∂W . We call α and β the Whitney arcs.

Definition 2.1.7. Given a Whitney disc W ⊂ X, we pick an orientation for W . The

bundle ν(W,X) is a 2-dimensional bundle over a disc and so is trivial and has a unique

trivialisation determined by the orientation. This trivialisation induces a trivialisation, or

framing, of ν(W,X)|∂W ∼= S1 ×D2 which we call the disc framing.

There is another framing of ν(W,X)|∂W defined as follows. We define a section of ν(W,X)|∂W ,

denoted s : ∂W → ν(W,X)∂W , by requiring that s be parallel to S along β, and normal

to S along α; note that W is transverse to S on ∂W so this uniquely determines s up to

homotopy. We call s the Whitney section. Now s is a section of a 2-dimensional bundle

over S1, and so uniquely determines a trivialisation (up to orientation, we use the orient-

ation on ν(W,X)|∂W induced by the orientation of W and the orientation of X when X

is oriented; when X is non orientable we use a local orientation as in Remark 2.1.5). We

call this trivialisation the Whitney framing.



18 Chapter 2. Pseudo-isotopies and diffeomorphisms of 4-manifolds

If the Whitney framing and the disc framing agree (up to isotopy), we say that W is a

correctly framed Whitney disc, or simply a framed Whitney disc.

Remark 2.1.8. If ν(W,X)|∂W is oriented, then if we fix a framing ν(W,X)|∂W ∼= S1×D2,

then any other framing with the same orientation gives an element of π1 GL2(R) = Z, and

this element of Z is canonical. Hence given two framings we have a well defined difference

between them in Z, using the first framing to identify ν(W,X)|∂W ∼= S1 × D2 and the

second to give the element of π1 GL2(Z) = Z.

Remark 2.1.9. Equivalently and more succinctly one may say a Whitney disc is framed

if the Whitney section extends to a section of ν(W,X). However, as we will perform moves

to change the disc framing and the Whitney framing separately, it will be useful for us to

consider both framings independently.

We now describe the second local move.

Definition 2.1.10. Given a correctly framed, embedded Whitney disc, as in Definition

2.1.7, whose interior is disjoint from S, we may perform a Whitney move, a regular

homotopy removing the two double points z+ and z−; see Figure 2.1.

Interior twists and boundary twists of discs

Suppose that we have an immersed Whitney disc W which pairs two intersections of some

surface S (S is possibly disconnected, and W may intersect S away from the Whitney

arcs). As in Remark 2.1.8 we denote the difference between the Whitney framing and the

disc framing by nW ∈ Z. There are two operations to create a new Whitney disc described

in [FQ90, Section 1.3]: the interior twist and the boundary twist. We recall briefly these

operations and their effects on nW below.

A positive interior twist is an operation which alters W in a small neighbourhood in the

interior of W . In this neighbourhood we add an additional positive self-intersection to

W . We call the resulting disc W ′. Note that ν(W,X)|∂W = ν(W ′, X)|∂W ′ , and that the

Whitney framing does not change. By perturbing W we can make W ′ ∪ −W immersed,

one can easily see that e(ν(W ′ ∪ −W,X) = 2, and so the disc framings of W and W ′

must differ by 2 (considering the clutching construction of bundles over spheres). Hence

nW ′ = nW + 2.
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Similarly a negative interior twist introduces an additional negative self-intersection and

nW ′ = nW − 2.

A positive boundary twist alters W only in a neighbourhood of one Whitney arc; note that

we may choose which arc. It introduces an additional single positive intersection between

W and S by twisting W positively around S along this arc; see [FQ90, Section 1.3]. We

call the result W ′. In this case nW ′ = nW + 1.

Similarly a negative boundary twist introduces a additional single negative intersection

between W ′ and S, and nW ′ = nW − 1.

We will frequently use these moves to obtain a correctly framed Whitney disc from one

which is not correctly framed.

Pushing down

Let W be a Whitney disc in a 4-manifold V which pairs two intersections of some surface

A ⊂ X. If W intersects some surface U in some point p, we may remove the intersection

between W and U by pushing down the intersection into A. To do this we perform a finger

move between U and A, resulting in two intersections between U and A; see Figure 2.2.

W

α
A

U

Figure 2.2: A depiction of the pushing down operation, which turns an intersection
between U and W into two intersections between U and A.

We can also push down to trade self intersections of W for intersections between W and

A.

Transverse spheres and the Norman trick

Let A be a surface in a 4-manifold V , and let A∗ ⊂ V be a (possibly non-embedded) sphere

with trivial normal bundle which intersects A transversely in a single point. We say A∗ is

a transverse sphere for A.
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Given such a surface with a transverse sphere, if A intersects some other surface U in

some point p, we may find a surface U ′ with one fewer intersection with A, by taking an

embedded arc γ ⊂ A from p to A ∩ A∗, and tubing U to a parallel copy of A∗ along the

arc γ; see Figure 2.3. This operation is called the Norman trick.

U

A

A∗

Figure 2.3: Using the transverse sphere A∗ to perform the Norman trick, removing
the intersection between A and U .

2.1.3 The Z[π1X] intersection number of spheres

Let A and B be immersed spheres in a 4-manifold which intersect transversely (or more

generally any two connected pi1-trivial surfaces). Suppose also that we have chosen a

basepoint ∗ ∈ X, and that we have chosen arcs α, β ⊂ X from ∗ to A and B respectively;

denote the endpoints at which these arcs meet A and B by ∗A ∈ A and ∗B ∈ B respectively.

Then given p ∈ A ∩B we can assign a value in ±π1X to this intersection point as follows.

The sign comes from the sign of the intersection; in the case that X is non-orientable this

is as in Remark 2.1.5. The element of π1X comes from taking an arc a ⊂ A from ∗A to

p and an arc b ⊂ B from ∗B to B, then α · a · b−1 · β−1 gives the element of π1X; see

Figure 2.4.

We permit the arcs a and b may run over the intersection points and self-intersection

points of A and B, but they may not change sheets of the surface at these double points;

equivalently, one must be able to make a and b disjoint from the intersection and self-

intersection points. Note that since A and B are π1-trivial α · a · b−1 · β−1 is independent

of the choice of a and b.

We can define an intersection number A · B ∈ Z[π1X] by summing over all p ∈ A ∩ B.

Note that this intersection number depends on the choice of arcs α and β from A and B



2.1. Background 21

A B

p

∗A ∗B

∗

a b

α β

Figure 2.4: The loop α · a · b−1 · β−1.

to ∗; when we wish to consider intersection numbers in Z[π1X] we will fix some choice of

arcs to the basepoint.

2.1.4 Postnikov towers and k-invariants

Since many of our theorems refer to the first Postnikov invariant (or k-invariant) k1X, we

recall the basics of Postnikov towers and k-invariants below. For a more detailed treatment

we direct the reader to [Whi78, pg. 421–437].

Recall that an Eilenberg–MacLane space K(π, n) is a space whose nth homotopy group is

isomorphic to π, with all other homotopy groups trivial.

Definition 2.1.11. Given a path connected space X, suppose we have spaces

X(0), X(1), . . . , X(n), . . .

and maps pn : X(n) → X(n−1), fn : X → X(n), such that

1. the diagram below commutes.

...

X(n)

...

X(1)

X X(0)

pn+1

pn

p2

p1

f0

f1

...

fn
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2. The induced map (fn)∗ : πi(X) → πi(X(n)) is an isomorphism for i ≤ n, and

that πi(X(n)) = 0 for i > n.

3. The map pn : X(n) → X(n−1) is a fibration, with fiber a K(πn(X), n) space.

We call such a tower of spaces and maps a Postnikov system (or Postnikov tower) and we

call X(n) the Postnikov n-type of X.

Postnikov towers always exist for X a connected CW-complex, and uniquely determine X

up to weak homotopy; see [Whi78, Chapter XI].

For each n consider the fibration

K(πn+1X,n+ 1) −→ X(n+1)
pn+1−−−→ X(n).

there is a well defined homology class kn ∈ Hn+2(X(n);πn+1X) which classifies this fibra-

tion, see [Whi78, pg. 421–437]. In particular there exists a section of this fibration

X(n) → X(n+1) if and only if kn = 0. We call kn the nth k-invariant. Note that our

indexing is different to that of [Whi78], in order to agree with the indexing of Igusa

[Igu84].

We are particularly interested in k1X. Since πn(X(1)) = 0 for n > 1, in fact X(1) is itself

an Eilenberg–MacLane space, X(1) = K(π1X, 1), hence

k1X ∈ H3(K(π1X, 1), π2X) = H3(π1X;π2X)

where H3(π1X;π2X) is group cohomology with coefficients twisted by the action of π1X

on π2X.

2.2 Functional approach to pseudo-isotopies

We begin this section with a review of Cerf’s view of pseudo-isotopies as paths of Morse

functions as set out by Hatcher and Wagoner in [HW73, Chapter 1, §2].

Let I = [0, 1] and let F = F(X, ∂X) be the space of C∞ functions f : X × I → I such

that f(x, 0) = 0, f(x, 1) = 1 ∀x, and such that f has no critical points near X × 0, X × 1

or ∂X × I. Let E ⊂ F be the subset of all such functions with no critical points.
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Denote the standard projection to I by p : X × I → I. We define a map

Π: P −→ F

F 7−→ p ◦ F

Since any F ∈ P is a diffeomorphism, p ◦ F has no critical points so

Π(P) ⊂ E .

In fact Π(P) = E . Given f ∈ E we construct F ∈ P with p ◦ F = f by defining

F (x, s) = ϕf,s(x, 0).

Further, Π is a fibration I → P Π−→ E with fiber

I = {F : X × I → I | F |X×0 = 1X×0, F (X × t) = X × t ∀t ∈ I}

that is, the space of isotopies of X fixing X × 0. The fiber I is contractible via

Hs : I → I

Hs(F )(x, t) = F (x, (1− s)t).

Hence Π is a homotopy equivalence. Additionally F is contractible, so we have

π0P = π0E = π1(F , E).

In order to measure whether a given pseudo-isotopy F is isotopic to the identity, our

strategy will be to join Π(F ) to p by a path ft ∈ F , and try to deform this path, fixing

the ends, to lie in E ; if we succeed then the path ft is the trivial element of π1(P, E), so F

is the trivial element of π0P. Conversely, our obstructions will be obstructions to finding

such a path deformation, and so obstruct F from being the trivial element of π0P.

2.2.1 Generic paths of functions in F

We recall genericity theorems of Cerf and Hatcher-Wagoner for paths ft ∈ F . Hatcher and

Wagoner also consider 2-parameter families of functions in F ; this is important to show

that the various invariants are well defined however we will not discuss them here and refer

the reader to [HW73].
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Following [Cer70], a generic path ft ∈ F has the following properties. Except for at finitely

many discrete values of t, ft is a Morse function with no j/i trajectories for j ≤ i. At the

exceptional values of t, ft may additionally have either a single birth-death critical value

(corresponding to the creation or cancellation of an i + 1, i-handle pair), or a single i/i

trajectory (corresponding to a handle slide); otherwise ft has only Morse critical points,

and no other j/i trajectories for j ≤ i as above.

We can display the critical value information of ft as follows.

Definition 2.2.1. The Cerf graphic of a generic path ft is the subset of I × I given by

⋃
t∈I

t× {critical values of ft} ⊂ I × I.

We further annotate our Cerf graphics with an arrow whenever there is an i/i trajectory;

we draw this arrow between the two critical values. See Figure 2.5 for an example.

Figure 2.5: A Cerf graphic annotated by arrows to show trajectories between handles of
the same index. This path satisfies the 1-parameter ordering condition of Proposition
2.2.2. Left to right we see a birth, an i/i handle slide, an i+ 1 crossing, and i crossing,
then an i+ 1/i+ 1 handle slide.

Just as we can deform Morse functions to be self-indexing, we can deform paths of functions

to have desirable properties. We recall the one-parameter ordering theorem of Cerf [Cer70];

see [HW73] for a detailed treatment of this.

Proposition 2.2.2 (One-parameter ordering). Let ft ∈ F be a path whose endpoints f0

and f1 are Morse functions with ordered, distinct critical values (i.e. almost self-indexing,

but perturbed so the critical values are distinct). We can deform this family fixing the

endpoints so that ft is a Morse function with ordered, distinct critical values for all but

finitely many values of t. At these exceptional values of t, either two critical points of

index i have the same critical value (shown as a crossing on the Cerf Graphic), or there

is a single birth-death point, or a single i/i trajectory. Note that this necessarily means

that each (i + 1)/i birth-death critical point has critical value between the critical values
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of index i and those of index i + 1. Further, we may arrange that the birth and death

points are independent, meaning that there are no trajectories between any birth/death

point and another critical value. If a path has these properties then we say it satisfies the

one-parameter ordering condition. See Figure 2.5 for the Cerf graphic of a 1-parameter

family satisfying the one-parameter ordering condition.

If the endpoints of ft, f0 and f1 contain only index i and i+ 1 critical points for some i,

then in fact we can do better

Theorem 2.2.3. [HW73, Theorem 3.1] Suppose ft ∈ F is a path such that f0 and f1 are

Morse functions with only index i and i+1 critical points for some 2 ≤ i ≤ n−2. Then we

may deform ft fixing the boundary so that for all t ∈ I, ft has only critical points of index

i and i + 1. If additionally f0 and f1 are Morse functions with ordered, distinct critical

values then we can further deform ft fixing the endpoints so that it additionally satisfies

the 1-parameter ordering condition.

In particular when f0, f1 ∈ E we can deform ft to satisfy the conditions of Theorem 2.2.3

for any i of our choosing, provided 2 ≤ i ≤ n− 2.

Remark 2.2.4. If additionally f0, f1 ∈ E , then since the birth and death points can

be made independent by Theorem 2.2.2, we may arrange that the births occur in a

neighbourhood of 0, and that the deaths occur in a neighbourhood of 1, and that in this

neighbourhood no handle slides, critical value crossings, or handle slides occur; see Figure

2.6. For details on how to do this, see [HW73, Chapter 1, §7].

Figure 2.6: As in Remark 2.2.4 any path with f0, f1 ∈ E can be deformed to satisfy
the 1-parameter ordering condition, to have only critical points of index i and i + 1
for some i, and to have the pictured Cerf graphic in neighbourhoods of 0 and 1. Here
we depict 3 births and 3 deaths, but an arbitrary number is possible (note that the
number of births and deaths must be the same).
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2.3 Geometric picture and conventions in dimension 4

In this section we describe the geometric picture for paths of functions ft ∈ F in dimension

4 and set some conventions. We will henceforth assume that f0, f1 ∈ E , i.e. they have no

critical points.

By Theorem 2.2.3, after a deformation, we may assume ft only has index 2 and 3 critical

points, and that the critical values are ordered, indeed we assume that ft(p) < 1/2 for

critical points of index 2, ft(p) > 1/2 for critical points of index 3, and ft(p) = 1/2 for

births and deaths. We may also assume all births happen before time ε and all deaths

happen after time 1− ε as in Remark 2.2.4, for some ε ∈ (0, 1/4).

Away from births, deaths, and handle slides, ft gives a handle decomposition of X × I,

relative to X × 0, with only 2-handles and 3-handles. We wish to look at the “middle

4-manifold” after attaching the 2-handles, but before attaching the 3-handles. We make

the following identification

⋃
t∈[ε,1−ε]

f−1
t (1/2) = V × [ε, 1− ε]

where V × t = f−1
t (1/2) ∼= X#m(S2×S2) ∀t. Here m is the number of births (also deaths),

and we see one copy of S2 × S2 for each 2-3 handle pair. Directly after the births we see

the belt sphere for a 2-handle as S2 × p and the attaching spheres of the corresponding

3-handle as q × S2 in each S2 × S2 summand. As we move forward in the t direction we

see an isotopy of these attaching spheres. The spheres will also change when a handle slide

occurs. To keep track of these spheres we establish the following conventions.

1. We denote the 2-handle belt spheres in any given t slice by At1, . . . , Atn ⊂ V × t. We

refer to these collectively as the A-spheres.

2. We denote the 3-handle attaching spheres in any given t slice by Bt
1, . . . , B

t
n. We

refer to these collectively as the B-spheres.

3. We orient the Atis and Bt
is so that the intersection between Ati and Bt

i directly after

their birth is positive. There is a consistent choice of orientation for all t so that

the 3-manifolds ∪tAti and ∪tBt
i are oriented; note that these 3-manifolds have S2

boundary components at the handle slides.
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4. We pick a basepoint ∗ ∈ V ; this gives us a basepoint for V × I or indeed X × I × I

by taking ∗ × 0 ∈ V × I ⊂ X × I × I. We will often abusively refer to ∗ as the base

point in any given t slice; really we mean ∗ × t ∈ V × t. If we refer to a path to

this basepoint, we implicitly take the further path to the “true basepoint” ∗ × 0 by

taking a path through ∗ × I.

5. We make a continuous choice of basepoint in the A-spheres and B-spheres for each

value of t; that is ∗At
i
∈ Ati ⊂ V × t, ∗Bt

i
∈ Bt

i ⊂ V × t.

6. We make a continuous choice for all t of path from the basepoint of V to the basepoints

of the spheres; αti ⊂ V × t from ∗ to ∗At
i
∈ Ati and βti ⊂ V × t from ∗ to ∗Bt

i
∈ Bt

i . We

do so such that directly after the creation of each pair, we have αti · βti
−1 = 1 ∈ π1V .

2.3.1 Handle slides

At each 2/2 trajectory we see a handle slide between the 2-handles, and similarly at each

3/3 trajectory we see a handle slide between the 3-handles; we may assume that there are

finitely many of these and that they occur at distinct values of t in (ε, 1− ε).

We describe the effect of the handle slides on the A-spheres and B-spheres. Consider a

3/3 handle slide at time t, where we slide the handle attached to Bt−δ
k over the handle

attached to Bt−δ
j . After the handle slide Bt+δ

j = Bt−δ
j , while Bt+δ

k is a connect sum of

Bt−δ
k to a parallel copy of Bt−δ

j .

The picture at 2/2 handle slides is similar. In this case we slide the handle with belt sphere

At−δk over the handle with belt sphere At−δj at time t. Then At+δk = At−δk , while At+δj is

a connect sum of At−δj to a parallel copy of At−δk . We can see this by turning the handle

decomposition upside down and considering the belt spheres of the 2-handles as attaching

regions of some 3-handles; note that after turning upside down the Aj 3-handle is being

slid over the Ak 3-handle.

Remark 2.3.1. In fact, the handle slides are determined by the (framed) arc in V × (t−δ)

from At−δk to At−δj or Bt−δ
k to Bt−δ

j . We refer to this choice of arc as the handle slide arc.
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2.3.2 Intersections of spheres

Throughout ft, by our genericity assumptions the Ais are disjoint from each other, as are

the Bjs. There may be intersections between the Ais and the Bjs however. Again by

genericity of ft, we can also assume that the Ais and Bjs intersect transversely.

Initially after the births, the handles Ati and Bt
j intersect in δi,j points. At later t this may

no longer be true. Note that the intersections form a 1-manifold in V × I, and that the

endpoints of any arcs in the 1-manifold occur at the births, the deaths or the handle slides.

Away from the handle slides we see a regular homotopy of the spheres which restricts to

an ambient isotopy of each of the families {Ati} and {Bt
i}. Hence new intersections are

introduced and removed by finger moves and Whitney moves between some A sphere and

some B sphere.

Remark 2.3.2. When we wish to construct paths of functions ft ∈ F , we can do so by

creating a 1-parameter family of handle structures. The rules for constructing 1-parameter

families of handle structures are the same as those for creating generic 1-parameter families

of functions in F ; we can create cancelling pairs of i, (i+ 1)-handles, perform handle slides,

and perform isotopy of the attaching regions of handles, and cancel pairs of handles that

intersect in a single point. Given such a 1-parameter family of handle structures there is

certainly some 1-parameter family in ft ∈ F which induces this family of handle structures.

In dimension 4, when we only have 2 and 3 handles we can do all of this by considering

deformation of the A and B spheres in the middle level; see [Qui86] for Quinn’s treatment

of this in dimension 4.

2.4 Review of Hatcher and Wagoner’s Wh2(π1X) invariant Σ

In this section we recall the definition of the map Σ: π0P → Wh2(π1X) of Hatcher and

Wagoner, and the key result which we will use, namely the reduction to eyes for elements

in the kernel of Σ; see [HW73, Chapter VI].

2.4.1 Algebra of Wh2

We begin by recalling some algebraic definitions.
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Let Λ = Z[π1X]. Let GL(Λ) = limn→∞ GLn(Λ). For λ ∈ Λ let eλi,j ∈ GL(Λ) be the matrix

which is the identity on the diagonal, has λ in the (i, j) position, and is zero elsewhere.

We call eλi,j an elementary matrix, and let E(Λ) ⊂ GL(Λ) be the subgroup generated by

the elementary matrices.

One can easily verify the following relations in E(Λ):

(i) eλi,j · e
µ
i,j = eλ+µ

i,j ,

(ii) [eλi,j , e
µ
k,l] = 0 for i ̸= l and j ̸= k, and

(iii) [eλi,j , e
µ
j,l] = eλµi,l for i, j, l distinct.

This motivates the following definition.

Definition 2.4.1. The Steinberg group St(Λ) is the group freely generated by symbols

xλi,j for i, j ∈ N and λ ∈ Λ subject to the relations

(i) xλi,j · x
µ
i,j = xλ+µ

i,j ,

(ii) [xλi,j , x
µ
k,l] = 0 for i ̸= l and j ̸= k, and

(iii) [xλi,j , x
µ
j,l] = xλµi,l for i, j, l distinct.

Note that we have a surjective homomorphism π : St(Λ)→ E(Λ) sending xλi,j 7→ eλi,j .

We define K2(Λ) to be the kernel of π : St(Λ) → E(Λ). Hence we have the short exact

sequence:

0→ K2(Λ)→ St(Λ) π−→ E(Λ)→ 0.

For g ∈ π1X let w±g
i,j = x±g

i,j x
∓g−1

j,i x±g
i,j , and let W (±π1X) ⊂ E(Λ) be the subgroup generated

by the words w±g
i,j . Then we define the second Whitehead group to be,

Wh2(π1X) = K2(Λ) mod W (±π1X) ∩K2(Λ)

In order to define Σ we need the following lemma.

Lemma 2.4.2 ([HW73, Chapter III, Lemma 1.6]). Let P ∈ GL(Λ) be a permutation

matrix, and let D ∈ GL(Λ) be diagonal with entries in ±π1X. Then there exists some w ∈

W (±π1X) such that π(w) = P ·D.
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This follows from the fact that P ·D can be written as a product

P ·D =
∏
k

e±gk
ik,jk

e
∓g−1

k
jk,ik

e±gk
ik,jk

.

2.4.2 Definition of Σ

We now recall the definition of Σ: P →Wh2(π1X). For full details see [HW73, Chapter

IV], and see [HW73, Chapter V, §6] for the version of the definition we give here. The

approach is to construct a map (which we also abusively call Σ)

Σ: π1(F , E)→Wh2(π1X),

and use Π to identify π0P with π1(F , E).

As in Remark 2.2.4 we deform ft so that it satisfies 1-parameter ordering, has only critical

points of index i and i + 1 for some 2 ≤ i ≤ n − 2, that the birth points appear in time

interval (0, ε), that all death points appear in the time interval (1 − ε, 1) and that no

critical lines cross and no handle slides occur in either of these intervals, so that in these

intervals the Cerf graphic is as in Figure 2.6.

We fix a base point ∗ ∈ X × I and a local orientation at ∗. For each birth point c ∈ X × I

we choose a label j ∈ N for this critical point, and a path in γc ⊂ X × I from ∗ to c. For

t ∈ [ε, 1− ε] denote the index i+ 1 and i critical points created by this birth by zjt and bjt
respectively. Using the path γc we can obtain a continuous choice of path from ∗ to zjt and

bjt for each t, denoted γ
bj

t
and γ

zj
t

respectively. We also choose an orientation of the stable

sets. This gives a basis for Ci(ft, ηt) as in Section 2.1.1 and a matrix ∂ft
i+1 = ∂t GL(Z[π1X]).

After the birth points ∂ε is the identity matrix, as there is precisely one trajectory from

zj to bj for each j.

The matrix ∂t remains constant until passing an i/i or i+ 1/i+ 1 trajectory. On passing

an i + 1/i + 1 trajectory φ from zjt to ztk, with associated ±π1X element given by λ =

γ
zj

t
· φ · γ−1

zk
t
∈ ±π1X (with sign depending on the orientations), we have that

∂t+δ = ∂t−δ ◦ eλj,k.

On passing an i/i trajectory φ from btj to btk with associated ±π1X element given by λ =
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±γ
bj

t
◦ φ ◦ γ−1

bk
t
∈ ±π1X, we have

∂t+δ =
(
eλj,k

)−1
◦ ∂t−δ = e−λ

j,k ◦ ∂t−δ

Hence just before the death points at time 1− ε we have,

∂1−ε = e
−λ′

m
j′

m,k
′
m
. . . e

−λ′
2

j′
2,k

′
2
e

−λ′
1

j′
1,k

′
1
∂εe

λ1
j1,k1

eλ2
j2,k2

. . . eλl
jl,kl

= e
−λ′

m
j′

m,k
′
m
. . . e

−λ′
2

j′
2,k

′
2
e

−λ′
1

j′
1,k

′
1
eλ1
j1,k1

eλ2
j2,k2

. . . eλl
jl,kl

.

On the other hand, at time 1− ε each critical point bj will cancel with some critical point

zj , so we know there is precisely one trajectory between them along some arc λ ∈ ±π1X,

and no other trajectories. Hence,

∂1−ε(zj) = λ · bk

for some k. Hence we can write ∂1−ε as a product,

∂1−ε = P ·D

where P is a permutation matrix, and D is diagonal with entries in ±π1X. By Lemma 2.4.2,

there exists w ∈W (±π1X) such that π(w) = P ·D.

We can now define Σ: π1(F , E)→Wh2(π1X) by sending the path ft to

x
−λ′

m
j′

m,k
′
m
. . . x

−λ′
2

j′
2,k

′
2
x

−λ′
1

j′
1,k

′
1
xλ1
j1,k1

xλ2
j2,k2

. . . xλl
jl,kl
· w−1 mod W (±π1X) ∩K2(Λ) ∈Wh2(π1X).

Note that π
(
x

−λ′
m

j′
m,k

′
m
. . . x

−λ′
1

j′
1,k

′
1
xλ1
j1,k1

. . . xλl
jl,kl
· w−1

)
= ∂1−ε∂

−1
1−ε = 1 so this is indeed an

element of K2(Λ).

Hatcher and Wagoner that in dimension n ≥ 4 that Σ(ft) does not depend on the various

choices made above, and indeed is independent of the homotopy class of the path in (F , E)

as required. See [HW73, Chapter IV, §3] for the proof that Σ is well defined.

Remark 2.4.3. If P ·D were the identity matrix, then the product

x
−λ′

m
j′

m,k
′
m
. . . x

−λ′
1

j′
1,k

′
1
xλ1
j1,k1

. . . xλl
jl,kl

would give an element of K2(π1X). In the case that it is not, we could deform the

1-parameter family so that P · D is the identity by adding a trivial pseudo-isotopy cor-

responding to word the w defined above. Indeed by [HW73, Chapter IV, Lemma 2.7] for
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n ≥ 4, for every such w ∈W (±π1X) there exists a path ft with handle slides corresponding

to w, such that ft is isotopic to the trivial path fixing the end points.

2.4.3 Reduction to eyes and ker Σ

Hatcher and Wagoner prove the following about paths in the kernel of Σ.

Theorem 2.4.4 ([HW73, Chapter VI, Theorem 2]). Let n ≥ 4. Given a 1-parameter

family ft representing a class in π1(F , E) for which Σ(ft) = 0, there is a deformation of ft

fixing the end points to a 1-parameter family f ′
t whose Cerf graphic consists of a nested

collection of eyes, with only index i and i+ 1 critical points for some 2 ≤ i ≤ n− 2, and

no i/i or i+ 1/i+ 1 trajectories; this necessarily means that each (i+ 1)-handle cancels at

a death point with the i-handle it was created with. See Figure 2.7. We can also assume

that the births and deaths remain independent.

Hatcher and Wagoner in fact prove that when n ≥ 5 any one-parameter family ft with

Σ(ft) = 0 can be deformed to a 1-parameter family consisting of only a single eye. As

noted by Quinn in [Qui86] the reduction to multiple eyes holds in 4-dimensions, and only

the step reducing from many eyes to a single eye requires dimension n ≥ 5.

Figure 2.7: A Cerf graphic that is a collection of nested eyes.

2.5 Stable surjectivity of Σ in dimension 4

In [HW73] they show the following result.

Theorem 2.5.1 ([HW73, Theorem 2, Chapter VI ]). Σ: π0P →Wh2(π1X) is surjective

in dimension n ≥ 5.

The proof is simple, we recall it here to motivate our upcoming proof.
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Proof. Given x ∈ Wh2(π1X), let xs1λ1
j1,k1

. . . xsmλm
jm,km

∈ K2(Z[π1X]) with λl ∈ π1X and

sl ∈ {+1,−1} be a word representing x; note that any word in K2(Z[π1X]) can be written

in this way.

We build a path ft in F as in Remark 2.3.2. Let N = max(maxl(jl),maxl(kl)). Starting

with the trivial element p ∈ F , we first create N pairs of cancelling i and (i+ 1)-handles

for some 2 ≤ i ≤ n− 2, and label them 1, . . . N .

We then perform m handle slides of the (i+1)-handles over (i+1)-handles. For l = 1, . . . ,m

we slide the jlth (i+1)-handle over the klth (i+1)-handle along an arc so that the associated

element of π1X is λl. For each handle slide we can also choose to perform an oriented or

unoriented handle slide when sl = +1 or sl = −1 respectively. After these handle slides,

the resulting differential is

∂i+1 = es1λ1
j1,k1

. . . esmλm
jm,km

= π(xs1λ1
j1,k1

. . . xsmλm
jm,km

) = 1.

Now as in the proof of the s-cobordism theorem we may realise this differential geomet-

rically; that is in the middle level, we know that algebraically the attaching region for

the jth (i + 1)-handle and belt sphere for the kth i-handle intersect in δj,k points. We

make use of the Whitney trick to deform these spheres (and correspondingly the handle

decomposition) so that they intersect in δj,k points geometrically. Note that the Whitney

trick requires dimension n ≥ 5.

Now the handles intersect geometrically in δj,k points. We may cancel the pairs of handles,

creating N deaths. After the deaths, the resulting Morse function is an element of E as it

has no critical points. Hence we have described a path in π1(F , E) as required. It is clear

that this path has Σ(ft) = xs1λ1
j1,k1

. . . xsmλm
jm,km

.

This proof does not work in dimension 4 since we cannot apply the Whitney trick. In this

section we present an proof of a stable version of this theorem in dimension 4.

We first prove a further useful lemma for constructing transverse spheres.

Lemma 2.5.2. Let X be a 4-manifold. Consider a handle decomposition of X × I re-

lative to X × 0 with N 3-handles. Denote the attaching regions for the 3-handles by

B1, . . . , BN ⊂ V where V is the middle level between the 2 and 3 handles. Suppose there

are disjointly embedded spheres T1, . . . , TN ⊂ V such that Bi intersects Tj in δi,j points.
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Assume that T1, . . . , TN have trivial normal bundle. Suppose we now perform some number

of handle slides between the 3-handles to obtain a new set of 3-handle spheres B′
1, . . . , B

′
N .

We claim there exists disjointly embedded spheres T ′
1, . . . , T

′
N ⊂ V such that B′

i intersects

T ′
j in δi,j points, and that T ′

i and Tj are disjoint for all i and j. We also claim that we

may choose T ′
1, . . . , T

′
N to have trivial normal bundle.

Proof. We prove the claim by induction on the number of handle slides. Denote the

3-handle attaching spheres after k handle slides by Bk
1 , . . . , B

k
N , we construct T k1 , . . . , T kN

which are dual to Bk
1 , . . . , B

k
N and have trivial normal bundle. Since Ti has trivial normal

bundle, letting T 0
i be a parallel copy of Ti is sufficient for k = 0.

Bk
i

T ki

Bk
j

T kj

Bk+1
i

T ki

Bk+1
j

T kj

Bk+1
i

T k+1
i

Bk+1
j

T k+1
j

Figure 2.8: Performing the (k + 1)th handle slide, then performing the Norman trick
to remove the extra intersection.

Suppose we have a family of spheres T k1 , . . . T kN with trivial normal bundle, which are dual

to Bk
1 , . . . B

k
N and disjoint from T1, . . . TN . We now perform the (k + 1)th handle slide,

which we may assume slides Bk
i over Bk

j using some arc γ ⊂ V from Bk
i to Bk

j . By general

position we may perform an isotopy of γ so that it is disjoint from T k1 , . . . T
k
N and T1, . . . TN

(it is necessarily disjoint from Bk
1 , · · ·Bk

N except at the endpoints). Now Bk+1
i = Bk

i #γB
k
j .

Hence Bk+1
i intersects T ki in a single point p, and T kj in a single point q. We remove the

intersection between Bk+1
i and T kj by choosing an arc in Bk+1

i from q to p, and tubing T kj
to a parallel copy of T ki using the Norman trick. We call the resulting sphere T k+1

j ; see

Figure 2.8. Note that Bk+1
i may intersect T1, . . . TN in finitely many points so we must

ensure we choose the arc from q to p so that it misses these intersections, and so we do not
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introduce any intersections with T1, . . . TN . Since T ki is disjoint from T1, . . . TN provided

we choose a small enough neighbourhood in which to take the parallel copy we can ensure

that the T k+1
j sphere does not intersect T1, . . . TN . Taking T k+1

r = T kr for r ≠ j we see

that T k+1
1 , . . . , T k+1

N are a dual family for Bk+1
1 , . . . Bk+1

N as required, and do not intersect

T1, . . . TN .

We also note that T k1 , . . . , T kN have trivial normal bundle, since tubing spheres with trivial

normal bundle together results in a sphere with trivial normal bundle.

Remark 2.5.3. By turning the handle decompositions in the above proof upside down,

we can prove the same fact about the belt spheres of 2-handles in V , performing 2-handle

slides instead of 3-handle slides.

2.5.1 Proof of stable surjectivity in dimension 4

In this section we prove that Σ is stably surjective in dimension 4.

Theorem E. Let X be a compact 4-manifold and x ∈Wh2(π1X). There exists N , and a

pseudo-isotopy F of X#NS2 × S2 such that

Σ(F ) = x ∈Wh2(π1(X#NS2 × S2)) = Wh2(π1X).

Proof. As in the proof of Theorem 2.5.1 we consider the word xs1λ1
i1,j1
· · ·xsmλm

im,jm
∈ K2(Z[π1X])

representing x, where sk ∈ {+1,−1}, λk ∈ π1(X), and ik, jk ∈ 1, . . . , N for some N .

Let YN = #NS2 × S2 and let X ′ = X#YN . We claim that N is sufficient to find a

pseudo-isotopy of X ′ such that

Σ(F ) =
[
xs1λ1
i1,j1
· · ·xsmλm

im,jm

]
= x ∈Wh2(π1(X#NS2 × S2)).

To show the existence of such a pseudo-isotopy we construct a path in F(X ′) by considering

a deformation of handle structures of X ′ × I as in Remark 2.3.2. We start with the trivial

element of F(X ′) and correspondingly the trivial handle structure for X ′ × I.

We denote the X summand of X ′ = X#YN by X̂ = X \B3 ⊂ X ′. We initially describe a

handle deformation just in X̂ × I and leave the handle structure of

(YN \B3)× I ⊂ X ′ × I
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fixed. Note that π1(X̂) = π1(X).

We first create N cancelling 2 and 3-handle pairs in X̂ and then perform m handle slides,

again within X̂, of 3-handles over 3-handles in accordance with the word

xs1λ1
i1,j1
· · ·xsmλm

im,jm
∈ K2(Z[π1X]) = K2(Z[π1X

′]).

As usual we consider the middle level V = X ′#NS2 × S2 between the 2-handles and 3-

handle. In order to differentiate this copy of #NS2×S2 from YN , we let ZN = #NS2×S2

and let V = X ′#ZN . Since the cancelling pairs were created in X̂ × I, we consider the

middle level of X̂ × I, namely V̂ = X̂#ZN ⊂ V . Note that

V = X ′#ZN = X#YN#ZN = (X̂#ZN ) ∪ (YN \B4) = V̂ ∪ (YN \B4)

Note also that that the 2-handle belt spheres and 3-handle attaching spheres lie within V̂

throughout the handle slides.

We fix a time t0 after the handle slides have taken place and work in this fixed time t0.

In the middle level at time t0 let A1, . . . , AN ⊂ V̂ be the belt spheres of the 2-handles

and B1, . . . , BN ⊂ V̂ be the attaching spheres for the 3-handles. Note that since the

2-handle spheres did not move during the handle slides, they are still S2 × p slices of

ZN = #NS2 × S2.

Since prior to the handle slides the ith 3-handle attaching sphere and the jth 2-handle belt

sphere (which since it remained fixed is Aj ⊂ V ) intersect in δi,j points, by Lemma 2.5.2

there exist spheres C1, . . . , CN with trivial normal bundle such that Bi and Cj intersect

in δi,j points, and that Ai and Cj are disjoint for all i, j.

As xs1λ1
i1,j1
· · ·xsmλm

im,jm
∈ K2(Z[π1X]), the differential ∂3 is the identity, so Ai and Bj have

algebraic intersection δi,j ∈ Z[π1X]. This means that we can pair all of the intersections

up (except for a single intersection for each Ai, Bi pair) so that for each of the paired

intersection points p, q ∈ Ai∩Bj the intersection as measured in ±π1X is +γ for p and −γ

for q for some γ ∈ π1X. We can also pick Whitney arcs for each pair; note that removing

disjointly embedded arcs from a sphere does not make the sphere disconnected, so we can

pick disjoint Whitney arcs for all of the pairings. The resulting Whitney circles for each

pair of intersections vanish in π1X = π1V̂ , and so there exists a Whitney disc W ⊂ V̂ for

each pair of points. We can perform boundary twists between W and Bj so that W is a
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correctly framed Whitney disc. We do this for all of the pairs, and refer to the collection

of these Whitney discs as the W -discs.

The W -discs may self intersect, and also intersect other W -discs. They may also intersect

the A-spheres, the B-spheres and the C-spheres. We will manipulate these discs to

construct a new family of discs which are embedded and disjoint from the A-spheres and

B-spheres.

First, noting that Ai is a copy of S2 × p in V̂ = X̂#ZN = X̂#NS2 × S2, there exists

some transverse sphere for Ai, A∗
i = q × S2. For each intersection r between a W -disc

and an Ai we use the Norman trick to tube the W -disc into a parallel copy of A∗
i . Doing

this requires a choice of arc in Ai from r to Ai ∩A∗
i , when choosing this arc we ensure it

misses any other intersection points in Ai and any Whitney arcs; this is possible as these

do not disconnect Ai. We do this for each intersection between an A-sphere and W -disc

successively. We obtain new W -discs which are disjoint from the A-spheres; note that this

may introduce intersections between W -discs and W -discs, as well as new intersections

between the W -discs and the B-spheres and C-spheres. The W -discs are also still correctly

framed Whitney discs as the dual spheres A∗
i have trivial normal bundle.

Next, we push down the self intersections of the W -discs into the B-spheres, as in Section

2.1.2. After doing this for all intersections between the W -discs, the W -discs are disjoint

and embedded and disjoint from the A-spheres, but still possibly intersect the C and B

spheres. The W -discs are also still correctly framed Whitney discs.

Since everything we have done so far has been within V̂ = X̂#ZN , all of the W -discs,

A-spheres, B-spheres and C-spheres are disjoint from the YN \B4 subset of

V = (X̂#ZN ) ∪ (YN \B4).

We now make use of the S2 × S2s in YN = #NS2 × S2. For each C-sphere Cj , we create a

new sphere C ′
j by tubing Cj into S2× p ⊂ S2×S2 in YN . Ensuring to tube each C-sphere

into a different S2 × S2, we obtain spheres C ′
1, . . . , C

′
N which are disjoint and embedded.

Taking Dj = p×S2 in each summand of YN , we also have spheres D1, . . . Dn such that Di

and C ′
j intersect in δi,j points. Clearly the D-spheres are disjoint from the W -discs, the

A-spheres and the B-spheres. Note also that the C ′-spheres have trivial normal bundle,

as do the D-spheres.
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We can now remove intersections between the W discs and the C ′-spheres by using the

Norman trick; for each intersection between a W -disc and C ′
j we create a new Whitney disc

by tubing into a parallel copy of Dj , noting that after each tubing Dj is still disjoint from

the W -discs so we may repeat the process without introducing new intersections between

W -discs. After doing this for each intersection we obtain embedded W -discs which are

disjoint from the A-spheres and C ′-spheres but still intersect the B-spheres. The W -discs

are also still correctly framed Whitney discs as each Dj has trivial normal bundle.

We now remove the intersections between the B-spheres and the W -discs; for each in-

tersection p between a W -disc and Bj , pick an arc from p to Bj ∩ C ′
j which is disjoint

from the Whitney arcs and other intersection points (note that the Whitney arcs do not

disconnect Bj so this is always possible), then use this arc to perform the Norman trick,

tubing the W -disc into a parallel copy of C ′
j . Note that C ′

j is disjoint from the W -discs so

this does not introduce new intersections between the W -discs. Since after each tubing C ′
j

is still disjoint from the W -discs, we may repeat the process for every intersection between

B-spheres and W -discs. Note also that C ′
j does not intersect the A-spheres so this does

not introduce intersections between W -discs and A-spheres. At the end of this process

we obtain embedded W -discs which are disjoint from all the A-spheres and B-spheres.

Additionally the W -discs are still framed as C ′
j has trivial normal bundle for all j.

Finally, having built embedded W -discs in V at time t0, we now use them to perform

Whitney moves for each pair of points to remove the pairs of intersections; note that to

do this we stop working in time t0. After performing these Whitney moves, Ai and Bj

intersect in δi,j points, so we can cancel all of the handles handles. After we do this

the resulting handle structure has no handles, so the corresponding Morse function lies

in E(X#NS2 × S2). Hence we have built a path in F(X#NS2 × S2) with endpoints in

E(X#NS2 × S2). It is clear that Σ(ft) = xs1λ1
i1,j1
· · ·xsmλm

im,jm
as required.

2.6 The Wh1(π1X;Z2 × π2X) invariant Θ

In Section 2.4 we described the map Σ, which in dimension n ≥ 4 is a complete obstruction

to reducing a 1-parameter family ft with endpoints in E to one whose Cerf graphic is a

collection of nested eyes as in Figure 2.7. That is, any pseudo-isotopy in ker Σ is represented

by such a 1-parameter family.
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In this section we recall the definition of the map described by Hatcher and Wagoner in

[HW73, Chapter VII]

Θ: ker Σ→Wh1(π1(X);Z2 × π2(X))/χ(K3π1X).

In dimension ≥ 6, Hatcher and Wagoner (with later clarification by Igusa in [Igu84]) show

that Θ is a complete obstruction to removing all the eyes from such a nested collection of

eyes (at which point we are left with an empty Cerf graphic, and so a path in E). Hence,

in dimension ≥ 6, Σ together with Θ provide a complete obstruction to a pseudo-isotopy

being isotopic to an isotopy.

When k1X = 0, Igusa in [Igu84] describes a map

Θσ : π0P →Wh1(π1(X);Z2 × π2(X))

dependent on a choice of section σ : X(1) → X(2). We will not address this extension

here. When restricted to ker Σ, Igusa’s map Θσ|ker Σ agrees with the Θ described in

[HW73, Chapter VII] and is independent of the section σ.

2.6.1 Definition of Wh1(π1X;Z2 × π2X)

Let Γ be an abelian group acted on by a group π. For our purposes Γ will be the group

Z2 × π2(X) and π will be π1(X), with the usual action on π2(X) and the trivial action on

Z2. We write elements of R = Γ[π]× Z[π] as finite formal sums ∑i(αi + ni)σi for αi ∈ Γ,

σi ∈ π, ni ∈ Z. We give R a ring structure via
(∑

i

(αi + ni)σi
)
·
(∑

j

(βj +mj)τj
)

=
∑
i,j

(niβσi
j +mjαi + nimj)σiτj ,

where αi, βj ∈ Γ, ni,mj ∈ Z, σi, τj ∈ π and βσ denotes the action of σ on β. Note that Γ[π]

is an ideal of R. Note also that the multiplication is trivial on Γ[π]; that is x · y = 0, for

all x, y ∈ Γ[π]. We define

GL(Γ[π]) = ker
(

GL(R)→ GL(R/Γ[π])
)

= {I +A | A has entries in Γ[π]}

Note that R and R/Γ[π] are rings, and here GL(R) and GL(R/Γ[π]) denote the usual

general linear group of matrices in these rings (that is, the union over n of GLn(R) and

GLn(R/Γ[π]) respectively). Note also that I + A is always in GL(R) if A has entries in
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Γ[π], since

(I +A) · (I −A) = I −A ·A = I,

noting that A ·A = 0 as multiplication in the ideal Γ[π] is trivial.

Definition 2.6.1. We define K1Γ[π] by K1Γ[π] = GL(Γ[π])/[GL(R),GL(Γ[π])]

Hatcher proves the following.

Proposition 2.6.2 ([Hat73, Proposition 1.1]). The trace map

tr : K1Γ[π]→ Γ[π]/⟨ar − ra | a ∈ Γ[π], r ∈ R⟩

is an isomorphism. The subgroup ⟨ar − ra | a ∈ Γ[π], r ∈ R⟩ can also be expressed

as ⟨ασ−αττστ−1|α ∈ Γ, τ, σ ∈ π⟩, where ατ denotes the result of acting on α by τ . Hence

we obtain

K1Γ[π] ∼= Γ[π]/⟨ασ − αττστ−1 | α ∈ Γ τ, σ ∈ π⟩.

We can now define the first Whitehead group of the pair (π,Γ).

Definition 2.6.3. Wh1(π; Γ) = coker (Γ[1]→ K1Γ[π]), where Γ[1] → K1Γ[π] is defined

by 1α 7→ [1α]

It follows easily that

Corollary 2.6.4. Wh1(π; Γ) = Γ[π]/⟨ασ − αττστ−1, β · 1 | α, β ∈ Γ τ, σ ∈ π⟩

Remark 2.6.5. It is clear from the definitions in this section that Wh1(π1X;Z2 × π2X)

splits as

Wh1(π1X;Z2 × π2X) = Wh1(π1X;Z2)⊕Wh1(π1X;π2X).

2.6.2 Construction of Θ

In this section we recall the definition of Θ set out in [HW73, Chapter VII]. Let ft be a

path in F(X) with endpoints in E(X). Suppose ft lies in the kernel of Σ. We will associate

to ft an element of Wh1(π1X;Z2×π2X). In the quotient Wh1(π1X;Z2×π2X)/χ(K3π1X)

this element will be an invariant of the homotopy class in (P, E). This gives a map from

ker Σ ⊂ π1(F , E), and hence from ker Σ ⊂ π0(P), into Wh1(π1(X);Z2×π2(X))/χ(K3π1X)

which in both cases we denote by Θ.
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By Section 2.4.4, after a deformation we may assume ft is a collection of nested eyes, and

that it has only handles of dimension i and i + 1 for 2 ≤ i ≤ n − 2. As before we may

assume that the births appear at times in (0, ε) and the deaths occur at times in (1− ε, 1),

and that index i critical points have critical value < 1/2 and that index i+1 critical points

have value > 1/2.

As previously we denote the middle level f−1
t (1/2) by Vt for t ∈ [ε, 1−ε], and label the belt

spheres for the i-handles and attaching spheres for the (i+ 1)-handles by A1, . . . , AN and

B1, . . . , BN in Vt respectively. In Vε, Ai ∩Bj consists of δi,j points. As we move forward

in the time direction we see a homotopy of the A-spheres and B-spheres which keeps the

B-spheres disjoint and embedded, keeps the A-spheres disjoint and embedded, but possibly

introduces intersections between the A-spheres and the B-spheres. By general position

we may assume in that in each t slice the intersection between A-spheres and B-spheres

consists of disjoint double points. In V1−ε again we see Ai and Bj intersect in δi,j points.

Note that there are no handle slides.

Consider the trace of this homotopy in the trace of the middle level. We adopt the notation

Iε = [ε, 1− ε], and denote

V × Iε =
⋃
t∈Iε

Vt

for the trace of Vt. For the trace of the A-spheres we adopt the notation

Ai × Iε =
⋃
t∈Iε

Ai

and for the trace of the B-spheres

Bi × Iε =
⋃
t∈Iε

Bi.

The intersections of Ai × Iε and Bj × Iε for each i, j is a collection of lines and circles.

In fact there is a single line of intersection in Ai × Iε ∩Bi × Iε, and all other intersection

components are circles.

We will associate to each circle of intersection C, elements γC ∈ π1(X), σC ∈ π2(X) and

sC ∈ Z2. We construct a matrix M as follows

Mi,j =
∑

Circles of intersection C between Ai and Bj

(σC + sC)γC
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Now I +M is in GL((Z2 × π2X)[π1X]); recall from Subsection 2.6.1 that

GL((Z2 × π2X)[π1X]) = {I +A | A has entries in (Z2 × π2X)[π1X]}.

Hence I +M specifies an element of Wh1(π1X;Z2 × π2X) as required.

Remark 2.6.6.

1. To motivate why these circles of intersection matter, if there were no circles and

only a “straight line” of intersection in Ai × Iε ∩Bi × Iε, that is a line intersecting

each t slice in a single point, then in fact we could remove this pair from the family

and “cancel the eye”; that is deform the path ft to one whose Cerf graphic did not

contain this eye.

2. One might hope to remove a circle of intersection C between Ai × Iε and Bj × Iε

by some ‘higher dimensional Whitney move’. That is, by finding discs Da ⊂ Ai × Iε

and Db ⊂ Bj × Iε (the analogue of Whitney arcs), and finding an embedded 3-

ball B3 ⊂ V × I such that ∂B3 = Da ∪Db (the analogue of a Whitney disc). One

would also ask that this 3-ball is framed, with framing on the boundary agreeing with

a “Whitney Framing” specified by the discs Da and Db. One would also require that

the intersection with any Vt contained no S2 components. If we could find such a

framed 3-ball we could perform an analogue of a Whitney move to remove the circle

of intersection C. The element σC ∈ π2X is an obstruction to finding such a ball,

and the element sC ∈ Z2 is the obstruction to correctly framing such a ball. In high

dimensions the vanishing of these obstructions imply we can find and frame such a

ball, and so perform a 3-dimensional Whitney trick to remove circles of intersection.

Construction of γC ∈ π1X

To obtain an element of π1X associated to C, choose some time t such that V × t intersects

C in some point p. pick an arc a from ∗Ai to p, and an arc b from ∗Bj to p. Then define

γC = αi · a · b−1 · β−1
j

in the same way that we defined the algebraic intersection in Section 2.1.3. To see

independence from the choices of t, p, a and b, note that C is a circle in Ai × Iε ∩Bj × Iε,
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and that both Ai × Iε and Bj × Iε are simply connected, and so C is null homotopic in

both of these manifolds, and in V × Iε.

Construction of σC ∈ π2X

Since Ai × Iε and Bj × Iε are simply connected, the circle C bounds discs Da ⊂ Ai × Iε

and Db ⊂ Bj × Iε; note that these are possibly not embedded. We orient these discs by

giving C an orientation; here we use the convention that at any point which is a positive

intersection of Ai and Bj the orientation of C points in the positive t direction. Now the

union Da ∪Db, along with the arc αi (by convention) to the base point ∗ gives an element

of π2X.

Note that both Ai and Bj are null-homotopic in X for all t (since they are belt spheres of

2-handles and attaching sphers of 3-handles), so Ai × Iε and Bi × Iε are null-homotopic in

X × Iε and so the above construction does not depend on the choice of Da and Db

Construction of sC ∈ Z2

First note that Ai and Bj intersect transversely, so we can identify the bundles

P := ν(C,Ai × Iε) = ν(Bj × Iε, V × Iε)|C

This bundle is a (n − 2)-dimensional bundle over the circle. Since Aj × Iε ∼= Sn−2 × I

is orientable, so is ν(C,Aj × Iε), so it must be the trivial bundle. In dimension 4 are Z

many choices of trivialisation (framing) for this bundle, in higher dimensions there are Z2

framings. The difference of any two choices of framing gives a well defined element of Z in

dimension 4 or Z2 in higher dimensions as in Remark 2.1.8. We will construct two framings

of this bundle, and the difference (taking mod 2 when in dimension four) is sC ∈ Z2.

Remark 2.6.7. One might ask, as Hatcher and Wagoner do in [HW73], if it is possible

that in dimension 4 there is in fact a Z valued invariant instead of a Z2 one. Igusa in

[Igu21a] proves that there is such an integer valued invariant on the space of “marked

lens space models”, that is paths in F which have a single eye, with some additional

“marking” information. He shows that when the marking information is dropped the Z

valued invariant only survives mod 2, suggesting a negative answer to this question; see

[Igu21a, Lemma 1.12].
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Two framings of P

For the first framing of P , consider ν(C,Ai × Iε); since C is null-homotopic in Ai × Iε, it

has a canonical 0-framing. We call this the A-0-framing.

For the second framing, we note that Bj is the attaching sphere for a handle, so ν(Bj , V )

has a canonical framing that specifies how the handle is attached. Along with the isotopy

of Bj this induces a framing of ν(Bj × Iε, V × Iε). Taking the restriction of this framing

to ν(Bj × Iε, V × Iε)|C gives the second framing. We call this the B-attaching-framing.

The difference of the A-0-framing and the B-attaching-framing up to homotopy gives an

element of Z2, (or in dimension 4 an element of Z, which we then take mod 2 of) as in

Remark 2.1.8.

2.6.3 Geometric description of 1-parameter families in ker Σ in

dimension 4

We now describe some geometric features specific to dimension 4. We specify that X is a

4-manifold, with ft as in Section 2.6.2.

Now we have that Vt = X#NS2 × S2, and A1, . . . , An ∈ Vt and B1, . . . , Bn ∈ Vt, are

collections of 2-spheres. Again at t = ε and t = 1− ε. Ai intersects Bj in δi,j points, and

at times in-between there is a homotopy of the spheres with possibly extra intersections

between the A-spheres and the B-spheres. We can perturb this homotopy so that it can

be seen as a sequence of finger moves and Whitney moves between the A-spheres and the

B-spheres. It is a well known fact that any homotopy can be deformed so that all of the

finger moves occur before the Whitney moves; this is a consequence of the fact that by

dimensionality the guiding arcs for the finger moves may be freely isotoped whilst avoiding

any Whitney discs, see [Qui86, Section 4.1] for a detailed treatment. We arrange that the

finger moves occur before time 1/2 and the Whitney moves occur after time 1/2.

All of the data of this homotopy can now be seen in the level V1/2; we call this copy of V

the middle-middle level since it is V1/2 = f−1
1/2(1/2). At this time the spheres Ai, Bj ∈ V1/2

intersect algebraically as δi,j ∈ Z[π1X], but possibly have more geometric intersections. We

see a family of framed embedded Whitney discs W1, . . . ,Wm which describe the Whitney

moves that will be performed in the rest of the homotopy, and we also see framed embedded
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Whitney discs U1, . . . , Um which undo the finger moves that were just performed. The

Whitney discs U1, . . . , Um can be made disjoint from each other, as the finger moves are

determined by arcs, so by dimensionality we can perturb these arcs to be disjoint from

each other. Dually (considering the homotopy running backwards) we can arrange that

the discs W1, . . . ,Wm are disjoint from each other. We refer to the finger move discs as

the U -discs and the Whitney move discs as the W -discs. The U -discs may intersect the

W discs.

Dual Spheres

There are also several dual spheres present. At time t = ε, Ai ∩Bi = {p} ∈ Vε, and both

Ai and Bi are embedded with trivial normal bundle; indeed they are p × S2 and S2 × p

fibers of an S2 × S2 summand in Vε = X#NS2 × S2. Let A∗
i be a parallel copy of Bi,

and let B∗
i be a parallel copy of Ai; see Figure 2.9. Then A∗

i is a dual sphere to Ai since

A∗
i ∩ Ai is a single point, A∗

i ∩ Bj = ∅ for all j, and A∗
i ∩ Aj = ∅ for i ̸= q. Similarly for

B∗
i . Note that A∗

i and B∗
j consists of δi,j points.

Ai

Bi

B∗
i

A∗
i

Figure 2.9: The spheres Ai and Bi, and the parallel copies which give transverse
spheres A∗

i and B∗
i . We see that A∗

i intersects Ai in a single point, is disjoint from Bi,
but intersects B∗

i in a single point; similarly B∗
i intersects Bi in a single point but is

disjoint from Ai.

By dimensionality we can arrange that the arcs which determine the finger moves are

disjoint from all dual spheres A∗
1, . . . , A

∗
n, B

∗
1 , . . . B

∗
n. It follows that in the middle-middle

level the spheres A∗
1, . . . , A

∗
n, B

∗
1 , . . . B

∗
n still intersect A1, . . . , An, B1, . . . , Bn as above, and

further are disjoint from the U -discs; they may however intersect the W -discs.

Noting that just before the deaths Ai ∩ Bj consists of δi,j points, we can repeat this

argument running the homotopy backwards to obtain another set of dual spheres. Doing

so we obtain (likely different) dual spheres A∗
1, . . . , A

∗
n, B

∗
1 , . . . B

∗
n in the middle-middle
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level which are disjoint from the W -discs but not the U -discs. When we wish to emphasise

the difference we will refer to the dual spheres disjoint from the U -discs as the initial dual

spheres, and as the dual spheres disjoint from the W -discs as the terminal dual spheres.

2.6.4 Calculation for geometrically simple families

For X a 4-manifold we consider the following simple family of paths ft in ker Σ. First,

a 2-handle 3-handle cancelling pair is created with spheres A and B in the middle level.

Then, a single finger move is performed between A and B. Then, a single Whitney move

is performed to remove the two intersections created by the finger move. Since A and B

now intersect in a single point we then cancel them.

Considering the middle-middle level V = V1/2, we may without loss of generality assume

that the initial Whitney disc U (from the finger move) and the terminal Whitney disc W

share the same Whitney arcs α ∈ A and β ∈ B. Indeed if they did not, we can isotope W

to arrange that this is true as follows. Denote the Whitney arcs for W by αW ⊂ A and

βW ⊂ B, and similarly αU ⊂ A, βU ⊂ B for the Whitney arcs of U . Note that A intersects

B in three points, two of which are the endpoints of αW . Since two arcs in a disc D2 with

the same endpoints are always isotopic, there is an isotopy taking αW to αU , which avoids

the intersection points. We can extend this isotopy to the disc W in a small neighbourhood

of A. We may do the same in a neighbourhood of B to make βW agree with βU

The family ft has a single of circle of intersection C, so

Θ(ft) = ((sC + σC)γC)) ∈Wh1(π1(X),Z2 × π2(X)).

It is also clear that γC ∈ π1(X) is the element of π1(X) associated to the finger move arc

as in Remark 2.1.3.

To calculate σC we claim the following.

Proposition 2.6.8. The element σC ∈ π2(X) can be represented by the 2-sphere U ∪W

joined to the basepoint ∗ by the basepoint arc for A, γA.

To describe sC we must work a little harder. Consider the bundle ν(B, V )|β. For either

disc U and W we have 1-dimensional sub-bundles cU , cW of this bundle by taking the
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intersection with the normal bundle for the disc,

cU = ν(B, V )|β ∩ ν(U, V )|β

cW = ν(B, V )|β ∩ ν(W,V )|β.

We arrange that the 1-bundles agree on ν(B, V )|∂β = ν({p, q}, A) = {p, q}×D2 ⊂ A. Note

that both U and W have Whitney arc α in A and so cU |p and cW |p are normal to α in

ν(B, V )|p = ν(p,A) = p×D̊2. Since in ν(p,A) there is only one choice of 1-bundle which is

normal to α ⊂ ν(p,A) = p×D̊2 (up to isotopy), we can arrange that cU |p = cW |p. Similarly

we can arrange that cU |q = cW |q. Arbitrarily we pick an orientation for these bundles to

obtain two sections cW and cU of ν(B, V )|β = S2 × D̊2 which agree on ν(B, V )|∂β.

Remark 2.6.9. Note that these sections are the Whitney sections for W and U , but

considered as a section of ν(B, V )|β instead of ν(W,V )|β and ν(U, V )|β. Recall that the

definition of the Whitney section is asymmetric; we require the Whitney section for W be

a section of ν(W,V )|∂W which is parallel to A on α and normal to B on β. Hence on β

the Whitney section is precisely cW = ν(B, V )|β ∩ ν(W,V )|β.

Since cW and cU are sections of the same bundle and agree on the boundary we may

consider the difference of these sections, which gives a well defined element of Z as in

Remark 2.1.8; note that Remark 2.1.8 refers to framings of S1 × D2, here we consider

framings of I ×D2 which are fixed on ∂I ×D2, which can also be seen to determine an

element of π1 GL2(Z) = Z.

Proposition 2.6.10. Consider the difference of cU and cW as an element of Z as above.

Taking this element of Z mod 2 gives sC ∈ Z2.

We now proceed to prove both propositions.

Proof of Propositions 2.6.8 and 2.6.10. Consider V × Iε, say the finger move happens at

time ε ≤ t1 < 1/2 and the Whitney move happens at time 1/2 < t2 ≤ 1− ε. We consider

the sweep out of the Whitney disc W from time 1/2 to time t2 as the Whitney move

is performed; considering the isotopy the Whitney disc takes as the Whitney move is

performed, the sweep out is the union over all t of the Whitney disc. We denoted this

sweep out by QW ⊂ V × [1/2, t2] ⊂ V × Iε. We similarly consider the sweep out of U ,

which we denote QU ⊂ V × [t1, 1/2] ⊂ V × Iε. See Figure 2.10 for a depiction of QU .
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t

DU
β

β

DU
α

αC

U

Figure 2.10: The ball QU swept out by the Whitney disc U through the time direction
(denoted t).

Clearly QU is a ball, with boundary consisting of three discs, one of which is the disc U ⊂

V × {1/2}. Another boundary component is the sweep out of the Whitney arc αU ⊂ A

denotedDα
U = QU∩(A×Iε). The final boundary component is the sweep out of the Whitney

arc β denoted DU
β = QU ∩ (B× Iε). We similarly denote the sweep out of αW ⊂ A×{1/2}

by DW
α ⊂ A× [1/2, t2] and sweep out of βW ⊂ A× {1/2} by DW

β ⊂ A× [1/2, t2].

To prove Proposition 2.6.8, note that DW
β ∪DU

β gives a disc in B × Iε with boundary C,

and DW
α ∪DU

α gives a disc in A× Iε with boundary C. Hence σC is represented by

(
DW
α ∪DU

α

)
∪
(
DW
β ∪DU

β

)
along with the arc γA from A to the basepoint. Since DU

α ∪DU
β ∪ U bounds QU , the disc

DU
α ∪DU

β is isotopic to U . Similarly the disc DW
α ∪DW

β is isotopic to W via QW . Hence

(
DW
α ∪DU

α

)
∪
(
DW
β ∪DU

β

)
=
(
DU
α ∪DU

β

)
∪
(
DW
α ∪DW

β

)
≃ U ∪W

proving the Proposition 2.6.8.

To prove Proposition 2.6.10, define a 1-dimensional sub-bundle of ν(B× Iε, V × Iε)|DU
β

via

SU = ν(B × Iε, V × Iε)|DU
β
∩ ν(QU , V × Iε)|DU

β

and a 1-dimensional sub-bundle of ν(B × Iε, V × Iε)|DW
β

via

SW = ν(B × Iε, V × Iε)|DW
β
∩ ν(QW , V × I)|DW

β
.

Note that on β

SU |β = ν(B × Iε, V × Iε)|β ∩ ν(QU , V × I)|β = ν(B, V )|β ∩ ν(U, V )|β = cU



2.6. The Wh1(π1X;Z2 × π2X) invariant Θ 49

and similarly SW |β = cW . As we did for cW and cU , we arrange that SW and SU agree on

{p, q} = ∂β. We also pick orientations for SW and SU so that we can consider them as

sections (picking the orientations so that they agree on {p, q}, and with cU and cW ).

As SW |C and SU |C agree where they meet at p, q the union SW |C ∪SU |C gives a section of

ν(B × Iε, V × Iε)|C = ν(C,A× Iε) = S1 ×D2; recall that this is the bundle which is used

to define sC . Consider the section S of ν(C,A× Iε) which points into the disc DW
α ∪DU

α ⊂

A× Iε. Clearly S is the 0-framed section of C in A (by definition). Since SW is normal to

QW , it is normal to DW
α ⊂ QW , and so SW |C is normal to S. Similarly SU |C is normal to

S.

Hence SW |C ∪ SU |C is normal to S in ν(C,A × Iε). Since ν(C,A × Iε) = S1 × D2 this

means that S and SW |C ∪ SU |C must be isotopic. Hence SW |C ∪ SU |C is the 0-framed

section of C in A× I. Hence the framing induced by SU |C ∪ SW |C is the A-0-framing of

Section 2.6.2.

We divide the remainder of the proof into two cases.

Case 1: on β the sections cW = SW |β and cU = SU |β agree up to isotopy. In this case

(after possibly an isotopy) SW ∪ SU is a section of ν(B × Iε, V × Iε)DU
β

∪DW
β

. This section

necessarily extends to a section of ν(B× Iε, V × Iε) = (S2× I)×D2. This section induces

a trivialisation T of ν(B × Iε, V × Iε). Since (S2 × I)×D2 has a unique trivialisation, T

must agree with the sweep out of the trivialisation used to attach the 3-handle.

Consider the trivialisation induced by (SW∪SU )|C on ν(B×Iε, V ×Iε)|C . This is necessarily

the restriction of T to ν(B × Iε, V × Iε)|C , and hence is the restriction of the 3-handle

framing to C. This is precisely the B-attaching-framing of Section 2.6.2, hence (SW ∪SU )|C

induces the B-attaching-framing.

Since by the above (SW ∪ SU )|C = SW |C ∪ SU |C induces the A-0-framing, and the B-

attaching framing we see that they agree and so sC = 0 as required.

Case 2: on β the sections cW = SW |β and cU = SU |β do not agree, but rather differ by n

twists. Given a trivial disc bundle D2×D2 → D2, a section of this bundle s : D2 → D2×D2,

an arc γ ⊂ ∂D2, and a section r : γ → γ ×D2, we can always perform an isotopy of the

section s to obtain a new section s′ such that s|γ = r. Applying this to the disc bundle

ν(B × Iε, V × Iε)|DW
β

and the section SW , we can perform an isotopy of SW to obtain a
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β β

C ∩QU

C ∩QW

SU |∂DU
β

SW |∂DW
β

β β

C ∩QU

C ∩QW

SU |∂DU
β

S′
W |∂DW

β

SU |C∩QU
SW |C∩QW

C

SU |C∩QU
S′
W |C∩QW

C

Figure 2.11: The operation of changing the section SW so that it agrees with SU on β.
In the top left we depict ν(B× Iε, V × Iε)|DW

β
and ν(B× Iε, V × Iε)|DW

β
, but for clarity

only depict ∂DW
β and ∂DU

β , and SW |∂DW
β

and SU |∂DU
β

. In the top left we see that the
sections SU |β and SW |β differ by n = 5 twists. To obtain S′

W pictured on the right,
we perform an isotopy which moves these twists to ν(B × Iε, V × Iε)|C∩QW

. Below we
see that SW |C∩QW

∪ SU |C∩QU
(bottom left) and S′

W |C∩QW
∪ SU |C∩QU

(bottom right)
differ by ±n = ±5 twists (depending on orientation).

section S′
W such that S′

W |β agrees with SU |β. We note that doing so changes S′
W |C∩QW

.

Since S′
W |β differs from SW |β by n twists, it must be the case that S′

W |C∩QW
and SW |C∩QW

differ by ±n twists (depending on the orientations), since the sections S′
W |∂W and SW |∂W

must agree up to isotopy. See Figure 2.11 for a depiction of this operation.

Repeating the above argument for when the framings agreed, using the framings S′
W and

SU , we see that the framing induced by (S′
W ∪SU )|C is the B-attaching-framing. Again the

framing induced by SW |C ∪SU |C is the the A-0-framing. Since (S′
W ∪SU )|C and SW ∪SU

differ by ±n twists, so do the B-attaching-framing and the A-0-framing, hence sC = ±n

mod 2 = n mod 2 as required.

2.7 Realisation theorem for Wh1(π1X;Z2 × π2X)

In dimension ≥ 5,

Θ: ker Σ→Wh1(π1X;Z2 × π2X)/χ(K3Z[π1X])
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is surjective. Hatcher and Wagoner prove this when k1X = 0 [HW73, Chapter VII]; note

that they claim to prove surjectivity for general k1X, however their definition of Θ is only

valid when k1X = 0. The more general result was proved by Igusa [Igu84]. Hatcher and

Wagoners proof considers Wh1(π1X;Z2 × π2X) as a quotient of

(Z2 × π2X)[π1X] = ⟨(s+ σ)γ | σ ∈ π2X, s ∈ Z2, γ ∈ π1X⟩.

They show that there exists a path ft ∈ F with a single circle of intersection C such

that γC = γ, σC = σ and sC = s for arbitrary triples γ ∈ π1X, σ ∈ π2X, s ∈ Z2. In

dimension 4 we cannot see a way to realise all possible triples.

Given a 4-manifold X, we denote the “Stiefel-Whitney classes” by wX1 : π1(X) → {±1},

and wX2 : π2(X)→ {0, 1}. These are the usual Stiefel-Whitney classes composed with the

Hurewicz map and reduction mod 2, except that for wX1 it will be useful for the target

to be the multiplicative group of order two rather than the additive one, so if wX1 (γ) is

trivial (usually 0) we send it to 1, if non-trivial (usually 1) we send it to −1. The map wX1
is often known as the “orientation character”. We prove

Proposition 2.7.1. Let X be a 4-manifold. Let σ ∈ π2X, γ ∈ π1X, and s ∈ Z2.

If wX2 (σ) ̸= 0 or s = 0 then there exists a 1-parameter family ft with a single circle of

intersection C for which σC = σ, γC = γ, sC = s.

That is to say we can realise all elements (σ + s)γ ∈ (Z2 × π2X)[π1] except for those

with wX2 (σ) = 0 and s = 1.

As a corollary we obtain Theorem C

Theorem C. For X a compact 4-manifold, let

Ξ =
〈
(s+ σ)γ | wX2 (σ) ̸= 0 or s = 0, s ∈ Z2, σ ∈ π2X, γ ∈ π1X

〉
⊂ (Z2 × π2X)[π1X]/⟨αγ − αττγτ−1, β · 1 | α, β ∈ Z2 × π2X, τ, γ ∈ π1X⟩

= Wh1(π1X;Z2 × π2X).

If k1X = 0 then Ξ ⊂ Θ(ker Σ). Otherwise the same is true passing to the quotient

Wh1(π1X;Z2 × π2X)/χ(K3Z[π1X]).

While we cannot realise all triples, we also cannot obstruct those exceptional values from
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being realised. Indeed topologically one can find a homotopy of transverse spheres A and

B with one circle of intersection realising all triples, as shown by [Kwa87].

We can however realise all values in Wh1(π1X;Z2 × π2X) by taking a single stabilisation

with S2 × S2.

Proposition 2.7.2. Let X be a 4-manifold. Note that π1X and π2X include as subgroups

of π1(X#S2 × S2) and π2(X#S2 × S2) respectively. For all values σ ∈ π2X, γ ∈ π1X

and s ∈ Z2 there exists a 1-parameter family ft : X#S2 × S2 → I with a single circle of

intersection C, such that σC = σ, γC = γ, sC = s.

Note that unlike the stable theorem for Σ, in this case, one S2×S2 stabilisation is enough.

Indeed for any generator (σ + s)γ we can come up with a 1-parameter family ft and

hence a corresponding pseudo-isotopy F ∈ P(X#S2 × S2) with Θ(F ) = (σ + s)γ. The

composition of such pseudo-isotopies gives sums of generators without needing additional

S2 × S2 summands. This yields Theorem D.

Theorem D. Let X be a compact 4-manifold. Note that Wh1(π1X;Z2×π2X) includes in

Wh1(π1(X#S2 × S2);Z2 × π2(X#S2 × S2)),

and identify x ∈ Wh1(π1X;Z2 × π2X) with its image under this inclusion. There is a

pseudo-isotopy F of X#S2 × S2, which is in ker Σ such that

Θ(F ) = x ∈Wh1(π1(X#S2 × S2);Z2 × π2(X#S2 × S2))/χ(K3Z[π1(X#S2 × S2)]).

Note that unlike in the stable Σ case Wh1(π1X#S2×S2;Z2×π2(X#S2×S2)) is potentially

a larger group, and there may be additional elements that we cannot realise (at least not

without taking further connect sums).

We proceed with the proofs of both propositions.

Proof of Proposition 2.7.1. Fix σ ∈ π2X and γ ∈ π1X. As in Remark 2.3.2, we build a

path of Morse functions ft ∈ F(X) by building a 1-parameter family of handle structures

on X × I, as in the proof of Theorem E.

We can represent σ by an immersed 2-sphere S ⊂ X (with an arc η to the base point),

and we can arrange that S intersects itself only at transverse double points.
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We start with the trivial handle structure on X × I. We then first create a cancelling 2-3

handle pair. When we do so, we ensure that the 2-3 handle creation takes place disjointly

from S ⊂ X. We consider the middle level V = X#S2 × S2.

We denote the 2-handle belt sphere and 3-handle attaching sphere by A and B in V

respectively; initially these are p× S2 and S2 × q in V = X#S2 × S2. Note that we also

have dual spheres A∗ and B∗ as in Section 2.6.3. Since we ensured the handle creation

was disjoint from S, we see that S is disjoint from A, B, A∗, and B∗.

Since A∪B is π1-negligible in V , γ determines a finger move from A to B as in Remark 2.1.3.

By dimensionality, we can ensure the finger move misses S and the dual spheres A∗ and

B∗. We perform this finger move to obtain a new handle structure. Afterwards, we see the

Whitney disc U that undoes this finger move. The interior of U is disjoint from A, B, A∗

and B∗

Our plan now is to tube U into S to create a new Whitney disc W , then make W embedded

and perform a Whitney move. We will do this so that U ∪W represents σ and hence

σC = σ, and so that W has the correct framing on β so that sC = s. We deal with this in

three cases.

Case 1: wX2 (σ) = 0 and s = 0. First we perform interior twists to S so that ν(S, V ) is

the trivial disc bundle over the sphere. This is possible because wX2 (σ) = 0. Now we tube

U to S along an arc homotopic to γ−1
A · η where γA is the arc from A to the base point;

we ensure this arc misses any spheres. Since U and S are disjoint from A, B, A∗ and B∗,

so is W . Note that W ∪ U (with the basepoint arc γA) represents σ.

Since ν(S, V ) is trivial, the framing of ν(U, V ) extends to a framing of ν(W,V ). Hence the

disc-framing of U and the disc framing of W agree, so W is a framed (immersed) Whitney

disc. We now remove each self intersection of W by pushing down into A as in Section

2.1.2. Pushing down each intersection one by one into A, W becomes embedded but now

intersects A.

We may remove an intersection p between W and A by using the dual sphere A⋆ and the

Norman trick; we take a path through A from p to A ∩ A∗, then tubing W to a parallel

copy of A∗ using this path. Note that A∗ is non-trivial in π2(V ) but becomes trivial when

included in π2(X × I) = π2(X), so this does not change the π2X element given by U ∪W .

We remove the intersections between W and A one by one, until W and A are disjoint.
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Now W is a framed embedded Whitney disc, disjoint from A and B. We use W to perform

a Whitney move. After this move the spheres intersect in a single point so we cancel the

2 and 3 handles. The resulting 1-parameter family ft has a single circle of intersection

C. By Section 2.6.4 we see that γC = γ. Since U ∪W along with the base point arc γA

represents σ, we have that σC = σ by Section 2.6.4. We also see that the sections cW and

cU of Section 2.6.4 agree; note that in a neighbourhood of the Whitney arc β ⊂ B ⊂ V ,

W and U agree by construction. Again by Section 2.6.4 we see that sC = 0 as required.

Case 2: wX2 (σ) = 1 and s = 0. In this case we cannot arrange ν(S, V ) to be trivial, but

we can perform interior twists to arrange it to be a bundle of Euler number 1 (note that an

interior twist changes the Euler number of the normal bundle by two). We do this, then

again tube U into S to form W . Doing so does not change the Whitney framing but does

change the disc framing by a single twist, so W is not framed. We can fix this however

by performing a single boundary twist between W and A. This makes W framed, but

adds an intersection between A and W . We can now push down the self-intersections of

W into A as before, then remove intersections between W and A (including the one from

the boundary twist) using the dual sphere A∗.

As in Case 1 W is now embedded so we perform a Whitney move, then cancel the handles.

Again, we see that in a neighbourhood of β ⊂ B ⊂ V , W and U agree (since we boundary

twisted with A), so again the sections cW and cU agree, so as in Case 1 we have that

sC = 0. It similarly follows that γC = γ and σC = σ.

Case 3: wX2 (σ) = 1 and s = 1. As in Case 2 we interior twist so that ν(S, V ) has normal

bundle one, then tube U to S to form W . To make W framed we now perform a single

boundary twist with B.

We now push down the self intersections of W into B, then resolve the intersections of W

and B using B∗ to make W embedded. Again we now perform the Whitney move and

cancel the handles.

In the neighbourhood of β, U and W differ by a single twist (from the boundary twist

we performed). Hence cW and cU also differ by a single twist. Hence γC = γ, σC = σ

and sC = 1 by Section 2.6.4.

Before we prove the stable version of the theorem, it is useful to see what goes wrong when

we try to realise sC = 1 when wX2 (σ) = 0. Using the notation from the proof of Proposition
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2.7.1 we consider the Whitney disc U which undoes the finger move and tube it to S, which

we arranged to have trivial normal bundle, to form a new Whitney disc W . Since we would

like that cW and cU do not agree (mod 2), we would like to do an odd number of boundary

twists of W with B. However doing so unframes the disc, and this cannot be fixed using

interior twists (since these change the disc framing by an even number). Hence we must

perform at least one boundary twist of W with A. However if we do then W intersects

both A and B. This is a problem as the dual spheres A∗ and B∗ intersect; we cannot use

the Norman trick on both A∗ and B∗ without creating new self intersections of W .

We can however make the above construction work in the case that we have an S2 × S2

summand. We will use this summand to build an additional dual sphere, which can be

used to resolve the intersections.

Proof of Proposition 2.7.2. The only case left to realise is when wX2 (σ) = 0 and s = 1.

Consider X#S2 × S2, let Y = S2 × S2, let X ′ = X#Y and let X̂ = X \B4 ⊂ X ′.

Given σ ∈ π2X, we again represent σ by an immersed sphere S ⊂ X̂ with intersection

points transverse double points; note that π2X̂ = π2X. We again arrange that ν(S, X̂) is

the trivial disc bundle over S2 by performing interior twists to S.

We again construct a 1-parameter family ft for the 4-manifold X#S2 × S2. Following the

steps in the proof of Proposition 2.7.1 we first create a cancelling 2-3 handle pair in X̂ × I,

and consider the middle level of X̂ × I, denoted V̂ = X̂#S2 × S2 which is a subset of

the middle level of X × I, denoted V = X#Y#S2 × S2. Again we ensure that this 2-3

handle pair is created in the complement of of S. To distinguish this copy of S2 × S2, we

let Z = S2 × S2 and say V̂ = X̂#Z, and note that V = V̂ ∪ (Y \B4)

We again denote the 2-handle belt sphere and 3-handle attaching spheres by A and B

respectively. We now perform a finger move, in V̂ , corresponding to γ ∈ π1X = π1X̂,

ensuring this finger move misses A, B, A∗, and B∗. In V̂ we again see a Whitney disc U

that undoes the move. We again tube U to S to create an immersed framed Whitney

disc W .

To obtain the correct value for sC , we now perform a single boundary twist of W with

B. We then perform another boundary twist on W with A (an opposite twist), so that

W remains a framed Whitney disc. However W now intersects A and B. We resolve the
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intersection single between W and A using the Norman trick on A∗. We then the resolve

the single intersection with B using the Norman trick on B∗, noting that this adds a single

further self-intersection of W as the parallel copy of A∗ intersects the parallel copy of B∗.

We consider the Clifford torus T ⊂ V̂ for the Whitney disc W . The torus T intersects W

in exactly one point, but is disjoint from A, B, A∗ and B∗. See Figure 2.12 for a depiction

of this torus.

B

A

DAT

W

Figure 2.12: We present 4-dimensional space as slices of 3-dimension space. In the
middle slice we see the Whitney disc W and a disc subset of the sphere B. In each slice
we see a line from A, which sweep out a disc subset from A. We picture the Clifford
torus T , and see that it intersects W in exactly one point, but does not intersect A or
B. In the fourth frame we depict the cap DA, which intersects A in exactly one point.
To see DB one can draw a new picture with the roles of A and B reversed.

There are two caps for T , namely embedded discs DA and DB, which intersect T exactly on

∂DA and ∂DB; we picture DA in the fourth frame in Figure 2.12. The disc DA intersects

A in exactly one point but is disjoint from W , B, A∗ and B∗, and the disc DB intersects B

in exactly one point but is disjoint from W , A, A∗ and B∗. Further DA and DB intersect

only in a single point on their boundary; see Figure 2.13.

DA DB

A
B

W

T

Figure 2.13: The Clifford torus with the caps. Note that A and B do not intersect T ,
and that W only intersects T in a single point.

We now manipulate the caps. We direct the reader to Figure 2.16 for this manipulation.

We remove the intersection of DA and A using the Norman trick, tubing it into A∗. We

similarly remove the intersection of DB and B using B∗, noting that this adds intersections

with W , and with the dual spheres A∗ and B∗, and adds a single point of intersection
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DA

DB T

⋃

Figure 2.14: The symmetric capping operation. In the top picture we see T and
the caps DA and DB. In the bottom picture we see the two parts of the symmetric
capping; left we see T with the neighbourhoods of ∂DA and ∂DB removed, and right
the parallel copies of the caps, with the extra square around ∂DA ∩ ∂DB which we
glue back in; we have highlighted this square glued back in in red.

between DA and DB. See the first picture of Figure 2.16 for a depiction of the resulting

discs.

We can now perform a “symmetric capping” operation of Freedman and Quinn [FQ90]

using the two discs DA and DB. To do this, we remove the neighbourhood of ∂A∪∂B from

T (Noting these circles intersect in a single point) and glue back in two parallel copies of

DA, two parallel copies of DB, and we glue back in a square in T around ∂DA ∩ ∂DB ∈ T

to fill the resulting hole; see Figure 2.14. We smooth the edges of the resulting sphere and

denote the result of this operation by P .

Note that since DA and DB have a single point of intersection, P is an immersed sphere

with four double points. P is disjoint from DA and DB, but since the caps intersected W ,

P has additional points of intersection with W . See the top left and bottom left pictures

of Figure 2.15; in the top left we see an intersection of DB and W , in the bottom left we

see how this introduces two points of intersection between W and P .

We may however remove these new intersections of W and P in the following way. First,

consider the intersections of DB and W . We may push down all such intersections into T

so that the intersection points of W and T lie on ∂DA; see the top right picture in Figure

2.15. Now when we take the symmetric capping to obtain P , W will not intersect P ;
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see the bottom right picture in Figure 2.15. We now do the same thing for intersections

between W and DA. Note that this operation introduces extra self-intersections of W ;

indeed each pair of intersections p ∈ DA ∩W , q ∈ DB ∩W gives rise to a single self-finger

move of W , which is performed when we push these intersections down into T . See the

second and third picture of Figure 2.16 for another depiction of the symmetric capping

operation.

W

DB

DA

T

⋃ ⋃

Figure 2.15: Removing intersections with S which arise from the intersections with
the caps. In the top figure we see T , the caps DA and DB and a point of intersection
between U and DB (note that W continues into the past and future). In the bottom
left we see the two parts of the symmetric capping P ; we draw them separately to
make the picture clear. We picture W in both these parts (we draw W twice to show
how it interacts with both parts of the symmetric capping). In the top right figure we
see the result of pushing down the intersection of W and DB into T . In the bottom
left we see that W now misses the symmetric capping.

After this process, W and P intersect only in a single point (the point in which the original

Clifford torus intersected W ). W has many self intersections, but still does not intersect

A or B in its interior. Further, P is disjoint from A and B. P is immersed with 4 double

points which arose from the point of self intersection between DA and DB. Hence we can

see the intersection points of P as the intersection of two parallel copies of DA, denoted

D+
A and D−

A , and two parallel copies of DB, denoted D+
B and D−

B ; see the third picture of

Figure 2.16.

Since so far we worked entirely within V̂ , we may now use the S2 × S2 summand

Y \B4 = S2 × S2 \B4 ⊂ V = V̂ ∪ (Y \B4)

to resolve the self-intersections of P . First, we take the parallel sheets D+
A and D−

A and
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DA DB

W

T

DA DB

W

T

D+
A D−

A D+
BD−

B

W

T

D+
A D−

A D+
BD−

B

W

T

p× S2 S2 × p

D+
A D−

A D+
BD−

B

W

T

Figure 2.16: We depict the manipulation of the Clifford caps. To obtain the first
picture we tube DA into A∗ and DB into B∗. To obtain the second picture from the
first we push down the intersections between W and DA into T (we do the same for
any intersections between W and DB). To obtain the third picture we perform the
symmetric capping operation, and note that W is now disjoint from the discs, and
from T \ (∂DA ∪ ∂DB). In the third picture we see the sphere P as the union of
T \ (∂DA ∪ ∂DB), the caps, and the square around ∂DA ∩ ∂DB. To obtain the fourth
picture we perform a two sheeted Norman trick, tubing D±

A into p× S2 ⊂ Y \B4. To
obtain the final picture we perform a further two sheeted Norman trick, tubing D±

B

into S2 × p ⊂ Y \B4. In the final picture we see P ′ as the union of T \ (∂DA ∪ ∂DB),
the caps, and the square around ∂DA ∩ ∂DB. We note that P ′ is embedded with a
single point of intersection with W .
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tube them to two parallel copies of p × S2 ⊂ Y \ B4; see Figure 2.17. We tube using

some arc which we make disjoint from any spheres and discs by dimensionality. See the

fourth picture of Figure 2.16 for a depiction of the resulting discs. Another way to see

this operation is to consider tubing DA into p× S2, then taking two parallel copies of the

resulting surface; hence D±
A are still parallel copies of some surface.

D−
A

D+
A

p× S2

Figure 2.17: Tubing the discs D+
A and D−

A into two parallel copies of p× S2.

The two parallel sheets D±
A now intersect S2 × q. We can remove the intersections of D±

A

with D±
B by performing a two-sheeted Norman trick, tubing the two sheets into S2 × q

to remove all self-intersections of P . See Figure 2.18 for a depiction of this. See the fifth

Figure of 2.16 for a depiction of the resulting discs. Another way to see this is to view D±
A

as parallel copies of DA which intersects S2× q in a single point, and D±
B as parallel copies

of DB. Performing the Norman trick with S2× q to remove the single point of intersection

between DA and DB, then taking parallel copies of both yields the same result. We denote

the resulting surface by P ′. The sphere P ′ is embedded, intersects W in a single point,

and is disjoint from A and B.

Note that we could have equivelently used Y \ B4 = S2 × S2 \ B4 to make DA and DB

disjoint, then taken parallel copies of both.

Since D+
A and D−

A had opposite orientations, and so did D+
B and D−

B , P ′ represents the

same homotopy class in V as P (this is precisely why we went to so much trouble with the

symmetric capping). Since P is contained in the S2 × S2 summand of V̂ = X̂#S2 × S2,

when we include P into X × I, it is 0 in π2(X × I) = π2X, hence [P ′] = 0 ∈ π2(X × I).

Since P ′ is embedded with trivial normal bundle (note that all the spheres we tubed into

had trivial normal bundle), and P ′ intersects W in a single point, we can use P ′ to perform

the Norman trick and remove the self intersections of W . After doing so W is a framed
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D+
A

D−
A

D+
B

D+
B

p× S2 S2 × q

Figure 2.18: Left we see D+
A and D−

A after we tube them into parallel copies of p× S2.
We also see the four intersection points with D+

B and D−
B . Right we perform a two

sheeted Norman trick, tubing D+
B and D−

B into parallel copies of S2 × q, removing the
intersections.

embedded Whitney disc, and does not intersect A or B in its interior. Note also, since P ′

is 0 in π2X, the union of the Whitney discs U ∪W (with the basepoint arc) still represents

σ in π2X.

We now use W to perform a Whitney move, then cancel the resulting handles. As previously

we see that γC = γ, σC = σ and sC = 1, the latter because we performed a single boundary

twist with B.

2.8 Pseudo-isotopy versus isotopy

In this section we construct diffeomorphisms of 4-manifolds which are pseudo-isotopic but

not isotopic to the identity.

To do this we make use of the previously described obstructions Θ and Σ. Given a

diffeomorphism f ∈ DiffPI(X, ∂X), we may try to obstruct it from being isotopic to the

identity by picking a pseudo-isotopy F ∈ P from the identity to f , that is with F |X×1 = f ,

and then evaluating Σ(F ) and Θ(F ). However, Σ(F ) and Θ(F ) clearly depend on the

choice of F , not just on f . Given another choice of pseudo-isotopy G ∈ P from the identity

to f , we see that the composition F ◦G−1 is a pseudo-isotopy fixing the entire boundary

of X × I. This motivates the following definition.

Definition 2.8.1. Let F ∈ P(X) be a pseudo-isotopy with FX×1 = 1X . Note that FX×0

and F∂X are the identity by definition of P so in fact F∂(X×I) = 1∂(X×I). We say that F is
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an inertial pseudo-isotopy, and denote the set of inertial pseudo-isotopies by J (X) ⊂ P(X),

or just J when X is clear from the context.

Remark 2.8.2. Since inertial pseudo-isotopies fix the entire boundary of X × I in fact

J (X) = Diff(X × I, ∂(X × I)).

Let f : X → X be a diffeomorphism that is pseudo-isotopic to the identity. Define

Σ: π0 DiffPI(X, ∂X)→Wh2(π1X)/Σ(J )

by saying Σ(f) := Σ(F ), where F is some pseudo-isotopy from 1X to f ; by the discussion

above this is independent of the choice of F .

To show Σ(f) is an invariant of the isotopy class of f consider g isotopic of f , and let S

be an isotopy from the identity to f−1 ◦ g. Pick a pseudo-isotopy F from the identity to

f , then F ◦ S is a pseudo-isotopy from the identity to g, so

Σ(f) = Σ(F ) = Σ(F ) + Σ(S) = Σ(F ◦ S) = σ(g).

Note here that Σ(S) = 0 since S is an isotopy.

We wish to also define Θ(f) ∈
(

Wh1(π1X;Z2 × π2X)/χ(K3Z[π1X])
)
/Θ(J ∩ ker Σ). To

define Θ for f ∈ ker Σ we first prove the below lemma.

Lemma 2.8.3. Let f be a self-diffeomorphism of X which is pseudo-isotopic to the identity.

If Σ(f) = 0 ∈Wh2(π1X)/Σ(J ), then there exists a pseudo-isotopy F from 1X to f such

that Σ(F ) = 0 ∈Wh2(π1X).

Proof. LetG be a pseudo-isotopy from the identity to f . Since Σ(f) = 0 ∈Wh2(π1X)/Σ(J ),

we have Σ(G) ∈ Σ(J ). Hence there exists S ∈ J with Σ(G) = Σ(S). Let F = G◦S−1, since

S is inertial F is also a pseudo-isotopy from f to the identity. Then Σ(F ) = Σ(G ◦S−1) =

Σ(G)− Σ(S) = 0 as required.

Hence given f ∈ ker Σ, Taking F to be a pseudo-isotopy from the identity to f with

Σ(F ) = 0, we define.

Θ: ker Σ ⊂ π0 DiffPI(X, ∂X) −→Wh1(π1X;Z2 × π2X)/χ(K3Z[π1X])/Θ(J ∩ ker Σ)
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f 7−→ Θ(F ).

Note that the ker Σ on the right refers to the subset of P, while the ker Σ on the left refers

to the subset of DiffPI(X, ∂X).

To see that this is well defined, suppose f and g are isotopic, and let F,G ∈ ker Σ be

pseudo-isotopies from the identity to f and g respectively as in Lemma 2.8.3. Also let S

be an isotopy from the identity to f−1 ◦ g. Then

Θ(f)−Θ(g) = Θ(F )−Θ(G) = Θ(F ) + Θ(S)−Θ(G) = Θ(F ◦ S ◦G−1) ∈ Θ(J ∩ ker Σ)

If k1X = 0 we may also define Θ(f) when Σ(f) ̸= 0, however in order to obtain something

well defined we must define it in the group Θ(f) ∈Wh1(π1X;Z2×π2X)/Θ(J ). Note that

we possibly quotient out by a larger subgroup. We conjecture that these groups are the

same.

Conjecture 2.8.4. For X a 4-manifold with k1X = 0, Θ(J (X)) = Θ(J (X) ∩ ker Σ)

The images Θ(J ) and Σ(J ∩ ker Σ) are in general difficult to determine. For 4-manifolds

of a certain form however we can say something about these two subgroups, in particular

when X = M3 × [0, 1] where M is a 3-manifold.

2.8.1 Duality formulae

We recall the duality formulae and involutions of the Whitehead groups from Chapter VIII

of [HW73] and Sections 4 and 5 of [Hat73]. We first give an analogue of turning a Morse

function upside down for pseudo-isotopies.

Definition 2.8.5. Let F be a pseudo-isotopy. Denote the reflection map on X × I which

sends (p, s) to (p, 1− s) by R. We define the dual pseudo-isotopy to F to be

F =
(
(F |X×1)−1 × 1I

)
◦R ◦ F ◦R.

We note F sends X × i to X × i for i ∈ {0, 1} and that (R ◦ F ◦R)|X×0 = F |X×1, so

F |X×0 =
((

(F |X×1)−1 × 1I
)
◦R ◦ F ◦R

)
|X×0 = F |−1

X×1 ◦ F |X×1 = 1X .

Further (R ◦ F ◦R)|∂X×I = 1∂X×I so F |∂X×I = 1∂X×I , so F ∈ P(X).
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Let ft be a path in F representing F ; that is with f1 = p ◦ F , f0 = p. Denote

ft = RI ◦ ft ◦R = 1− ft ◦R,

where RI is the reflection map on I. It is clear that ft is a 1-parameter family for F .

Considering the index of the Morse critical points, we see that a critical point of index i

becomes a critical point of index n− i.

One can view ft as turning each Morse function upside down (which is usually considered

to be taking RI ◦ f for a Morse function f), then using the diffeomorphism R to fix the

ends, that is to make ft(X × i) = i for i ∈ {0, 1}. Because R is a diffeomorphism it does

not change the index of the critical points.

Hatcher in [Hat73] in fact uses the path 1− ft to compute Σ(F ) and Θ(F ). Again because

RX×I is a diffeomorphism it does not change the index of handles, or the intersections

between handles, and it is the identity on homotopy groups, so does not change the

computation. We describe this computation below.

Involution of Wh1(π1X;Z2 × π2X)

In this section we recall the involution

·̄ : Wh1(π1X;Z2 × π2X) −→Wh1(π1X;Z2 × π2X)

θ 7−→ θ

described by Hatcher in [Hat73, Lemma 4.3]. We will use this to relate Θ(F ) and Θ(F ).

We define maps

·̄ : Z[π1X] −→ Z[π1X]

γ 7−→ wX1 (γ)γ−1 for γ ∈ π1X

and

·̄ : (Z2 × π2X)[π1X] −→ (Z2 × π2X)[π1X]

(n, σ)γ 7−→
(
n+ wX2 (σ),−wX1 (γ)σγ−1)

γ−1.
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For γ ∈ π1X, σ ∈ π2X ,n ∈ Z2. Here σγ−1 denotes the action of γ−1 on σ. Clearly this

defines these maps on the whole group by additivity.

We can define an involution on GL ((Z2 × π2X) [π1X])

I +Ai,j 7−→ I +Aj,i.

This in turn induces an involution on Wh1(π1X;Z2 × π2X), which we denote θ 7→ θ.

Considering the isomorphism in Corollary 2.6.4, we can equivalently define the involution

on Wh1(π1X;Z2 × π2X) by considering it as a quotient of (Z2 × π2X)[π1X], then the

involution is induced directly by the involution on (Z2 × π2X)[π1X].

Remark 2.8.6. Note that this involution depends not only on the groups π1X and π2X

and the action of π1X on π2X (which is all that is needed to define the Whitehead groups)

but also on the Stiefel-Whitney classes wX1 and wX2 .

We also wish to define an involution on the target of Θ when k1X ̸= 0, namely the

quotient Wh1(π1X;Z2 × π2X)/χ(K3Z[π1X]), however in order to do so we would need

the involution to fix χ(K3Z[π1X]); we conjecture that this is true.

Conjecture 2.8.7. χ(K3Z[π1X]) = χ(K3Z[π1X]).

We suspect that one can define an involution on K3Z[π1X]) so the involution commutes

with χ, which would prove this conjecture, however we have not been able to resolve this.

In order to avoid this problem, instead we define

χ̂ := χ(K3Z[π1X]) + χ(K3Z[π1X])

and

Θ̂ : π0P(X) −→Wh1(π1X;Z2 × π2X)/χ̂

by taking the composition of Θ and the quotient map

Wh1(π1X;Z2 × π2X)/χ→Wh1(π1X;Z2 × π2X)/χ̂.
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Now we can also define

Θ̂ : π0 DiffPI(X, ∂X) −→
(

Wh1(π1X;Z2 × π2X)/χ̂
)
/Θ̂(J ∩ ker Σ)

as we did for Θ.

Clearly when k1X = 0 or χ(K3Z[π1X]) = 0, Θ = Θ̂, and if Conjecture 2.8.7 holds then

Θ = Θ̂ regardless.

Involution of Wh2(π1X)

We now recall the involution of Wh2(π1X) defined by Hatcher-Wagoner; see [HW73,

ChapterVIII]. We use this to relate Σ(F ) and Σ(F ).

First we define an involution on the Steinberg group St(Z[π1X]) group denoted a 7→ a. We

define the map on the generators by sλi,j 7→ sλj,i; note that λ ∈ Z[π1] and that we use the

involution defined in Section 2.8.1. Since this preserves the Steinberg relations it defines

an involution of St(Z[π1X]).

One can easily define an involution on E(Z[π1X]) sending Mi,j to Mj,i, and it is clear that

this commutes with the map π : St(Z[π1X])→ E(Z[π1X]), which means the involution is

defined on K2(Z[π1X]).

Since w±g
i,j = w±g

j,i the involution sends W (±π1X) to itself; recall that W (±π1X) is the sub-

group of St(Z[π1X]) defined in Section 2.4.1, and that Wh2(π1[X]) = K2(Zπ1[X])/W (±π1X).

Hence it follows that the involution is defined in the quotient Wh2(π1[X]) as required.

Duality formulae

We can now state the duality formulae of Hatcher and Wagoner.

Proposition 2.8.8 ([HW73, Chapter VIII], [Hat73, Duality Formula 4.4]). Let X be a

manifold of dimension n. Then

Σ
(
F
)

= (−1)nΣ(F )

and if F ∈ ker Σ

Θ̂
(
F
)

= (−1)nΘ̂(F ),

where on the right hand side we use the involutions defined in Sections 2.8.1 and 2.8.1.
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Hatcher and Wagoner prove this for Θ which is defined when k1X = 0, however taking

the additional quotient by χ̂ as in Section 2.8.1 makes no difference to the proof. Indeed

for Θ they consider the change of path of Morse functions from ft to 1− ft, and compare

the change on the elements σC , γC , sC for each circle of intersection. They show that it

corresponds to the involution we defined on (Z2 × π2X)[π1X], then pass to the quotient

Wh1(π1X;Z2 × π2X); passing to a further quotient by χ̂ does not change the argument.

2.8.2 Inertial pseudo-isotopies of M3 × I

When X = M × I is the product of a 3-manifold M and the interval, we can say more

about the image of J under Θ̂ and Σ.

We first note that there is a differential defined on Wh2(π1X)⊕Wh1(π1X;Z2 × π1X)/χ̂

given by di(x) = x − (−1)ix. Note that this is defined independently on the summands.

We define Zi = ker di and Bi = im di+1, we will also split these out as

Bi = B2
i ⊕B1

i ⊂Wh2(π1X)⊕Wh1(π1X;Z2 × π1X)/χ̂

and

Zi = Z2
i ⊕ Z1

i ⊂Wh2(π1X)⊕Wh1(π1X;Z2 × π1X)/χ̂.

We recall the result of Hatcher that will allow us to bound the size of Σ(J ) and Θ(J ∩ker Σ)

for M × I.

Proposition 2.8.9. [Hat73, Lemma 5.3] Let M be an (n− 1)-manifold, let X = M × I,

and let F ∈ J (X) be an inertial pseudo-isotopy. Then

Σ(J) = (−1)nΣ(J)

and if J ∈ ker Σ,

Θ̂(J) = (−1)nΘ̂(J).

Hence we have

Σ(J ) ⊂ Z2
n
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and

Θ(J ∩ ker Σ) ⊂ Z1
n.

Hatcher proves this for Θ but it also holds for Θ̂ when k1X ̸= 0. We recall the proof below.

Proof of Proposition 2.8.9. Let R denote the map on X × I sending (x, s) to (x, 1 − s).

Since X = M × I, there is also an involution on X sending (m, l) to (m, 1− l), which in

turn induces an involution on X × I = M × I × I, which we denote by L.

We can define a further map on M × I × I by rotating around the I2 factor; we denote

this rotation Rθ for θ ∈ [0, 2π]. Define

J̃ = Rπ ◦ J ◦Rπ.

Noting that Rπ = R ◦ L we have that J̃ = L ◦ J ◦ L. Since conjugation by L induces the

identity on π∗X and because L is level preserving, conjugation by L induces the identity

on Wh2(π1X) and Wh1(π1X;Z2 × π2X)/χ̂, so Σ
(
J̃
)

= Σ
(
J
)

and Θ
(
J̃
)

= Θ
(
J
)
.

Further J̃ is isotopic to J in P(X) via the path

Jθ = R−1
θ ◦ J ◦Rθ ∈ P(X)

where θ ∈ [0, π]. Note that J0 = J and Jπ = J̃ . Hence applying Proposition 2.8.8 we

have Σ(J) = Σ
(
J̃
)

= Σ
(
J
)

= (−1)nΣ(J) and when J ∈ ker Σ, Θ̂(J) = Θ̂
(
J̃
)

= Θ̂
(
J
)

=

(−1)nΣ(J) as required.

2.8.3 Diffeomorphisms of X4 × I

In this section we prove Theorem F which gives diffeomorphisms of the 5-manifold X × I,

for X a 4-manifold, which are pseudo-isotopic but not isotopic for the identity. We do not

use the results of this section elsewhere so a reader uninterested in 5-manifolds may skip

this subsection entirely.

We recall the following result from Hatcher.

Proposition 2.8.10. [Hat73, Lemma 5.2] Let X be an n-manifold, n ≥ 5. Then

B2
n ⊂ Σ(J ) and

B1
n ⊂ Θ(J ∩ ker Σ).
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Recall that we defined the subgroups Bi
n at the beginning of Section 2.8.2.

This uses the surjectivity of Σ and Θ. In 4-dimensions the following weaker statement still

holds.

Proposition 2.8.11. Let X be a 4-manifold. Then

{θ + θ | θ ∈ Σ(P)} ⊂ Σ(J ) and

{θ + θ | θ ∈ Θ̂(ker Σ)} ⊂ Θ̂(J ∩ ker Σ).

Combining this with Theorem C gives the following corollary.

Corollary 2.8.12. Let X be a 4-manifold. Then

{θ + θ | θ ∈ Ξ} ⊂ Θ̂(J ∩ ker Σ)

where we consider Ξ in the quotient Wh1(π1X;Z2 × π2X)/χ̂.

The proof for 4-dimensions is the same as that in high dimensions. Let X be an n-manifold,

and let F be a pseudo-isotopy of X. Let p1 : X × I → X × I be the map which sends (x, s)

to (x, s/2), and let p2 : X × I → X × I be the map which sends (x, s) to (x, 1− s/2). We

form the double of F , 2F ∈ J (X) via

(2F )(x, s) =


p1 ◦ F (x, 2s) s ≤ 1/2

p2 ◦ F (x, 2− 2s) s > 1/2

Where pX is the projection of X×I onto X. That is we compress F into the first half of the

interval, and F into the second half. It is clear that 2F ∈ Diff(X × I, ∂(X × I)) = J (X).

Now as in [Hat73, Corollary 4.5] and [Hat73, Lemma 5.2] we have

Σ(2F ) = Σ(F ) + (−1)nΣ(F )

and

Θ̂(2F ) = Θ̂(F ) + (−1)nΘ̂(F ).

Using 2F we can see the above elements of Wh2(π1X) and Wh1(π1X;Z2 × π1X) in the

image of J under Σ and Θ̂ as required.

We can now prove the an analogue of [Hat73, Corollary 4.5] for 5-manifolds.
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Theorem F. Suppose X is a 4-manifold which contains an element σ ∈ π2(X) with

wX2 (σ) ̸= 0, and an element γ ∈ π1X such that γ and γ−1 are not conjugate, and suppose

also that either k1X = 0 or K3Z[π1X] = 0. Then in Diff(X × I, ∂(X × I)) there exist

diffeomorphisms pseudo-isotopic to the identity but not isotopic to it.

Proof. By Corollary 2.6.4 identify Wh1(π1X;Z2 × π2X) with

(Z2 × π2X)[π1X]/⟨ασ − αττστ−1, β · 1|α, β ∈ Z2 × π2X, τ, σ ∈ π1X⟩

and Wh1(π1X;Z2) with

Z2[π1X]/⟨σ − τστ−1, 1|τ, σ ∈ π1X⟩ =
⊕

Conj(π1X )̸=1

Z2

where Conj(π1X) ̸=1 is the set of conjugacy classes of π1X which are not the conjugacy

class of 1.

By Theorem C there exists a pseudo-isotopy F of X, with Θ(F ) = (1 + σ)γ. Considering

only Wh1(π1X;Z2), this means F has Wh1(π1X;Z2) invariant γ.

We proceed as in [Hat73, Corollary 4.5]. Consider the double

2F ∈ Diff(X × I, ∂(X × I)).

If we consider this as a pseudo-isotopy of X, then it has Wh1(π1X;Z2) invariant γ + γ−1.

Suppose 2F ∈ Diff(X × I, ∂(X × I)) is isotopic to the identity. Then 2F would be isotopic

as a pseudo-isotopy to the identity, so Θ(F ) = 0. But the Wh1(π1X;Z2) invariant of 2F

is γ + γ−1, and by the assumption that γ and γ−1 are not conjugate, γ + γ−1 is not

conjugate to 1, so does not vanish in Wh1(π1X;Z2), so this is a contradiction.

Hence it suffices to prove that 2F , considered as a diffeomorphism of X × I, is pseudo-

isotopic to the identity. That is we must construct a pseudo-isotopy of X × I from

the identity to 2F , namely a diffeomorphism D of (X × I)× I with D|(X×I)×1 = F and

(X×I)×0 the identity. For this construction, the suspension SF defined in [HW73, Chapter

1, Section 5] suffices.
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2.8.4 Diffeomorphisms of S1 × S2 × I

We begin with the example X = S1 × S2 × I. We identify π2X = Z and π1X with the

multiplicative infinite cyclic group {tn | n ∈ Z} so we may identify (π2X)[π1X] with Z[t±].

We note that the action of π1X on π2X is trivial (one can see this in S1 × S2).

Since by Section 2.1.4

k1X ∈ H3(π1X;π2X) = H3(Z;Z) = H3(S1;Z) = 0

it follows that k1X = 0. Hence we can consider

Θ(ker Σ) ⊂Wh1(π1X;Z2 × π2X) = Wh1(π1X;π2X)⊕Wh1(π1X;Z2).

By Proposition 2.6.4 we have

Wh1(π1X;π2X) = Z[t]/⟨nta − ntbtbtat−b, n · 1 | a, b, n ∈ Z⟩

= Z[t]/⟨n · 1 | n ∈ Z⟩

=
⊕
i∈Z×

Zti.

Similarly

Wh1(π1X;Z2) = Z2[t]/⟨mta − ntbtbtat−b, m · 1 | a, b ∈ Z, m ∈ Z2⟩

= Z2[t]/⟨m · 1 | n ∈ Z⟩

=
⊕
i∈Z×

Z2t
i.

Hence

Wh1(π1X;Z2 × π2X) = Wh1(π1X;Z2)⊕Wh1(π1X;π2X)

=
⊕
i∈Z×

Z2t
i ⊕

⊕
i∈Z×

Z2t
i

=
⊕
i∈Z×

(Z2 × Z)ti.

By Proposition 2.8.8 we also have that

Θ(J ((S1 × S2)× I)) ⊂ Z4((S1 × S2)× I) = {θ ∈Wh1(π1X;Z2X) | θ = θ}.
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For (m,n) · ta ∈⊕i∈Z×(Z2 × Z)ti = Wh1(π1X;Z2 × π2X) note that

(m,n)ta = (m+ wX2 (m),−wX1 (m)nt−a)t−a = (m,−n)t−a

since wX1 and wX2 are trivial for S1 × S2 × I.

Since a ̸= 0 we never have that (m,n)ta = (m,−n)t−a so it is clear that

Z4((S1 × S2)× I) = {b ∈Wh1(π1X;Z2 × π2X) | b = b} = ⟨(m,n)ta + (m,−n)t−a⟩.

Hence quotienting out by Z4(S1 × S2 × I) just identifies Z2 × Zta with Z2 × Zt−a, so we

have a map

Wh1(π1X;Z2 × π2X)/Θ(J ∩ ker Σ) q−→Wh1(π1X;Z2 × π2X)/Z4(X) =
⊕
i∈Z>0

(Z2 × Z)ti.

By Corollary C we have F ∈ ker Σ ⊂ P(X) with Θ(F ) = (0, n)ta, and so it follows we

have f ∈ ker Σ ⊂ DiffPI(S1 × S2 × I, ∂(S1 × S2 × I)) with Θ(f) = (0, n)ta. Let p2 be the

projection p2 : ⊕i∈Z>0(Z2 × Z)ti →⊕
i∈N Z. The S1 × S2 × I case of Theorem A follows

letting K = ker Σ, and Θ′ = p2 ◦ q ◦Θ.

Theorem A. Let X be either the 4-manifold S1 × S2 × I or (M1#M2)× I, for M1, M2

closed, orientable, aspherical 3-manifolds. Then there is a subgroup K ⩽ π0 DiffPI(X, ∂X)

and a surjective map

Θ′ : K −→
⊕
i∈N

Z.

Hence there are infinitely many distinct isotopy classes of diffeomorphisms of X fixing the

boundary, which are pseudo-isotopic to the identity.

Note that as wX2 = 0 for S1 × S2 × I we do not know how to realise the Z2 part of⊕
i∈Z>0(Z2 × Z)ti which arises from the framing.

2.8.5 Diffeomorphisms of the connect sum of aspherical 3-manifolds

times I

In this section we produce diffeomorphisms for X = (M1#M2)× I, where Mi are closed,

orientable, aspherical 3-manifolds. The condition of being aspherical is equivalent to being
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irreducible with an infinite fundamental group; this follows from the sphere theorem, see

[Hem76, Theorem 4.3]. Many examples of such 3-manifolds exist, including Σg × S1 for

Σg a surface of genus g > 0, as well as many hyperbolic 3-manifolds.

Note that aspherical 3-manifolds Mi have torsion free fundamental group. To see this note

that Mi is K(π1Mi, 1) space. If G ⩽ π1Mi is a cyclic subgroup, let M̃i be the corresponding

cover of Mi. Then X̃ is a K(G, 1) space so Hi(G,Z) = Hi(M̃i,Z) = 0 for i > 3, which is

only possible if G is infinite; see [Hat02, Proposition 2.45].

We first compute π1X and π2X along with the action. Let M = M1#M2. It is clear

that πiX = πiM for all i. It is also clear that π1M = π1M1 ∗ π1M2. To compute π2M

we consider the universal cover p : M̃ → M . Writing M = (M1 \ B3) ∪S2 (M2 \ B3) we

denote Yi = p−1(Mi \B3). Considering the action of π1M on M̃ we can make the following

identifications

Y1 =
⊔

π1M/π1M1

˜(M1 \B3),

Y2 =
⊔

π1M/π1M2

˜(M2 \B3),

Y1 ∩ Y2 =
⊔
π1M

S2.

We write the Mayer-Vietoris sequence for M̃ = Y1 ∪ Y2 with coefficients in Z

0 = H3(M̃)→ H2(Y1 ∩ Y2) (j1,−j2)−−−−−→ H2(Y1)⊕H2(Y2) i1+i2−−−→ H2(M̃)→ H1(Y1 ∩ Y2) = 0.

Note that H3(M̃) = 0 as π1M is infinite, so M̃ is non compact. Using the identifications

above we obtain

0→ Z[π1M ] (j1,−j2)−−−−−→
(
Z[π1M ]⊗Zπ1M1 H2(M̃1 \B3)

)
⊕
(
Zπ1M ⊗Zπ1M2 H2(M̃2 \B3)

)
→ H2(M̃)→ 0.

To calculate H2(M̃i \B3), note that since Mi is aspherical, H2(M̃i) = π2Mi = 0. Note

also that

M̃1 \B3 = M̃1 \
⋃

g∈πiM

gB̃3
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for B̃3 some lift of the ball B3 (which we note is also a ball). Hence H2(M̃i \B3) is

generated by the boundaries of these balls, and the only possible relation between these

generators comes from taking the boundary of a 3-chain corresponding to the entire 3-

manifold M̃i \B3. There is only such a 3-chain if M̃i \B3 is compact, which does not hold

since π1Mi is infinite. Hence H2(M̃i \B3) = Z[π1Mi]. Substituting this into the short

exact sequence we obtain:

0→ Z[π1M ] (1,−1)−−−−→ Z[π1M ]⊕ Z[π1M ] i1+i2−−−→ H2(M̃)→ 0.

Hence,

π2(M1#M2) = H2(M̃1#M2) = Z[π1M ] = Z[π1M1 ∗ π1M2]

with the action of π1M on π2M given by the obvious left multiplication.

By Proposition 2.6.4 we have

Wh1(π1X;Z2 × π2X) = (Z2 × Z[π1M ])[π1M ]/⟨(m,ng)a− (m, (ng)b)bab−1, (m,ng)1⟩

= (Z2 × Z[π1M ])[π1M ]/⟨(m,ng)a− (m,nbg)bab−1, (m,ng)1)⟩.

Identifying Wh1(π1X;Z2 × π2X) with this quotient of (Z2 × Z[π1M ])[π1M ] consider the

surjective map,

q : Wh1(π1X;Z2 × π2X) −→
⊕

S∈Conj(π1X )̸=1

(Z2 × Z)S

q : (m,ng)a 7−→


(m,n) Cl(a) if Cl(a) ̸= 1

0 if Cl(a) = 1.

where Conj(π1X )̸=1 denotes the set of conjugacy classes which are not the conjugacy class

of 1, and Cl(a) denotes the conjugacy class of a. To see this is well defined we note that it

vanishes on both relations since

(m,ng)a− (m,nbg)bab−1 7−→(m,n) Cl(a)− (m,n) Cl(bab−1)

= (m,n) Cl(a)− (m,n) Cl(a) = 0.

Since π1M = π1M1 ∗ π1M2, and π1Mi are infinite there are many conjugacy classes in

π1M .
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Ultimately we wish to consider the quotient

(
Wh1(π1X;Z2 × π2X)/χ̂

)
/Θ̂(J (X) ∩ ker Σ).

Note by Proposition 2.8.9 we have

Θ̂(J (X) ∩ ker Σ) ⩽ Z1
4 (X) = {θ ∈Wh1(π1X;Z2 × π2X)/χ̂ | θ = θ}.

Let

Ẑ = {θ ∈Wh1(π1X;Z2 × π2X) | θ = θ} ⩽ Wh1(π1X;Z2 × π2X)

and let r be the quotient map r : Wh1(π1X;Z2× π2X)→Wh1(π1X;Z2× π2X)/Ẑ. Then

it is clear that

(
Wh1(π1X;Z2 × π2X)/χ̂

)
/Z1

4 (X) =
(

Wh1(π1X;Z2 × π2X)/Ẑ
)
/r(χ̂).

Our approach for the remainder of this section is to use the map

(
Wh1(π1X;Z2 × π2X)/χ̂

)
/Θ̂(J (X) ∩ ker Σ)→

(
Wh1(π1X;Z2 × π2X)/Ẑ

)
/r(χ̂)

to understand
(

Wh1(π1X;Z2 × π2X)/χ̂
)
/Θ̂(J (X) ∩ ker Σ).

Again identifying Wh1(π1X;Z2 × π2X) with a quotient of (Z2 × Z[π1X])[π1X], first note

that

(m,ng)a = (m+ wX2 (ng),−wX1 (a)(ng)a−1)a−1 = (m,−na−1g)a−1

since wX1 and wX2 are trivial in M as it is an orientable 3-manifold, and so wX1 and wX2

are also trivial in X = M × I. Noting that

q((m,ng)a) = (m,−n) Cl(a−1),

we define an involution on ⊕S∈Conj(π1X )̸=1(Z2 × Z)S via

·̄ :
⊕

S∈Conj(π1X )̸=1

(Z2 × Z)S →
⊕

S∈Conj(π1X) ̸=1

(Z2 × Z)S

·̄ : (m,n) Cl(a) 7→ (m,−n) Cl(a−1).

Now q(a) = q(a), so q(Ẑ) = {s ∈ ⊕S∈Conj(π1X )̸=1(Z2 × Z)S | s = s}. Given a conjugacy

class S ∈ Conj(π1X) we denote S = Cl(a−1) where S = Cl(a).
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We claim that

q(Ẑ) = ⟨(m,n)S + (m,−n)S, (m, 0)P | m ∈ Z2, n ∈ Z S, P ∈ Conj(π1X), P = P ⟩

Note that if Cl(a−1) = Cl(b−1) then a−1 = rb−1r−1, so a = rbr−1 and Cl(a) = Cl(b), so

S = P =⇒ S = P . To prove this claim, we can write any element in

⊕
S∈Conj(π1X )̸=1

(Z2 × Z)S

as ∑i(mi, ni)Si, where the Si are distinct. If

∑
i

(mi, ni)Si =
∑
i

(mi, ni)Si =
∑
i

(mi,−ni)Si

then since ·̄ is injective, there is a permutation σ which pairs Si with the unique Sσ(i) such

that Si = Sσ(i). We hence also see that mi = mσ(i) and ni = −nσ(i); note that if i = σ(i)

then ni = −ni = 0. Hence we can rewrite the sum as

∑
i

(mi, ni)S =
∑

i, i=σ(i)
(mi, 0)Si +

∑
i, i<σ(i)

(mk, nk)Sk + (mσ(i), nσ(i))Sσ(i)

=
∑

i, i=σ(i)
(mi, 0)Si +

∑
i, i<σ(i)

(mi, ni)Si + (mi,−ni)Si

which is the sum of generators of the required form, proving our claim.

Hence we can see that quotienting ⊕S∈Conj(π1X) ̸=1(Z2 × Z)S by p(Ẑ) identifies (Z2 × Z)S

with (Z2 × Z)S when S ̸= S, and kills the Z2 part when S = S, that is( ⊕
S∈Conj(π1X) ̸=1

(Z2 × Z)S
)
/p(Ẑ) =

⊕
S∈Conj(π1X )̸=1,

S=S

ZS ⊕
⊕

[S]∈Conj(π1X )̸=1/∼,
S ̸=S

(Z2 × Z)S

where ∼ is the equivalence relation on Conj(π1X )̸=1 given by S ∼ S. Clearly q induces a

surjective map between the quotients

q̃ : Wh1(π1X;Z2 × π2X)/Ẑ →
⊕

S∈Conj(π1X) ̸=1,

S=S

ZS ⊕
⊕

[S]∈Conj(π1X )̸=1/∼,
S ̸=S

(Z2 × Z)S.

As previously, we will see that we are able to realise the 0×Z part of the second summand,

as well as the Z part of the first summand, however, it will be easier to come up with

conjugacy classes with S ̸= S).
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Conjugacy classes in free products.

In order to come up with suitable conjugacy classes, in this subsection we prove the

following

Proposition 2.8.13. For all n ∈ N there exists an ∈ π1X = π1M1 ∗ π1M2 such that an

and am are not conjugate for n ̸= m, and that an and a−1
m are not conjugate ∀n,m ∈ N;

in particular an is not conjugate to its inverse. Hence there are infinitely many distinct

equivalence classes of conjugacy classes [S] ∈ Conj(π1X)/ ∼ such that S ̸= S.

This gives us the following corollary.

Corollary 2.8.14. The abelian group

⊕
S∈Conj(π1X )̸=1, S=S

ZS ⊕
⊕

[S]∈Conj(π1X )̸=1/∼, S ̸=S

(Z2 × Z)S

has infinite rank, hence Wh1(π1X;Z2 × π2X)/Ẑ also has infinite rank as q̃ is surjective.

Proposition 2.8.13 follows easily from the following fact about free products of groups.

Lemma 2.8.15. Given groups A and B, let a ∈ A, b ∈ B with a, b ̸= 1, then (ab)n ∈ A∗B

are distinct conjugacy classes in A ∗B for all n ∈ N. If additionally one of a or b is not

of order two, then (ab)n ∈ A ∗B are distinct conjugacy classes in A ∗B for all n ∈ Z.

Taking A = π1M1, B ∈ π1M2, setting an = (ab)n proves Proposition 2.8.13; note that

π1Mi is torsion free so has no order two elements. We give a proof of Lemma 2.8.15 below.

Proof of Lemma 2.8.15. We define a length function l : Conj(A∗B)̸=1 → N by defining l(S)

to be the minimum n such that we can write S = Cl(c1c2 · · · cn) such that 1 ̸= ci ∈ A for i

odd and 1 ̸= ci ∈ B for i even, or 1 ̸= ci ∈ A for i even and 1 ̸= ci ∈ B for i odd. That is,

it is the minimum n such that we can give as an alternating product in elements of A and

B.

Note that in the free product A ∗ B it is clear that if c1 . . . cn = d1 . . . dn for both ci and

di alternating in A and B, then ci = di ∀i.

For ai ∈ A, bi ∈ B, we claim that l(Cl(a1b1a2b2 · · · anbn)) is 2n. To prove this, suppose

ra1b1a2b2 . . . anbnr
−1 = c1c2 . . . cm
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for m < 2n and c1c2 . . . cm an alternating sum in A and B. We can also write r = r1r2 · · · rk

as an alternating sum in A and B, so we have

r1r2 . . . rka1b1a2b2 . . . anbnr
−1
k r−1

k−1 . . . r
−1
1 = c1c2 . . . cm.

Suppose first that rn ∈ B. Then r1 . . . rna1b1a2b2 . . . anbn is alternating. If bnr−1
k ̸= 1 then

r1r2 . . . rka1b1a2b2 . . . an(bnr−1
k )r−1

k−1 . . . r
−1
1

is alternating of length 2n+ 2k− 1, so m = n+ 2k− 1 > n which is a contradiction. Hence

bnr
−1
k = 1. Cancelling bnr−1

k = 1 and repeating this argument on rka1b1a2b2 . . . anr
−1
k−1 . . . r

−1
1

we prove that anr−1
k−1 = 1.

When k ≤ 2n, we can repeat this argument to prove that r−1
k r−1

k−1 . . . r
−1
1 cancels with

the right k terms of a1b1 . . . anbn at which point the remaining product r1 . . . rna1b2 . . . is

alternating and m = 2n which is a contradiction.

When k > 2n we cancel every term in a1b1 . . . anbn and are left with

r1r2 . . . rkr
−1
k−2n . . . r

−1
1 .

Now if rkr−1
k−2n ̸= 1, then r1r2 . . . (rkr−1

k−2n)r−1
k−2n−1 . . . r

−1
1 is again alternating and has

length k+ k− 2n− 1 ≥ n, so m = k+ k− 2n− 1 which is a contradiction. Hence we must

have rkr−1
k−2n = 1.

Repeating this argument we see that all k−2n terms of r−1
k−2n . . . r

−1
1 must cancel the right

k − 2n terms of r1r2 . . . rk and are left with r1 . . . r2n which is alternating of length 2n so

again a contradiction.

If we suppose instead that rn ∈ A, we see that a1b1a2b2 . . . anbnr
−1
k r−1

k−1 . . . r
−1
1 is altern-

ating, and run the same argument proving that rka1 = 1 and so on, again arriving at a

contradiction.

Hence we cannot write ra1b1a2b2 . . . anbnr
−1 = c1c2 . . . cm for m ≤ n. This completes the

proof of our claim that l(Cl(a1b1a2b2 · · · anbn)) is 2n.

Now since l(Cl((ab)n)) = 2n, we have that (ab)n are in distinct conjugacy classes for all

n ∈ N as required.

Suppose now that one of a or b is not order two. To prove that (ab)n are in distinct

conjugacy classes for all n ∈ Z it is sufficient to prove that (ab)n is not conjugate to (ab)−n.
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Suppose that r(ab)nr−1 = (ab)−n = (b−1a−1)n writing r = r1r2 . . . rk as an alternating

product in A and B, we have

r1r2 . . . rk(ab)nr−1
k . . . r−1

2 r−1
1 = (b−1a−1)n

Suppose rk ∈ B. Then we must have that r1 ∈ B as the right hand term starts with an

element of B. Hence k is odd. Now the only way the alternating length of the left can

agree with the alternating length of the right is if r−1
k . . . r−1

2 r−1
1 cancels with the right

hand k terms of (ab)n, hence r−1
k r−1

k−1 . . . r1 = b−1a−1b−1 . . . a−1b−1. Now we have

rk(ab)nr−1
k . . . r−1

2 r−1
1 = (ba)n = (b−1a−1)n

which is only possible if a = a−1 and b = b−1 so a and b are order two which is a

contradiction.

Suppose instead that rk ∈ A. Then we see that r1 ∈ A as the right hand term ends with a

term of A. Hence again k is odd. Similarly to the previous argument we see that r must

cancel with the left hand k terms and again conclude that

rk(ab)nr−1
k . . . r−1

2 r−1
1 = (ba)n

again leading to a contradiction.

The rank of K3Z[π1M1#M2]

To complete our argument, we must quotient out by r(χ̂) = r(χ(K3Z[π1X])+χ(K3Z[π1X])).

We will prove that K3Z[π1X] has finite rank, and so r(χ̂) also has finite rank.

Proposition 2.8.16. If M = M1#M2 is a 3-manifold that is the connect sum of two

aspherical 3-manifolds then K3Z[π1M ] has rank two.

Proof. In order to compute K3Z[π1M ], we first note that the Farrell Jones conjecture

holds for 3-manifold groups; see [BFL14, Corollary 0.3]. Since π1M = π1M1 ∗ π1M2 is

torsion free there is an isomorphism

Hn(B(π1M); K(Z))
∼=−→ KnZ[π1M ]

where K(Z) is the K-Theory spectrum of Z, and Hn(−; K(Z)) is the generalised homology
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theory associated to this spectrum; see [LR05] for further details on this, and the Farrell

Jones conjecture.

We proceed to calculate H3(B(π1M); K(Z)). We first further simplify things by noting

that since Mi are aspherical we have that B(π1Mi) = Mi and so

B(π1M) = B(π1M1 ∗ π1M2) = B(π1M1)
∨
B(π1M2) = M1

∨
M2.

Using the axioms for generalised homology theories we have that

Hn(B(π1M); K(Z)) ∼= Hn(M1; K(Z))⊕Hn(M2; K(Z))

hence it will be sufficient to calculate Hn(Mi; K(Z)).

For any generalised homology theory there is an Atiyah-Hirzebruch spectral sequence with

E2 page given by

Ep,q2 = Hp(Mi;Kq(Z))

where Hp(Mi;Kp(Z)) is usual singular homology with coefficients, and Kp(Z) are the

algebraic K-theory groups of Z; see for example [DK01] for details on the Atiyah-Hirzebruch

spectral sequence. This spectral sequence converges to Hn(B(π1X); K(Z)) in the following

sense; on each homology group there is a filtration

Hn(Mi; K(Z)) = Fn0 ⊃ Fn1 ⊃ . . . ⊃ Fnk = 0

and the E∞ page of the spectral sequence gives

En−j,j
∞ = Fnj /Fnj+1.

We will use the first few terms of Kq(Z), namely K0(Z) = Z, K1(Z) = Z2, K2(Z) = Z2

K3(Z) = Z48; see for example [Wei05].

Below we write out the second page of the spectral sequence; in red we highlight those

terms with p + q = 3, that will contribute to H3(Mi; K(Z)), and we draw arrows where

there is a non zero differential; note that for p < 0 and p > 3, Ep,q2 = Hp(Mi;Kq(Z)) = 0.
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0 1 2 3

0

1

2

3

4

Z

Z2

Z2

Z48

...

H1(Mi;Z)

H1(Mi;Z2)

H1(Mi;Z2)

H1(Mi;Z48)

...

H2(Mi;Z)

H2(Mi;Z2)

H2(Mi;Z2)

H2(Mi;Z48)

...

Z

Z2

Z2

Z48

...

We note that above the first row all groups are torsion, and indeed finite! The only

group which is non torsion and which contributes to H3(Mi; K(Z)) is E3,0
2 = Z. Since the

differential d3,0
2 : Z→ E1,1

2 = H1(Mi;Z2), drawn in green, is a map into a finite group, we

see that we must have ker(d3,0
2 ) = Z, so E3,0

3 = Z.

Now consider d3,0
3 : Z→ E0,2

3 . since E0,2
3 is a quotient of Z2, it is either Z2 or 0, so again

we see that ker(d3,0
3 ) = Z and that E3,0

4 = Z. Since all differentials dp,qn are zero for n ≥ 4,

Ep,q∞ = Ep,q4 .

Hence F3
0/F3

1 = Z, while F3
1/F3

2 = E2,1
4 , F3

2/F3
3 = E1,2

4 , F3
3/F3

4 = E0,3
4 are all torsion and

finite. We also have F3
4/F3

5 = E−1,4
4 = 0; since the filtration terminates with 0, it must be

that F3
4 = 0. Hence F3

3 is finite, hence F3
2 is finite, and hence F3

1 is finite.

We have a short exact sequence

0→ F3
1 → F3

0 = H3(Mi; K(Z))→ F3
0/F3

1 = Z→ 0.

as all the groups are abelian and F3
0/F3

1 = Z is free abelian, the sequence splits and so

H3(Mi; K(Z)) = Z⊕F3
1 .

Since F3
1 is finite, it follows that H3(Mi; K(Z)) is rank one, and so Hn(Bπ1M ; K(Z)) is

rank two.
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Diffeomorphisms of DiffPI((M1#M2)× I, ∂((M1#M2)× I))

Recall the map

q̃ : Wh1(π1X;Z2 × π2X)/Ẑ →
⊕

S∈Conj(π1X) ̸=1,

S=S

ZS ⊕
⊕

[S]∈Conj(π1X )̸=1/∼,
S ̸=S

(Z2 × Z)S.

Denote the target of this map by R. We can induce a map on the quotients

˜̃q :
(

Wh1(π1X;Z2 × π2X)/Ẑ
)
/r(χ̂)→ R/q̃(r(χ̂))

Recall that
(

Wh1(π1X;Z2×π2X)/Ẑ
)
/r(χ̂) =

(
Wh1(π1X;Z2×π2X)/χ̂

)
/Z1

4 (X) and that

we have a map

(
Wh1(π1X;Z2 × π2X)/χ̂

)
/Θ̂(J (X) ∩ ker Σ)→

(
Wh1(π1X;Z2 × π2X)/χ̂

)
/Z1

4 (X).

Composing this with ˜̃q we obtain a map

q′ :
(

Wh1(π1X;Z2 × π2X)/χ̂
)
/Θ̂(J (X) ∩ ker Σ)→ R/q̃(r(χ̂)).

The left hand side is precisely the target of

Θ̂ : ker Σ ⊂ DiffPI(X, ∂X)→
(

Wh1(π1X;Z2 × π2X)/χ̂
)
/Θ̂(J (X) ∩ ker Σ).

Taking the composition q′ ◦ Θ̂ gives q′ ◦ Θ̂ : ker Σ→ R/q̃(r(χ̂)). By Theorem C the image

of q′ ◦ Θ̂ contains ⊕
S∈Conj(π1X )̸=1,

S=S

ZS ⊕
⊕

[S]∈Conj(π1X )̸=1/∼,
S ̸=S

(0× Z)S

 /q̃(r(χ̂)) ⩽ R/q̃(r(χ̂)).

By Proposition 2.8.13

S =
⊕

S∈Conj(π1X) ̸=1,

S=S

ZS ⊕
⊕

[S]∈Conj(π1X )̸=1/∼,
S ̸=S

(0× Z)S

has infinite rank. By Proposition 2.8.16, χ̂ = χ(K3Z[π1M ]) + χ(K3Z[π1M ]) is at most

rank four, and so q̃(r(χ̂)) is at most rank four. Hence S/q̃(r(χ̂)) has infinite rank, and

so contains a subgroup isomorphic to ⊕N Z. Letting K = ker Σ and letting Θ′ be the

composition of q′ ◦ Θ and projection onto the subgroup isomorphic to ⊕N Z yields the

(M1#M2)× I case of Theorem A.



Chapter 3

Distances between surfaces in

4-manifolds

In Chapter 2 we dealt extensively with homotopies of surfaces in 4-manifolds. In this

chapter we will expand on this topic further, our key result being Theorem G.

Theorem G. If Σ,Σ′ ⊂ X are connected, smooth, properly embedded, oriented surfaces

of the same genus then

dst(Σ,Σ′) ≤ dsing(Σ,Σ′) + 1.

See Section 1.2 for the definitions of the above distances.

Throughout X will be a smooth compact orientable 4-manifold possibly with boundary.

We will consider immersed surfaces Σ ⊂ X of genus g; that is, Σ is the image of some

generic immersion f : S → X where S is an abstract surface of genus g.

Recall the definitions of finger moves, Whitney moves, Whitney arcs, and Whitney framings

from Section 2.1.2. Note that in Chapter 2 it was important that our finger move arcs

be oriented, in this chapter we drop this requirement; as in Remark 2.1.4, reversing the

orientation of the finger move arc does not change the resulting surface (up to homotopy

of the surface), nor does it change the homotopy (up to isotopy of the homotopy).

Recall also that embedded surfaces Σ,Σ′ ⊂ X are regularly homotopic if there exists a

smooth map H : S × [0, 1]→ X (where S is an abstract surface of genus f) where H(−, 0)

and H(−, 1) are embeddings with H(S, 0) = Σ, H(S, 1) = Σ′, and H(−, t) is an immersion
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for all t ∈ [0, 1]. In the case X and S have boundary, we require the embeddings be

proper embeddings, that H(t, ∂S) ⊂ ∂X for all t, and that H(t,−) is an embedding when

restricted to some neighbourhood of ∂X for all t.

Remark 3.0.1. By theorems of Smale [Sma57] and Hirsch [Hir59] two embeddings of

an orientable surface in an orientable 4-manifold are regularly homotopic if and only if

they are homotopic. Note that Smale-Hirsch theory gives much more general results about

homotopy classes of embedded manifolds. We refer the reader for example to Miller’s

treatment in this specific case [Mil19, Theorem 3.3].

Remark 3.0.2. Two surfaces are regularly homotopic if and only if they differ by a

sequence of finger moves and Whitney moves. Moreover, a generic regular homotopy is a

sequence of finger moves and Whitney moves. See [FQ90] for a detailed treatment.

3.1 Plan of the chapter.

The proof of Theorem G will be set out as follows.

• Section 3.2: We will define surface tubing diagrams, which are similar to those

defined by Gabai [Gab17, Definition 5.5]. These contain the data to replace an im-

mersed surface with an embedded one by removing discs around pairs of intersection

points and adding in tubes which run along the surface and join up the resulting

boundary circles.

• Sections 3.3 and 3.4: We prove the tube swap lemma, Lemma 3.3.1, and the tube

move lemma, Lemma 3.4.1. These prove that we can change the way in which the

surface is tubed (i.e. change the surface tubing diagram) by performing a single

stabilisation followed by a single destabilisation.

• Section 3.5: We associate to a regular homotopy a sequence of stabilisations and

destabilisations by shadowing, again using the terminology of Gabai [Gab17], the

homotopy by a tubed surface as follows.

– At each stage in the regular homotopy where a finger move is performed, we

remove the pair of double points by performing a stabilisation which adds a

tube running along the surface.
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– At each stage in the regular homotopy where a Whitney move is performed,

we wish to perform a destabilisation which removes a tube. However, this may

not always immediately be possible for several reasons. Firstly, pairs of double

points removed by the Whitney move may not have been tubed to each other,

but rather to other double points. Secondly, the tubes may not run over one

of the arcs of the Whitney circle. Thirdly, the pairing may be ‘crossed’ in the

terminology of Gabai [Gab17, §3.3]. We use the results proved in Sections 3.3

and 3.4 to change the way that the surface is tubed to eliminate the first

two difficulties. We reduce the third difficulty to the fact that two surfaces

K,K ′ ⊂ B4 which are slice surfaces for the unknot, both have the property that

they destabilise to the standard disc bounded by the unknot.

• Section 3.6: We prove that the pair of slice surfaces K and K ′ obtained in Section 4

both destabilise to the standard disc bounded by the unknot.

3.2 Surface tubing diagrams

We now define surface tubing diagrams which describe how to turn an immersed surface

of genus g with 2n double points into an embedded surface of genus g + n.

Definition 3.2.1. Given an arc Γ in the plane R2× 0 ⊂ R2×R2, the linking annulus of Γ

is the annulus Γ× S1 ⊂ R2 × R2.

Definition 3.2.2. Suppose A, B, and C are immersed surfaces in X, which intersect each

other and themselves transversely only in double points. Suppose that a ∈ A ∩ C and

b ∈ B ∩ C. Suppose that Γ is an embedded arc in C (whose interior is disjoint from A

and B, and from other double points of C). Then tubing along Γ is the result of removing

a disc around a from A, a disc around b from B, and adding the linking annulus of Γ

(parametrising ν(Γ) ∼= B4 ⊂ X as R2 × R2 so that C ∩ ν(Γ) is the plane R2 × 0), then

smoothing corners; see Figure 3.1.

Remark 3.2.3. Usually when we tube, A, B, and C will, in fact, be subsurfaces of the

same connected surface in X, obtained by taking the intersection of the surface with some

ball B4 ⊂ X. Note that the resulting surface, in this case, is oriented if and only if the

self-intersections a and b have opposite sign.
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t = +ϵ

t = 0

t = −ϵ

a b
t

A B

Γ

Figure 3.1: A neighbourhood ν(Γ) in which the tubing operation takes place. The
time direction is depicted upwards and we see the sheet of the surface containing Γ
continues into the past and future. Tubing along Γ removes two intersections by
removing discs from A and B, and adding the linking annulus of the arc Γ.

Remark 3.2.4. By convention, the middle time picture in movies such as Figure 3.1 will

be referred to as the t = 0 slice or the present.

3.2.1 Tubed surfaces

We shall describe how to replace self transverse immersed surfaces of genus g in X, with

2n double points, with embedded surfaces of genus g+ n by pairing up double points with

opposite sign, and tubing along an arc between them. We make the following definition,

analogous to that made by Gabai [Gab17, Definition 5.5].

γ1 γ2

x+
1

x−
1

y+
1

y−
1

x−
2

x+
2

y+
2

y−
2

Figure 3.2: A surface tubing diagram. We
depict the preimage S of the immersion, and
the two preimages of each double point, for
example, x+

1 and y+
1 are the preimages of the

double point z+
1 ∈ X. We also show the arcs

γ1 and γ2, along which we tube to construct
the associated tubed surface S̃.

Definition 3.2.5. Let X be a smooth orineted 4-manifold. A surface tubing diagram S

consists of the following data:

(i) A compact, oriented, connected surface S possibly with boundary.

(ii) A generic (only isolated double points), self transverse immersion f : S → X

with ∂X ∩ f(S) = f(∂S) and with the same number of positive self-intersections
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as negative. We take care not to confuse the abstract surface S with the immersed

surface which is its image, f(S), denoted Sim.

(iii) A partition of the set of double point images, {z ∈ X : |f−1(z)| = 2} into pairs {z+
i , z

−
i } ⊂

X, i = 1 . . . n with the sign of the intersection z±
i being ±1. We denote the preimage

of z+
i by the pair (x+

i , y
+
i ) ∈ S×S, which comes with a choice of ordering. We denote

the preimage of z−
i by the pair (x−

i , y
−
i ). We refer to any pre-images of double points

as marked points of the diagram.

(iv) A set of disjoint embedded arcs γ1, . . . , γn : [0, 1]→ S with endpoints γi(0) = x+
i and

γi(1) = x−
i and which are disjoint from {x±

j , y
±
j }j ̸=i and from y±

i (note that their

images Γi = f(γi([0, 1])) are also disjoint embedded arcs in Sim); see Figure 3.2.

Remark 3.2.6. In the topological case we make the same definition for f : S → X which

is an immersion obtained from some locally flat embedding g : S → X by applying some

sequence of finger moves, Whitney moves, and ambient isotopy.

Definition 3.2.7. Given a surface tubing diagram we construct the associated tubed surface

by tubing Sim to itself along each arc Γi using tubes in a small neighbourhood of each Γi,

as in Definition 3.2.2 with Γ = Γi, A = f(ν(y+
i )), B = f(ν(y−

i )), and C = f(ν(γi)); again

see Figure 3.1. Since z+
i and z−

i have opposite signs the result is an oriented embedded

surface which we call S̃.

Remark 3.2.8.

(1) Ambient isotopy of the immersed surface Sim (which gives rise to an isotopy of the

immersion f) describes an ambient isotopy of the arcs Γi, and so by extension an

isotopy of the associated tubed surface S̃, where we make sure to keep the tubes close

to the surface. At the end of the isotopy, we still have a tubed surface and we still have

a surface tubing diagram with the same arcs (but with immersion data H(−, 1) ◦ f ,

where H : S × [0, 1]→ X is the ambient isotopy).

(2) An isotopy of the set of arcs γi in S (which keeps the arcs disjoint from the preimages

of self-intersection points throughout the isotopy) gives rise to an isotopy of the tubes

and hence of the associated tubed surface.
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3.3 The Tube Swap Lemma

We prove that if we change our surface tubing diagram as depicted in Figure 3.3, then

there is a single stabilisation followed by a single destabilisation taking one associated

surface to the other.

The proof is mainly by pictures. We shall draw surfaces in a 4-ball as movies with a

time direction, drawing slices of 3-dimensional space. For the sake of readability, we draw

our pictures as piecewise-smooth and so they have corners, however, they should each

be understood to describe a smooth surface. The corners arise in two ways, firstly from

stabilisations and destabilisations, and secondly when part of the surface ‘jumps’ into the

time direction. The reader should mentally smooth these pictures. For stabilisations and

destabilisations, the smoothing is as in Figure 1.1. The corners arising from jumps into the

time direction are locally modelled as a product of two arcs which are properly embedded

in two discs, one arc having a corner. Smoothing the corner of the arc gives a smoothing

of the surface.

Lemma 3.3.1 (Tube Swap Lemma). Given a surface tubing diagram S, let β be any arc in

S from y+
i to y−

i which is disjoint from all marked points and curves in the surface diagram

(including γi). Form S ′ by removing the arc γi and replacing it with β (and changing the

order of (x+
i , y

+
i ) to (y+

i , x
+
i ) and (x−

i , y
−
i ) to (y−

i , x
−
i )); see Figure 3.3.

Then the associated tubed surface S̃ can be transformed into S̃′ by performing a single

stabilisation, followed by a destabilisation (and ambient isotopy).

ββ

γi
x+
i x−

i

y+
i

y−
i

x+
i x−

i

y+
i

y−
i

Figure 3.3: The diagram for a tube
swap: we swap the arc γi for any arc
β from y+

i to y−
i , disjoint from all

marked arcs and points. The tube
swap lemma says there is a stabilisa-
tion and destabilisation, taking the
associated tubed surface of the left
diagram, to the associated tubed sur-
face of the right.

Proof. We direct the reader to Figure 3.4. We first consider a small tubular neighbour-

hood ν(Γi ∪ f(β)) in X, which is diffeomorphic to S1 × B3. We pick a diffeomorphism

of ν(Γi) to B4, parametrising so that at t = 0 we see f(ν(γi)) (the sheet of the immersed
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surface containing Γi) and the ends of the arc f(β)). The rest of the sheet containing the

ends of f(β) extends into the past and future. We extend our parametrisation to one of

S1 ×B3 so that at each t we see a copy of S1 ×B2, and so f(β) is in the t = 0 frame and

the sheet containing it extends into the past and future; see Figure 3.4.

t

Γi

f(β)

z+
i z−

i

Figure 3.4: The surface Sim in the neighbourhood ν(Γ∪ f(β)) ∼= S1×B3. The middle
picture is t = 0. In each time frame shown we see a copy of S1 ×D2.

The associated tubed surface S̃ in this parametrisation is depicted in Figure 3.5.A. We

perform a stabilisation between the top of the tube and the subset f(ν(γi)) of the surface,

to obtain Figure 3.5.B (provided the stabilisation pictured respects orientations; we deal

below with the case in which it does not).

To obtain Figure 3.6.C from Figure 3.5.B we perform an isotopy supported in the t = 0

frame by ‘inflating’ the tube from the stabilisation. To obtain Figure 3.6.D we flatten the

resulting bulge, which slightly deforms the surface in other time frames.

Next, we push the sides of the tube into the t = 0 frame to obtain Figure 3.7.E. Then

we perform an isotopy, flattening the resulting dip to obtain Figure 3.7.F. To obtain

Figure 3.7.G from Figure 3.7.F, we thicken the red arc f(β) by pushing some of the surface

from the future into the present. We then perform an isotopy to create a tube with a band

removed, depicted in Figure 3.7.H.

To obtain Figure 3.8.I from Figure 3.7.H we perform an isotopy. In the same picture, we

depict an embedded disc intersecting the surface on its boundary in Figure 3.8.J. We then

remove an annulus given by a neighbourhood of the boundary of this disc, and replace it

with two parallel copies of the disc in the t = 0 frame, thus performing a destabilisation,

to obtain Figure 3.8.K. We then push part of the band containing the arc f(β) into the

future and perform a small further isotopy to obtain Figure 3.8.L. Note that Figure 3.8.L

is precisely S̃′.
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t

A B

Figure 3.5: In A we depict the associated tubed surface S̃ in a neighbourhood of X
given by ν(Γ ∪ f(β)) ∼= S1 ×B3. To obtain B from A we perform a stabilisation from
the tube to the sheet of the surface f(ν(γi)).
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t

∼ ∼

C D

Figure 3.6: To obtain C from Figure 3.5.B we perform an isotopy which is supported
in the t = 0 frame (‘inflating’ the tube from the stabilisation). To obtain D from C we
then flatten the picture out, which slightly deforms the surface in other time frames.
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t∼
∼

∼
∼

E:

F:

G:

H:

Figure 3.7: Here the time direction is to the right, and we depict 4 stages of the isotopy.
To obtain E from Figure 3.6.D we push the sides of the tube into the t = 0 frame. To
obtain F we perform an isotopy to E which flattens the surface. To obtain G from E
we then ‘thicken’ the red arc by pushing some of the surface from the future into the
t = 0 frame. To obtain H from G we then perform an isotopy of this band, to form a
tube with a band removed.
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t∼
∼

∼
∼

I:

J:

K:

L:

Figure 3.8: Here the time direction is to the right, and we depict 4 stages of the
isotopy. To obtain I from Figure 3.7.H we perform a small isotopy of the surface. In
J we depict a disc intersecting the surface on the boundary of the disc. To obtain K
from J we perform a destabilisation by removing a neighbourhood of the boundary of
the disc and adding two parallel copies of the disc. To obtain L from K we perform
an isotopy (pushing some of the middle band into the future) to obtain the associated
tubed surface S̃′.



94 Chapter 3. Distances between surfaces in 4-manifolds

A:

∼ C:

∼ E: ∼ F:

∼ D:

∼ B:

Figure 3.9: A stabilisation and isotopy respecting the alternative possible orientations.
We only depict the t = 0 slice, the past and future frames are as in the previous case,
until the final picture where the past and future pictures are swapped. In A we see
the associated surface, to which we already performed a stabilisation respecting the
alternative orientations. To obtain B from A we perform an isotopy ‘inflating’ the
tube from the stabilisation. To obtain B from C we flatten the surface (which deforms
the past and future images slightly). To obtain D from C we push the sides of the tube
into the present. To obtain E from D we perform an isotopy to flatten the surface.
To obtain F from E we perform an isotopy. F is identical to Figure 3.7.F, though we
note the past and future images are swapped. From this point we proceed as in the
previous case, with the past and future images swapped.
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In the case that the above stabilisation was not compatible with orientations, we instead

perform a stabilisation on the underside of the surface to obtain Figure 3.9.A. We then

perform the sequence of isotopies in Figure 3.9, which are analogous to those in the previous

case. Note that in Figure 3.9 only the t = 0 slice is depicted, the past and future pictures

are as in the previous case, until the final picture where the past and future images are

swapped (i.e. the past images become the future images and vice versa). Figure 3.9.F

is identical to Figure 3.7.F, except that the past and future images are swapped. We

now proceed as above (with the past and future images swapped). Again we obtain S̃′,

completing the proof of the tube swap lemma.

3.4 The Tube Move Lemma

We prove that if we take a single arc γi in our surface tubing diagram, remove it and

replace it with another arc, as in Figure 3.10, there is a single stabilisation and single

destabilisation taking one associated surface to the other.

αα

γi

x+
i

x−
i

x+
i

x−
i

Figure 3.10: A diagram for a tube move. We replace γi with α, which may intersect
γi, but not other marked arcs or points.

Lemma 3.4.1 (Tube Move Lemma). Given a surface tubing diagram S, let α be an arc in

S from x+
i to x−

i which is disjoint from the curves {γk}k ̸=i (note that α may intersect γi),

and is also disjoint from all marked points on the surface other than x+
i and x−

i . Form S ′

by removing the arc γi and replacing it with α.

Then the associated tubed surface S̃ can be transformed into S̃′ by performing a single

stabilisation, followed by a destabilisation (and ambient isotopy).

Proof. We direct the reader to Figure 3.11. In Figure 3.11.A, we see the associated tubed

surface S̃ in a neighbourhood of a point p ∈ Γi which intersects the linking annulus of Γi

on a smaller annulus. First, we perform a stabilisation between the tube and the surface
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A : B : ∼ C :

∼ D : ∼ E : ∼ F :

t

Figure 3.11: A stabilisation and sequence of isotopies allowing us to cut open tubes
in order to move their ends about freely. In A we depict a neighbourhood ν(p) ⊂ X
for some p ∈ Γi. Note that ν(p) ∼= B4. The time direction is depicted upwards and in
each time frame, we see a copy of B3. To obtain B from A we perform a stabilisation.
To obtain C from B we perform an isotopy in the t = 0 frame, which also slightly
deforms the surface in other time frames. To obtain D from C we push part of the
sides of the tube into the t = 0 frame. To obtain E from D we perform an isotopy
flattening the surface. Finally, in F we see two disjoint tubes which join the surface
at their ends as pictured. These ends may now be pushed about the surface. When
we later rejoin the tubes we read the pictures in reverse order.
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to obtain Figure 3.11.B (note that if this is not compatible with orientations, we instead

perform the stabilisation on the underside and proceed in the same way, taking the mirror

image of each figure). We then perform an isotopy to obtain Figure 3.11.C, then push

part of the sides of the tube into the present to obtain Figure 3.11.D. We then perform a

further isotopy to obtain Figure 3.11.E. Here we see two disconnected tubes, whose ends

join the surface as depicted in Figure 3.11.F.

We can now move these ends around freely on the surface, provided during the isotopy

they are disjoint from the other tubes and double points. We depict how we drag the ends

diagrammatically in Figure 3.12. First, we retract the two tubes along Γi dragging the

ends towards z+
i and z−

i . We then perform an isotopy that pushes these ends along α so

that the two tubes now run along α and the ends of the tubes lie in a neighbourhood of

some point q ∈ f(α). In this neighbourhood, we see the final picture of Figure 3.11. We

then rejoin the tubes, by performing an isotopy and destabilisation which can be seen by

reading the pictures in Figure 3.11 in reverse order. After rejoining the tubes they form

the linking annulus of α. The resulting surface is S̃′ as required. This completes the proof

of the tube move lemma.

∼

∼

x+
i

x−
i

α

γi

Figure 3.12: A schematic of the proof of the tube move lemma. The second image
depicts the cut-open tube. The crosses depict where the ends of the cut-open tube
join the surface. We then show how to move these ends in the next two equivalences.
To obtain to the final picture we rejoin the cut open ends.

Remark 3.4.2. Note that we cannot prove Lemma 3.4.1 by using Lemma 3.3.1 twice, due

to the condition in Lemma 3.3.1 that the new arc is disjoint from the old one. To do so we

would need to find an intermediate arc β from y+
i to y−

i disjoint from both γi and α, but

if γi and α intersect, then S \ {γi, α} may be disconnected so this may not be possible.
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3.5 Proof of Theorem G

With these tools in place, we proceed with the proof of Theorem G, namely that dst(Σ,Σ′) ≤

dsing(Σ,Σ′) + 1. We do so by shadowing a regular homotopy by a sequence of embedded

surfaces differing by stabilisation, destabilisation, and ambient isotopy.

Proof of Theorem G. Recall that Σ and Σ′ are embedded surfaces in X of genus g. In the

case the surfaces are not regularly homotopic dsing(Σ,Σ′) = ∞ and we are done. Hence

assume that Σ and Σ′ are regularly homotopic and suppose dsing(Σ,Σ′) = n. Given a

distance minimising regular homotopy from Σ to Σ′, let P1, . . . Pk be the sequence of

immersed surfaces describing this homotopy, each differing from the previous by either a

finger move, a Whitney move, or an ambient isotopy.

We shall describe a sequence of surface tubing diagrams with associated tubed surfaces

that differ by stabilisations, destabilisations, and ambient isotopy, such that the genus of

any intermediate surface never exceeds g + n+ 1.

Fix the abstract surface S, and immersions fi : S → X with image Pi for each i. The

immersion f1 : S → X gives a surface diagram S1 (the empty diagram in S) with associated

tubed surface S̃1 = Sim
1 = P1.

We now suppose for induction that we have a surface tubing diagram Si with immersion

data fi : S → X, and associated tubed surface S̃i. We will construct a surface tubing

diagram Si+1 with immersion data fi+1 : S → X, such that S̃i+1 differs from S̃i by a

series of stabilisations, destabilisations, and ambient isotopy, such that the genus of any

intermediate surface does not exceed g + n + 1. There are three cases; Pi+1 is obtained

from Pi by ambient isotopy, a finger move, or a Whitney move.

Ambient Isotopy: If Pi+1 just differs from Pi by ambient isotopy, by Remark 3.2.8(1) we

have a new surface tubing diagram Si+1 with immersion data fi+1 : S → X. Furthermore,

S̃i is ambiently isotopic to S̃i+1.

Finger Move: If Pi+1 differs from Pi by a finger move, let α and β be the Whitney arcs

of the Whitney disc that undoes the finger move. Note these arcs are in S, the abstract

surface. Before we perform the finger move, we perform an isotopy of the arcs, to push

any arcs off α and β to form S ′
i = (fi, {γ′

j}). We then add the new double points and β to

the diagram to obtain the diagram Si+1 = (fi+1, {γ′
j} ∪ {β}) which we note uses the new
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map fi+1, which differs from fi by the finger move; see Figure 3.13. The associated tubed

surfaces S̃i and S̃′
i are ambiently isotopic by Remark 3.2.8(2), and S̃′

i and S̃i+1 differ by

isotopy and a stabilisation, as in Figure 3.14.

β

α

Si S ′
i Si+1

Figure 3.13: The sequence of surface tubing diagrams corresponding to performing a
finger move.

Γi

Figure 3.14: Above we see the immersed surface before and after a finger move. Below
we perform a sequence of isotopies and stabilisations taking S̃′

i to S̃i+1. First, we
isotope one sheet to create a Whitney bubble and push the other sheet into this
bubble. We then stabilise the bubble to create the linking annulus of Γi.

Whitney Move: The Whitney moves present the main difficulty. If Pi+1 differs from Pi by

a Whitney move, there are several cases to consider.

The endpoints of the Whitney arcs form the set {x+
i , y

+
i , x

−
j , y

−
j } for some i and j. In

the case that i = j then either ∂α = {x+
i , x

−
i } and ∂β = {y+

i , y
−
i }, or ∂α = {x+

i , y
−
i }

and ∂β = {y+
i , x

−
i } (up to relabeling of α and β). We call the former situation Case 1 and

the latter situation Case 2. Case 2 is the crossed Whitney disc .

Otherwise, if i ̸= j then either ∂α = {x+
i , x

−
j } and ∂β = {y+

i , y
−
j }, or ∂α = {x+

i , y
−
j }

and ∂β = {y+
j , x

−
i } (again up to relabeling of α and β). We call the former situation Case
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3 and the latter Case 4.

Note that α and β may intersect other arcs, including γi and γj . In all cases, we perform

a small isotopy of all the arcs so that they intersect α and β transversely.

Case 1: The Whitney arcs are α between x+
i and x−

i , and β between y+
i and y−

i for some

i. We wish to run in reverse what we did in the case of a finger move, however, we need

γi to run over either α or β, and we also need α and β to be disjoint from other arcs, so

that the surface tubing diagram looks like the diagram at the end of a finger move, as in

Figure 3.13.

x+
i

x−
i

y+
i

y−
i

α

β

γi

Figure 3.15: The sequence of tubing diagrams which correspond to performing a Case
1 Whitney move. First, we move all arcs off β, then swap γi to β, then move all arcs
off α. The resulting diagram corresponds to that at the end of a finger move. We can
now destabilise the associated surface to obtain the associated surface for the final
diagram (which uses the new immersion data), by running Figure 3.14 backwards.

We arrange this by first using the tube move lemma to move any arcs off β. To do so

we remove intersection points with β one by one. We consider the arc γr which has the

intersection with β closest to y+
i (in the sense of distance along β), at p ∈ β. We form the

arc γ′
r, by removing an arc neighbourhood of p from γr, and replacing it with an arc that

runs along the boundary of a small neighbourhood of β ⊂ S; see Figure 3.15. Provided

the neighbourhood is taken to be sufficiently small, γ′
r is disjoint from {γp}p ̸=r and from

marked points other than x±
r , and so the corresponding associated surfaces differ by a

stabilisation and destabilisation by the tube move lemma. We do this for every intersection

point of arcs with β, until all arcs are disjoint from β. Note that we may move γi during

this process.

Next, we use the tube swap lemma to swap γi to β. We then use the tube move lemma to
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move any arcs off α as we did for β; see the third to fourth picture of Figure 3.15. Finally,

we perform the destabilisation and isotopy coming from reading Figure 3.14 in reverse.

This has the effect of removing the points x±
i and y±

i , and the arc γi (which now runs

along β) from the diagram.

β

γi

αy−
i x+

i

y+
ix−

i

Si S ′
i Si+1

Figure 3.16: The sequence of diagrams corresponding to a Case 2 Whitney move. First,
we remove all arcs running over β and α using the tube move lemma, then claim we
may remove the resulting tube and intersection points using a stabilisation and two
destabilisations.

Case 2: The Whitney arcs are α between x+
i and y−

i , and β between y+
i and x−

i for some

i. This is a crossed Whitney disc. As in Case 1, we first remove any arcs running over α

and β using the tube move lemma, which may move γi; see Figure 3.16. Let S ′
i be the

resulting surface diagram, and Si+1 be the diagram with the same points and arcs but

with the points x±
i y±

i , the arc γi deleted, and immersion data fi+1; see Figure 3.16.

We show S̃′
i and S̃i+1 are related by a stabilisation and two destabilisations (and isotopy).

We depict the immersed surface S′ im
i in a neighbourhood of the Whitney disc in Figure 3.17.

The associated tubed surface in this neighbourhood is shown in Figure 3.18. To obtain

the second picture of Figure 3.18 we perform an isotopy which pulls apart the surface

(taking the sheets of the surface to where they need to be after the Whitney move), at the

expense of creating a double tube again using the terminology of Gabai [Gab17], a Hopf

link×[0, 1] running through X between two disc neighbourhoods of the surface. The Hopf

link×[0, 1] has four boundary components, two of which are joined to the surface (the top

of the green tube and bottom of the pink), while the other two join to the linking annulus

of Γi (the bottom of the green and top of the pink).

We now perform a stabilisation inside the Hopf link×[0, 1], which can be seen in the movie

picture as attaching two bands (provided this is compatible with orientation, if not see

below); see Figure 3.19. The middle picture of this movie is then an unknot, along which



102 Chapter 3. Distances between surfaces in 4-manifolds

t

Γi

Figure 3.17: The immersed surface in a neighbourhood of a crossed Whitney disc. The
arc Γi joins the two sheets, running over the surface outside of this 4-ball.

t

∼

← Hopf Link×[0, 1]

Figure 3.18: The associated tubed surface S̃′
i. We pull the two sheets of the associated

tubed surface apart, at the expense of creating a double tube. Note the pink and
green tubes join up outside of this picture, and form the linking annulus for Γi. This
is the same operation as that Gabai describes in [Gab17, Figure 5.9].
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Figure 3.19: The first image depicts part of the double tube. To obtain the second
we perform a stabilisation. We then perform an isotopy to obtain the third, in which
we see an unknot×[0, 1] in the middle time frame. To obtain the fourth we perform a
destabilisation along this unknot.

Cut the
double tube

4-balls containing the capped off endst

Figure 3.20: The surface in a neighbourhood of Γi. On the left we depict part of the
double tube; we show how the double tube joins up using the dotted arcs (though this
does not happen in this 4-ball). On the right, we depict part of the slice surface K; we
do not draw K inside the two 4-balls indicated. Inside these two 4-balls the surface is
given by standard annulus bounded by the Hopf link, whose interior has been pushed
into the 4-ball. To obtain the surface on the right from that on the left, we cut open
the double tube as in Figure 3.19 and retract the two capped off ends so that they lie
near the surface, inside the neighbourhood of Γi.
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we perform a destabilisation to cut the double tube; again see Figure 3.19.

The resulting ‘end’ of the double tube can be made by taking an open double tube, adding

a band between the two tubes, then capping off the resulting boundary circle with a disc.

It can also be thought of as the standard annulus whose boundary is the Hopf link whose

interior is pushed into the 4-ball. We now suck back these ends to be close to the surface.

The resulting surface differs from S̃i+1 only in a 4-ball neighbourhood of the arc Γi. The

resulting capped off double tube in this 4-ball neighbourhood is pictured on the right in

Figure 3.20. In this neighbourhood, we see a genus 1 slice surface for the unknot. We call

this slice surface K.

If the above stabilisation was not compatible with the orientation on the double tube, we

instead perform a different stabilisation and destabilisation which are compatible with the

alternative possible orientations; see Figure 3.21. Again the result is a cut open double

tube, and we again suck the ends back to lie in a 4-ball neighbourhood of Γi. We call

the resulting surface in this neighbourhood K ′ ⊂ B4 and note the boundary of K ′ is the

unknot in S3 as before.

Figure 3.21: Cutting the double tube using a stabilisation and a destabilisation which
are compatible with the other possible orientation of the double tube. We perform an
isotopy of the surface to obtain the second picture which shows the result differs by
just a twist in the bands.

We now wish to construct a sequence of stabilisations and destabilisations taking K and

K ′ to the trivial disc. Such a sequence would remove the mess of tubes, and take our

surface to S̃i+1 as required. We exhibit such a sequence in Lemma 3.6.2. Note that results

in [BS15] imply that some sequence of stabilisations and destabilisations exists but we

show that in fact, one destabilisation is sufficient, and so the genus of any intermediate

surface does not exceed g + n+ 1.

Case 3: The Whitney arcs consist of an arc α between x+
i and x−

j , and an arc β between
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y+
i and y−

j for i ̸= j. This case presents the most diagrammatic difficulty. We wish to

remove the intersections of arcs with α and β, however this is made difficult by the fact

that γi and γj may intersect α and β in a complicated way; see Figure 3.22.

α

β

γj

γi
ajai

x+
i

x−
i

x−
j

x+
j

y+
i

y−
i

y−
j

y+
j

Figure 3.22: The sequence of diagrams corresponding to a Case 3 Whitney move. We
first pick arcs ai and aj disjoint from α and β. To obtain the second diagram we use
the tube move lemma to remove intersections of any arcs with the arc ai ∪ β ∪ aj .
To obtain the third diagram we use the tube swap lemma twice. We then remove
intersections with α using the tube move lemma. Finally, we remove the points
removed the Whitney move and join the tubes; the corresponding destabilisation is
pictured in Figure 3.23. Note that the final diagram uses the new immersion data.

To overcome this, we first we pick an arc ai from y+
i to y−

i which is disjoint from α ∪ β̊

and all other marked points on the surface; clearly, we may do so since the complement of

α∪ β̊ and all points is connected. We then similarly pick an arc aj from y+
j to y−

j which is

disjoint from α∪ β̊∪ai and all marked points other than y+
j and y−

j ; again the complement

of these arcs and points is connected since ai does not intersect α or β. We remove the

intersections of all arcs with ai ∪ β ∪ aj , which is one long embedded arc, one by one using

the tube move lemma as in previous cases; see Figure 3.22. Note that this may move γi

and γj .

We now use the tube swap lemma to swap γi to ai and γj to aj . We then move any arcs
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off α using the tube move lemma.

Finally we remove the intersection points y+
i , x+

i , y−
j , x−

j , join the arcs γi and γj using β,

and change the index of the points labelled j to i; see Figure 3.22. The corresponding

isotopy and destabilisation of the associated surface is given by Figure 3.23.

Figure 3.23: Above we see the Whitney move. Below we see the corresponding isotopy
and destabilisation of the associated surfaces. This operation is the operation described
by Gabai in [Gab17, Figure 5.8] with an additional destabilisation to remove the ‘single
tube’ pictured in [Gab17, Figure 5.8].

Case 4: The Whitney arcs consist of an arc α between x+
i and y−

j , and an arc β between y+
i

and x−
j for i ≠ j. In this case, we use the tube swap lemma to swap γi to any arc between y+

i

and y−
i disjoint from other tube arcs, but which may intersect α and β; some such arc

exists since the complement of ∪rγr ∪k y±
k is a punctured surface, so is connected. We are

then in Case 3 and proceed as before.

At stage Pk, we have a surface diagram Sk with immersion data fk → X. Since fk is an

embedding it has no intersection points so must be the empty diagram, hence the associated

tubed surface S̃k is fk(S) = Pk as required. This completes the proof of Theorem G modulo

Lemma 3.6.2.

Examining the proof, we in fact prove a stronger, if more technical, fact.

Proposition 3.5.1. Let Σ and Σ′ be immersed surfaces with | sing(Σ)| = | sing(Σ′)|, both

with the same number of positive and negative double points. Suppose they are regularly

homotopic through surfaces with at most 2n double points. Then given a surface tubing

diagram S for Σ, there exists a surface tubing diagram S ′ for Σ′ such that

dst(S̃, S̃′) ≤ n− 1
2 | sing(Σ)|+ 1.
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Note that taking both Σ and Σ′ to be embeddings yields Theorem G, since the only surface

tubing diagrams for embeddings are the empty diagram.

Remark 3.5.2.

(1) Schwartz [Sch18] constructs pairs of embedded spheres in a 4-manifold X with 2-torsion

in π1(X), which are regularly homotopic, and are such that any regular homotopy

between them must contain a crossed Whitney move.

(2) For each finger move we made a choice of Whitney arc to tube along; we tubed along

β, but we could equally have tubed along α. In the absence of a crossed disc we

may make this choice so that only Case 1 and Case 3 Whitney moves occur. Indeed

considering a homotopy as a map H : S× [0, 1]→ X× [0, 1], the set of double points is

a union of circles. Each double point circle C has two disjoint circles as its preimage,

H−1(C) = Cx ∪ Cy. Labelling the double point preimages so that x±
i ∈ Cx and

y±
i ∈ Cy gives such a choice of tubing.

3.6 Destabilising the slice surfaces K and K ′

We complete the proof of Theorem G by showing that both K and K ′ become the standard

disc bounded by an unknot in S3 after a single destabilisation.

3.6.1 Banded link presentations of knotted surfaces

First, we review the calculus of banded link presentations for slice discs and 2-knots set

out by Jablonowski [Jab16].

Definition 3.6.1. A banded link presentation of a smooth embedded surface Σ ⊂ B4

bounded by a link L in S3, consists of the link L′ = L ∪ Un, where Un denotes the unlink

with n components, along with a number of bands, i.e. embedded copies [0, 1] × [0, 1]

disjoint from each other and L′, except at the ends of the bands {0, 1} × [0, 1] which

lie in L′. Performing a band move is the operation of removing the ends of the bands

{0, 1} × [0, 1] from L′ and adding in the sides of the bands [0, 1]× {0, 1}. We require that

the resulting link after performing all the band moves to L′ is the unlink.
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∼ ∼

∼ ∼

Figure 3.24: Moves on banded link diagrams giving isotopic surfaces. The top left
equivalence is a band slide, the top right equivalence a band swim. The bottom
left equivalence is the cancellation of a maximum and a saddle, the bottom right
equivalence is the cancellation of a minimum with a saddle.

A banded link presentation describes a slice surface for L via a movie which can be seen

by considering B4 as B3 × [0, 1]. The first slide in this movie is L. In the next, we add

the unknotted components of Un, these correspond to minima of the surface with respect

to the projection onto [0, 1]. In the next slide we a perform a band move on each band,

which corresponds to adding saddles to the surface. After performing these band moves

we obtain the unlink Un′ for some n′. Each component of this unlink is then capped off

with a disc, corresponding to maxima of the surface.

Figure 3.25: Stabilisation and destabilisation in banded
link presentations.

There are several moves on banded link diagrams one may perform that give isotopic

surfaces. These are isotopy of the diagram, band slides, band swims, cancelling a maximum

with a saddle, and cancelling a minimum with a saddle; see Figure 3.24.

Stabilisation or destabilisation in banded link diagrams corresponds to adding or removing

respectively two bands, as in Figure 3.25. Note that it does not matter where the loose

end of the band goes.

3.6.2 Proof that K and K ′ destabilise to the standard disc

Lemma 3.6.2. The surfaces K and K ′, described in Case 2 in the proof of Theorem G,

become the standard disc bounded by the unknot in S3 after a single destabilisation.
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t
x y

z
Figure 3.26: Deformation of K, so that
the z direction, as depicted, restricts to
a Morse function on the surface.

Proof. We first consider Figure 3.20. We recall that the ‘capped-off’ ends are made by

attaching a band between the tubes and capping off by a disc as in Figures 3.19 and 3.21.

After an isotopy, the z-direction as depicted in Figure 3.26 gives the standard Morse

function for B4, which restricts to a Morse function on the surface. With this Morse

function the surface has one minimum and two saddles, then two further saddles and two

maxima from the caps.

...

...

Figure 3.27: A movie for the slice surface K. Note that the z direction depicted in
Figure 3.26, is now the time direction of our movie.

This Morse function gives a movie presentation for the surface in the 4-ball; see Figure 3.27.

We deform this into a band presentation, depicted in Figure 3.28, which we simplify using

band swims, slides, and a destabilisation, to obtain the standard disc.

In the case of K ′, recall that we stabilised the outside of one tube with the inside of the

other, which has the effect of adding a half twist to the bands; see Figure 3.29. After a

band swim and isotopy, we obtain the mirror image of Figure 3.28 and proceed as before

(taking the mirror image of each picture), destabilising to obtain the standard disc.
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Destabilise

∼

∼ ∼

∼

∼∼

∼

Figure 3.28: A band presentation for K, which we destabilise to obtain the standard
disc. To obtain the second image from the first we perform an isotopy, untwisting the
two bands at the sides. To obtain the third from the second we perform two band
slides and one band swim, as indicated by the arrows. To obtain the fourth we perform
a band slide as indicated, and an isotopy of bands. To obtain the fifth we cancel a
minimum with a saddle. To obtain the sixth we perform the indicated band slide, we
then perform another band slide to obtain the seventh. We then destabilise to obtain
the eighth image. Finally we cancel a maximum and a saddle to obtain the banded
link presentation which is just the unknot, which is a banded link presentation for the
standard disc bounded by the unknot.

∼
Figure 3.29: A band present-
ation for K ′, which we see is
the mirror image of the band
presentation for K.
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