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Multiscale dynamical symmetries and selection rules in
nonlinear optics
Gavriel Lerner1,2*, Ofer Neufeld1,2,3, Liran Hareli4, Georgiy Shoulga4, Eliayu Bordo1,2,
Avner Fleischer5,6, Daniel Podolsky1, Alon Bahabad4, Oren Cohen1,2*

Symmetries and their associated selection rules are extremely useful in many fields of science. For systems of
electromagnetic (EM) fields interacting with matter, the symmetries of matter and the EM fields’ time-depen-
dent polarization determine the properties of the nonlinear responses, and they can be facilitated for control-
ling light emission and enabling ultrafast symmetry breaking spectroscopy of various properties. Here, we
formulate a general theory that describes the macroscopic and microscopic dynamical symmetries (including
quasicrystal-like symmetries) of EM vector fields, revealing many previously unidentified symmetries and selec-
tion rules in light-matter interactions. We demonstrate an example of multiscale selection rules experimentally
in the framework of high harmonic generation. This work paves the way for novel spectroscopic techniques in
multiscale systems and for imprinting complex structures in extreme ultraviolet–x-ray beams, attosecond
pulses, or the interacting medium itself.
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INTRODUCTION
Symmetry is regularly used to derive conservation laws and selec-
tion rules in interacting systems (1). In the field of nonlinear optics,
symmetries are standardly used to determine whether a particular
nonlinear process is allowed or forbidden according to the
medium’s point group (2, 3). Recently, a more general group
theory was developed to describe the symmetries of the electromag-
netic (EM) field’s time-dependent polarization, named dynamical
symmetries (DSs) (4). Such DSs and their associated selection
rules have been applied to shaping the waveforms of extreme ultra-
violet (XUV) and x-ray radiation emitted from high harmonic gen-
eration (HHG) (5–7) and have enabled ultrafast symmetry breaking
spectroscopy of molecular (8, 9) and solid orientation (10), molec-
ular symmetries (9), and chirality (11, 12). However, this theory of
DSs is local (operating solely on a microscopic scale) (13) and, thus,
fully neglects light’s macroscopic structure. Moreover, it does not
account for composite microscopic-macroscopic (multiscale) DSs.

Here, we formulate a general theory for EM fields and their in-
teractions with matter, where the multiscale symmetries of the full
light-matter Hamiltonian are analyzed. We describe spatiotemporal
DSs as generalized unitary transformations and study systematically
all possible symmetry operations that close under group multiplica-
tion. Various combinations of EM fields are cataloged into different
groups that are composed of one ormore DSs.We assign eachDS an
associated selection rule that indicates the allowed frequencies, po-
larizations, momenta, and angular momenta of the harmonic emis-
sion. Our theory generalizes many previous results, such as complex
structured XUV emission generated by spatiotemporal structure
beams in the beams’ longitudinal axis (14–17) or profile (5–7, 18,

19). We also found previously unidentified types of symmetries, in-
cluding simultaneous spin-orbit angular momentum conservation,
and periodic (20) and aperiodic (21) space-time crystals of a vector
field.We explore several newmultiscale DSs numerically and exper-
imentally in the framework of HHG to demonstrate the richness of
this approach for light-matter interactions.

We begin by describing the multiscale DSs of an EM vector field,
which are combinations of temporal, microscale, and macroscale
spatial building blocks. Then, we derive a general equation that de-
termines the selection rules of the polarization and frequencies
(temporal and spatial) of generated harmonics.

RESULTS
Multiscale symmetries
We analyze here the symmetries of electric vector fields; however,
the theory is general and can be applied to the symmetries of time-
periodic Hamiltonians and other equations of motion, as we show
in later sections. The basic entity we explore is the vector field

E!¼ E!ð R!; tÞ ¼ E!ðX!Þ ð1Þ

where R! denotes the spatial dependence of this field and t repre-
sents its temporal dependence. For brevity, we define a general spa-
tiotemporal coordinate vector, X!. It is beneficial to separate the
three types of degrees of freedom (DOFs) of E!ðX!Þ: (i) As a
vector field, E!ðX!Þ has three independent polarization compo-
nents—Ex, Ey, and Ez. We denote these as microscopic DOFs of
the field, as they reflect its intrinsic local structure in a given
spatial location. (ii) E! may depend on three spatial coordinates.
We denote these as macroscopic DOFs, as they reflect the spatial
structure of the field. (iii) E! depends on the time coordinate. A
symmetry of E! is an operation that keeps it invariant; hence, a
complex spatiotemporal operation Ĝ is a symmetry if Ĝ E!¼ E!.
The “order” n of this operation is the number of times it needs to
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be repeated until it returns to the identity, i.e., it the first integer for
which Ĝn

¼ 1.
The field E! can exhibit a large variety of symmetries depending

on the role played by its microscopic and macroscopic DOF. First,
the polarization components could have intricate dependencies
among themselves along the time axis, resulting in microscopic
symmetries. These DSs have recently been fully described by a
local Floquet group theory (13), where general DSs involve products
of temporal operations (either time translations by time T/n, where
T is the temporal period, denoted by τ̂n or time reversal denoted by

T̂; see table S1) and local spatial operations (summarized in table
S2) that intermix the polarization components and are equivalent
to point group symmetries (local rotations by 2πm/n around axis
j, denoted by r̂j

n;m; local reflections, denoted by σ̂; local inversion,
denoted bŷi; and local improper rotations by 2πm/n, denoted by
ŝn;m). Second, the field could have symmetries associated with its
macroscopic structure and spatial dependence as well as its tempo-
ral behavior (20). In this case, the spatial symmetry operations com-
prise the space group symmetries that include point group operators
denoted by capital letters (these are not to be confused with the low-
ercase letter operators, which act on the local field polarization com-
ponents). Besides point group operations, spatial translations are
also possible (where translation by Lm/n along the j axis is
denoted by Ĵn;m, and L is the minimal spatial period along the jth
axis). Last, a periodic space-time (but aperiodic in time or space)
field is invariant under a mixed operation of macro–space-time
translations, D̂n. We emphasize that the operations acting on the
microscopic and macroscopic scales need not be the same ones. To-
gether, these options give rise to a rich and diverse theory that de-
scribes the symmetries of E!, with (N + M + 1) DOF, where N is the
number of local DOF, M is the number of macroscopic DOF, and
“1” is the time dimension. The recent local Floquet group theory
spans the (3 + 0 + 1) case (13, 22), while the group theory for
time-dependent crystals is described by the (0 + 3 + 1) case (20).
For ordered nonperiodic systems, e.g., quasicrystals (23) and
optical quasicrystals (24, 25), we use superspace concepts (21),
where M is larger than the physical macroscopic dimension (see
the "Space-time polarized quasicrystal" section).

We can systematically formulate all the possible DSs that E!may
exhibit by considering all possible products of the above building
block operators (on both scales). This combinatorial large ensemble
of options can be slightly reduced in size by considering the follow-
ing: (i) For the group to exhibit closure, a DS can only combine dif-
ferent operations of a commensurate order (13), and (ii) we are only
interested in the unexplored types of DSs that involve operations on
the macroscopic scale (as the microscopic theory is already well-es-
tablished). With this in mind, we begin mapping out DSs according
to their dimensionality and whether they involve different length
scales. For instance, we define a general operation that involves
both a temporal operator (e.g., time translation or reversal) and a
macroscopic operation (e.g., rotation or reflection), hence
denoted as macro–space-time operation, M̂, by

M̂ E!ð R!; tÞ ¼ E!ðΓ̂R R!þ u!; st þ τÞ ¼ E!ðΓ̂X!þ a!Þ ð2Þ

where Γ̂R is an M-dimensional point group operation, s = ± 1 indi-
cates the possible action of time reversal, and ð u!; τÞ ; a! is a vector
that denotes translations in space and time, respectively. Table S1
summarizes the macro–space-time operation building blocks,
which construct the general operator (M̂). We note that the order
of the composite operation is the lowest common multiple of the
order of the building block operators.

It is instructive to consider a concrete physical example of an EM
field that exhibits such a macro–space-time symmetry. For instance,
an EM field with temporal frequency ω, carrying orbital angular
momentum (OAM), which is characterized by the phase winding
number (or topological charge) l, has a continuous symmetry of
macroscopic rotation with time translation:

Fig. 1. Examples of symmetries and selection rules of EM waves with angular
momentum. (A) A monochromatic field with OAM [ E

!
ðθ; tÞ/ cosðωt � 2θÞ] with

a continuous symmetry of macroscopic rotation and time translation,

E
!
ðθ; tÞ ¼ E

!
ðθþ δ; t þ 2δ=ω Þ, i.e., R̂δτ̂2δ. (B) The superposition of two fields,

cos(ωt + 2θ) + cos (2ωt − θ), has the fifth-order discrete symmetries, R̂4;� 1τ̂4;1
and îR̂4;1τ̂4;1. (C) The superposition of three circularly polarized fields,
êþcosð2ωt � θÞ þ ê� ½cosð2ωtÞ þ cosð3ωt þ θÞ�, exhibits the multiscale DS,

R̂5;� 1τ̂5;1 r̂5;2. The Lissajous curve of the local field is plotted every 2π/15 rotation
of θ. The shape of the Lissajous curve repeats itself every 2π/5 rotation in θ followed
with rotation of the polarization by −4π/5 and −T/5 time translation, which is in-
dicated by a red dot at t = 0. However, there is no symmetry between the local
fields at arbitrary angles, as can be seen in the nonidentical Lissajous curves for
fields that are separated by 2π/15. (D) The simulated intensity of the harmonics
emitted from the field in (C) clearly demonstrates the selection rule q − l ± 2 =
5Q for left ðêþÞ and right ðê� Þ circularly polarized harmonics. (E) Circularly polar-

ized field with orbital momentum, E
!
/ êþexp½iðωt þ l0θÞ�, propagating along the

optical axis of a β-BaB2O4 (BBO) crystal generating harmonic field. (F) The selection
rules for the harmonic order OAM and helicity of the generated harmonics in the
BBO crystal.
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E!ðθ; tÞ ¼ E!ðθþ δ; t þ lδ=ωÞ, i.e., it is invariant under M̂ ¼ R̂δτ̂lδ

(Fig. 1A), where δ is any real number, and R̂δ is a rotation of δ angle
and τ̂lδ is translation by lδ (we use this kind of notation for contin-
uous DS). Figure 1B shows another example of the macro–space-
time symmetry of a superposition of two fields cos(ωt + 2θ) +
cos(2ωt − θ)l1 ¼ 1 and l2 ¼ � 1, which exhibit the symmetry
E!ðθ; tÞ ¼ E!ðθþ 2π=5; t þ 2T=5Þ, i.e., M̂ ¼ R̂5τ̂5;2. That is, the
overall EM field is invariant under the combined operations of a
rotation by −2π/4 in θ and a time translation by T/4.

Next, we explore multiscale DSs (i.e., products of both micro-
scopic and macroscopic operations, which are typically different
from each other). These operations take on the form

γ̂M̂ E!¼ γ̂ E!ðΓ̂X!þ a!Þ ð3Þ

where γ̂ is a point group microscopic operation that acts on the po-
larization DOF of E!. For a general vector field, γ̂ can act on all local
parameters such as spin (26) and color (27, 28). Table S2 summa-
rizes all the building blocks for microscopic operation. As an
example, Fig. 1C shows a superposition of three twisted EM
beams with circular polarization that exhibits the high-order multi-
scale DS, R̂5;� 1τ̂5;1r̂5;2. That is, the overall EM field in Fig. 1C is in-
variant under the following combined operations: a rotation by
−2π/5 in θ, a time translation by T/5, and a rotation of the polari-
zation by 4π/5. This is an example of a DS that combines macro-
scopic and microscopic operations; however, the field itself is not
invariant under pure microscopic or macroscopic operations, but
only under the combined multiscale DS. The theory thus describes
the physical manifestation of coupling between the different DOF of
the EM field.

EM fields usually exhibit many DSs. For instance, the field in
Fig. 1B has both R̂4;� 1τ̂4;1 and îR̂4;1τ̂4;1 DSs, along with their
various products and powers. The combination of DSs is best de-
scribed by a group theory, where each group is closed and formed
by a finite set of generating DSs. With this approach, the complete
EM field can be obtained from the field information within a single
unit cell and the comprising symmetry group (similar to solid-state
lattices).

DSs of the induced polarization
Having discussed in general the DSs that characterize EM fields, we
go on to apply the symmetry theory to light-matter interactions, fo-
cusing on the example of HHG. We consider the nonlinear interac-
tion of a macroscopic medium irradiated by an electric field. Within
the Born-Oppenheimer and dipole approximations, the microscop-
ic Hamiltonian of a nonlinear system (in both the perturbative and
non-perturbative regimes) at a macroscopic point, R!, interacting
with a laser field that is given in atomic units and in the length
gauge, is given by

Ĥ
R
!ðtÞ ¼

X

j
�
r2

j

2
þ

1
2

X

i=j
j r!i � r!jj

� 1
þ
X

j
U

R
!ð r!jÞ

þ
X

j
E!ð R!; tÞ � r!j ð4Þ

where r!j is the microscopic coordinate of the jth electron, and U
R
!

is the time-independent potential that is associated with the electro-
static interactions of electrons in the system with the nuclei. We

assume here that the long-range interactions between the different
macroscopic points is negligible; therefore, the full wave function of
the noninteracting microscopic systems is a noninteracting product
of the microscopic wave functions in different spatial positions:
jψðtÞi ¼

Q

R
! jψ

R
!ðtÞi, where jψ

R
!ðtÞi is the wave function of a mi-

croscopic system located at R!. Even if the microscopic Hamiltonian
and wave function lack any microscopic DS, the total Hamiltonian
that the same amplitude includes the macroscopic structure,
ĤðtÞ ¼

P

R
!Ĥ

R
!ðtÞ, and the full wave function can exhibit multiscale

DSs. This can happen if all of the following exhibit a shared multi-
scale DS: (i) the electric field E!ð R!; tÞ, (ii) the sum of the micro-
scopic potentials U ¼

P

R
!U

R
!, and (iii) the wave function of the

initial state [which is typically the ground state of ĤðtÞ with
E!ð R!; tÞ ¼ 0] (for proof, see section S1). When ∣ψ(t)⟩ exhibits a
DS, the observables also uphold symmetry relations; the induced
polarization P!ð R!; tÞ that is odd under parity also upholds the
same DS (see section S1). Notably, while here we explore selection
rules in systems with multiscale DSs within the dipole approxima-
tion, the approach can, in principle, be applied to systems where
nondipole effects are substantial. In these cases, one could treat
the entire macroscopic system with a single parameter r or have
terms in the Hamiltonian that couple between the microscopic
and macroscopic coordinates. In both cases, one would need to
identify the DSs of the Hamiltonian.

Constraints on the Fourier spectrum of the induced
polarization
To analytically derive the selection rules due to DSs exhibited by
ĤðtÞ, we analyze a general P!ð R!; tÞ function in the Fourier domain

P!ð R!; tÞ ¼ P!ðX!Þ ¼
X

k
! F!ð k

!
Þexpði k

!
� X!Þ ð5Þ

When P!ðX!Þ is invariant under a general multiscale DS

P!ðX!Þ ¼ Ĝ
� 1

P!ðX!Þ ¼ γ̂� 1 P!ðM̂ X!Þ ¼ γ̂� 1 P!ðΓ̂� 1 X!� a!Þ ð6Þ

its Fourier decomposition must fulfill (for full derivation see section
S3)

γ̂ F!ðΓ̂ k
!
Þexpði k

!
� a!Þ ¼ F!ð k

!
Þ ð7Þ

Equation 7 implies that F!ð k
!
Þ is nonzero only for certain values

of k
!

and for specific polarizations of F!ð k
!
Þ, i.e., the symmetry

manifests in the spectral content of F!ð k
!
Þ. Also note that the

same Γ̂ appears in both real and Fourier domains. According to
Eq. 7, spectral DOFs that do not appear in the DSs of the system
are not restricted by the DS. Because F!ð k

!
Þ denotes the Fourier de-

composition of P!ðX!Þ, any DS exhibited by P!ðX!Þ directly corre-
sponds to restrictions, i.e., selection rules, on the spectral behavior
of F!ð k

!
Þ. The three different kinds of possible restrictions are (i)

forbidden harmonics, (ii) forbidden polarization of some harmon-
ics, and (iii) harmonics that must have the same amplitude or po-
larization up to reflection or rotations. “Harmonics” in the context
of selection rules denotes both the temporal and spatial frequency
content of the emitted light, that is, selection rules can, and often do,
lead to mixed restrictions that couple the spatial frequencies and
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angular momenta with the temporal frequency and polarization
components. In that sense, the multiscale theory leads to new
types of generalized restrictions linking all DOFs of the emitted
light. By definition, the Fourier coefficients F!ð k

!
Þ are N-dimen-

sional complex-valued vectors. To better understand the constraint
of Eq. 7 on F!ð k

!
Þ, it is useful to express F!ð k

!
Þ as the superposition

F!ð k
!
Þ ¼

PN
i¼1exp½iϕið k

!
Þ�Aið k
!
ÞF̂ið k
!
Þ, where the polarization

components ½F̂ið k
!
Þ�i are orthogonal unit vectors (e.g., right- and

left-handed circular unit vectors), ½Aið k
!
Þ�i are their real positive

amplitudes, and ½ϕið k
!
Þ�i are their phases. Such a decomposition

is possible also for singular fields (29, 30).
Consequently, Eq. 7 can be written as

X

i
exp½iϕiðΓ̂ k

!
Þþ i k
!
� a!�AiðΓ̂ k

!
Þγ̂F̂iðΓ̂ k

!
Þ

¼
X

i
exp½iϕið k

!
Þ�Aið k
!
ÞF̂ið k
!
Þ ð8Þ

which can have a nontrivial solution (i.e., at least one nonzero Ai) if
the polarization of the Γ̂ k

!
th harmonic under a γ̂ microscopic op-

eration is equal to the polarization of the k
!

th harmonic up to some
phase αi: γ̂

P
iAiðΓ̂ k

!
ÞF̂iðΓ̂ k

!
Þ ¼ expðiαiÞ

P
iAið k
!
ÞF̂ið k
!
Þ. Overall,

Ai can be nonzero only when the microscopic operation γ̂ can be
described as a product of two other microscopic operations, γ̂0

and γ̂00, which fulfill the following conditions: (i) F̂ið k
!
Þ and

exp(iαi) are the ith eigenvector and eigenvalue of γ̂0, respectively
(table S2 lists possible eigenvectors and eigenvalues). γ̂00 permutes
the i indices of the polarizations, namely, (ii) γ̂00F̂iðΓ̂ k

!
Þ ¼ F̂i'ð k

!
Þ

and (iii) AiðΓ̂ k
!
Þ ¼ Ai'ð k

!
Þ. Besides these, another requirement

for obtaining nontrivial and physically meaningful solutions is
that the phase difference ϕið k

!
Þ � ϕi'ðΓ̂ k

!
Þ should uphold the equa-

tion

ϕið k
!
Þ � ϕi'ðΓ̂ k

!
Þ ¼ k
!
� a!þ αi � 2πQ ð9Þ

where Q is any integer.

Selection rules
Equation 9, specifically, has different kinds of solutions depending
on Γ̂. For instance, if Γ̂ is the identity operator, then the selection
rule has the form k

!
� a!þ αi ¼ 2πQ: This form appears in the se-

lection rules in rows 4 to 8 in Table 1. This type of solution describes
the allowed harmonics and their polarization in a similar manner to
that of microscopic HHG. Alternatively, when the DS also involves
macroscopic rotations ðΓ̂ ¼ R̂n;mÞ; the equation for the phase of
F!ð k
!
Þ becomes ϕðR̂n;m k

!
Þ ¼ ϕð k

!
Þ þ 2πlm=n. Then, Eq. 9 leads

to the condition k
!
� a!þ 2πlm=nþ αi ¼ 2πQ. Here, l is the

allowed winding number that characterizes the OAM of the
emitted k

!
harmonic. Thus, assuming paraxiality of the emitted

harmonic beam, the selection rules in this case describe the
allowed harmonic indices, their OAMs, and their polarization
states. When the DS involves macroscopic reflections or time rever-
sal (e.g., Σ̂x or T̂), this restricts a pair of harmonics, e.g., k

!
and Σ̂x k

!
,

to have to same amplitude. The relationship between the

polarization of each harmonic in the pair then depends on the mi-
croscopic operation γ̂. When γ̂ is the identity operator or a rotation,
the pairs of harmonics have identical polarizations.When γ̂ is either
an improper rotation or a reflection, the polarizations of the har-
monic pair are reflections of each other. In the most general case,
all these different DOFs may be coupled in the sense that a given
emitted harmonic order may only be emitted when its polarization
state, its OAM, and its momentum all comply to a complex algebra-
ic relationship. In section S4, we derive the selection rules for sym-
metries that include time reversal or space reflection [for the case of
(1 + 1 + 2)D; rows 9 to 14 in Table 1].

So far, we have discussed discrete symmetries that are combina-
tions of discrete operations. However, Ĝ can also be a continuous
operator. For example, the continuous DSs
r̂δα E!ðR̂δ2πm=n X!þ δ a!Þ for any real δ leads, according to Eq. 9, to
the selection rules

k
!
� a!þ 2πlm=n+ α ¼ 0 ð10Þ

which means that the combination of polarization, energy, and
linear and angular momenta is constant and can be considered a
conserved charge, in a similar manner to the conservation of
torus knot angular momentum described in (18, 19).

Notably, the derived selection rules determine which emission
channels are allowed/forbidden by considering the symmetry of
the system only. The theory is insensitive to the detailed dynamics
of the system (e.g., electronic trajectories in HHG), which, if leads to
allowed channels, will also determine their complex amplitudes.

Table 1 summarizes the different DSs in the (2 + 1 + 1)D case
(i.e., where there are two microscopic polarization dimensions,
one time axis and one macroscopic axis) and their associated selec-
tion rules. We again emphasize that these involve new selection
rules as compared to the microscopic theory (13), i.e., the inclusion
of macroscopic DOF in the EM field can change the system’s re-
sponse and lead to new control mechanisms for XUV light in
HHG or new routes for ultrafast spectroscopy. Higher dimension-
alities can be similarly derived.

DSs and selection rules of twisted light
We demonstrate numerically that these analytically derived selec-
tion rules are upheld by using the Lewenstein model (due to its
high numerical efficiency) (32) to calculate the HHG spectrum
driven by the field E!ð R!; tÞ. An example is shown in Fig. 1,
E!ðθ; tÞ/ êþcosð2ωt � θÞ þ ê� ½cosð2ωtÞ þ cosð3ωt þ θÞ�, where
êþ and ê� are the left- and right-rotating circularly polarized polar-
izations, respectively. This field exhibits a DS of τ̂5;1R̂5;� 1r̂5;2, and
therefore, the selection rule for the harmonics emitted from this
field (derived in Table 1, row 7) is q − l ± 2 = 5n. Here, q is the tem-
poral harmonic, l is the OAM winding number, and n is an integer,
such that this selection rule essentially couples the harmonic order
with its angular momenta and polarization in one generalized con-
straint, i.e., certain harmonic orders can only be emitted with
certain values of OAM with (±) circular polarization. This type of
coupling is not possible without the multiscale operations. The se-
lection rule is numerically investigated in Fig. 1D, which shows the
intensity of the left- and right-rotating harmonics as a function of q
and l, agreeing well with the analytic theory.
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Our theory is also applicable to non-isotropic and inhomoge-
neous media. All that is needed is to address the symmetry of the
light-matter system that has the shared symmetry of the light part
and the matter part, which will have lower symmetry in case of non-
isotropic and inhomogeneous media. For example, following a
recent publication (33), we investigate the symmetries and selection
rules of a circularly polarized field with orbital momentum,
E!/ êþexp½iðωt þ l0θÞ�, propagating along the optical axis of a β-
BaB2O4 (BBO) crystal (Fig. 1E). Tang et al. (33) explored experi-
mentally the emitted second harmonic generation (SHG) in this
system, with l0 = 0 or 1, and observed that SHG fields of the
forms ê� exp½ið2ωt þ 2l0θÞ�, êþexpfi½2ωt þ ð2l0 � 2Þθ�g, and
êþexpfi½2ωt þ ð2l0 þ 4Þθ�g were generated. These results were ex-
plained by a cascaded linear spin-orbit interaction and a perturba-
tive nonlinear interaction. As shown below, our theory (which is
valid in the perturbative and nonperturbative regimes) directly
yields all of the allowed channels, only some of which were obtained
by the cascaded model (33).

The BBO crystal irradiated by the field E/ êþexp½iðωt þ l0θÞ�
has the combined symmetry of τ̂6;l0þ4R̂6;� 1r̂6;2. Therefore, according
to Eq. 9, the selection rules are q(l0 + 4) − l + 2s = 6Q, where q is the
temporal harmonic, l is the OAMwinding number, s is the spin, and
Q is an integer. Hence, for SHG (q = 2), we get the selection rule for
the OAM with spin, s = ±1

l ¼ 6Qþ 2þ 2l0 + 2 ð11Þ

This result agrees with the measured and predicted results in
(33) and also predicts more allowed channels (see Fig. 1F showing
the rich structure of the various allowed channels).

Space-time polarized quasicrystal
We now apply the theory to nonperiodic systems, e.g., quasicrystals
(23) and optical quasicrystals (24, 25), by using the superspace
concept (21), where M (the effective number of macroscopic
DOF) is larger than the physical macroscopic dimension. We dem-
onstrate this option by deriving the HHG selection rules driven by a
field with a spatiotemporal quasi-periodic structure. Specifically, we
consider a superposition of four fields that interact with an isotropic
argon gas medium with thickness much smaller than the coherent
length. The vectorial time-space quasicrystal arises from the struc-
ture of the electric field, not from the medium. The field, limited to
the (t, X ) axes [i.e., dimensionality of (2 + 1 + 1)D], is described by

E!ðt;XÞ ¼ Afcos½ωt þ ð1þ
ffiffiffi
2
p
ÞkX� � cos½ð1þ

ffiffiffi
2
p
Þωt � kX�gx̂

þ fcos½ð1þ
ffiffiffi
2
p
Þωt þ kX� � cos½ωt � ð1þ

ffiffiffi
2
p
ÞkX�gŷ

ð12Þ

This field has a vectorial quasicrystal structure in space-time, as
shown in Fig. 2A. Using the superspace representation [with dimen-
sionality (2 + 4 + 4)D], the field can be rewritten in superspace as

E!ðt1; t2; t3; t4;X1;X2;X3;X4Þ

¼ Afcos½ωt1 þ ð1þ
ffiffiffi
2
p
ÞkX1� � cos½ð1þ

ffiffiffi
2
p
Þωt2 � kX2�gx̂

þ fcos½ð1þ
ffiffiffi
2
p
Þωt3 þ kX3� � cos½ωt4 � ð1þ

ffiffiffi
2
p
ÞkX4�gŷ

ð13Þ

where Xj are new coordinates introduced in the higher dimension-
ality of the superspace representation. In this picture, E! is periodic
in all coordinates Xj=1,2,3,4. Therefore, the induced polarization will
also be periodic in Xj=1,2,3,4. The induced polarization can then be

expressed with spatial frequencies of k
!
¼
X4

j¼1
qj

b
!

j ¼ q1ð1þ
ffiffiffi
2
p
ÞkX̂1 � q2kX̂2 þ q3kX̂3 � q4ð1þ

ffiffiffi
2
p
ÞkX̂4, where

qj is an integer, which also corresponds to the number of photons
annihilated from each field.

To obtain the HHG selection rules, we project the superspace
representation back to physical space, i.e., take
X̂1 ¼ X̂2 ¼ X̂3 ¼ X̂4 ! X̂. Following this, the allowed X axis
spatial frequencies are kðXÞ

q!
¼ q1ð1þ

ffiffiffi
2
p
Þk � q2kþ q3k

� q4ð1þ
ffiffiffi
2
p
Þk, which is equivalent to a condition of conservation

of X axis momentum. Other symmetries also connect the spatial
and temporal harmonic orders. For instance, the continuous sym-
metry E! t1 þ δ

ω ; t2; t3; t4;X1 � δ=ð1þ
ffiffiffi
2
p
Þk;X2;X3;X4

� �
¼

E!ð t!;X1;X2;X3;X4Þ for any δ, which is associated with the

Table 1. DSs and their associated selection rules in the (2 + 1 + 1)D case
(i.e., where there are two microscopic polarization dimensions, one
time axis, and one macroscopic axis). The harmonic order of the
temporal (spatial) frequency is q1 (q2). Notably, the selection rules are
affected by the inclusion of macroscopic operations. In row 1, a continuous
space-time translation DS leads to energy-momentum conservation (15,
31). In row 2, a continuous space-time translation and microscopic rotation
DS leads to energy-momentum-spin conservation (14, 16, 18). In row 3, the
DS is the same as in row 2, except that here the rotation is along an ellipse
in which the ratio of the minor to major axis is b. This leads to energy-
momentum-ellipticity conservation.

Dynamical
symmetry

Spectral
selection rule

Polarization

1 τ̂δ Ĵβδ q1 + βq2 = 0 Any

2 τ̂δ Ĵβδ r̂αδ q1 + βq2 ± α
= 0

(±) Circular

3 τ̂δ Ĵβδ êαδ q1 + βq2 ± α
= 0

Ellipticity of ±b

4 τ̂2 Ĵ2; τ̂2 Ĵ2 r̂2 q1 + q2 = odd Any

5 τ̂2 Ĵ2σ̂ q1 + q2 = even In σ̂ plane

q1 + q2 = odd Orthogonal to σ̂ plane

6 τ̂n0 Ĵn0 ;m q1 + q2 = n0n Any

7 τ̂n0 ;m1
Ĵn0 ;m2

r̂n0 ;m3
q1m1 + q2m2 ±

m3 = n0n
(±) Circular

8 τ̂n0 ;m1
Ĵn0 ;m2

ên0 ;m3
q1m1 + q2m2 ±

m3 = n0n
Ellipticity of ±b

9 Î; Î̂r2; Î̂τ2 Ĵ2 r̂2 Aq1,q2 = A−q1,−q2 Linear, F̂q1 ;q2 ¼ F̂� q1 ;� q2
10 Îσ̂; Î̂τ2 Ĵ2σ̂ Aq1,q2 = A−q1,−q2 Ellipse axis orthogonal to σ̂

plane, F̂q1 ;q2 ¼ σ̂F̂� q1 ;� q2
11 Σ̂x τ̂2; Σ̂x τ̂2 r̂2 Aq1,q2 = Aq1,−q2 F̂q1 ;q2 ¼ F̂q1 ;� q2
12 Σ̂x τ̂2σ̂ Aq1,q2 = Aq1,−q2 F̂q1 ;q2 ¼ σ̂F̂q1 ;� q2
13 T̂ Ĵ2; T̂ Ĵ2 r̂2 Aq1,q2 = A−q1,q2 Linear

14 T̂ Ĵ2σ̂ Aq1,q2 = A−q1,q2 Ellipse axis orthogonal to
σ̂ plane
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evolution of only the first subfield of the four subfields in Eq. 12. By
applying Eq. 9, we arrive at the constraint k

!
� a!¼ q01 � q1 ¼ 0,

where q1 is the spatial X̂1 harmonic and q01 is the temporal t1 har-
monic, q01 ¼ q1. Similarly, this relationship is valid to all the sub-
fields; hence, q0j ¼ qj, indicating that the emitted ωq!

temporal harmonics have the same qj of
kðXÞ

q!
:ωq! ¼ q1ωþ q2ð1þ

ffiffiffi
2
p
Þωþ q3ð1þ

ffiffiffi
2
p
Þωþ q4ω. In the pho-

tonic picture, this means that each annihilated photon gives its
energy and momentum to the generated ωq! photon.

The field in Eq. 12 also exhibits the following two DSs:
σ̂x E! t;X1 þ

π
ð1þ

ffiffi
2
p
Þk ;X2 þ

π
k ;X3;X4

� �
¼ E!ðt;X1;X2;X3;X4Þ and

σ̂y E! t;X1;X2;X3 þ
π
k ;X4 þ

π
ð1þ

ffiffi
2
p
Þk

� �
¼ E!ðx; t1; t2; t3; t4Þ: Apply-

ing our theory to these DSs (Eq. 7) yields

σ̂x F!ð k
!
Þexp½iðq1 þ q2Þπ� ¼ F!ð k

!
Þ

σ̂y F!ð k
!
Þexp½iðq3 þ q4Þπ� ¼ F!ð k

!
Þ

ð14Þ

Equation 14 dictates that harmonics with an odd q1 + q2 and an
even q3 + q4 are x-polarized, harmonics with an even q1 + q2 and an
odd q3 + q4 are y-polarized, and all other harmonics are forbidden.
The field in Eq. 12 also exhibits higher symmetries because of its
space-time polarized octagonal quasicrystal structure. The octago-
nal quasicrystal with an eightfold symmetry is well-known in crys-
tallography of two-dimensional (2D) static spatial arrangements of
atoms (34). Here, the vector electric field exhibits symmetries that
are combinations of the d8 dihedral group operations in space-time
followed by microscopic operations

r̂4 E!½R̂8ðζ; ηÞ� ¼ σ̂3π
4

E!½Σ̂0 or π
2
ðζ; ηÞ� ¼ σ̂π

4
E!½Σ̂π

4 or 3π
4
ðζ; ηÞ�

¼ E!½Σ̂1þ2n
8 πðζ; ηÞ� ¼ E!ðζ; ηÞ ð15Þ

where the subscript of σ̂ (Σ̂) denote the angle of the reflection axis in
the x − y (ζ − η) plane, and n is an integer, and where
ζ ¼ kx and η ¼ ωt are the dimensionless space-time variables. Ac-
cording to Eq. 7, the polarized octagonal symmetries appear also in
the Fourier domain of the driving field in Eq. 12. This field has eight

Fig. 2. Nonlinear wave mixing in optical time-space vectorial quasicrystal. (A) The electric field in normalized space and time poses an octagonal quasicrystal vec-
torial structure. The direction and amplitude of the polarization is mapped to a color according to the center plot. (B) The Fourier representation of the octagonal qua-
sicrystal field has a simpler octagonal structure with eight peaks, where the polarization from one peak to the other is rotated by π/2. (C) The complex quasicrystal
symmetry is conserved in the simulated induced polarization, P

!
. (D) More peaks, i.e., more harmonics, are generated in the induced polarization, and the polarized

octagonal structure is conserved.
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peaks in the Fourier domain (Fig. 2B), where each peak is linearly
polarized along x̂ or ŷ rotated π/2 from the next peak, which is
rotated by π/4 in the Fourier plane, as expected from Eq. 15. In ad-
dition, the induced polarization, calculated in argon by the Lewen-
stein model (32), exhibits symmetries in the space-time domain
(Fig. 2C) and in the Fourier domain (Fig. 2D)

r̂4 F!ðR̂8 ~k
!
Þ ¼ σ̂3π

4
F!ðΣ̂0 or π

2
~k
!
Þ ¼ σ̂π

4
F!ðΣ̂π

4 or 3π
4

~k
!
Þ

¼ F!ðΣ̂1þ2n
8 π

~k
!
Þ ¼ F!ð ~k

!
Þ ð16Þ

where ~k
!

is a vector composed of the two dimensionless frequen-
cies, ζ and η.

Experimental observation of multiscale DS and
selection rules
We investigate experimentally an HHG selection rule that is based
on a (2 + 1 + 1)D multiscale DS, i.e., DS in two microscopic dimen-
sions, time, and one macroscopic dimension, which is the propaga-
tion axis. The experimental laser field consists of three beams: a
bicircular beam and additional Bessel beam, with the following
form

E!φðt; z; ρÞ ¼ êþe� ðρ=wÞ2a1cosðωt0Þ þ ê� e� ð2ρ=wÞ2a2cosð2ωt0Þ

þ E!
Bessel

φðt; z; ρÞ ð17Þ

where z is the propagation axis, ρ is the radial axis, t′ is the retarded
time (t′ = t − z/c), w is the waist of the ω Gaussian beam, and
a1 and a2 are the amplitudes of the beams. The Bessel beam is
given by

E!
Bessel

φðt; z; ρÞ ¼ a3½sinðφþ π=4Þêþ þ sinðφ

� π=4Þê� �cosðωt0 þ βzÞJ0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kβ � β2
q

ρÞ ð18Þ

where a3 is the amplitude, k = ω/c is the wave vector, β is the on-axis
difference between the wave vectors of the Gauss and Bessel beams,
J0 is the zero-order Bessel function of the first kind, and ϕ controls
the polarization of the Bessel beam. [In this experiment, ϕ corre-
sponds to the angle between the optical axis of the quarter-wave
plate (QWP) and the axis of the incoming linearly polarized
Bessel beam.] The use of the Bessel beam allows us tunable
control over the shape and structure of the light beam in mutliscale
dimensionality—the polarization states of the beams control the
microscopic dimensions, and the difference in phase velocity
between the bicircular and Bessel beams allows to generate macro-
scopic structures along the z axis (the beams’ propagation axis) (35).
Overall, these knobs allow us to tune the DSs of the field, including
generation of multiscale symmetries, even when the system does not
exhibit a unique symmetry inmicroscopic space alone. For example,

when ϕ = π/4, the polarization of E!
Bessel

is êþ, similar to that of the
ω Gaussian beam. Therefore, the total field exhibits the microscopic
DS, r̂3;1 E!φ¼π

4
ðt � T=3; z; ρÞ ¼ E!φ¼π

4
ðt; z; ρÞ, i.e., the well-studied

threefold microscopic rotational DS of the counter-rotating bicircu-
lar field that leads to the selection rule, q = 3Q ± 1, with circular
polarization, ê+(36). On the other hand, for ϕ = −π/4 (and a polar-

ization of E!
Bessel

φ¼� π=4that is ê� , similar to the 2ω Gaussian beam),

the total field does not exhibit any microscopic DS; rather, it only
exhibits a multiscale DS that also involves translation operations
along its propagation axis,
r̂3;1 E!φ¼� π

4
ðt � T=3; z þ L=3; ρÞ ¼ E!φ¼� π

4
ðt; z; ρÞ, where L = 2π/β

is the spatial period of the total field. According to Eq. 9, this multi-
scale DS should lead to the selection rule, q1 − q2 = 3Q ± 1, with
circular polarization ê+, where q1 and q2 are the temporal and lon-
gitudinal harmonic orders, respectively. Last, when ϕ ≠ π/4 + nπ,
the total field lacks any DS, and therefore, all the harmonic orders
and polarizations are allowed.

We shall now focus on the case when ϕ = −π/4, which leads to
multiscale DS. Figure 3A illustrates the Ẑ3;1τ̂3;� 1r̂3;1 DS of the
E!φ¼� π

4
field, where the time domain Lissajou curve is plotted

every z step, visualizing a 3D surface (color-coding represents
time). The three blue Lissajou plots are separated by L/3 from
each other and show the multiscale Ẑ3;1τ̂3;� 1r̂3;1 DS. Notably, this
is a symmetry of all the electric fields involved in the light-matter
interaction: each component of E! and the XUV field (Fig. 3B).
In the experiment, we only measured the XUV emission with
small divergence, i.e., with q2 = 0. This on-axis emitted XUV field
is summed up coherently along the z axis during propagation
(Fig. 3B). We first explore HHG in this scheme numerically.
Figure 3C presents the microscopic yield of different harmonics
as a function of ϕ. As shown, only ϕ = π/4 (with the microscopic
τ̂3;� 1r̂3;1 DS) leads to the forbidden 3Q harmonics. For ϕ = −π/4,
the yield of the 3Q harmonics is maximized.Whenwe include prop-
agation effects along the z axis (Fig. 3D), the 3Q harmonics become
forbidden at ϕ = −π/4 because of the multiscale Ẑ3;1τ̂3;� 1r̂3;1 DS.

Our experimental setup is illustrated in Fig. 3E. The bicircular
beam is formed by the MAZEL TOV apparatus (37). The Bessel
beam is shaped by the spatial light modulator (SLM), and its polar-
ization is controlled by the QWP angle, ϕ. Figure 3F shows the mea-
sured yield of harmonics 23 to 29 as a function of the QWP angle
(each harmonic is normalized by its own peak intensity). The sup-
pression of the 3Q harmonic orders for both the QWP angles at
+45° and −45° (yielding ϕ = π/4 and ϕ = −π/4 in Eq. 18, respective-
ly) is observed, as predicted from the selection rules by microscopic
(+45°) and multiscale (−45°) DSs. The 3Q harmonics are not fully
suppressed because of imperfect achromatic QWP in the MAZEL
TOVapparatus, which leads to deviations from circular polarization
in the bicircular field and by partial absorption of the harmonics in
the interaction region as discussed in section S2.

DISCUSSION
We presented a theory for symmetries and selection rules in
(extreme) nonlinear optics for multiscale systems. We introduced
symmetries that couple time, macroscopic, and microscopic
DOFs. We showed how these symmetries are transferred to the
induced polarization and lead to constraints, i.e., selection rules,
on physical observables. Multiscale DSs and selection rules investi-
gations in three different systems are presented: with spin-orbit
nonlinear interaction, with quasi-periodic structures, and experi-
mental example with multiscale DS in time, polarization, and prop-
agation axis.

A potential application of our theory is ultrafast spectroscopy for
the detection of the symmetry of the medium. This is done using a
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driving field that exhibits a known DS.When the medium lacks that
DS, the symmetry of the total system is reduced so that some restric-
tions in the selection rules are removed (38). One important
medium that breaks symmetries is a chiral medium, i.e., a
medium that is asymmetric under any reflection or inversion.
Probing the chirality of molecules can be a challenging task, and
using multiscale DS consideration can help in choosing the right
microscopic (11, 12, 39) and macroscopic field parameters to
enhance the far-field chiral signal for molecular chirality detection
and discrimination as shown in section S6. Our work also paves the
way for several interesting directions beyond harmonic generation.
Extending the theory to nonlocal interactions, which are especially

important for HHG with long-wavelength high-power lasers (40)
and condensed matter (41), may lead to insights regarding multi-
scale matter, light, and their interaction. Extensions to complexed
structured laser ablation (42, 43) or controlled optoelectronic (44)
to easily shaping complex structures should also be possible and ex-
citing, leading to inducing symmetries in the media. Overall, we
expect that the use of multiscale symmetries will lead to extended
understanding of, and novel findings in, various multiscale systems.

Fig. 3. Experimental investigation of selection rules in HHG due to multiscale dynamical symmetry. (A) The driver field (Eq. 17) with ϕ = −π/4 plotted as a function
of the propagation axis, Z, and retarded time, t′ (shown in color). Plotting the fields during the three propagation steps shows a threefold Ẑ3;1τ̂3;1 r̂3;� 1 symmetry. (B) The
output XUV field is a coherent sum of all the emitted XUV fields during propagation and has threefold τ̂3;1 r̂3;� 1 symmetry, which results in the 3Q ± 1 selection rule. (C)

Normalized intensity of several harmonic orders as a function of ϕ, calculated for only one propagation point, E!φðt; z ¼ 0; ρÞ. The 3Q harmonics are forbidden only when

ϕ = 45°. (D) Normalized intensity of several harmonic orders as a function of ϕ, calculated for E
!

φðt; z;ρÞ. The 3Q harmonics (e.g., harmonics 24 and 27) are forbidden at
both ϕ = −45° and ϕ = 45°, which correspond to the ê� and êþ circular polarizations of the Bessel beam, respectively. The 3Q harmonics are forbidden at ϕ = 45° by the
microscopic DS, τ̂3;1 r̂3;� 1, and at ϕ = −45° by the multiscale DS, Ẑ3;1τ̂3;1 r̂3;� 1. (E) Schematic plot of the experimental setup. The driver field is prepared by focusing the
bicircularω − 2ωGaussian beams (produced by theMAZELTOV apparatus) and theω Bessel beam (shaped by the SLM) with controlled polarization (by the QWP) into the
semi-infinite gas cell. (F) Normalized intensity of several harmonic orders as a function of the Bessel QWP angle, ϕ. Suppression of the 3Q harmonics (24,27) for both−45°
and 45° of the QWP, which leads to the ê� and êþ circular polarizations of the Bessel beam, respectively, are clearly observed. AQWP, achromatic QWP; SIGC, semi-infinite
gas cell; SLM, spatial light modulator; LG, lens of Gaussian beam arm; LB, lens of Bessel beam arm; HM, holed mirror; BS, beam splitter; P, polarizer; HWP, half waveplate.
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MATERIALS AND METHODS
The experimental setup is illustrated in Fig. 3E. The output beam of
a 1-kHz, 35-fs full width at half maximum, 800-nm carrier wave-
length, Ti:sapphire amplifier (Coherent Legend USX) is split into
two paths. The first beam, with 2.25 mJ per pulse, retains its
spatial Gaussian profile and is focused with a lens ( fLG = 300 mm,
Rayleigh range of the Gaussian beams = 5mm) through theMAZEL
TOV apparatus (37). This apparatus consists of (i) an SHG crystal
(0.5-mm-thick BBO crystal), which transfers ~15% of the energy to
the second harmonic beam; (ii) calcite plates, which precompensate
for group delays induced by normally dispersive optics down the
beam path; and (iii) a single achromatic QWP (for the two spectral
components) that converts the linear s-polarized fundamental and
perpendicular p-polarized SH incoming beams to counter-rotating
circularly polarized beams. This intense beam also drills a hole in
the aluminum foil, terminating a semi-infinite gas cell (SIGC)
filled with argon (45 torr). The second beam, with 0.5 mJ per
pulse, undergoes an amplitude modulation using two perpendicu-
larly oriented polarizers on either side of a phase-only SLM
(HOLOEYE PLUTO). This beam acquires the spatial distribution
of a ring, which is then imaged and focused ( fLB3 = 150 mm) to
form a Bessel beam with β/k = 0.0015. Here, k = 2π/800 nm is the
wave vector, and β is the on-axis difference between thewave vectors
of the Gauss and Bessel beams. This experimental condition corre-
sponds to a periodicity of L ≈ 0.5 mm, which is one order of mag-
nitude smaller than the Rayleigh range. A QWP is used to scan the
polarization of the Bessel beam. Both beams are combined using a
holed mirror and are focused close to the output of the SIGC, where
the high harmonic is generated. An aluminum filter downstream of
the SIGS removes the pump beams before the spectrum of the HHG
beam is measured using the XUV spectrometer. We first inserted
only the bicircular Gaussian beam fields (i.e., without the Bessel
beam) and phase-matched the HHG process by tuning the gas pres-
sure, adjusting the location of the focus, and changing the opening
of the aperture before the lens to maximize the 3n ± 1 harmonics.
Then, we added the Bessel beam and measured the harmonic inten-
sity generated by the total driver field as a function of the QWP
angle (i.e., ϕ).
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