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1) DSs of the induced polarization arising from DSs of the driver field

We will show here how, and in under which physical conditions, the multi-scale DSs of the driver field are 

transferred to the induced polarization. The dynamics of an electronic (with N electrons) wave function 

of a system with the Hamiltonian in eq. (4) of the main text, 𝜓�⃗� (𝑟 1, 𝑟 2, … , 𝑟 𝑁, 𝑡), is governed by the 

following TDSE: 

𝑖
𝜕

𝜕𝑡
𝜓�⃗� (𝑟 1, … , 𝑟 𝑁, 𝑡)

= [∑
∇𝑗
2

2
+
1

2
∑|𝑟 𝑖 − 𝑟 𝑗|

−1

𝑖≠𝑗

+∑ 𝑈�⃗� (𝑟 𝑗)
𝑗

𝑗

+∑�⃗� (�⃗� , 𝑡) ∙ 𝑟 𝑗
𝑗

]𝜓�⃗� (𝑟 1, … , 𝑟 𝑁 , 𝑡) 
(1) 

Applying the coordinate transformation, 𝑟 𝑗 → 𝛾𝑟 𝑗 (i.e., a point group operation, 𝛾, operating on the 

microscopic space), and time transformation, 𝑡 → 𝑠𝑡 + 𝜏, where 𝜏 is the time translation and 𝑠 = ±1 (-1 

for time-reversal), on eq. (1) yields 

𝑖
𝜕

𝜕𝑡
𝜓�⃗� (�̂�𝑟 1, … , 𝛾𝑟 𝑁, 𝑠𝑡 + 𝜏)

= [∑
∇𝑗
2

2
+
1

2
∑|𝛾𝑟 𝑖 − 𝛾𝑟 𝑗|

−1

𝑖≠𝑗

+∑ 𝑈�⃗� (𝛾𝑟 𝑗)
𝑗

𝑗

+∑�⃗� (�⃗� , 𝑠𝑡 + 𝜏) ∙ 𝛾𝑟 𝑗
𝑗

]𝜓�⃗� (𝛾𝑟 1, … , 𝛾𝑟 𝑁, 𝑠𝑡 + 𝜏) 

(2) 

If the electric field is conserved under the multi-scale DS (i.e., 𝛾�⃗� (�⃗� , 𝑠𝑡 + 𝜏) = �⃗� (M̂𝑅�⃗� , 𝑡) and the 

microscopic potential of the medium shares the same symmetry (i.e., the relation between the 
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microscopic static potential in points �⃗�  and M̂𝑅�⃗�  is 𝑈�⃗� (𝛾𝑟 ) = 𝑈M̂𝑅�⃗� 
(𝑟 ), as is the case with homogeneous 

and isotropic media), then: 

𝑖
𝜕

𝜕𝑡
𝜓�⃗� (𝛾𝑟 1, … , 𝛾𝑟 𝑁, 𝑠𝑡 + 𝜏)

= [∑
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+
1

2
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−1

𝑖≠𝑗
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𝑗
𝑗
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] 𝜓�⃗� (�̂�𝑟 1, … , 𝛾𝑟 𝑁 , 𝑠𝑡 + 𝜏) 

(3) 

such that 

𝑖
𝜕

𝜕𝑡
𝐺′̂𝜓�⃗� (𝑡) = �̂�M̂𝑅�⃗� 

(𝑡)𝐺′̂𝜓�⃗� (𝑡) (4) 

where 𝐺′̂ is a unitary (or antiunitary, in the case of time reversal) transformation of time and microspace, 

where 𝐺′̂M̂𝑅 = 𝐺. Now, if we look at the full Hamiltonian of the non-interacting microscopic systems, 

�̂�(𝑡) = ∑ �̂��⃗� (𝑡)�⃗� , which describes the dynamics of the full wave function of non-interacting microscopic 

systems, 𝜓(𝑡) = ∏ 𝜓�⃗� (𝑡)�⃗� , we see that according to eq. (4), the full Hamiltonian is conserved under the 

multi-scale DS: 

𝐺�̂�(𝑡)𝐺−1 =∑𝐺′̂�̂�M̂𝑅�⃗� 
(𝑡)

�⃗� 

𝐺′
−1
 = ∑�̂��⃗� (𝑡)

�⃗� 

= �̂�(𝑡) (5) 

Therefore we can use Floquet theory in a similar manner as in (13). For a periodic Hamiltonian (if the EM 

field is aperiodic with multiple frequencies, then the system can by described by the many-mode Floquet 

state theory(45, 46)), �̂�(𝑡 + 𝑇) = �̂�(𝑡), and the Floquet Hamiltonian, ℋ𝐹 = �̂�(𝑡) − 𝑖
𝜕

𝜕𝑡
, has eigenstates 

which are T-periodic Floquet modes, 𝑢𝑛(𝑡), with corresponding quasi-energies, 𝜀𝑛. Solutions to the time-

dependent Schrödinger equation (TDSE) of the full Hamiltonian, �̂�(𝑡), are comprised of Floquet states 

𝜓𝑛(𝑡) = 𝑒
𝑖𝜀𝑛𝑡𝑢𝑛(𝑡). If 𝐺�̂�(𝑡) = �̂�(𝑡) (eq. (5)), then [�̂�,ℋ𝐹] = 0, such that the Floquet modes are 

simultaneous eigenmodes of the Floquet Hamiltonian and 𝐺. Furthermore, since 𝐺 is unitary or anti-

unitary, its eigenvalues are roots of unity; �̂�𝑢𝑛(𝑡) = 𝑒
𝑖𝜙𝑛  𝑢𝑛(𝑡), where 𝜙𝑛 is real. Hence, if the initial 

wave function populates a single Floquet state, any measured observable (e.g. the induced polarization), 

𝑜(�⃗� , 𝑡) = ⟨𝑢(𝑡)|�̂�|𝑢(𝑡)⟩ = ⟨𝑢(𝑡)| ∑ �̂��⃗� �⃗� |𝑢(𝑡)⟩, also upholds the DS:  

𝑜(�⃗� , 𝑡) = ⟨𝑢(𝑡)|𝐺−1�̂��̂��̂�−1�̂�|𝑢(𝑡)⟩ = 𝐺𝑜(�⃗� , 𝑡) (6) 

The EM field is often a pulse with finite duration, so the requirement becomes that the wave function 

before the pulse exhibits the DS, which is the case for an isotropic gas in the ground state. The pulse 

should be turned on adiabatically to approximately initiate steady-state dynamics of a single Floquet state 

(47). Another requirement is that the temporal frequencies of the driver and HHG emission are not close 

to a resonance frequency of the potential, 𝑈 (47). Also, if the initial state is not a single Floquet mode, but 

a superposition of Floquet modes, eq. (6) will not hold unless the medium consists of an isotropic 

ensemble that contains an equal population of all degenerate states (13). Under the above conditions, 

the symmetry of the field, �⃗� (M̂𝑅�⃗� , 𝑡) = 𝐺
′̂�⃗� (�⃗� , 𝑡), is transferred to the induced polarization, 

�⃗� (M̂𝑅�⃗� , 𝑡) = 𝐺
′̂�⃗� (�⃗� , 𝑡). 



Notably, the above discussion did not include macroscopic effects that could also affect the symmetry-

relations and possible break the symmetry (e.g. due to phase-matching, spatial averaging, etc.). They are 

discussed in the next section. 

 

2)  Selection rules in the induced polarization and their appearance in the far field of the HHG 

In the main text, we discussed how DSs lead to selection rules in the Fourier components of the induced 

polarization. Here we discuss and analyze how this selection will appear in the far field of the harmonic 

generation, which is measured in HHG experiments.  

We  first discuss the macroscopic conditions under which the DSs of the driver field are transferred to the 

induced polarization. The principle condition is that the entire system (driver field and medium) should 

be conserved under the multi-scale DSs. Imperfections in these symmetries (e.g., due to non-uniform 

density of the gas) lead to deviations from the symmetry and selection rules. In a case where the symmetry 

includes propagation, in order that the driver field will be periodic in the propagation axis, it needs to be 

approximately non-depleted and loosely focused (such that the Rayleigh length of the focusing beam is 

larger than the interaction length). We point out that the driver field (i.e., �⃗� (�⃗� , 𝑡)) is the field inside the 

interaction region which is sensitive to the medium dispersion. Moreover, phase mismatch between the 

induced polarization and emitted harmonic field can alter the transfer of the selection rules to the far 

field.  

Now we will analyze how the selection rules in the Fourier components of the induced polarization will 

appear in the far field of the harmonic generation. The induced polarization radiates the HHG field, �⃗� 𝐻𝐻𝐺 , 

according to the inhomogeneous wave equation:  

(𝛻2 −
1

𝑐2
𝜕𝑡
2) �⃗� 𝐻𝐻𝐺(𝑋, 𝑌, 𝑍, 𝑡) =

4𝜋

𝑐2
𝜕𝑡
2�⃗� (𝑋, 𝑌, 𝑍, 𝑡) (7) 

This equation can be solved numerically using the discrete dipole approximation (48). The detection of 

the harmonics is typically performed at approximately one-meter scale after the interaction region, and 

the diameter of the detector is several centimeters. (In many HHG setups there is also a small aperture 

between the interaction region and the detector which also restricts the detection to small divergence.) 

Therefore, the detection captures the far-field of the HHG emission which can be approximated by the 

Fraunhofer diffraction equation for each Z slice of the interaction region with a total length, 𝐿: 

�⃗� 𝐻𝐻𝐺(𝑥𝑑 , 𝑦𝑑 , 𝜔) ≃ ∫𝑑𝑍
𝑘2𝑒𝑖𝑘(𝑧𝑑−𝑍)𝑒

𝑖𝑘(𝑥𝑑
2+𝑦𝑑

2)
2(𝑧𝑑−𝑍)

2𝜋𝑖(𝑧𝑑 − 𝑍)

𝐿

0

∬𝑑𝑋𝑑𝑌𝑒
−𝑖𝑘
𝑧𝑑−𝑍

(𝑥𝑑𝑋+𝑦𝑑𝑌)�⃗� (𝑋, 𝑌, 𝑍, 𝜔) (8) 

where 𝑥𝑑  and 𝑦𝑑 are the coordinates of the detector that is located 𝑧𝑑 distance from the interaction 

region, and 𝑘 is the wavenumber of temporal frequency, 𝜔. (Outside the interaction region 𝑘 = 𝜔/𝑐, and 

inside the interaction region 𝑘 = 𝑛𝜔𝜔/𝑐 (|𝑛𝜔 − 1| ≪ 1, is typically the case in the XUV.) By using the 

condition 
𝐿𝑘𝑥𝑑𝑋

𝑧𝑑
2 ≲ 0.01𝑞𝜔 ≪ 1, we can approximate: 



�⃗� 𝐻𝐻𝐺(𝑥𝑑 , 𝑦𝑑 , 𝜔)

≈
𝜔2𝑒

𝑖
𝜔
𝑐
𝑧𝑑(1+

𝑥𝑑
2+𝑦𝑑

2

2𝑧𝑑
2 )

2𝜋𝑖𝑧𝑑𝑐
2

∫𝑑𝑍𝑒
−𝑖
𝑛𝜔𝜔
𝑐

𝑍(1−
𝑥𝑑
2+𝑦𝑑

2

2𝑧𝑑
2 )

𝐿

0

∬𝑑𝑋𝑑𝑌𝑒
−𝑖𝑛𝜔𝜔
𝑐𝑧𝑑

(𝑥𝑑𝑋+𝑦𝑑𝑌)�⃗� (𝑋, 𝑌, 𝑍, 𝜔) 
(9) 

The last term is the 2D far field Fourier transform with frequencies 𝑘𝑥𝑑/2𝜋𝑧𝑑 and 𝑘𝑦𝑑/2𝜋𝑧𝑑. This 

equation is easy to calculate numerically for a given �⃗� (𝑋, 𝑌, 𝑍, 𝜔). However, the simulation of 

�⃗� (𝑋, 𝑌, 𝑍, 𝜔) is difficult since it involves solving the TDSE for many (𝑋, 𝑌, 𝑍) points. However, by using the 

DS, it is enough to calculate �⃗� (𝑋, 𝑌, 𝑍, 𝜔) only inside the spatial unit cell of the DS and then extrapolate 

�⃗� (𝑋, 𝑌, 𝑍, 𝜔) outside the unit cell according to the DS. Here, we express the far field emission using the 

Fourier series of �⃗� (𝑋, 𝑌, 𝑍, 𝑡) with a (3+1)D Gaussian envelope: 

�⃗� (𝑋, 𝑌, 𝑍, 𝑡) = 𝑒
−
𝑋2

2𝜎𝑋
2−

𝑌2

2𝜎𝑌
2−

𝑡2

2𝜎𝑡
2
∑ 𝐹 (�⃗� ) exp(𝑖(𝑘𝑥𝑋 + 𝑘𝑦𝑌 + 𝑘𝑧𝑍 − 𝜔𝑞𝑡))

�⃗� =(𝑘𝑥,𝑘𝑦,𝑘𝑧,𝜔𝑞)
 (10) 

which plugged into eq. (9), gives: 

�⃗� 𝐻𝐻𝐺(𝑥𝑑 , 𝑦𝑑 , 𝜔)

≈∑

{
 
 

 
 

𝐹 (�⃗� )
𝜔3𝜎𝑋𝜎𝑌𝜎𝑡𝐿𝑒

𝑖
𝜔
𝑐
𝑧𝑑(1+

𝑥𝑑
2+𝑦𝑑

2

2𝑧𝑑
2 )

2𝜋𝑖𝑧𝑑𝑐
2

𝑔𝜔(𝜔
�⃗� 

−𝜔𝑞)𝑠𝑖𝑛𝑐 (𝐿 (𝑘𝑧 −
𝑛𝜔𝜔

𝑐
(1 −

𝑥𝑑
2 + 𝑦𝑑

2

2𝑧𝑑
2 )))𝑔𝑘𝑥 (𝑘𝑥 −

𝑥𝑑
𝑧𝑑

𝑛𝜔𝜔

𝑐
)𝑔𝑘𝑦 (𝑘𝑦

−
𝑦𝑑
𝑧𝑑

𝑛𝜔𝜔

𝑐
)

}
 
 

 
 

 

(11) 

where 𝑔𝜔(𝜔) = 𝑒
−
𝜎𝑡
2𝜔2

2 , 𝑔𝑘𝑥(𝑘𝑥) = 𝑒
−
𝜎𝑋
2 𝑘𝑥

2 

2 , and 𝑔𝑘𝑦(𝑘𝑦) = 𝑒
−
𝜎𝑌
2𝑘𝑦

2 

2  and 𝜎𝑋, 𝜎𝑌, and 𝜎𝑡 are the spatial 

and temporal Gaussian widths, respectively. This expression is maximal for 𝑘𝑧 =
𝑛𝜔𝜔

𝑐
(1 −

𝑥𝑑
2+𝑦𝑑

2

2𝑧𝑑
2 ) , 𝑘𝑥 =

𝑛𝜔𝜔

𝑐

𝑥𝑑

𝑧𝑑
, 𝑘𝑦 =

𝑛𝜔𝜔

𝑐

𝑦𝑑

𝑧𝑑
 , and 𝜔 = 𝜔𝑞 which gives the condition of phase matching, 𝑘𝑧

2 + 𝑘𝑥
2 + 𝑘𝑦

2 =

(
𝑛𝜔𝑞𝜔𝑞

𝑐
)
2
.  

By considering this phase matching condition, in the case of our experiment with the tri-circular beam (as 

described in Fig. 3 of the main text), we can see that 𝑘𝑧 =
𝑞1𝜔

𝑐
− 𝑞2𝛽 of the induced polarization is phased 

matched for 𝑞2𝛽 =
𝑞1𝜔

𝑐

𝑥𝑑
2+𝑦𝑑

2

2𝑧𝑑
2 . Therefore, the on-axis harmonics are phase matched only for 𝑞2 = 0. 

(Hence, the selection rule for the temporal harmonics is 𝑞1 = 3𝑛 ± 1, as was demonstrated in the 

experiment.) Rings with radius √
2𝑧𝑑

2𝑞2𝛽𝑐

𝑞1𝜔
 are also allowed (with temporal harmonic, 𝑞1 = 3𝑛 ± 1 − 𝑞2, as 

was mentioned in the main text).  



Another consideration is reabsorption of the emitted high harmonic field. The index of refraction in the 

XUV is the complex valued 𝑛𝜔𝑞 = 1 + Δ𝑛𝜔𝑞 + 𝑖𝛽𝜔𝑞, with typical values (far from resonance) |Δ𝑛𝜔𝑞| ≲

10−5 (49) and 𝛽𝜔𝑞 ≲ 10
−6(or 𝑘′ = 𝛽𝜔𝑞

𝜔

𝑐
≲ 1𝑚𝑚−1) (50) for 1 bar pressure. Inserting the complex 

valued 𝑛𝜔𝑞 into the 𝑍-dependent part in eq. (9) gives:

∫𝑑𝑍𝑒(𝑖Δ𝑘−�̃�)𝑍
𝐿

0

=
�̃� + 𝑒−�̃�𝐿(Δ𝑘 sin(Δ𝑘𝐿) − �̃� cos(Δ𝑘𝐿))

�̃�2 + Δ𝑘2
(12) 

where Δ𝑘 = 𝑘𝑧 −
(1+Δ𝑛𝜔𝑞)𝜔

𝑐
(1 −

𝑥𝑑
2+𝑦𝑑

2

2𝑧𝑑
2 ) and �̃� =

𝛽𝜔𝑞𝜔

𝑐
(1 −

𝑥𝑑
2+𝑦𝑑

2

2𝑧𝑑
2 ). Fig. S1 shows the amplitude of an 

emitted harmonic as a function of �̃�𝐿 and Δ𝑘𝐿 according to eq. (12). When the absorption is small, i.e., 

�̃� < Δ𝑘, 1/𝐿, eq. (12) reduces to 𝐿𝑠𝑖𝑛𝑐(Δ𝑘𝐿). When the absorption is large, i.e., �̃� > 1/𝐿, eq. (12) reduces 

to 
�̃�

�̃�2+Δ𝑘2
. This means that as �̃�𝐿 gets larger, the phase matching condition for Δ𝑘𝐿 is less strict. Therefore, 

when the absorption is large, harmonics with larger values of Δ𝑘 can have significant amplitudes 

compared to harmonics with small values of Δ𝑘. In the case of our experimental example, this also means 

that harmonics with 𝑞2 = 1 can arrive to the detector with temporal harmonics 𝑞1 = 3𝑛 ± 1 − 𝑞2. In this 

case, the amplitude of the 𝑞1 = 3𝑛 harmonics will not drop completely to zero, as can be seen in fig. 3f in 

the main text. 

Fig. S1. The joint effect of phase mismatch 𝛥𝑘 and absorption �̃�   on the amplitude, according to eq. (12). 

3) Constraints on the Fourier spectrum of the induced polarization from DSs in real space

We will now prove that a general DS 𝐺 = 𝛾�̂� leads to eq. (6) in the main text which gives constraints on the 

harmonics of the induced polarization �⃗�  in the Fourier space.  

�⃗� (𝑋 ) = 𝐺−1�⃗� (𝑋 ) = 𝛾−1�⃗� (�̂�𝑋 ) = 𝛾−1�⃗� (Γ̂−1𝑋 − 𝑎 ) (13) 

In the Fourier domain, this constraint reads: 

�̃�𝐿

Δ
𝑘
𝐿

A
m

p
litu

d
e



∑ 𝐹 (�⃗� ) exp(𝑖�⃗� ∙ 𝑋 )
�⃗� 

=∑ 𝛾−1𝐹 (�⃗� ) exp(𝑖�⃗� ∙ (Γ̂−1𝑋 − 𝑎 ))
�⃗� 

 (14) 

The left hand side of eq. (14) can also be written, by a change of the order of summation, as 

∑ 𝐹 (Γ̂�⃗� ) exp(𝑖Γ̂�⃗� ∙ 𝑋 )
�⃗� 

=∑ 𝐹 (Γ̂�⃗� ) exp(𝑖Γ̂−1Γ̂�⃗� ∙ Γ̂−1𝑋 )
�⃗� 

=∑ 𝐹 (Γ̂�⃗� ) exp(𝑖�⃗� ∙ Γ̂−1𝑋 ) =∑ 𝛾−1𝐹 (�⃗� ) exp(𝑖�⃗� ∙ (Γ̂−1𝑋 − 𝑎 ))
�⃗� �⃗� 

 
(15) 

Consequently, the Fourier coefficients of identical exponents exp(𝑖�⃗� ∙ Γ̂−1𝑋 ) in Eq. (15) must be equal and 

therefore 𝐹 (Γ̂�⃗� ) = 𝛾−1𝐹 (�⃗� ) exp(−𝑖�⃗� ∙ 𝑎 ), and after multiplication with 𝛾 exp(𝑖�⃗� ∙ 𝑎 ): 

𝛾𝐹 (Γ̂�⃗� ) exp(𝑖�⃗� ∙ 𝑎 ) = 𝐹 (�⃗� ) (16) 

Which is Eq. (7) in the main text. 

 

 

 

4)  Selection rules of macrospace inversion and reflection and/or time reversal 

We now derive the selection rules for symmetries that include time reversal or space reflection (rows 9-

14 in table 1 in the main text for the case of (1+1+2)D).  

DS with macrospace-inversion and time reversal  

Since macrospace-inversion and time reversal (i.e. Γ̂𝑋 = −𝑋 ) is an order two operator, then the 

microscopic operation 𝛾 must be of order one or two, which can be reflection, inversion or 180 degrees 

rotations. Therefore, the eigenvector polarizations of 𝛾, �̂�𝑖(�⃗� ), are orthogonal linear polarizations: 

�̂�𝑥(�⃗� ), �̂�𝑦(�⃗� ), and �̂�𝑧(�⃗� ) (where with no loss of generality the x,y,z coordinates are chosen such that one 

of them is along the rotation axis or normal to the reflection plane of 𝛾) with possible 𝛼𝑖 eigenvalues of 0 

or ±𝜋. Since �⃗� (𝑋 ) is real, 𝐹 (−�⃗� ) equals the complex conjugate 𝐹 ∗(�⃗� ); therefore, 𝜙𝑖(−�⃗� ) = −𝜙𝑖(�⃗� ). 

The phase difference between two polarizations with the same �⃗�  will be: 

Δ𝜙𝑖,𝑖′ = 𝜙𝑖(�⃗� ) − 𝜙𝑖′(�⃗� ) = �⃗� ∙ 𝑎 + 𝛼𝑖 − 𝜙𝑖(�⃗� ) − (�⃗� ∙ 𝑎 + 𝛼𝑖′ − 𝜙𝑖′(�⃗� )) = 𝛼𝑖 − 𝛼𝑖′ − Δ𝜙𝑖,𝑖′  (17) 

 

hence:  

Δ𝜙𝑖,𝑖′ = (𝛼𝑖 − 𝛼𝑖′)/2 (18) 

According to eq. (18), the phase difference between the two linear polarization components (i.e., Δ𝜙𝑖,𝑖′) 

of the �⃗�  harmonics equals (𝛼𝑖 − 𝛼𝑖′)/2, which is expressed as either (i) a multiple of 𝜋, which means that 

the two linear polarization components, �̂�𝑖(�⃗� ) and �̂�𝑖′(�⃗� ), are in phase, and thus polarization is linear in 

the 𝑖 − 𝑖′ plane; or (ii) ±𝜋/2, in which case all the harmonics are elliptically polarized with minor/major 

ellipse axes along 𝑖 and 𝑖′. Therefore, for N=2, if 𝛾 is the identity or �̂�2 operation, then all the harmonics 

are linearly polarized (row 9 table 1 in the main text). Otherwise, if 𝛾 is a reflection operator, then all of 

the harmonics are elliptically polarized with major/minor axes corresponding to the reflection axes (row 

10 in table 1 in the main text). For N=3, if 𝛾 is the identity or inversion operation, all harmonics are linearly 

polarized. Instead, if 𝛾 = �̂�2, the rotation axis is a major/minor axis of the polarization ellipsoid. If 𝛾 is a 

reflection operator, the polarization ellipsoid has a major/minor axis normal to the reflection plane.  



DS with macrospace reflection 

Now we will consider DSs that do not involve macrospace-inversion and time reversal, but require only 

some reflection in macrospace or time. If the DS involves a macrospace reflection, then eq. (8) in the main 

text becomes:  

𝐴𝑞1,−𝑞2exp(𝑖𝜙𝑞1,−𝑞2 + 𝑖�⃗�
 ∙ 𝑎 )𝛾�̂�𝑞1,−𝑞2 = 𝐴𝑞1,𝑞2exp(𝑖𝜙𝑞1,𝑞2)�̂�𝑞1,𝑞2 (19) 

Therefore, the amplitudes of the mirrored spatial harmonics, 𝑞2 and −𝑞2, are the same, i.e., 𝐴𝑞1,𝑞2 =

𝐴𝑞1,−𝑞2. According to eq. (19), when the microscopic operation (𝛾) is the identity or the inversion

operations (𝜋 rotation in 2D), �̂�𝑞1,−𝑞2 must equal �̂�𝑞1,𝑞2 (row 11 in table 1 in the main text). Also, if 𝛾 is a 

reflection operation, �̂�, then �̂��̂�𝑞1,−𝑞2 = �̂�𝑞1,𝑞2  (row 12 in table 1 in the main text). Eq. (19) also determines 

the relationship between the phases 𝜙𝑞1,−𝑞2 and 𝜙𝑞1,𝑞2. This relationship depends on 𝛾 and the

propagation term, �⃗� ∙ 𝑎 . 

DS with time reversal  

When the DS involves a time reversal, eq. (8) in the main text becomes: 

𝐴−𝑞1,𝑞2exp(𝑖𝜙𝑞1,−𝑞2 + 𝑖�⃗�
 ∙ 𝑎 )𝛾�̂�𝑞1,−𝑞2 = 𝐴𝑞1,𝑞2exp(𝑖𝜙𝑞1,𝑞2)�̂�𝑞1,𝑞2 (20)

Therefore, 𝐴𝑞1,𝑞2 = 𝐴−𝑞1,𝑞2. When 𝛾 is the identity or the inversion operation (𝜋 rotation in 2D), �̂�−𝑞1,𝑞2 =

�̂�𝑞1,𝑞2. Hence, the polarization must be linear (row 13 in table 1 in the main text). When 𝛾 is the reflection 

operation, �̂�, then �̂��̂�−𝑞1,𝑞2 = �̂�𝑞1,𝑞2, and the polarization ellipse axis must be orthogonal to the �̂� plane 

(row 14 in table 1 in the main text). 

5) Tables of macroscopic, time and microscopic building blocks operations

In the main text we described multi-scale DS and discussed various examples. All symmetries for the 

(2+1+1)d case were outlined in table 1 of the main text. The number of all possible symmetries (and the 

number of symmetry groups) grows exponentially as the dimensionality increases. The enumeration and 

classification of all the symmetries and symmetry groups can be done in a similar manner as was done for 

magnetic groups (51). The building blocks operations for multi-scale DS are describe in the main text, and 

listed here in tow tables: table S1 for the macrospace-time operation and table S2 for microspace operations. 

In table S2 we also give the eigenvectors and eigenvalues which are used in the selection rules 

derivations. 

Table S1. Macrospace and time operation building blocks, their actions on �⃗� ( �⃗� , 𝑡), and their 
associated order. 

Macroscopic-time 

operation �̂� 
�̂��⃗� (�⃗� , 𝑡) Order of �̂� 

Time translation, �̂�𝑛,𝑚 �⃗� (�⃗� , 𝑡 + 𝑇𝑚/𝑛) 𝑛 

Space translation, 𝐽𝑛,𝑚 �⃗� (�⃗� + 𝐿𝑚/𝑛 𝑗̂, 𝑡) 𝑛 

Macrospace-time 

translation, �̂�𝑛 
�⃗� (�⃗� +

�⃗� 

𝑛
, 𝑡 + 𝜏/𝑛) 

𝑛 

Time-reversal, �̂� �⃗� (�⃗� ,−𝑡) 2 

Reflection, Σ̂𝑥 �⃗� (−𝑋, 𝑌, 𝑍, 𝑡) 2 

Space rotation, �̂�𝑛,𝑚 �⃗� (𝑋′, 𝑌′, 𝑍, 𝑡) 𝑛 



Table S2. Microscopic operation building blocks, e.g., reflection and rotation. The order, matrix 

representation, eigenvectors, and eigenvalues of each operation is listed. The rotation angle is defined as 

𝜃 = 2𝜋𝑚/𝑛. LCM is the least common multiple. 

6) Selection rules for chiral dichroism in HHG

This section presents an application of our multi-scale DS theory for analyzing enantio-sensitive HHG (52, 

53). In a recent work (12), it was shown that HHG driven by “synthetic chiral light” – i.e. light with electric 

field vector that does not exhibit any microscopic DS involving reflection, inversion or improper rotations 

– display enantio-sensitive HHG power spectrum in the near field. When the synthetic chiral light is also

“globally chiral”, i.e. it has the same handedness in the entire interaction region, the far-field HHG is also

enantio-sensitive. The situation is less clear when the driving field is synthetically chiral, but not globally

chiral. Later work (39) demonstrated that some such fields do exhibit far-field enantio-sensitive HHG

spectra. We show below that multi-scale DS theory can be used for analyzing these cases, providing chiral

dichroism (CD) selection rules and physical insight.

We first analyzed the field presented in Ref. (39) which is given by (see eq. 21-27 in Ref. (39)): 

�⃗� (𝑡, 𝑋, 𝑌) = 𝐸𝜔[𝐸𝑥(𝑋)𝑥 − 𝑖𝐸𝑦(𝑌)�̂�]𝑒
𝑖(𝑘𝑦𝑌−𝜔𝑡) + 𝐸2𝜔𝐸𝑧(𝑋)�̂�𝑒

2𝑖(𝑘𝑦𝑌−𝜔𝑡+𝜙) + 𝑐. 𝑐. (21) 

 where 

𝐸𝑥(𝑋) = cos(𝛼) cos(𝑘𝑥𝑋)
𝐸𝑦(𝑋) = sin(𝛼) sin(𝑘𝑥𝑋)

𝐸𝑧(𝑋) = cos(𝛼) cos(2𝑘𝑥𝑋)
(22) 

where 𝛼 is the half cross angle between the beams propagating in the x-y plane, 𝐸𝑚𝜔 is the amplitude of

the 𝑚𝜔 (𝑚 = 1,2) field and 𝑘𝑥 = sin(𝛼) 𝑘. The field is locally-chiral (i.e. has a nonzero degree of chirality

(54)) but not globally-chiral (i.e. the sign of the field’s chirality changes rapidly across the interaction 

region). Through numerical simulations, Ref. (39) found that some harmonic orders still exhibit large chiral 

dichroism in the far field that is anti-symmetric with respect to the propagation angle (Fig. 4 in Ref. (39)). 

Microscopic 
Operation, 𝛾 

Order Matrix Representation Eigenvectors, �̂��⃗� 
(𝑚) Eigenvalues, 

𝑒𝑖𝛼
(𝑚)

Reflection, �̂�ℎ 2 
(
−1 0 0
0 1 0
0 0 1

) (
1
0
0
) , (

0
1
0
) , (

0
0
1
) 

𝜋, 0,0 

Rotation, �̂�𝑛,𝑚 𝑛 
(
cos(𝜃) −sin(𝜃) 0
sin(𝜃) cos(𝜃) 0
0 0 1

) (
1
+𝑖
0
) , (

1
−𝑖
0
) , (

0
0
1
) 

+𝜃,−𝜃, 0

Elliptical 
rotation, �̂�𝑛,𝑚 

𝑛 
(
cos(𝜃) −sin(𝜃)/𝜖 0
𝜖sin(𝜃) cos(𝜃) 0
0 0 1

) (
1
+𝑖
0
𝜖) , (

1
−𝑖𝜖
0
) , (

0
0
1
) 

+𝜃,−𝜃, 0

Elliptical 
improper 

rotation, �̂�𝑛,𝑚 

LCM(2, 𝑛) 
(
cos(𝜃) −sin(𝜃)/𝜖 0
𝜖sin(𝜃) cos(𝜃) 0
0 0 −1

) (
1
+𝑖
0
𝜖) , (

1
−𝑖𝜖
0
) , (

0
0
1
) 

+𝜃,−𝜃, 𝜋



We show here that multi-scale DSs of the light-matter system lead to a selection rule of the chiral dichroism 

spectra that matches and explains this feature.  

We have found that the field in Eq. (21) exhibits the following multi-scale symmetry: �̂�𝑥𝑧Σ̂ , i.e. 

�̂�𝑥𝑧�⃗� (𝑡, −𝑋) = �⃗� (𝑡, 𝑋). The microscopic reflection �̂�𝑥𝑧 flips the handedness of the field; hence, the 

interaction of �⃗� (𝑡, 𝑋) with a medium of randomly oriented left-handed chiral molecules is equivalent to the 

interaction of �⃗� (𝑡, −𝑋) with randomly oriented right-handed chiral molecules up to a microscopic 

reflection �̂�𝑥𝑧. Therefore, the induced polarization of the two ennatiomers exhibits the relation: 

�̂�𝑥𝑧�⃗� 
𝐿(𝑡, −𝑋) = �⃗� 𝑅(𝑡, 𝑋) (23) 

 

Implementing eq. (7) of the main text on eq. (23) leads to: 

�̂�𝑥𝑧𝐹 
𝐿(𝑞1𝜔,−𝑞2𝑘𝑥) = 𝐹 

𝑅(𝑞1𝜔, 𝑞2𝑘𝑥) (24) 

 

The chiral dichroism of the far field HHG is defined as 

𝐶𝐷(𝑞1𝜔, 𝑞2𝑘𝑥) = 2
𝐼𝐿(𝑞1𝜔, 𝑞2𝑘𝑥) − 𝐼

𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)

𝐼𝐿(𝑞1𝜔, 𝑞2𝑘𝑥) + 𝐼
𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)

= 2
|𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|

2
− |𝐹 𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)|

2

|𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|
2
+ |𝐹 𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)|

2 

(25) 

where 𝐼𝐿 (𝐼𝑅) is the intensity of emission from the left (right) handed enantiomer. Using the relation in Eq. 

(24) we obtain. 

𝐶𝐷(𝑞1𝜔,−𝑞2𝑘𝑥) = 2
|𝐹 𝐿(𝑞1𝜔,−𝑞2𝑘𝑥)|

2
− |𝐹 𝑅(𝑞1𝜔,−𝑞2𝑘𝑥)|

2

|𝐹 𝐿(𝑞1𝜔,−𝑞2𝑘𝑥)|
2
+ |𝐹 𝑅(𝑞1𝜔,−𝑞2𝑘𝑥)|

2

= 2
|�̂�𝑥𝑧𝐹 

𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)|
2
− |�̂�𝑥𝑧𝐹 

𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|
2

|�̂�𝑥𝑧𝐹 
𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)|

2
+ |�̂�𝑥𝑧𝐹 

𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|
2

= −2
|𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|

2
− |𝐹 𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)|

2

|𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|
2
+ |𝐹 𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)|

2 = −𝐶𝐷(𝑞1𝜔, 𝑞2𝑘𝑥) 

 

(26) 

Eq. (26) establishes the following selection rule for CD: for a given emitted harmonic with temporal 

frequency 𝑞1𝜔, the CD at opposite spatial frequencies 𝑞2𝑘𝑥 and −𝑞2𝑘𝑥 have opposite sign. This feature is 

clearly seen in Fig. 4 of Ref. (39).  

 

Next, we analyzed another field that is locally-chiral but not globally-chiral, which was described in the 

supplementary of Ref. (12) and analyzed in Ref. (54). The field is a superposition of two non-collinear 

counter-rotating bi-elliptical fields, which near the focus are given by (eq S34-S5 in SI of Ref. (12)): 

�⃗� 1(𝑡, 𝑋, 𝑌) =
1

2
𝐸1,0 exp(𝑖𝑘(𝑠𝑖𝑛(𝛼)𝑋 + 𝑐𝑜𝑠(𝛼)𝑌) − 𝑖𝜔𝑡) (𝑐𝑜𝑠(𝛼) 𝑥 − 𝑠𝑖𝑛(𝛼) �̂� + 𝑖𝜖1�̂�)

+ 𝑐. 𝑐. 
(27) 



�⃗� 2(𝑡, 𝑋, 𝑌) =
1

2
𝐸2,0 exp(𝑖2𝑘(− 𝑠𝑖𝑛(𝛼)𝑋 + 𝑐𝑜𝑠(𝛼)𝑌) − 𝑖2𝜔𝑡) (𝑐𝑜𝑠(𝛼) 𝑥 + 𝑠𝑖𝑛(𝛼) �̂� − 𝑖𝜖2�̂�)

+ 𝑐. 𝑐.
Where 𝐸𝑛,0 is the electric amplitude 𝜖𝑛 is the ellipticity of the two fields.

Through a rigorous analysis, we have found that the total field �⃗� = �⃗� 1 + �⃗� 2 exhibits the following multi-

scale DS 𝑖̂�̂�8,3�̂�8,−1, that is it upholds the equation:

−�⃗� (𝑡 + 3
2𝜋

8𝜔
, 𝑋 −

2𝜋

8𝑘𝑥
, 𝑌) = �⃗� (𝑡, 𝑋, 𝑌) (28) 

The microscopic inversion operation flips the handedness of chiral field. Therefore, following similar 

argument as in the previous case, the induced polarization of the two enantiomers will have the relation: 

𝑖̂�̂�8,3�̂�8,−1�⃗� 
𝐿(𝑡, 𝑋) = �⃗� 𝑅(𝑡, 𝑋) (29) 

Which according to the multi-scale DS theory, specifically Eq. (7) in the main text, leads to: 

−𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)𝑒
2𝜋𝑖(3𝑞1−𝑞2)

8 = 𝐹 𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)
(30) 

Inserting the relation to CD: 

𝐶𝐷(𝑞1𝜔, 𝑞2𝑘𝑥) = 2
|𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|

2
− |𝐹 𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)|

2

|𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|
2
+ |𝐹 𝑅(𝑞1𝜔, 𝑞2𝑘𝑥)|

2

= 2
|𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|

2
− |−𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)𝑒

2𝜋𝑖(3𝑞1−𝑞2)
8 |

2

|𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|
2
+ |−𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)𝑒

2𝜋𝑖(3𝑞1−𝑞2)
8 |

2

= 2
|𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|

2
− |𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|

2

|𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|
2
+ |𝐹 𝐿(𝑞1𝜔, 𝑞2𝑘𝑥)|

2 = 0 

(31) 

leads to forbidden CD, as argued in Ref. (12) (note that this assumes that the interaction region is spatially 

broad and contains the spatial structure of the light).  

Thus, our theory for multi-scale DSs can also be applied in the field of chiral light-matter interactions to 

explain ultrafast chiral dichroism in solid and molecular systems. 
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